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Abstract: The composite material filled with nano-sized BaTiO3 and Fe3O4 was designed and studied.
The aluminium phosphate ceramics was used as a matrix. The XRD analysis demonstrates only the
crystalline structure of the fillers used. The thermogravimetric analysis proves the thermal stability
of the composites up to 950 K. The Maxwell–Wagner relaxation was observed in the dielectric spectra
of the investigated composites. The dielectric spectroscopy proves the close contact between the
nanoparticles with the different ferroic ordering. The phosphate-based composites have been proved
to be a prospective candidate for the multiphase multiferroic materials design and development.
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1. Introduction

The materials, which simultaneously exhibit any of two or more primary ferroic or-
derings, i.e., ferroelectricity, ferroelasticity or ferromagnetism, are known as multiferroics.
The multiferroics recieved a lot of attention due to the perspective to be used as the promiss-
ing memory devices: it was expected, that one unit can store four bits of information [1,2].
However, the different ferroic ordering parameters do not act independently, but coupled.
That allows to control the magnetic properties by means of the external electric field and
vice versa. The single-phase multiferroics are rare, their coupling coefficients are weak and
appears at low temperatures [3]. The list of such materials is narrow and includes Gd2CuO4,
Sm2CuO4, KNiPO4, LiCoPO4 and BiFeO3. The two-phase composites with ferroelectric (FE)
and ferri-/ferromagnetic (FM) phases were proposed as an alternative [4,5]. The coupling
coefficient for this materials is achieved by means of the mechanical contact between a
piezomagnetic (or magnetostrictive) material and a piezoelectric (or electrostrictive) phases.
Such an approach is attractive due to possibility of the independent components selection
for the performance at room temperature, huge coupling coefficients [6–8] and different
connectivities [7,9].
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The critical point in these composite materials synthesis is the reactions at the interfaces
between the different phases [10]. Usually, the optimization of sintering process should
be performed [11–13]. As an alternative, the matrix-based composite approach may be
proposed. Aluminium phosphate ceramics are the perfect candidate for the role of the
matrix: it is chemically and thermally stable, the hardening temperature is relatively low
(20–300 ◦C) [14,15].

However, the phosphate matrix is the complex system, and possible reactions between
different phases may occur upon fabrication. The idea of the present research is to study
the possibility of the preparation of the multiferroic materials based on the aluminium
phosphate matrix. BaTiO3 and Fe3O4 are selected as the functional fillers since they widely
studied materials with known electromagnetic properties [16–20]. Such combination of
fillers demonstrate advanced dielectric properties [21], coupling coefficient [22] and per-
spective for the electromagnetic shielding applications [23–25]. For the future development
of the technology, the main physical properties, i.e., the temperature stability, magnetic
properties, and possible electromagnetic features of the inter-phase contacts should be in-
vestigated.

2. Sample Preparation and Measurement Procedures

Aluminium phosphate ceramic is already complex composite material consisting of
binder and filler. The main filler is the mixture of commercially available by Rusal (Moscow,
Russia) Al2O3 with average grain size of 1 µm and AlN (average grain size is 60 nm) with
mass ratio of 9:1. Aluminium phosphate binder is the interaction product of hydroxide
(Al(OH)3) with orthophosphoric acid (H3PO4) with the mole ratio of acid to hydroxide
equal to 1:3. The composite ceramic samples were filled with commercially available
BaTiO3 (745952, Sigma-Aldrich, Darmstadt, Germany) nanoparticles with average size
of 50 nm and Fe3O4 (637106, Sigma-Aldrich, Darmstadt, Germany) with particle size of
50–100 nm.

The weight concentrations of the components of the samples are presented in Table 1.
The filler, the binder and functional fillers were mixed in an agate mortar for 30–40 min.
After mixing, the obtained powders were uniaxially pressed under a pressure of 5 MPa, and
the tablets were thermally treated up to 600 K for faster curing. The composites filled with
BaTiO3, Fe3O4 and hybrid were prepared. The samples are referred as BT, FO for barium
titanate and magnetite filled samples respectively and BTFO for hybrid. The distribution
of the nanoparticles was controlled by means of the scanning electron microscopy, Helios
NanoLab 650 microscope (Thermofisher Scientific, Hillsboro, USA) (Figure 1).

Table 1. Weight content of the components in the composite materials.

Reference Main Filler, wt. % Binder, wt. % BaTiO3, wt. % Fe3O4, wt. %

BTFO 26.6 20 26.6 26.6
BT 40 20 40 –
FO 40 20 – 40

The XRD analysis was performed with DRON-2.0 diffractometer (BOUREVESTNIK,
JSC, Saint-Petersburg, Russia), Co Kα (λ = 1.7903 Å) radiation using θ − 2θ geometry.
The TGA/DGT was done by NETSCH STA 449 (Selb, Germany) with a rate of 10 ◦C/min
in an ambient atmosphere. The samples of the typical mass of 5–10 mg were studied.
The magnetization of the Fe3O4-loaded samples was measured using a Liquid Helium Free
High Field Measurement System (Cryogenic Ltd., London, UK). The dielectric properties
were investigated with an LCR HP4284A meter (Hewlett-Packard, Palo Alto, California).
For the measurements, at different temperatures (25–500 K) the closed-cycle cryostat and
the home-made furnace was used. The square-like samples with a typical thickness about
1 mm and area of 6 mm2 were investigated. The silver paste was applied for contacting.
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Figure 1. Scanning electron microscopy of the BTFO sample.

3. Experimental Results

The comparative X-ray diffraction analysis of the BTFO sample and the phosphate
matrix is presented in Figure 2a. The spectrum of the matrix demonstrate only Al2O3 and
AlN peaks. The BTFO sample brings the peaks of BaTiO3 and Fe3O4, some of peaks of
Al2O3 remains.
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Figure 2. X-ray diffraction pattern of the BTFO and phosphate matrix (a). Thermogravimetric
analysis of the BTFO and FO samples (b).

The results of the thermogravimetric measurements are presented in Figure 2b.
The DTG curves of both samples demonstrate the minimum accompanied by the weight
loss of 1–2% at the temperature of 380 K. In the temperature range 480–975 K, a weight loss
of 1% is observed due to processes of acid–base interaction and polycondensation of the
composite components. At the temperatures of 900–1000 K the weight of both samples
starts to increase, that is probably related to the Fe3O4 oxidation [26].

The M-B hysteresis loops of the composites are presented in Figure 3a. The hysteresis
loops show the presence of the ordered magnetic structure. The reduction of the magnetite
phase leads to the decrease of the saturation and the remnant magnetisation. The tempera-
ture dependence of the remnant magnetisation (Figure 3b) does not evident the Verwey
phase transition due to the size of the Fe3O4 particles [27,28].
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Figure 3. Magnetic hysteresis loops of the BTFO and FO samples (a). The temperature dependence
of the remnant magnetization (b).

The temperature dependencies of the dielectric properties of the samples are presented
in Figure 4. Since the mean particle size of the BaTiO3 particles is lower than the critical
size of 110 nm [29], the anomalies related to the phase transitions were not expected in
the temperature dependencies [30]. Both parts of the permittivity of the BTFO sample are
higher than the ε of the BT or FO samples.
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Figure 4. Real and imaginary parts of the dielectric permittivity of the ceramic composites at the
frequency of 100 kHz as a function of temperature.

Dielectric properties of BTFO and FO samples are typical for the Maxwell–Wagner
relaxation. The relaxation maximums of the dielectric losses of BTFO and FO samples
are observed at 75 and 220 K correspondingly. The maximums are followed by dips in ε′

dependencies. The behaviour of ε′′ of the BT sample below 100 K indicates the relaxation
maximum below the measurement temperature range.

The frequency dependence of the dielectric properties of the inhomogeneous media
are simulated using RC-circuit model. The grains and the grain contacts are modelled
as the resistor-capacitor parallel unit. The impedance of each unit is Z = R

1+(iωτ)
, where

τ = RC is the relaxation time and ω is the angular frequency. The dielectric permittivity is
related to the impedance as:

ε =
1

iε0ωZ
= ε∞ +

εs − ε∞

1 + iωτ
− i

σ′

ω
(1)
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where τ is the relaxation time, ω is the angular frequency, ε∞ and εs—is the high-frequency
and static limits of the permittivity correspondingly. The second term describes the ideal
Debye-type relaxation. In the studied case, the ε′′ maximum is broader, and the dependence
follows the Cole–Cole law [31] (Figure 5):

ε =
∆ε

1 + (iωτ)1−α
(2)

where 0 < α ≤ 1 describes the broadness of the relaxation. The temperature dependence of
the relaxation time follows the Arrhenius law: τ = τ0exp[Ea/kT]. The activation energies
for the BTFO and FO samples are 22 and 202 meV, correspondingly.
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Figure 5. Frequency dependence of the dielectric losses of the BTFO sample: symbols—measured
results, curves—Cole–Cole fit (2) (a). The temperature dependence of the relaxation time. Symbols—
measured results; curves—Arrhenius fit (b).

At higher temperature the BTFO and FO samples demonstrate the frequency-independent
plateau of the conductivity (see Figure 6). The frequency dependence of the conductivity is
presented as the combination of the dependent and independent terms as [32]:

σ = σDC + σAC(ω) = σDC + Aωr (3)

where σDC is the DC conductivity and Aωr is the AC conductivity. The frequency in-
dependent σDC depend on the temperature in accordance to the Arrhenius law: σDC =
σ0exp[−Eσ

a /kT] (Figure 6). The activation energies of the conductivity are similar for BTFO
and FO samples of 0.48 and 0.46 meV, respectively.
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Figure 6. Frequency dependence of the conductivity of the BTFO sample. Symbols are the measured data,
curves—fit with Equation (3) (a). The temperature dependence of the DC conductivity. Symbols—measured
results; curves—Arrhenius fit (b).

4. Discussion and Conclusions

The composite materials based on the aluminium phosphate ceramic matrix developed.
The nano-sized BaTiO3 and Fe3O4 particles used as the functional fillers. The XRD analysis
indicates the presence of the barium titanate, magnetite and matrix peaks (Al2O3 and
AlN). The small amount of the amorphous phase is expected as a product of the acid-base
reactions [33,34], but in the studied case the halo was not detected. No additional peaks
of possible side products were detected. According to TG/DTG analysis, the prepared
composite remains chemically stable up to 950 K. At higher temperatures the oxidation of
magnetite occurs.

All samples demonstrate the Maxwell-Wagner relaxation behaviour. The phenomenon
was studied with RC—circuit modelling. The dielectric permittivity of the composites filled
with barium titanate particles depends on the particle size and the concentration of the
filler [35–37]. The ε of the studied samples is similar to the previously reported data [37].
The hybrid sample has at least twice higher ε′ in comparison with BaTiO3 or Fe3O4 filled
composite. This is probably related to the additional polarisation on the contacts of
BaTiO3 and Fe3O4 grains since FM and FE phases have very different dielectric properties.
The intrinsic defects of the nanoparticles even increase the polarization effect [38,39].
The contacts of FM and matrix or FE and matrix does not develop such polarization effects
due to very low permittivity and negligibly small dielectric losses of the pure matrix [14].
As a result, the dielectric permittivity and the losses of the BT and FO samples are lower
in comparison with BTFO. The difference in the activation energies of the relaxation time
supports this idea.

As a result, it was demonstrated, that the phosphate-based ceramic is an attractive
matrix for the further multiferroic composite design for several reasons. In contrast to
the presented in literature methods of the multiferroic material synthesis [10–13], the
phosphate-based ceramic benefits in the simplicity of the preparation, the ability to avoid
the high temperature treatment and the possibility to select the functional fillers inde-
pendently. In comparison with polymer-based composites [40,41] the inorganic matrix
provides advanced thermal stability and mechanical contacts between different phases.
Such composites are chemically and thermally stable, the grains of different phases (ferro-
electric and ferromagnetic) develop good mechanical contact. The presented methods of
the matrix-based composites filled with ferroelectric, ferromagnetic particles and their mix-
ture are promising candidates for the variety of applications. In particular, the composites
with ferroelectric nanoparticles are perspective for the memory devices [41,42], electrome-
chanical sensors [40], energy storage [43]. The composites with ferromagnetic particles are
applied for electromagnetic shielding [44], construction materials and anti-corrosion coat-
ings [45]. The multiferroic composites are perspective for the range of sensing, transduction
and memory applications (see [46] and Refs therein).
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