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Abstract: Conjugated polymers (CPs) are attractive materials for use in different areas; nevertheless,
the enhancement of electrochromic stability and switching time is still necessary to expand
the commercialization of electrochromic devices. To our best knowledge, this is the first
study demonstrating the employment of electrodeposited gold nanostructures (AuNS) for the
enhancement of CPs’ electrochromic properties when a transparent electrode is used as a substrate.
Polyaniline–poly(3,4-ethylenedioxythiophene) (PANI-PEDOT) films were electrodeposited on a
transparent indium tin oxide glass electrode, which was pre-modified by two different methods.
AuNS were electrodeposited at −0.2 V constant potential for 60 s using both the 1st method
(synthesis solution consisted of 3 mM HAuCl4 and 0.1 M H2SO4) and 2nd method (15 mM HAuCl4
and 1 M KNO3) resulting in an improvement of optical contrast by 3% and 22%, respectively.
Additionally, when using the 1st method, the coloration efficiency was improved by 50% while the
switching time was reduced by 17%. Furthermore, in both cases, the employment of AuNS resulted
in an enhancement of the electrochromic stability of the CPs layer. A further selection of AuNS
pre-modification conditions with the aim to control their morphology and size can be a possible
stepping stone for the further improvement of CPs electrochromic properties.

Keywords: electrochromic polymers; gold nanostructures; polyaniline;
poly(3,4-ethylenedioxythiophene); conducting polymers

1. Introduction

Conjugated polymers (CPs) stand out among other electrochromic materials due to their
environmental stability, flexibility, biocompatibility, and convenient electrochemical or chemical
synthesis [1,2]. Such properties allow CPs to be employed in the design of displays, bioelectronics,
smart windows, and electrochromic color-changing textiles [3–7]. However, further investigations of
electrochromic materials including CPs are needed to change electrochromic devices such as smart
windows from an expensive item to a widely used commodity [8].

A joint utilization of nanostructures with CPs can be the way to improve the desired properties
of electrochromic materials. Various nanostructures such as graphene oxide [9], metal oxides [10],
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MXenes [11], etc. can be used in the fabrication of electrochromic devices. For instance, polyaniline
(PANI) layer deposited on indium tin oxide coated glass (ITO) with graphene oxide shows an
enhancement of electrochromic stability and improvement of other kinetic parameters [12]. In this
context, plasmonic nanostructures are a rather promising candidate for the enhancement of desired
CPs properties [13,14]. For instance, the incorporation of metallic nanoparticles into the structure of
CPs can be accomplished during the synthesis by the simultaneous reduction of metal salts. Ten nm
spherical gold nanoparticles (AuNPs) embedded to electrodeposited nanocomposites of polypyrrole
and dye—indigo carmine—enable the enhancement of electrochromic properties such as optical
contrast and switching time. In addition, higher electroactivity and lower band-gap energy have been
achieved [15]. The incorporation of AuNPs and silver nanoparticles (AgNPs) to the nanocomposite of
well-known and widely studied polythiophene derivative poly(3,4-ethylenedioxythiophene) (PEDOT)
was performed during oxidative polymerization by Mumtaz et al. [16]. PEDOT–metal particle
composites possessed increased coloration efficiency, 3–4 times enhanced contrast ratio, and 4–5 times
faster switching between bleached and colored states.

Mixing nanoparticles with polymer solutions is another option of nanocomposite formation.
Such a nanocomposite of PEDOT/poly(styrene sulfonate) with 3.2 nm AuNPs or 6.5 nm AgNPs
possessed modified colors in colored/bleached states [13]. The incorporation of AuNPs into the
structure of PANI copolymerized with p-aminothiophenol in the presence of poly(styrene sulfonate)
(PSS) was performed by Xiong et al. [17]. Such nanohybrids possessed improved electrochemical
activity and shorter switching time. The possibility to control plasmonic resonance by the insertion
of gold nanocubes or nanorods to an electrochromic polymer matrix was shown previously [18,19].
An alternative approach is based on plasmonic nanostructures that are deposited on the surface.
The usage of gold nanomesh structures as substrate allows for the moderation of a deposited thin PANI
layer color under electrochemical switching [20]. The electrochromic polymer layer color change was
monitored where an Au film with etched nanoholes [21], and Au or Al nanoslit arrays [22], were used
as substrates for polymer deposition. Furthermore, a PANI layer on a metallic nanoslit exhibits faster
electrochromic switching, and its color can be controlled by changing slit dimensions.

Gold nanostructures (AuNS) can be electrodeposited on the surface of various electrodes [23],
wherein the morphology of deposited AuNS could be easily controlled to some extent by choosing
deposition conditions, such as synthesis time, electrode potential, and the composition of the synthesis
solution [24]. It is well known that optical and electrochemical properties depend on the size and
morphology of AuNS [25]. According to previously discussed articles, various AuNS affect the optical
and electrochromic properties of CPs differently. It can be assumed that the interaction between CPs
and AuNS may vary depending on the size and morphology of AuNS.

The enhancement of electrochromic performance and stability is needed for a wider application
of CPs in different areas such as smart windows and display devices [26]. Plasmonic nanostructures,
which negligibly affect substrate transparency and have a positive impact on CPs’ electrochromic
properties, are a potentially interesting object to study.

In this work, we investigated how plasmonic nanostructures affect the electrochromic
properties of CPs. To our knowledge, the effects of AuNS deposited on a transparent
electrode were investigated for the first time. AuNS were synthesized on an ITO electrode and
polyaniline-poly(3,4-ethylenedioxythiophene) (PANI-PEDOT) films were electrodeposited on top of
ITO/AuNS substrate.

2. Experimental

2.1. Materials and Methods

3,4-Ethylenedioxythiophene (EDOT), tetrachloroauric acid trihydrate (HAuCl4·3H2O), and ITO
(15–25 Ω cm−1) were purchased from Sigma-Aldrich (Steinheim, Germany). Aniline (ANI) and sodium
dihydrogen phosphate monohydrate were bought from Fluka (Buchs, Switzerland). Sulfuric acid
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was obtained from Roth (Karlsruhe, Germany). Potassium chloride were purchased from Merck.
Lithium perchlorate and acetone were bought from Alfa Aesar (Karlsruhe, Germany). Aniline was
distilled once before use. All aqueous solutions were prepared with deionized water (18 MΩ·cm−1).

2.2. Pre-Treatment of ITO Electrode

All electrochemical measurements were performed using a three-electrode cell and a potentiostat
PGSTAT30/Autolab from ECOChemie (Utrecht, Netherlands) with GPES 4.9 software. An ITO electrode,
which was cut to required size rectangles, was used as a working electrode. A platinum electrode
served as a counter electrode and an Ag/AgCl(3M KCl) electrode from CH Instruments (Austin, TX,
USA) was used as a reference. Before synthesis, the ITO electrode was washed with acetone and
then sequentially treated by ultrasound for 15 min each in acetone and water. Additionally, the ITO
electrode was cleaned by potential cycling between 0 and +1 V in 50 mM phosphate-buffered saline
(PBS), pH 6, with 0.1 M KCl and then rinsed with deionized water.

2.3. Electrodeposition of Gold Nanostructures

AuNS were electrodeposited at −0.2 V constant potential for 60 s. Two aqueous synthesis solutions
were used for the formation of AuNS differing in morphology and shape. For the 1st synthesis method,
the solution from which AuNSI were formed consisted of 3 mM HAuCl4 and 0.1 M H2SO4, while the
2nd synthesis method solution consisted of 15 mM HAuCl4 and 1 M KNO3 (AuNSII). After AuNS
were formed on an ITO electrode, the layer was carefully washed with deionized water and left to dry
in air.

2.4. Preparation of Polymer Films

PANI-PEDOT films were electrodeposited using the cyclic voltammetry method with a
three-electrode electrochemical cell by our previously reported method [3]. Electrodeposition was
performed from a water-based solution consisting of 0.2 M ANI, 0.01 M EDOT, 0.2 M H2SO4, and 0.1 M
LiClO4 as the supporting electrolyte. The voltage was swept between 0 and +1.1 V with a potential
sweep rate of 50 mV s−1 for 10 cycles. After electrodeposition, synthesized polymer films were gently
rinsed with deionized water to remove the oligomers and inorganic salt from the surface of the
polymer layer.

2.5. Characterization of AuNS and PANI-PEDOT Films

An electrochemically active area of formed AuNS was determined for both synthesis methods
using the cyclic voltamperometry method where the ITO/AuNS electrode was submerged in 0.5 M
H2SO4 solution and the potential was cycled between 0 and +1.4 V at the potential sweep rate of 50,
100, and 150 mV s−1. The electrochemically active area (Γ) was calculated using this equation [27]:

Γ =
A

ν · 400 µC cm−1
(1)

where A—the area of the cathodic current, ν—the potential sweep rate, and 400 µC cm−1—the charge
density per unit area associated with the electrochemical reduction of a monolayer of chemisorbed
oxygen on polycrystalline gold [28].

The color of electrodeposited AuNS was evaluated using a Flame spectrometer with a tungsten
halogen light source HL 2000 (OceanOptics, Dunedin, FL, USA). A white standard WS-1-SL
and reflection probe QR400-7-VIS-NIR were used for calibrating the flame spectrometer before
measurements. The CIELAB 1976 color space coordinates [29] were selected for the evaluation of the
ITO/AuNS sample color.

The polycrystallinity of AuNS was determined by performing the X-ray diffraction method (XRD)
using MiniFlex II diffractometer (Rigaku, Tokyo, Japan). XRD was performed in the angle range of
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10◦ to 80◦ with a rate of 5◦ per minute. The shape of gold nanostructures for both synthesis methods
and the morphology of PANI/PEDOT films deposited on ITO/AuNS were analyzed using scanning
electron microscope SU-70 (SEM) (Hitachi, Krefeld, Germany).

The absorbance spectra of AuNS and PANI-PEDOT films were determined using a UV-Vis
spectrometer Lambda 25 (Perkin Elmer, Waltham, MA, USA) and were registered in the range from
400 to 1100 nm. The thickness of the polymer layers was evaluated by atomic force microscope BioScope
Catalyst (Bruker, Billerica, MA, USA). A gold-coated silicon nitride cantilever (spring constant 0.06 N
m−1, resonant frequency 24 kHz) was used. AFM measurements were performed in contact mode at
the junction of the polymer and ITO left after scratching polymer layers with a soft plastic stick.

2.6. Electrochromic Switching

Measurements of electrochromic performance of PANI-PEDOT layers were performed using
the same potentiostat and 3-electrode system, which was used for AuNS and polymers deposition.
Potential was cycled between −0.1 and +0.5 V, while the absorbance of PANI-PEDOT layers was
registered at the same time. PANI-PEDOT layers deposited on a bare and AuNS-coated ITO electrode
were compared using an absorbance value at λmax of the polymer’s colored state.

3. Results

AuNS with different shapes and morphology were electrodeposited onto a pre-cleaned ITO
electrode using two methods. During the 1st synthesis method, deposition was performed from a
water-based solution consisting of 3 mM HAuCl4 and 0.1 M H2SO4 (AuNSI), while the 2nd method
used 15 mM HAuCl4 and 1 M KNO3 (AuNSII). In both cases, electrochemical deposition was performed
at a constant −0.2 V working electrode potential vs. Ag/AgCl(3M KCl) reference electrode for 60 s.
The chronoamperograms registered during electrochemical deposition are presented in Figure 1.
During the synthesis, there was a clear visual indication that AuNS were depositing on ITO because the
color of the formed AuNS layer was becoming more intensive with time using both AuNS formation
methods. After the synthesis, colors of AuNSI and AuNSII were light gray (L* = 47.2, a* = −2.1,
b* = 10.3) and intense dark-orange (L* = 50.6, a* = 20.0, b* = 20.6), respectively.
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Figure 1. Electrochemical deposition of gold nanostructures (AuNS) on an indium tin oxide
(ITO) electrode. Inset: Photographic pictures of ITO/AuNS electrodes after electrodeposition from
different solutions.

The morphology of synthesized AuNS was evaluated using the SEM imaging technique (Figure 2).
Using the 1st method, anisotropic “hedgehog” shape AuNS, which were around 200–500 nm in size,
were deposited on an ITO electrode. AuNS were located randomly at various distances apart from one
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another. On the contrary, significantly larger dendritic microstructures with branches were observed
after AuNS synthesis using the 2nd method. Higher HAuCl4 concentration in the case of the 2nd
method possibly had an impact on the formation of larger AuNS. Similar structures were registered
when AuNS were electrodeposited on an ITO electrode by applying −0.3 V for 3600 s [30]. It is well
known that the morphology and shape of AuNS depend on the applied potential, deposition time, and
the composition of the synthesis solution [24]. In our case, the reason for such a difference in AuNS
morphology possibly lies in the choice of supporting electrolyte and the pH value of the initial solution.
On the other hand, initial HAuCl4 concentration is likely to influence the size of the AuNS rather than
the morphology. The replacement of Cl− ligands by OH− groups in AuCl4− ion tends to decrease the
nucleation rate and since the gold complex degree of hydrolysis depends on the pH, more reactive Au
complexes are present in acidic solutions. In turn, this leads to the formation of a larger number of
synthesis nuclei at acidic conditions [31]. Therefore, as expected, a larger number of smaller AuNS
were deposited using the 1st method.
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Figure 2. SEM images of (A) ITO/AuNSI and (B) ITO/AuNSII deposited at −0.2 V for 60 s from a
water-based solutions.

Oxygen adsorption measurements were chosen to determine the electroactive surface area of
synthesized AuNS [32]. Figure 3 represents ITO/AuNS cyclic voltammograms collected in 0.5 M
H2SO4 solution. Electrochemical gold oxide formation and subsequent reduction were observed.
The electroactive surface area was found to be 0.19± 0.03 cm2 and 1.44± 0.17 cm2 for AuNS synthesized
using the 1st and 2nd method respectively.
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Figure 3. Cyclic voltammograms of (A) ITO/AuNSI and (B) ITO/AuNSII recorded in 0.5 M H2SO4

solution. The potential sweep rate was 150 mV s−1.
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Cyclic voltammograms also displayed a broad region of gold oxide reduction. In both cases,
three oxidation and three reduction peaks were registered. This fact reveals the polycrystalline nature
of synthesized AuNS [33]. The position of oxidation/reduction peaks depends on the crystallographic
orientation of the gold surface [34]. The oxidation peak observed with both methods at around
+1.3 V is attributed to the Au (111) plane [35]. Additional XRD measurements were performed for
the determination of the AuNS crystalline structure (Figure 4). The results clearly indicate that the
formed AuNS are polycrystalline. All patterns have the lines of Au(111), Au(200), Au(220), and Au(311)
crystal faces. It illustrates the fcc crystalline structure of AuNS [35]. In both cases, the intensity of the
Au(111) diffraction peak was much stronger when compared to others. The ratio of gold and ITO facets
intensities was higher for ITO/AuNSII. These results coincide with CV measurements and indicate that
a higher amount of gold was deposited using the 2nd method.
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Figure 4. XRD patterns of AuNS deposited on an ITO electrode.

Since electrodeposition was performed on a transparent ITO electrode, the optical properties of
AuNS could be conveniently studied using the UV-Vis-NIR spectroscopy method. Absorption spectra
were recorded in the range from 400 to 1100 nm (Figure 5). In the absorption spectra of AuNSI,
three maxima at 460, 590, and 960 nm were registered. In the case of AuNSII, only two peaks at 584
nm and 980 nm were observed. The broad peaks at 960 nm for AuNSI and at 980 nm for AuNSII are
present due to in-plane dipole resonance, whereas peaks at visible parts of the spectrum are attributed
to the out-of-plane dipole resonance [36]. In comparison, surface plasmon resonance (SPR) peaks at
550 nm and at about 940 nm were registered in the spectra of Au nanoplates synthesized on an ITO
electrode [37,38]. Differences in the absorbance intensity of AuNS and the position of λmax can be
explained by the distinctions in shape, morphology, aspect ratio, and sizes of AuNS synthesized using
different methods [39,40]. For instance, local roughness can affect the AuNS optical properties [41].
In addition, the broad absorption throughout the whole visible spectra can likely be attributed to
an uneven AuNS size on the surface, resulting in continuous absorption and diffraction at various
wavelengths. Furthermore, our results showed that the active surface area of AuNS synthesized using
the 2nd method was much larger, which possibly represents the differences in AuNS absorbance
intensity between synthesis methods.

PANI-PEDOT layers were electrochemically deposited on the surface of ITO/AuNSI and
ITO/AuNSII substrates (Figure 6). Moreover, the synthesis of the polymer layer was also
performed on the surface of a bare ITO electrode without AuNS to be used as a control sample.
Typical cyclic voltammograms were monitored during PANI-PEDOT electrodeposition on ITO/AuNS [3].
The formation of a “nucleation loop” during the first few cycles can be associated with the reaction
between PANI and PEDOT monomers and the formation of their oligomers [42]. PANI polymerization
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is confirmed by the presence of oxidation peaks at +0.55 V and +0.75 V in the case of electrodeposition
on ITO/AuNSI and at +0.61 V and +0.80 V in the case of an ITO/AuNSII substrate. The first peak in both
cases represents the formation of breakdown products such as p-benzoquinone and hydroquinone [43].
Oxidation peaks at +0.75 V and +0.80 V are related to the formation of a PANI polymerization
chain by the generation of diradical–dications, while at potential higher than +0.80 V, an interaction
of diradical–dications and PANI monomers takes place [44]. It is also worth noting that PEDOT
polymerization occurs in the range from +1 to +1.1 V [45]. According to our previous work [3], a PANI
and PEDOT composite is formed during polymerization, since the formation of aniline radicals and
EDOT polymerization take place at significantly different potentials.
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Figure 6. (A) Cyclic voltammograms obtained during the synthesis and (B) SEM images
of polyaniline–poly(3,4-ethylenedioxythiophene) (PANI-PEDOT) films on (1) ITO/AuNSI and
(2) ITO/AuNSII electrodes. Electrochemical synthesis was performed in 0.2 M H2SO4 solution
containing 0.1 M LiClO4, the sweep rate of the electrode potential was 50 mV s−1.
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The morphology of the synthesized PANI-PEDOT layers did not change regardless of the method
used for AuNS formation (Figure 6). Moreover, the surface of the electrodeposited nanocomposite
was similar to the surface of the PANI-PEDOT layer deposited on the bare ITO electrode. Observed
globular structures are attributed to the PEDOT polymer, wherein lump-like and fibrous clumps are
characteristic features of PANI structures [3].

Since the deposition of PANI-PEDOT layers was performed under the same conditions for the
bare ITO electrode and ITO/AuNS electrodes, it was theorized that the thickness of the polymer layers
will be the same regardless of the increase in surface area observed due to the formation of AuNS,
since the growth after a first few electrodeposition cycles continues on the freshly formed polymer
layer. AFM measurements in contact mode (Figure 7) were performed to confirm this statement.Polymers 2020, 12, 2778 8 of 14 
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Figure 7. The surface topography evaluation of a PANI-PEDOT layer deposited on (1) ITO,
(2) ITO/AuNSI, and (3) ITO/AuNSII obtained by AFM. The surface section (A) and 2D AFM image
(B) are presented.

Morphology typical for electrodeposited polymers was determined. A large number of
irregularities were present in all cases on the PANI-PEDOT surface, resulting in relatively rough
polymer layers. The layer thickness was similar for all different substrates. For bare ITO, ITO/AuNSI,
and ITO/AuNSII, it was equal to 486 ± 36 nm, 459 ± 84 nm, and 458 ± 53 nm, respectively. The same
effect was observed in the literature where the PANI layer was electrochemically deposited on a flat
gold surface and gold nanomesh substrates [20].

The electrochromic performance of the prepared polymer layers was investigated by the
spectrochronoamperometry method. Primarily, absorbance spectra were registered after applying
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−0.1 or +0.5 V potential to the polymer layers (Figure 8A). After applying +0.5 V (colored state),
a slight shift in the position of absorption maximum from 623 to 628 nm was observed in the case of
the PANI-PEDOT layer deposited on the AuNSII substrate compared with other substrates. A similar
effect for the absorption minimum was monitored while in a bleached state (−0.1 V) wherein a more
significant λmin red shift from 501 to 541 nm was detected. A similar large red shift of absorbance
maximum in the colored state was reported by Shahabuddin et al. where the PANI layer was deposited
on nanomesh gold structures [20]. Those results were obtained in reflection mode, and the red shift
was observed in comparison with the PANI layer deposited on a flat gold surface. It clearly illustrates
that such an effect is achieved due to the presence of gold nanostructures. However, in our case,
only AuNSII resulted in such a shift. It could possibly be explained by the different interaction between
polymers and AuNS.Polymers 2020, 12, 2778 9 of 14 
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Figure 8. (A) Absorbance spectra of the PANI-PEDOT layer deposited on different substrates under
(dotted lines) −0.1 V and (solid lines) +0.5 V applied potential. (B) Absorbance at λmax dependency
on time during electrochromic switching between −0.1 and +0.5 V potential (measurements were done
in 0.2 M H2SO4 and 0.1 M LiClO4 solution when potential was applied vs. Ag/AgCl electrode).

Switching time (τ95) is an important kinetic parameter for comparing electrochromic materials.
In this study, the response was calculated as the time that is needed for an optical change of 95%
to happen between colored and bleached states (Figure 8B). The optical change was monitored at
λmax, which was observed in the colored state (+0.5 V) of the PANI-PEDOT layers. In the case of
the ITO/AuNSII substrate, the switching time slightly increases from 3.0 to 3.1 s when compared to
PANI-PEDOT on a bare ITO electrode, wherein τ95 using AuNSI on the contrary decreases to 2.5 s.
A comparable reduction of switching time was obtained after the incorporation of gold nanoparticles
to the nanocomposite of indigo carmine-doped polypyrrole [15]. The usage of AuNS in both cases
led not only to the increase of background absorbance (Figure 8A) but also to the improvement of
optical contrast (∆T) (Table 1). This difference can be associated with the variation in size and surface
concentration of gold nanostructures.

Table 1. Electrochromic properties of the PANI-PEDOT layer deposited on different substrates.

Substrate N Q [mC cm−2] Tc/Tb [%] ∆T [%] CE [cm2 C−1]

ITO
1 5.6 29.4/20.7 8.7 21.7

150 2.3 28.6/26.0 2.6 14.3

ITO/AuNSI
1 4.8 24.9/15.9 9.0 32.8

150 2.5 25.1/21.0 4.1 24.5

ITO/AuNSII
1 10.0 23.8/13.2 10.6 20.5

150 3.8 23.5/18.8 4.7 14.5
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Additional experiments were done for the evaluation of the influence of AuNS on polymer’s
electrochromic performance and cycling stability. Electrochromic switching between −0.1 and +0.5 V
was performed for 150 cycles (Figure 9). Optical change was monitored at the same wavelengths as
were used in the previous experiment. Coloration efficiency (CE) was calculated according to the
following Equations [46]:

∆QD = log
(Tb

Tc

)
CE =

∆QD
Q

(2)

where ∆QD is optical density change, which was calculated using transmittance values of polymer’s
bleached (Tb) and colored (Tc) states, and Q is the electronic charge consumed per unit area.
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Figure 9. (A) Transmittance curves at λmax and (B) chronoamperometry results of PANI-PEDOT layers
synthesized on (1) ITO, (2) ITO/AuNSI and (3) ITO/AuNSII registered in 0.2 M H2SO4 with 0.1 M
LiClO4 solution. First 5 and last 146–150 cycles are displayed. The potential was switched between
−0.1 V and +0.5 V vs. Ag/AgCl for 10 s at each step.

It can obviously be seen that AuNS affect the electrochromic performance of the PANI-PEDOT
layer. The addition of AuNSI to the system results in an increase of CE value from 21.7 to 32.8 cm2 C−1.
The value of ∆T improves from 8.7% to 9.0% when compared with PANI-PEDOT on a bare ITO
electrode. On the other hand, optical contrast was higher (10.6%) when AuNSII were used; however,
the calculated CE value was practically the same compared with PANI-PEDOT on a bare ITO electrode.
These results go hand in hand with the data from switching time measurements, with AuNSI providing
the best results. A minor decrease in the transmittance of the investigated layers is monitored due
to the AuNS interaction with light (absorbance, diffraction, etc.). Additionally, samples with AuNS
showed better electrochromic stability. After 150 cycles of electrochromic switching, the ∆T value of the
PANI-PEDOT layer deposited on the bare ITO electrode decreases about 1.5 times more in comparison
with that determined for the polymer layers deposited on ITO/AuNS, wherein CE values decrease
relatively equally. The observable and expected decrease of optical contrast is associated with dopants
leaching out of the polymer during electrochromic switching accompanied by changes in structure and
conformation due to the accumulation of extra charges in the chains [15].
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The deposition of plasmonic nanostructures typically allows for the increase of electrode surface
area, thereby possibly affecting charge transport kinetics due to interface effects [20,47]. These effects
are related to a quite low work function value for AuNS. For instance, gold nanoparticles with values
of 3.4 eV and 3.6 eV were recently described in the literature [48,49]. In our case, it is important to
pay attention to the work function value of ITO being approximately equal to 4.5 eV [50], while that
of PANI is 4.42 eV [51], and PEDOT in the form of a mixture with PSS has been reported from 4.7 to
5.4 eV [52]. Therefore, the change in electrochromic properties due to the formation of the depletion
layer and Schottky barrier in polymers, which are p-type semiconductors, is expected [20]. Different
effects on electrochromic properties can be associated with a distinct work function for particular gold
nanostructures. Previously, it was shown that the work function [53] and electron affinity [54] of gold
clusters depend on their size.

4. Conclusions

The enhancement of the electrochromic properties of the PANI-PEDOT layer, which was provided
by AuNS deposited on an ITO electrode, has been observed. Such an easy and low-cost method of
substrate pre-modification can be used for further improvements of various electrochromic devices
based on conducting polymers. This research demonstrated that the electrochemical and optical
properties of AuNS can be controlled by changing electrodeposition parameters. We believe that future
investigations will allow for the selection of AuNS synthesis conditions that result in better optical
transmittance while possessing enough significant positive effects on the electrochromic properties
of conducting polymers. In addition, the possibility to increase the optical contrast and to control
the color of the CPs layer could reduce the need for combining several CPs to achieve a full-color
gamut during the fabrication of electrochromic devices. Moreover, the electrodeposition of other
plasmonic nanostructured materials can potentially be used to tune the electrochromic properties of
CPs. Thus, the use of transparent substrates with nanostructures can allow extending possible areas of
CPs’ application in smart windows and flexible electrochromic displays.
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