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Abstract. Anti-cancer immunotherapy dramatically changes the clinical management of many
types of tumours towards less harmful and more personalized treatment plans than conventional
chemotherapy or radiation. Precise analysis of the spatial distribution of immune cells in the tu-
mourous tissue is necessary to select patients that would best respond to the treatment. Here, we
introduce a deep learning-based workflow for cell nuclei segmentation and subsequent immune cell
identification in routine diagnostic images. We applied our workflow on a set of hematoxylin and
eosin (H&E) stained breast cancer and colorectal cancer tissue images to detect tumour-infiltrating
lymphocytes. Firstly, to segment all nuclei in the tissue, we applied the multiple-image input layer
architecture (Micro-Net, Dice coefficient (DC) 0.79 ± 0.02). We supplemented the Micro-Net with
an introduced texture block to increase segmentation accuracy (DC = 0.80 ± 0.02). We preserved
the shallow architecture of the segmentation network with only 280 K trainable parameters (e.g.
U-net with ∼1900 K parameters, DC = 0.78 ± 0.03). Subsequently, we added an active contour
layer to the ground truth images to further increase the performance (DC = 0.81 ± 0.02). Secondly,
to discriminate lymphocytes from the set of all segmented nuclei, we explored multilayer perceptron
and achieved a 0.70 classification f-score. Remarkably, the binary classification of segmented nuclei
was significantly improved (f-score = 0.80) by colour normalization. To inspect model generaliza-
tion, we have evaluated trained models on a public dataset that was not put to use during training.
We conclude that the proposed workflow achieved promising results and, with little effort, can be
employed in multi-class nuclei segmentation and identification tasks.
Key words: breast cancer, colorectal cancer, immune infiltrate, lymphocytes, digital pathology,
deep learning.
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1. Introduction

A host-tumour immune conflict is a well-known process happening during the tumouri-
genesis. It is now clear that tumours aim to escape host immune responses by a variety of
biological mechanisms (Beatty and Gladney, 2015; Zappasodi et al., 2018; Allard et al.,
2018). Thus the importance of tumour-infiltrating lymphocytes (TILs) in pathology diag-
nosis, prognosis, and treatment increases. Quantification of the immune infiltrate along
tumour margins in the tumour microenvironment has gathered researchers’ attention as
a reliable prognostic measure for various cancer types (Basavanhally et al., 2010; Galon
et al., 2012; Huh et al., 2012; Rasmusson et al., 2020). With the emergence of whole
slide imaging (WSI) and recent Federal Drug Administration’s (FDA) approval for WSI
usage in clinical practice, various techniques have been proposed to detect lymphocytes in
digital pathology images focusing on the algorithms based on colour, texture, and shape
feature extraction, morphological operations, region growing, and image classification.

Recent works. In general, prior studies were limited to lymphocyte detection and
therefore relied on unsupervised approaches such as in Basavanhally et al. (2010), where
lymphocytes were automatically detected by a combination of region growing and Markov
random field algorithms. Before detection, applying tissue epithelium-stroma classifica-
tion reduced the noise irrelevant for the lymphocyte nuclei detection by 18 texture features
(Kuse et al., 2010).

As opposed to individual nuclei detection, models proposed in Turkki et al. (2016)
and Saltz et al. (2018) have been trained to identify TIL-enriched areas rather than stand-
alone lymphocytes. In a study by Saltz et al. (2018), authors have developed a convolu-
tional neural network (CNN) classifier capable of identifying TIL-enriched areas in WSI
slides from TCGA (The Cancer Genome Atlas) database. Similarly, in Turkki et al. (2016),
lymphocyte-rich areas were identified by training an SVM classifier on a set of features
extracted by the VGG-F neural network from CD45 IHC-guided superpixel-level annota-
tions in digitized H&E specimen.

Such a high-level tissue segmentation approach has been widely used for cancer tis-
sue segmentation tasks, such as stroma-epithelium tissue classification (Morkunas et
al., 2018). However, lymphocyte infiltration quantification accuracy would benefit from
a more granular level analysis using object segmentation models. Convolutional encoder-
decoder based model architectures (convolutional autoencoders CAEs) have been estab-
lished as an efficient method for medical imaging tasks. U-Net autoencoder model, pro-
posed in Ronneberger et al. (2015), has become a golden standard model for medical
areas ranging from cell nuclei segmentation to tissue analysis in computed tomography
(CT) scans (Ma et al., 2019). The deep, semantic feature maps from the U-Net decoder
are combined with shallow, low-level feature maps from the encoder part of the model
via skip connections, thus maintaining the fine-grained features of the input image. This
renders U-Net applicable in medical image segmentation, where precise detail recreation
is of utmost importance. Specifically for lymphocyte detection, approaches utilizing fully
convolutional neural networks on the digital H&E slides were published by Chen and
Srinivas (2016) and Linder et al. (2019). Both approaches investigate convolutional au-
toencoders using histology sample patches with annotated lymphocyte nuclei. Detection
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and classification, but not segmentation of nuclei in H&E images, were done using spa-
tially constrained CNN in Sirinukunwattana et al. (2016). Notably, the classification into
four cell types (epithelial, inflammatory, fibroblast, and miscellaneous) was performed on
patches centred on nuclei considering their local neighbourhood. A more recent adapta-
tion – the Micro-Net model – incorporates an additional input image downsampling layer
that circumvents the max-pooling process, thus maintaining the input features ignored by
the max-pooling layer. This way, more detailed contextual information is passed into the
output layer, enabling better segmentation of adjacent cell nuclei (Raza et al., 2019).

The Hover-Net model published in Graham et al. (2019) enables simultaneous cell
nuclei segmentation and classification by three dedicated branches of the model – seg-
menting, separating, and classifying. Hover-Net was applied to two datasets and achieved
0.573 and 0.631 classification f-score. In Janowczyk and Madabhushi (2016), AlexNet
was employed to identify centres of lymphocyte nuclei. The network was trained on
cropped lymphocyte nuclei as a positive class, and the negative class was sampled from
the most distant regions with respect to the annotated ground truth. The trained network
produces the posterior class membership probabilities for every pixel in the test image;
subsequently, potential centres of lymphocyte nuclei are identified by disk kernel convo-
lution and thresholding. In Alom et al. (2019), the same dataset was utilized to evalu-
ate different advanced neural networks for a variety of digital pathology tasks, including
lymphocyte detection. The authors proposed a densely connected recurrent convolution
network (DCRCNN) to directly regress the density surface with peaks corresponding to
lymphocyte centres. When compared to AlexNet, the DCRCNN improves the f-score by
1%, yet it is worth mentioning that both (Janowczyk and Madabhushi, 2016; Alom et
al., 2019) do not demonstrate method generalization – in the respective studies, the same
dataset was used for training and testing.

Our study focuses on the customization of cell segmentation autoencoder architecture
and aims to investigate a two-step cell segmentation and subsequent lymphocyte classi-
fication workflow using digital histology images of H&E stained tumour tissues. Robust
separation of clumped cell nuclei is a common challenge in whole slide image analysis
(Guo et al., 2018). To tackle this nuclei segmentation challenge, our cell nuclei segmen-
tation model renders an additional active contour layer, which increases the segmentation
efficiency of adjacent cell nuclei. Apart from overlapping nuclei, image magnification is
another critical factor for nuclei segmentation models. Publicly available annotated nuclei
datasets contain histological samples scanned at 40× magnification, preserving texture
features and facilitating precise feature extraction. In pathology practice, however, sam-
ples scanned at 20× magnification are more common. Image analysis at a lower resolution
is faster and less memory-exhaustive, yet the precise cell nuclei segmentation becomes
a more difficult task. As reported by Cui et al. (2019), the active contour layer improves
adjacent nuclei separation – this has been observed in our experiments as well. We re-
port that multiple re-injection of downsampled images to the model – approach initially
proposed in Raza et al. (2019) in the Micro-Net model – has significantly boosted nu-
clei segmentation performance compared to the baseline U-Net model (Raza et al., 2019;
Ronneberger et al., 2015). We further observe that our customized model architecture
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component – two parallel blocks of convolutional layers, referred to as a texture block
– increases segmentation quality compared to the original Micro-Net model and reduces
model complexity to less than 280 000 parameters. For the lymphocyte classification task,
we utilized traditional machine learning approaches – Random Forest classifier, Multilayer
perceptron, and a CNN. We have performed minimal hyperparameter tuning of classifica-
tion models in a grid search procedure. We have used a private dataset to train our models,
and a public dataset for final workflow evaluation, thus demonstrating the generalization
of proposed models.

The paper is organized as follows. In Section 2.1, we describe the datasets used in the
study. In Section 2.2, we introduce the segmentation method based on autoencoder neural
network architecture, followed by the classification of segmented nuclei. In Section 3,
we present experimental results comparing different cell nuclei segmentation as well as
lymphocyte discrimination approaches. In particular, Section 3.3 covers the evaluation of
our method on the publicly available annotated data set of breast cancer H&E images. We
formulate conclusions in Section 4.

2. Materials and Methods

2.1. The Datasets

Images. In our study, we used 4 whole-slide histology sample images prepared with H&E
staining (2 WSI slides from breast cancer patients and 2 WSIs from colorectal cancer).
These slides were produced in the National Center of Pathology, Lithuania (NCP), and
digitized with the Aperio ScanScope XT Slide Scanner at 20× magnification.

1 WSI slide was obtained from The Cancer Genome Atlas database, tile ID:
TCGA_AN_A0AM (Grossman et al., 2016), and used for both segmentation and clas-
sification testing.

Two additional public datasets were used for classification testing purposes. The
CRCHistoPhenotypes dataset (CRCHP) contains colorectal adenocarcinoma cell nuclei.
1143 nuclei are annotated as inflammatory (used for lymphocyte category in our exper-
iments), and 1040 annotated as epithelial (used for other cell type category) (Sirinukun-
wattana et al., 2016). The breast cancer dataset (JAN) published by Janowczyk and Mad-
abhushi (2016) consists of 100 images (100 × 100 pixel-sized) with lymphocytes anno-
tated. Samples were digitized using 20× magnification and stained with hematoxylin and
eosin. An expert pathologist annotated lymphocytes by marking lymphocyte nuclei cen-
tres. In contrast to the CRCHP dataset, this image corpus is more suitable for our tasks
since the data was prepared specifically for lymphocyte identification. The CRCHP dataset
entails broader cell type categories, where lymphocytes are annotated under the inflam-
matory label and other immune cells such as mast cells and macrophages.

Segmentation dataset. To train and validate the segmentation model, we randomly
selected 344 tiles of 256 × 256 pixel size. Dataset was split into training and validation
sets, respectively. To test the segmentation model, we prepared 96 tiles from the breast



Deep Learning-Based Cell Nuclei Segmentation and Lymphocyte Identification 5

Table 1
Two datasets were used for segmentation and classification tasks. Segmentation experiments were performed
on 256 × 256 pixel-sized image patches. Classification experiments were performed on extracted cell nuclei

embedded in blank 32 × 32 pixel-sized placeholders.

Segmentation set Tumour type Raw set Final augmented set Origin

BC 192 3648 NCP
CRC 82 1558 NCP

Training total 274 5206 NCP
BC 54 54 NCP
CRC 16 16 NCP

Validation total 70 70 NCP
BC 96 96 TCGA

Testing total 96 96 TCGA

Classification set Nucleus type Raw set Final augmented set Origin

lymphocyte nuclei 11032 50950 NCP
other nuclei 10922 55825 NCP

Training total nuclei 21954 106775 NCP
lymphocyte nuclei 2588 2588 NCP
other nuclei 2751 2751 NCP

Validation total nuclei 5339 5339 NCP
BC lymphocytes 903 903 TCGA
CRC lymphocytes 1143 1143 CRCHP
total lymphocytes 2046 2046
BC other 1195 1195 TCGA
CRC other 1040 1040 CRCHP
total other 2235 2235

Testing I total nuclei 4281 4281
BC lymphocytes 2949 2949 JAN
BC other 1921 1921 JAN

Testing II total nuclei 4870 4870 JAN

cancer TCGA slide. Both tiles generated from the TCGA slide and tiles generated from
NCP slides were manually annotated by EB and MM. In the annotation process, each cell
nucleus present in an image patch was manually outlined, and 2 pixel-wide active contour
borders surrounding each nucleus were added as a second layer to the nuclei segmentation
masks. Each outlined nucleus was assigned a class label (a lymphocyte or other). To the
training set, we applied various image augmentation methods (rotation, flip, transpose,
RGB augmentation, brightness adjustment, CLAHE, Zuiderveld, 1994) to obtain the final
training set of 5206 images.

The segmentation dataset is summarized in Table 1, and the techniques used to aug-
ment training patches are summarized in Table 2.

Classification dataset. To train and validate the classification models, we generated a
dataset from the same image patches used to train the segmentation model. Particularly,
manually generated segmentation masks were used to crop-out all types of cell nuclei from
raw images. Each extracted nucleus was centred in a blank 32×32 pixel-sized patch. Each
nucleus-containing patch inherited a class label (assigned manually to the ground truth in
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Table 2
Image augmentation techniques and parameters used for training dataset expansion.

Augmentation Parameters
Transposition, rotation axis flipping Perpendicular rotation angles
CLAHE (Zuiderveld, 1994) Cliplimit = 2.0, tilegridsize = (8, 8)
Brightness adjustment HSV colourspace, hue layer increased by 30
RGB augmentation Random pixel value adjustments up to 0.1
RGB2HED colour adjustments (Ruifrok and Johnston, 2001) Colour values adjusted within range

[0.02, 0.001, 0.15]

an annotation procedure). Nuclei containing patches were further augmented by rotation
and axis flipping. The testing set for cell classifier consisted of 2098 TCGA breast cancer
cell nuclei and 2183 colorectal adenocarcinoma cell nuclei from the CRCHP dataset (see
Table 1).

2.2. The Proposed Method

The overall schema of the proposed workflow is summarized in Fig. 1.

2.2.1. Modified Micro-Net Model
The autoencoder architecture for nuclei segmentation is shown in Fig. 2. The model con-
sists of 3 encoder and 3 decoder blocks consisting of 2 convolution layers (3 × 3 con-
volutional filters with stride 2), dropout (dropout rate 0.2), and max-pooling layers. Our
model adopts multiple downsized image input layers after each max-pooling operation,
which were originally proposed in the Micro-Net model by Raza et al. We propose addi-
tional model enhancement by introducing a texture block after each image input layer. The
texture block consists of 2 parallel blocks of 3 convolution layers, which enhance image
texture extraction. To ensure robust nuclei separation, we supplement our nuclei annota-
tions with an additional active contour layer. Our experiments indicate that the proposed
model architecture is more compact and requires less computational resources than the
original Micro-Net structure.

We used elu activation after each convolution layer and sigmoid activation for the
output layer. Adam optimizer was used with initial learning rate lr = 0.001, which was
reduced by factor 0.1 if validation loss did not improve for 4 consecutive epochs (min lr =
1×10−6) (Kingma and Ba, 2014). Dice coefficient (1) was used to quantify model metrics
with binary crossentropy dice loss (3) as custom loss function.

Model converged after 36 epochs (see Fig. 3A) using batch size of 1 (input image
dimensions: 256 × 256 × 3) for training and validation. Input images were normalized by
scaling pixel values to the range [0, 1].

Dice = 2 ∗ TP
(TP + FP) + (TP + FN)

, (1)

where TP is true positive, FP is false positive and FN is false negative.

L(y, ŷ) = −(
y ∗ log(ŷ) + (1 − y) ∗ log(1 − ŷ)

)
, (2)
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Fig. 1. Overall schema of the proposed workflow. On top, a training phase for both segmentation and classifica-
tion models is shown. The segmentation network is trained on original image patches and manually annotated
ground truth images. The classification model is trained on cropped nuclei to discriminate lymphocytes (in the
red box) from other nuclei. In the middle, a testing phase is shown. The trained segmentation model accepts
new images and produces segmentation masks (for clarity, the active contour layer in the resulting segmentation
mask is not shown). Resulting segmentation masks are used to crop out detected cell nuclei that are fed into the
classifier model and sorted into lymphocytes and non-lymphocyte nuclei. In the bottom panel, on the left, we
have representative segmentation results (lymphocyte nuclei are coloured in red for clarity), and on the right,
we have an original image with detected nuclei contours outlined and detected lymphocyte nuclei depicted with
red dots. Green dots indicate lymphocyte ground truth.

where y is binary class indicator and ŷ is predicted probability.

CrossentropyDiceLoss = 0.1 ∗ L(y, ŷ) + 0.9 ∗ (1 − Dice). (3)
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Fig. 2. The architecture of the proposed deep learning model.

2.2.2. Multilayer Perceptron
The multilayer perceptron model was employed to solve the binary classification problem
of lymphocyte identification. Our experiment’s model consists of three dense layers (num-
ber of nodes: 4096, 2048, 1024), with softmax as the output layer activation function. For
each layer, we used relu activation, followed by batch normalization. The dropout layer
(dropout rate 0.4) was used in the middle layer instead of batch normalization to avoid
model overfitting. We used Adam optimizer with initial learning rate lr = 0.001, which
was reduced by factor 0.1 if validation loss did not improve for 6 consecutive epochs
(min lr = 1 × 10−6). Accuracy was used as metrics with binary cross-entropy as loss
function (2). The model was trained until convergence using 64 and 32 batch sizes for
training and validation, respectively.

2.2.3. Implementation
Neural network models for nuclei segmentation and cell-type classification were trained
on GeForce GTX 1050 GPU, 16 Gb RAM using Tensorflow, and Keras machine learning
libraries (Abadi et al., 2016). Proposed neural model architectures are available in the
GitHub repository.1

1Link to GitHub repository of the project: https://github.com/HELLze/Nuclei-segmentator-classifier.

https://github.com/HELLze/Nuclei-segmentator-classifier
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Fig. 3. The performance metrics of segmentation and classifier models. A: training and validation metrics (top-
Dice coefficient, below-loss values per epoch) of segmentation autoencoder, B: confusion matrix depicting cell
nuclei classifier performance on the testing set (true positive lymphocyte predictions and true negatives marked
in grey, false predictions – in red), C: ROC curve obtained from nuclei classifier testing data.

3. Results

3.1. Nuclei Segmentation

3.1.1. Hyperparameter Tuning
The optimal model architecture was experimentally evaluated using a hyperparameter grid
search. To test segmentation robustness, we evaluated both pixel-level and object-level
metrics. The dice coefficient was used to track pixel-level segmentation performance,
while object-level segmentation quality was evaluated by calculating intersection over
union (IoU). We treated the predicted nuclei as true positive if at least 50% of the pre-
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Table 3
Performance metrics of convolutional autoencoders (CAE) used for the hyperparameter grid search for nuclei
segmentation. Dice coefficients (mean Dice coefficient ± standard deviation). Mean and standard deviation

values were calculated from stand-alone dice coefficients for each tile from the testing set. DO – drop out rate,
BN – batch normalization.

Act func Output act func Kernel size DO BN Dice coefficient Accuracy Precision Recall f-score
U-Net
elu sigmoid 64 0.2 − 0.78 ± 0.03 0.59 ± 0.08 0.66 ± 0.09 0.84 ± 0.04 0.74 ± 0.06

Micro-Net model
tanh sigmoid 64 − − 0.79 ± 0.02 0.66 ± 0.06 0.75 ± 0.05 0.85 ± 0.05 0.80 ± 0.04

Our model
elu sigmoid 16 0.2 − 0.81 ± 0.02 0.77 ± 0.05 0.86 ± 0.04 0.88 ± 0.04 0.87 ± 0.03
elu sigmoid 32 0.2 − 0.80 ± 0.02 0.77 ± 0.06 0.85 ± 0.04 0.88 ± 0.04 0.87 ± 0.04
elu sigmoid 48 0.2 − 0.80 ± 0.02 0.76 ± 0.06 0.85 ± 0.04 0.87 ± 0.04 0.87 ± 0.03
elu sigmoid 16 0.3 − 0.81 ± 0.02 0.77 ± 0.06 0.86 ± 0.04 0.88 ± 0.05 0.87 ± 0.04
elu sigmoid 32 0.3 − 0.80 ± 0.02 0.76 ± 0.06 0.85 ± 0.05 0.88 ± 0.05 0.87 ± 0.04
elu sigmoid 48 0.3 − 0.80 ± 0.02 0.76 ± 0.06 0.86 ± 0.04 0.87 ± 0.04 0.87 ± 0.03
elu sigmoid 32 − + 0.80 ± 0.02 0.74 ± 0.06 0.84 ± 0.05 0.86 ± 0.05 0.85 ± 0.03
relu sigmoid 32 − + 0.80 ± 0.02 0.74 ± 0.06 0.84 ± 0.05 0.87 ± 0.05 0.85 ± 0.03
elu softmax 32 − + 0.73 ± 0.04 0.58 ± 0.08 0.63 ± 0.08 0.87 ± 0.05 0.73 ± 0.06
relu softmax 32 − + 0.77 ± 0.03 0.65 ± 0.07 0.72 ± 0.07 0.87 ± 0.05 0.78 ± 0.0

dicted nuclei area overlapped with the ground truth nuclei mask. In order to prevent mul-
tiple predicted objects mapping to the same ground truth nucleus, ground truth nucleus
mask could only be mapped to a single predicted object. Results of hyperparameter tun-
ing are provided in Table 3. Hyperparameter space was investigated by changing dropout
rates, convolution filters per network layer, and activation functions. Due to multiple image
down-sampling and concatenation operations in CNN architecture, models with parame-
ter size higher than 500 000 have exceeded memory limitations. Our experiments indicate
that expansion of model layer width (tested kernel sizes 16, 32, 48) did not dramatically
affect the model prediction metrics – which suggests that texture block component may
ensure consistent feature extraction in a wide range of model width.

3.1.2. Model Performance Speed
Instead of basing our optimal model selection rationale solely on the Dice coefficient
and object-level testing metrics, we evaluated the gridsearch models based on its loading
and image prediction time relative to the original Micro-Net model. Since no significant
changes were observed between dropout rates, we chose a custom model of a 0.2 dropout
rate, elu activation function, and sigmoid activation function with differing layer widths of
16, 32, and 48 kernels. The testing results provided in Table 4 indicate that the lowest rela-
tive image prediction and model loading time was observed for segmentation autoencoder
consisting of 32 convolutional kernels per layer, 0.2 dropout rate using elu activation func-
tion and sigmoid activation function for output layer with total parameter size lower than
280.000. In comparison to U-Net autoencoder (>1.9 M parameters), which has reached
0.78±0.028 Dice coefficient for testing dataset, our selected model achieved 0.81±0.018
Dice coefficient with over 6-fold lower model complexity.
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Table 4
A comparison table of autoencoder parameter size and performance speed.
Model loading and prediction times were obtained relative to the original

Micro-Net model. The best performing model is highlighted in bold.

Model Parameters Relative loading time Relative prediction time

Micro-Net 73 467 842 1 1
Custom-16 131 746 0.212 0.314
Custom-32 279 506 0.212 0.288
Custom-48 507 138 0.268 0.359

Table 5
The active contour layer effect on nuclei segmentation autoencoder performance. Pixel-level Dice coefficients
(mean Dice coefficient ± standard deviation) were obtained from a testing set consisting of 96 256 × 256 RGB

tiles, where mean and standard deviation values were calculated from stand-alone dice coefficients for each
tile. Object-level accuracy, precision, recall, and f-score metrics collected if at least 50% overlap between

annotated and predicted nuclei masks (mean intersection over union IoU).

Mask layers Dice coefficient Accuracy Precision Recall f-score

2-layered 0.81 ± 0.02 0.75 ± 0.06 0.85 ± 0.05 0.86 ± 0.04 0.85 ± 0.04
1-layered 0.80 ± 0.02 0.73 ± 0.06 0.84 ± 0.05 0.85 ± 0.04 0.84 ± 0.04

3.1.3. Active Contour Layer
To evaluate the impact of the active contour layer on nuclei separation, we trained con-
volutional autoencoder using single-layered nuclei masks and compared the results with
an identical model trained on two-layered annotations. During this experiment, we used
the best-scoring model architecture from the hyperparameter search experiment. Nuclei
segmentation using masks supplemented with the active contour layer has outperformed
the model with single-layered masks both on pixel-level and object-level measurements,
as shown in Table 5. Active-contour increased object segmentation accuracy and f-score
by 1 percent (0.75 ± 0.062 and 0.85 ± 0.04, respectively).

3.2. Nuclei Classification

3.2.1. Hyper Parameter Tuning and Model Comparison
The cell classification problem was approached with several different statistical models.
Random Forest was chosen as a baseline machine learning algorithm. We used Python
implementation of a random forest classifier from the sklearn machine learning library
(Feurer et al., 2015) (using the Gini impurity criterion as split quality measurement and
10 estimators). Random forest classifier was trained on linearized nuclei images (32 ×
32 RGB-coloured images linearized to 3072-length vector), which achieved 0.77 testing
accuracy. In addition, we investigated two deep-learning-based strategies for cell nuclei
classification: multilayer perceptron (MLP) consisting of three consecutive dense layers,
and convolutional neural network (CNN) consisting of 4 convolutional, 2 max-pooling,
and 2 dense layers. Model performance metrics were evaluated for several hyperparameter
combinations, including a number of nodes per layer, activation functions, and a number
of convolutional kernels. Hyperparameter search is summarized in Table 6. During our
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Table 6
The hyperparameter grid search results for cell nuclei classifier (mean ± standard deviation). The model

performance was evaluated on the testing set. Mean and standard deviation values were obtained by running
each experiment 5 times.

Models Accuracy Precision Recall f-score

Random forest 0.77 ± 0.002 0.69 ± 0.002 0.99 ± 0.002 0.82 ± 0.002

Multilayer perceptron
2048/1024/512 0.78 ± 0.09 0.71 ± 0.1 0.99 ± 0.004 0.83 ± 0.06
4096/2048/1024 0.78 ± 0.003 0.71 ± 0.03 0.99 ± 0.0003 0.82 ± 0.02

Convolutional neural network
Kernels per layer: 16 0.76 ± 0.09 0.69 ± 0.1 0.98 ± 0.004 0.80 ± 0.06
Kernels per layer: 32 0.76 ± 0.09 0.70 ± 0.1 0.98 ± 0.004 0.81 ± 0.06

experimentations, a multilayer perceptron with three dense layers, softmax for output and
relu layer activation functions, 2 batch-normalization layers, and a dropout layer achieved
the highest testing accuracy score of 0.78 with 0.82, 0.71, and 0.99 f-score, precision and
recall values, respectively.

The confusion matrix for our cell classification model demonstrates that out of 2046
labelled lymphocytes, 310 were falsely misclassified as other cell types, while 13 false-
positive observations were registered out of 2235 nuclei labelled as other cell types as
shown in Fig. 3B. Receiver-operating curve (ROC) shown in Fig. 3C indicates the low
false-positive rate of our lymphocyte classifier.

Of note, the proposed two-step lymphocyte detection model can potentially be adapted
to detect more cell types by replacing existing lymphocyte classifier with a model trained
on several classes.

3.3. Workflow Evaluation

The proposed lymphocyte identification workflow has been tested on the lymphocyte
dataset published by Janowczyk and Madabhushi (2016).2 The dataset is composed of 100
breast cancer images stained with hematoxylin and eosin and digitized using 20× magni-
fication. The lymphocyte centres were manually annotated by an experienced pathologist.
The same dataset was used in Alom et al. (2019). Since our nuclei segmentation model
was trained on 256 × 256 pixel image patches, each testing image was zero-padded to the
desired input size while preserving the original image scale. Each testing slide was first
analysed with autoencoder to segment all cell nuclei, followed by nuclei cropping and
subsequent classification of each cropped nucleus using a pre-trained multilayer percep-
tron for lymphocyte identification. If the nucleus was classified as a lymphocyte, the cell
centre was marked with a green dot. The classifier’s testing results were evaluated using
dataset annotations as a reference.

The first analysis results – nuclei segmentation – are shown in the second column
of Fig. 4. Nuclei segmentation masks generated by autoencoder demonstrate consistent

2Link to the dataset: http://www.andrewjanowczyk.com/use-case-4-lymphocyte-detection/.

http://www.andrewjanowczyk.com/use-case-4-lymphocyte-detection/
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Fig. 4. Exemplary 5 testing images from breast cancer lymphocyte dataset (Janowczyk and Madabhushi, 2016)
with corresponding lymphocyte identification model outputs. From left to right: 1st column- original testing
image from the lymphocyte dataset. 2nd column: nuclei segmentation masks predicted by autoencoder. 3rd
column: Expert pathologist’s annotation supplied in the dataset. 4th column: lymphocyte classifier result (if
the nucleus was predicted as a lymphocyte, its centre was labelled with a green dot). 5th column: lymphocyte
classifier result after Reinhard stain normalization.

cell nuclei detection efficiency regardless of image staining intensity. This can be ex-
plained by two factors. Due to robust image colour augmentation during autoencoder train-
ing, the CAE model learned to generalize the input image by texture, rather than colour.
Secondly, our modified Micro-Net model architecture incorporates texture convolutional
blocks shown in Fig. 2, which facilitate relevant feature extraction for the autoencoder.

The confusion matrix in Fig. 5A shows a low false-positive lymphocyte misclassifica-
tion rate. However, the high false-negative rate suggests that the lymphocyte classification
model is sensitive to image stain intensity. This is well reflected in Fig. 4 Unmodified
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Fig. 5. Testing metrics for breast cancer lymphocyte dataset. A: confusion matrix for testing images with original
sample staining; B: confusion matrix for testing images with Reinhard stain normalization applied on image stain.

image column, where lymphocyte detection efficiency conspicuously decreases as image
staining intensity fades. This is not a surprising result, given that a multilayer perceptron
was trained on lymphocytes cropped from histology samples prepared in a different lab-
oratory, where image staining is more consistent across different histology samples. This
result illustrates the main limitations of the lymphocyte classification model: cropped nu-
clei images lose image background information, which otherwise could be leveraged in
differentiating nucleus stain intensity versus its background colour intensity.

3.3.1. The Effect of Colour Normalization on Overall Model Performance
To address high staining variability between different histological samples, the lympho-
cyte testing dataset was normalized using the Reinhard stain normalization method. Rein-
hard algorithm adjusts the source image’s colour distribution to the colour distribution
of the target image by equalizing the mean and standard deviation pixel values in each
channel (Reinhard et al., 2001).

lmapped = loriginal − l̄original

l̂original
l̂target + l̄target, (4)

αmapped = αoriginal − ᾱoriginal

α̂original
α̂target + ᾱtarget, (5)

βmapped = βoriginal − β̄original

β̂original
β̂target + β̄target, (6)

where l, α, β are colour channels in LAB colourspace, ˆ means standard deviation, ¯ stands
for mean value of all pixel values from channel. Colour normalization algorithm was im-
plemented using openCV (Bradski, 2000) and Numpy (Oliphant, 2006) python libraries
using representatively stained image from training dataset as target for stain normalization.

Stain normalization effect on cell lymphocyte detection was evaluated by comparing
testing metrics before stain normalization and after Reinhard algorithm implementation.
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Table 7
A comparison table depicting the effect of stain normalization on lymphocyte identification efficiency is

presented. For comparison, we give here the results of the studies that utilized the same dataset. It is important
to note that we only used this dataset to test our method, while studies referenced in the table used part of this

dataset for training as well.

Accuracy Precision Recall f-score

Proposed method, original staining 0.71 0.76 0.75 0.70
Proposed method, wt stain normalization 0.81 0.80 0.81 0.80
Janowczyk and Madabhushi (2016) – 0.89 – 0.90
Alom et al. (2019) 0.90 – – 0.91

The confusion matrix in Fig. 5B indicates a lower false-negative rate for lymphocytes.
Stain normalization has increased accuracy, precision, recall, and f-score values by ap-
proximately 10%, as shown in Table 7. These results indicate that the stain normaliza-
tion step is an effective pre-processing part which can mitigate high staining intensity
variance between histology samples. Observed improvement of lymphocyte classification
accuracy by applied relatively simple Reinhard stain normalization suggests this part of
our workflow can be further explored. Structure-preserving image normalization methods
(Vahadane et al., 2016; Mahapatra et al., 2020) demonstrate promising results; also, cer-
tain medical image denoising techniques (Meiniel et al., 2018; Pham et al., 2020) could
appear useful in future work.

Both Janowczyk and Madabhushi (2016) and Alom et al. (2019) used the same dataset
to train and evaluate their proposed models; therefore, to deal with overfitting, authors
had to apply some sort of cross-validation. 5-fold cross-validation was used in Janowczyk
and Madabhushi (2016), and Alom et al. (2019) reserved 10% of the dataset for test-
ing purposes. In contrast, we used the whole dataset exclusively for the proposed model
evaluation, thus completely eliminating the possibility of overfitting. Our result (f-score
= 0.80) indicates good model generalization and comparable performance to both the
above-mentioned methods.

4. Conclusions

In this paper, we propose an end-to-end deep learning-based algorithm for cell nuclei
segmentation and consecutive lymphocyte identification in H&E stained 20× magnified
breast and colorectal cancer whole slide images. Our conducted experiments suggest that:

• Our proposed autoencoder structure component – convolutional texture blocks – can
achieve Dice nuclei segmentation score similar to that of the Micro-Net model (our
model achieved 1% higher testing Dice coefficient).

• Additional active contour layer in nuclei annotation masks increases nuclei segmenta-
tion accuracy by 1.5%.

• Lymphocyte classification by multilayer perceptron network achieves 78 ± 0.3% test-
ing accuracy on the private dataset (NCP), and 0.71 on the public dataset (0.81 with
Reinhard stain normalization).
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Nuclei segmentation autoencoder architecture investigated in this paper has lower
model complexity compared to U-Net and Micro-Net models, which brings the advantage
of lower computational resource usage. Our suggested pipeline shows good generalization
properties, eliminates overfitting, and can be easily extended for multi-class nuclei iden-
tification by replacing the nuclei classification MLP model and re-employing the same
pre-trained segmentation autoencoder.
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