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DISCRETE UNIVERSALITY OF THE RIEMANN

ZETA-FUNCTION IN SHORT INTERVALS

Antanas Laurinčikas

We consider the approximation of analytic functions by shifts of the Riemann
zeta-function ζ(s + ikh) with fixed h > 0 when positive integers k run over
the interval [N,N + M ], where N1/3(logN)26/15 ≤ M ≤ N , and prove that
those k have a positive lower density as N →∞. The same is true for some
compositions. Two types of h > 0 are discussed separately.

1. INTRODUCTION

The Riemann zeta-function ζ(s), s = σ + it, is given, for σ > 1, by

ζ(s) =

∞∑
m=1

1

ms
=
∏
p

(
1− 1

ps

)−1

,

where the infinite product is taken over all prime numbers. Moreover, the function
ζ(s) has the analytic continuation to the whole complex plane, except for a simple
pole at the point s = 1 with residue 1. The function ζ(s) is one of the most
interesting and mysterious analytic objects, therefore, much attention is devoted
to investigations of its value-distribution. One of the most important properties
of ζ(s) is its universality discovered by Voronin in [20]. Roughly speaking, the
Voronin theorem says that all analytic non-vanishing functions defined on the strip
D = {s ∈ C : 1/2 < σ < 1} can be approximated with a given accuracy by
shifts ζ(s + iτ), τ ∈ R. Moreover, the set of these shifts approximating a given
analytic function has a positive lower density. On the other hand, the Voronin
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theorem is noneffective because any τ with approximation property is not known.
Voronin understood the effectivization of his theorem as the indication of an interval
containing τ with approximation property. The first step in this direction was
made by Good in [6]. His general and complicated results in the special case
were presented explicitly by Garunkštis in [4]. Finally, in [5], the interval [T, 2T ]
containing for T ≥ T0 a number τ with approximation property was found. Here
T0 is explicitly given, and depends on the approximated function, approximation
accuracy as well as on the approximation disc.

Obviously, the interval containing a “good” τ must be short as possible.
This raises a problem of universality in short intervals. The first attempt in this
direction is given in [10]. Denote by K the class of compact subsets of the strip D
with connected complements, and by H0(K) with K ∈ K the class of continuous
non-vanishing functions on K that are analytic in the interior of K. Then, in [10],
it was proved that if T 1/3(log T )26/15 ≤ H ≤ T , K ∈ K and f(s) ∈ H0(K), then,
for every ε > 0,

lim inf
H→∞

1

H
meas

{
τ ∈ [T, T +H] : sup

s∈K
|ζ(s+ iτ)− f(s)| < ε

}
> 0.

Moreover, the limit

lim
H→∞

1

H
meas

{
τ ∈ [T, T +H] : sup

s∈K
|ζ(s+ iτ)− f(s)| < ε

}
> 0

exists for all but at most countably many ε > 0.

The stated above result is of continuous type because τ in shifts ζ(s+ iτ) can
take arbitrary real values. Also, discrete universality theorems are known when τ in
approximating shifts takes values from certain discrete sets. Discrete universality
theorems for zeta-functions were introduced by Reich in [17]. He proved a discrete
universality theorem for Dedekind zeta-functions ζK(s) of number fields K on the
approximation of functions f(s) ∈ H0(K) by shifts ζK(s+ ikh), k = 0, 1, . . . , with
every fixed h > 0. When K = Q, we have a discrete universality theorem for the
Riemann zeta-function. By a different method, the Reich theorem was obtained by
Bagchi in his thesis [1]. More general discrete sets than the arithmetic progression
{kh} were used in [3], [6], [12] and [9].

The aim of this paper is discrete universality theorems for the Riemann zeta-
function in short intervals. Denote by #A the cardinality of the set A. In what
follows, N and M run over positive integers.

Theorem 1. Suppose that N1/3(logN)26/15 ≤ M ≤ N . Let K ∈ K and f(s) ∈
H0(K). Then, for every ε > 0,

lim inf
N→∞

1

M + 1
#

{
N ≤ k ≤ N +M : sup

s∈K
|ζ(s+ ikh)− f(s)| < ε

}
> 0.

Moreover, the limit

lim
N→∞

1

M + 1
#

{
N ≤ k ≤ N +M : sup

s∈K
|ζ(s+ ikh)− f(s)| < ε

}
> 0
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exists for all but at most countably many ε > 0.

We recall that h > 0 is an arbitrary fixed number. Of course, the above limits
depend on h. Moreover, a certain dependence property of h plays an important
role in the proof, and we have to consider two cases separately.

Denote by H(D) the space of analytic functions on the strip D equipped with
the topology of uniform convergence on compacta. Theorem 1 can be generalized
for compositions of operators in the space H(D) with the function ζ(s). We will
present only one example on the discrete universality of such compositions.

Let a1, . . . , ar be distinct complex numbers, and F : H(D) → H(D) be an
operator. Define the set

Ha1,...,ar;F (D) = {g ∈ H(D) : g(s) 6= aj , j = 1, . . . , r} ∪ {F (0)}.

Moreover, let
S = {g ∈ H(D) : g(s) 6= 0 or g(s) ≡ 0} .

Theorem 2. Suppose that N1/3(logN)26/15 ≤ M ≤ N , and that F : H(D) →
H(D) is a continuous operator such that Ha1,...,ar;F (D) ⊂ F (S). For r = 1, let
K ∈ K, and let f(s) be a continuous and 6= a1 function on K which is analytic
in the interior of K. For r ≥ 2, let K ⊂ D be an arbitrary compact set, and
f(s) ∈ Ha1,...,ar;F (D). Then, for every ε > 0,

lim inf
N→∞

1

M + 1
#

{
N ≤ k ≤ N +M : sup

s∈K
|F (ζ(s+ ikh))− f(s)| < ε

}
> 0.

Moreover, the limit

lim
N→∞

1

M + 1
#

{
N ≤ k ≤ N +M : sup

s∈K
|F (ζ(s+ ikh))− f(s)| < ε

}
> 0

exists for all but at most countably many ε > 0.

For example, if r = 1 and a1 = 0, then Theorem 2 gives the discrete univer-
sality for the function ζn(s), n ∈ N. If r = 2 and a1 = −1, a2 = 1, then we obtain
the discrete universality for the functions sin ζ(s), cos ζ(s), sinh ζ(s) and cosh ζ(s).
Actually, suppose, for example, that F (g) = sin g, g ∈ H(D). We have to show
that F (S) ⊃ H−1,1;F (D). Obviously, F (0) = 0. Let f be an arbitrary element of
H−1,1;F (D). Solving the equation

eig − e−ig

2i
= f,

we find

g =
1

i
log
(
if ±

√
1− f2

)
.

Since f(s) 6= −1 and 1, a suitable choice of the logarithm shows that there exists
g ∈ S.

Theorem 2 also contains a certain information on the number of zeros of the
composition F (ζ(s)).
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Theorem 3. Suppose that N1/3(logN)26/15 ≤ M ≤ N , and that F : H(D) →
H(D) is a continuous operator such that Ha1,...,ar;F (D) ⊂ F (S), where Reaj 6∈
(−1/2, 1/2), j = 1, . . . , r. Then, for every 1/2 < σ1 < σ2 < 1, there exists
a constant c = c(σ1, σ2, F ) > 0 such that, for sufficiently large N , the function
F (ζ(s+ ikh)) has a zero in the disc∣∣∣∣s− σ1 + σ2

2

∣∣∣∣ ≤ σ2 − σ1

2

for more than cM numbers k, N ≤ k ≤ N +M .

For the proof of Theorems 1 and 2, we will apply limit theorems in short
intervals for probability measures in the space of analytic functions. For these
theorems, we need the discrete mean square estimates for the function ζ(s) over
short intervals.

2. MEAN SQUARE ESTIMATES

In this section, we will obtain the estimate for

1

M

N+M∑
k=N

|ζ(σ + ikh+ iτ)|2

with 1/2 < σ < 1, and τ ∈ R. We will derive this estimate from the analogical
estimate for the continuous mean square. We will use the following result.

Lemma 4. Suppose that T 1/3(log T )26/15 ≤ H ≤ T , and that σ, 1/2 < σ < 1, is
fixed. Then, for τ ∈ R,∫ T+H

T

|ζ(σ + it+ iτ)|2 d t� H(1 + |τ |).

Proof. The estimate of the lemma is obtained in [10] in the proof of Lemma 12.
For its proof, Theorem 7.1 of [7] is applied: if (κ, λ) is an exponent pair and σ,
1/2 < σ < 1, is fixed, then for

T (κ+λ+1−2σ)/2(κ+1)(log T )(2+κ)/(κ+1) ≤ H ≤ T

and 1 + λ− κ ≥ 2σ, the estimate∫ T+H

T−H
|ζ(σ + it)|2 d t� H

is true uniformly in H.

To pass from the continuous mean square to a discrete one, we will use the
Gallagher lemma.
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Lemma 5. Let T0, T ≥ δ > 0 be real numbers, and T be a finite set in the interval
[T0 + δ/2, T0 + T − δ/2]. Define

Nδ(x) =
∑
t∈T
|t−x|<δ

1,

and let S(x) be a complex-valued continuous function on [T0, T0 + T ] having a
continuous derivative on (T0, T0 + T ). Then∑

t∈T
N−1
δ (t)|S(t)|2 ≤1

δ

∫ T0+T

T0

|S(x)|2dx

+

(∫ T0+T

T0

|S(x)|2dx

∫ T0+T

T0

|S′(x)|2dx

)1/2

.

The proof of the lemma can be found in [14, Lemma 1.4].

Lemma 6. Suppose that N1/3(logN)26/15 ≤ M ≤ N , and σ, 1/2 < σ < 1, and
h > 0 are fixed. Then, for τ ∈ R,

N+M∑
k=N

|ζ(σ + ikh+ iτ)|2 �h M(1 + |τ |).

Proof. In notation of Lemma 5, we take δ = h, T0 = (N − 1/2)h, T = (M + 1)h,
T = {Nh, (N + 1)h, . . . , (N +M)h} and S(x) = ζ(σ + ix+ iτ). Then

Nδ(x) =
∑
t∈T
|t−x|<h

1 = 1.

Therefore, by Lemma 5,

N+M∑
k=N

|ζ(s+ ikh+ iτ)|2 ≤ 1

h

∫ (N+M+1/2)h

(N−1/2)h

|ζ(σ + it+ iτ)|2 d t

+

(∫ (N+M+1/2)h

(N−1/2)h

|ζ(σ + it+ iτ)|2 d t

∫ (N+M+1/2)h

(N−1/2)h

|ζ ′(σ + it+ iτ)|2 d t

)1/2

.

(1)

In view of Lemma 4,

(2)
1

h

∫ (N+M+1/2)h

(N−1/2)h

|ζ(σ + it+ iτ)|2 d t�h M(1 + |τ |).

An application of the Cauchy integral formula together with Lemma 4 shows that∫ (N+M+1/2)h

(N−1/2)h

|ζ ′(σ + it+ iτ)|2 d t�h M(1 + |τ |).

This, (1) and (2) give the estimate of the lemma.
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Now let θ > 1/2 be a fixed number, and, for m,n ∈ N,

vn(m) = exp

{
−
(m
n

)θ}
Define the function

ζn(s) =

∞∑
m=1

vn(m)

ms
.

Then it is known [8] that the latter series is absolutely convergent for σ > 1/2.
Lemma 6 allows to approximate the function ζ(s) by ζn(s) in the mean. More
precisely, we have the following statement.

Lemma 7. Suppose that K is a compact subset of the strip D, and N1/3(logN)26/15

≤M ≤ N . Then

lim
n→∞

lim sup
N→∞

1

M

N+M∑
k=N

sup
s∈K
|ζ(s+ ikh)− ζn(s+ ikh)| = 0.

Proof. We use the integral representation [8] for the function ζn(s)

(3) ζn(s) =
1

2πi

∫ θ+i∞

θ−i∞
ζ(s+ z)ln(z)

d z

z
, σ >

1

2
,

where
ln(s) =

s

θ
Γ
(s
θ

)
ns,

and Γ(s), as usual, denotes the Euler gamma-function. We fix ε > 0 such that
1/2 + 2ε ≤ σ ≤ 1− ε for points s = σ + iv ∈ K. Let σ̂ = σ − 1/2− ε. Thus, σ̂ > 0
for points s ∈ K, and, in view of (3),

ζn(s)− ζ(s) =
1

2πi

∫ −σ̂+i∞

−σ̂−i∞
ζ(s+ z)ln(z)

d z

z
+ Res
z=1−s

ln(z)

z
ζ(s+ z).

Thus, for s ∈ K,

ζ(s+ ikh)− ζn(s+ ikh)�
∫ ∞
−∞
|ζ(s+ ikh− σ̂ + it)| |ln(−σ̂ + it)|

| − σ̂ + it|
d t

+
|ln(1− s− ikh)|
|1− s− ikh|

.

Hence, taking t in place of t+ v, we find that

ζ(s+ ikh)− ζn(s+ ikh)

�
∫ ∞
−∞

∣∣∣∣ζ (1

2
+ ε+ ikh+ it

)∣∣∣∣ |ln(1/2 + ε− s+ it)|
|1/2 + ε− s+ it|

d t+
|ln(1− s− ikh)|
|1− s− ikh|

.
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This gives

(4)
1

M

N+M∑
k=N

sup
s∈K
|ζ(s+ ikh)− ζn(s+ ikh)| � S1 + S2,

where

S1 =

∫ ∞
−∞

(
1

M

N+M∑
k=N

∣∣∣∣ζ (1

2
+ ε+ ikh+ it

)∣∣∣∣
)

sup
s∈K

|ln(1/2 + ε− s+ it)|
|1/2 + ε− s+ it|

d t

and

S2 =
1

M

N+M∑
k=N

sup
s∈K

|ln(1− s− ikh)|
|1− s− ikh|

.

We use the estimate

Γ(σ + it)� exp{−c|t|}, |t| ≥ t0,

which is uniform for σ1 ≤ σ ≤ σ2 with arbitrary σ1 < σ2. The latter estimate
together with the definition of ln(s) gives

ln(1/2 + ε− σ − iv + it)

1/2 + ε− σ − iv + it
� n1/2+ε−σ

θ
exp

{
− c
θ
|t− v|

}
�θ,K n−ε exp

{
− c
θ
|t|
}
.

This and Lemma 6 show that

(5) S1 �h,θ,K n−ε
∫ ∞
−∞

(1 + |t|) exp
{
− c
θ
|t|
}

d t�h,θ,K n−ε.

Similarly, we find that, for s ∈ K,

ln(1− s− ikh)

1− s− ikh
�θ,K n1−σ exp

{
− c
θ
kh
}
.

Therefore,

S2 �θ,K n1/2−2ε 1

M

N+M∑
k=N

exp
{
− c
θ
kh
}
�h,θ,K

n1/2−2ε

M
.

This, (4) and (5) imply the estimate

1

M

N+M∑
k=N

sup
s∈K
|ζ(s+ ikh)− ζn(s+ ikh)| �h,θ,K

(
n−ε +

n1/2−2ε

M

)
.

Now, letting N →∞ (then M →∞), and then n→∞, we obtain the equality of
the lemma.
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3. LIMIT THEOREMS

Denote by B(X) be the Borel σ-field of the space X. In this section, we will
consider the weak convergence of

PN,M,h(A)
def
=

1

M + 1
# {N ≤ k ≤ N +M : ζ(s+ ikh) ∈ A} , A ∈ B(H(D)),

as N →∞. For the statement of a limit theorem, we will use the following notation.
Let γ = {s ∈ C : |s| = 1}, P be the set of all prime numbers, and

Ω =
∏
p∈P

γp,

where γp = γ for all p ∈ P. With the product topology and pointwise multipli-
cation, the infinite-dimensional torus Ω is a compact topological Abelian group.
Therefore, on (Ω,B(Ω)), the probability Haar measure mH exists, and we obtain
the probability space (Ω,B(Ω),mH). Denote by ω(p) the pth component of an ele-
ment ω ∈ Ω, and on the probability space (Ω,B(Ω),mH), define the H(D)-valued
random element ζ(s, ω) by the formula

ζ(s, ω) =
∏
p∈P

(
1− ω(p)

ps

)−1

.

Let Pζ be the distribution of ζ(s, ω), that is,

Pζ(A) = mH {ω ∈ Ω : ζ(s, ω) ∈ A} , A ∈ B(H(D)).

Let

L(P, h, π) =

{
(log p : p ∈ P),

2π

h

}
.

The set L(P, h, π) consists of logarithms of all prime numbers and the number 2π/h.
We note that, in general,

(6) L(P, h, π) 6= {(log p : p ∈ P)} ∪
{

2π

h

}
because if 2π/h = log p0 for some p0 ∈ P, then the right-hand side of (6) is {log p :
p ∈ P}. However, in this case the L(P, h, π) is linearly dependent as having two the
same elements.

Theorem 8. Suppose that the set L(P, h, π) is linearly independent over Q. Then
PN,M,h converges weakly to the measure Pζ as N →∞.

The case of the linear dependence of the set L(P, h, π) is more complicated,
and we need some additional arguments.
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So, suppose that the set L(P, h, π) is linearly dependent over Q. Then, clearly,
there exist m ∈ N such that exp{(2πm)/h} is a rational number. Let m0 be the
smallest of them, and suppose that

exp

{
2πm0

h

}
=
a

b

with a, b ∈ N, (a, b) = 1. Let P0 be a finite subset of P defined by

P0 =

p ∈ P : αp 6= 0 in
a

b
=
∏
p∈P

pαp

 .

Denote by Ωh the closed subgroup of the group Ω generated by {p−ih : p ∈ P}.
Then, on (Ωh,B(Ωh)), the probability Haar measure mh

H exists, and we have
the probability space (Ωh,B(Ωh),mh

H). By the Bagchi lemma [1], see, also [11,
Lemma 1],

Ωh = {ω ∈ Ω : ω(a) = ω(b)}
if the set L(P, h, π) is linearly dependent over Q.

On (Ωh,B(Ωh),mh
H), define the H(D)-valued random element

ζh(s, ω) =
∏
p∈P

(
1− ω(p)

ps

)−1

.

Then ζh(s, ω) is the restriction of ζ(s, ω) to the space (Ωh,B(Ωh)). Denote by Pζ,h
the distribution of ζh(s, ω), that is,

Pζ,h(A) = mh
H{ω ∈ Ωh : ζh(s, ω) ∈ A}, A ∈ B(H(D)).

Theorem 9. Suppose that the set L(P, h, π) is linearly dependent over Q. Then
PN,M,h converges weakly to the measure Pζ,h as N →∞.

We start the proofs of Theorems 8 and 9 with limit theorems on Ω and Ωh,
respectively.

For A ∈ B(Ω), define

QN,M (A) =
1

M + 1
#
{
N ≤ k ≤ N +M :

(
p−ikh : p ∈ P

)
∈ A

}
.

Lemma 10. Suppose that the set L(P, h, π) is linearly independent over Q. Then
QN,M converges weakly to the Haar measure mH as N →∞.

Proof. Let gN,M (k), k = (kp : kp ∈ Z, p ∈ P), be the Fourier transform of QN,M ,
i.e.,

gN,M (k) =

∫
Ω

∏′

p∈P
ωkp(p) dQN,M =

1

M + 1

N+M∑
k=N

∏′

p∈P
p−ikpkh

=
1

M + 1

N+M∑
k=N

exp

−ikh∑′

p∈P
kp log p

 ,(7)
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where the sign “ ′ ” means that only a finite number of integers kp are distinct from
zero. Obviously,

(8) gN,M (0) = 1.

Since the set {log p : p ∈ P} is linearly independent over the field of rational
numbers, we have that ∑′

p∈P
kp log p 6= 0

for k 6= 0. Thus, in this case

exp

−ih∑′

p∈P
kp log p

 6= 1.

Actually, if the latter inequality is not true, then∑′

p∈P
kp log p =

2πr

h

with some r ∈ Z, and this contradicts the linear independence over Q of the set
L(P, h, π). Therefore, for k 6= 0, (7) implies that

gN,M (k) =
exp

{
−iNh

∑′

p∈P kp log p
}
− exp

{
−i(N +M + 1)h

∑′

p∈P kp log p
}

M
(

1− exp
{
−ih

∑′

p∈P kp log p
}) .

This and (8) show that

lim
N→∞

gN,M (k) =

{
1 if k = 0,
0 if k 6= 0,

and the lemma follows by a continuity theorem for probability measures on compact
groups.

For A ∈ B(Ωh), define

QN,M,h(A) =
1

M + 1
#
{
N ≤ k ≤ N +M :

(
p−ikh : p ∈ P

)
∈ A

}
.

Lemma 11. Suppose that the set L(P, h, π) is linearly dependent over Q. Then
QN,M,h converges weakly to the Haar measure mh

H as N →∞.

Proof. Denote by D the dual group of Ω. In the proof Lemma 10, we already have
used that the characters χ ∈ D are of the form

χ(ω) =
∏′

p∈P
ωkp(p).
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Let the character χm0(ω) ∈ D be given by

(9) χm0
(ω) =

∏
p∈P0

ωαp(p) =
ω(a)

ω(b)
,

and Ω⊥h = {χ ∈ D : χ(ω) = 1, ω ∈ Ωh}. Then, by (2.2) of [11],

Ω⊥h = {χlm0
: l ∈ Z}.

Thus, in view of Theorem 27 from [15], Dh = D�Ω⊥h
is the dual group of Ωh. Hence,

the characters χ of the group Ωh are of the form

(10) χ(ω) =
∏′

p∈P\P0

ωkp(p)
∏
p∈P0

ωkp+lαp(p), l ∈ Z.

Denote by gN,M,h(k), k = (kp : kp ∈ Z, p ∈ P), the Fourier transform of QN,M,h.
Then, in virtue of (10),

gN,M,h(k) =

∫
Ωh

χ(ω) dQN,M,h

=
1

M + 1

N+M∑
k=N

∏′

p∈P\P0

p−ikpkh
∏
p∈P0

p−ikh(kp+lαp), l ∈ Z.(11)

Consider two cases 1◦ and 2◦.

1◦. Suppose that kp = 0 for any p ∈ P \ P0 and kp = rαp for any p ∈ P0 with
some r ∈ Z. Then, taking into account (9), we obtain from (11) that

(12) gN,M,h(k) = 1.

2◦. Suppose that either kp 6= 0 for some p ∈ P \ P0, or there does not exist
r ∈ Z such that kp = rαp for all p ∈ P0. We observe that in this case

(13) A(h)
def
= exp

−ih
 ∑′

p∈P\P0

kp log p+
∑
p∈P0

(kp + lαp) log p

 6= 1.

Actually, if (13) is not true, then

(14) exp

 ∑′

p∈P\P0

kp log p+
∑
p∈P0

(kp + lαp) log p

 =
2πv

h

with some v ∈ Z. If v is a multiple of m0, then

exp

{
2πv

h

}
=
∏
p∈P0

pv1αp , v1 ∈ Z,
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hence, ∑′

p∈P\P0

kp log p+
∑
p∈P0

(kp + v2αp) log p = 0

with some v2 ∈ Z. Since the set {log p : p ∈ P} is linearly independent over Q, the
latter equality leads to contradiction. Now, suppose that v is not a multiple of m0.
Then the number exp{(2πv)/h} is irrational, and we again have a contradiction
because the left-hand side of (14) is a rational number. Thus, inequality (13) is
true, and we find from (11) that

gN,M,h(k) =
1

M + 1

N+M∑
k=N

exp

−ikh
 ∑′

p∈P\P0

kp log p+
∑
p∈P0

(kp + lαp) log p


=
AN (h)−AN+M+1(h)

M(1−A(h))
.

This and (12) show that

lim
N→∞

gN,M,h(k) =

{
1 for case 1◦,
0 for case 2◦.

Since the right-hand side of the latter equality is the Fourier transform of the Haar
measure mh

H , the lemma is a consequence of a continuity theorem for probability
measures on compact groups.

For A ∈ B(H(D)), define

PN,M,n,h(A) =
1

M + 1
# {N ≤ k ≤ N +M : ζn(s+ ikh) ∈ A} .

Consider the function un : Ω→ H(D) given by

un(ω) =

∞∑
m=1

ω(m)vn(m)

ms
, ω ∈ Ω,

where, for m ∈ N,

ω(m) =
∏
pα|m
pα+1-m

ωα(p).

Then the series for un(ω) also converges absolutely for σ > 1/2, hence, the function
un is continuous, thus, (B(Ω),B(H(D)))-measurable. Therefore, the Haar measure

on (Ω,B(Ω)) induces the unique probability measure Vn
def
= mHu

−1
n , where, for

A ∈ B(H(D)),
mHu

−1
n (A) = mH(u−1

n A).

Lemma 12. Suppose that the set L(P, h, π) is linearly independent over Q. Then
PN,M,n,h converges weakly to the measure Vn as N →∞.
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Proof. The lemma follows from Lemma 10, equality PN,M,n,h = QN,M,hu
−1
n , con-

tinuity of the function un and Theorem 5.1 of [2].

Now, let the function un,h : Ωh → H(D) be defined by

un,h(ω) =

∞∑
m=1

ω(m)vn(m)

ms
, ω ∈ Ωh,

and Vn,h = mh
Hu
−1
n,h. Using Lemma 11 in place of Lemma 10 and repeating the

proof of Lemma 12, we arrive to the following statement.

Lemma 13. Suppose that the set L(P, h, π) is linearly dependent over Q. Then
PN,M,n,h converges weakly to the measure Vn,h as N →∞.

Proof of Theorem 8. First, we will prove that the sequence {Vn : n ∈ N} is rela-
tively compact. In view of the Prokhorov theorem [2, Theorem 6.1], it is sufficient
to show that the sequence {Vn : n ∈ N} is tight. Let ξN,M be a discrete random
variable defined on a certain probability space with a measure µ such that

µ{ξN,M = kh} =
1

M + 1
, k = N, . . . , N +M.

Denote by Xn the H(D)-valued random element with distribution Vn, and define
one more H(D)-valued random element

XN,M,n = XN,M,n(s) = ζn(s+ iξN,M ).

Then, by Lemma 12, we have the relation

(15) XN,M,n
D−−−−→

N→∞
Xn.

Let {Kl : l ∈ N} ⊂ D be a sequence of compact sets such that

D =
∞
∪
l=1

Kl,

Kl ⊂ Kl+1 for all l ∈ N, and if K ⊂ D is a compact set, then K ⊂ Kl for some l.
The function ρ : H(D)×H(D)→ R defined by

ρ(g1, g2) =

∞∑
l=1

2−l
sups∈Kl |g1(s)− g2(s)|

1 + sups∈Kl |g1(s)− g2(s)|
,

is a metric in H(D) inducing its topology of uniform convergence on compacta.
Using Lemma 6, the Cauchy integral formula and Lemma 7, we find that

(16) sup
n∈N

lim sup
N→∞

1

M + 1

N+M∑
K=N

sup
s∈Kl

|ζn(s+ ikh)| � Rl <∞.
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We fix ε > 0 and put M̂ = M̂l(ε) = 2lRlε
−1. Then, in virtue of (16),

lim sup
N→∞

µ

{
sup
s∈Kl

|XN,M,n(s)| > M̂

}
= lim sup

N→∞

1

M + 1
#

{
N ≤ k ≤ N +M : sup

s∈Kl
|ζn(s+ ikh)| > M̂

}

≤ sup
n∈N

lim sup
N→∞

1

(M + 1)M̂

N+M∑
k=N

sup
s∈Kl

|ζn(s+ ikh)| ≤ ε

2l
.

This and (15) imply

(17) µ

{
sup
s∈Kl

|Xn| > M̂

}
≤ ε

2l

for all n ∈ N and l ∈ N. The set

K = K(ε) =

{
g ∈ H(D) : sup

s∈Kl
|g(s)| ≤ M̂l(ε), l ∈ N

}
is compact in the space H(D), and, by (17),

µ(Xn ∈ K) ≥ 1− ε

for all n ∈ N. Thus,
Vn(K) ≥ 1− ε

for all n ∈ N, i.e., the sequence {Vn} is tight.

Since the sequence {Vn : n ∈ N} is relatively compact, there exists a sub-
sequence {Vnr} ⊂ {Vn} such that Vnr converges weakly to a certain probability
measure P on (H(D),B(H(D))) as r →∞, i.e.,

(18) Xnr
D−−−→

r→∞
P.

Introduce one more H(D)-valued random element

YN,M = YN,M (s) = ζ(s+ iξN,M ).

Then, by Lemma 7 and the definition of the metric ρ, we obtain that, for every
ε > 0,

lim
n→∞

lim sup
N→∞

µ {ρ(YN,M , XN,M,n) ≥ ε}

= lim
n→∞

lim sup
N→∞

1

M + 1
# {N ≤ k ≤ N +M : ρ(ζ(s+ ikh), ζn(s+ ikh)) ≥ ε}

≤ lim
n→∞

lim sup
N→∞

1

(M + 1)ε

N+M∑
k=N

ρ(ζ(s+ ikh), ζn(s+ ikh)) = 0.
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This, (15), (18) and Theorem 4.2 of [2] show that

(19) YN,M
D−−−−→

N→∞
P,

and this means that PN,M,h converges weakly to P as N →∞.

For identification of the limit measure P , we observe that relation (19) shows
that the measure P is independent of the choice of the sequence {Vnr}. Therefore,
we have that

Xn
D−−−−→

n→∞
P,

thus, PN,M,h, as N →∞, converges weakly to the limit measure P of Vn as n→∞.
It is well known, see, for example, [8], [3], that

1

T
meas{τ ∈ [0, T ] : ζ(s+ iτ) ∈ A}, A ∈ B(H(D)),

also, as T → ∞, converges weakly to the limit measure P of Vn, and that P
coincides with Pζ . Thus, PN,M,h also converges weakly to Pζ as N → ∞. The
theorem is proved.

Proof of Theorem 9 is more complicated than that of Theorem 8 because we
have not an analogue of a limit theorem for the measure Vn,h. Therefore, we start
the proof of Theorem 9 with the following lemma.

Lemma 14. Suppose that the set L(P, h, π) is linearly dependent over Q. Then
PN,M,h converges weakly to the limit measure Vh of Vn,h as n→∞.

Proof. We repeat the proof of Theorem 8, and in place of Lemma 12, apply
Lemma 13.

We can’t give a direct identification of the measure Vh in Lemma 14 because
the validity of the Birkhoff-Khintchine ergodic theorem in short interval is not
known. Therefore, first we will give a sketch of the proof of a limit theorem for

PN,h(A) =
1

N + 1
#{0 ≤ k ≤ N : ζn(s+ ikh) ∈ A}, A ∈ B(H(D)),

as N →∞, when the set L(P, h, π) is linearly dependent over Q.

For ω ∈ Ωh, define the transformation ϕh(ω) by the formula

ϕh(ω) =
(
p−ih : p ∈ P

)
ω.

Then ϕh is a measurable measure-preserving transformation on the probability
space (Ωh,B(Ωh),mh

H). A set A ∈ B(Ωh) is called invariant with respect to the
transformation ϕh if the sets A and ϕh(A) can differ from each other at most by
a set of mh

H -measure zero. The transformation ϕh is called ergodic if the σ-field of
invariant sets consists only of the sets of mh

H -measure zero or one.
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Lemma 15. The transformation ϕh is ergodic.

Proof. The lemma is Lemma 3 of [11] because the linear dependence of the set
L(P, h, π) implies that h is of type 2.

For convenience, we remind of the classical Birkhoff-Khintchine ergodic the-
orem.

Lemma 16. Let ϕ be a measure preserving ergodic transformation on a certain
probability space with measure µ, and ξ = ξ(ω) be a random variable, E|ξ| < ∞.
Then µ-almost surely

lim
n→∞

1

n

n−1∑
k=0

ξ(ϕk(ω)) = Eξ.

Proof of the lemma can be found, for example, in [19], Theorem V.3.1.

Lemma 16 allows to estimate the discrete mean square of the function ζ(s, ω).

Lemma 17. Suppose that σ, 1/2 < σ < 1, is fixed and τ ∈ R. Then, for almost
all ω ∈ Ωh,

N∑
k=0

|ζ(σ + ikh+ iτ, ω)|2 � N(1 + |τ |).

Proof. Suppose that |τ̂ | < h. By the definition of ϕh,

|ζ(σ + ikh+ iτ̂ , ω)|2 = |ζ(σ + iτ̂ , ϕkh(ω))|2.

Therefore, by Lemmas 15 and 16, and equalities

ω(m)ω(akbl)ω(m)ω(bkal) = 1, m ∈ N, k, l ∈ N0,

we find that

lim
N→∞

1

N + 1

N∑
k=0

|ζ(σ + ikh+ iτ̂ , ω)|2 = E

∣∣∣∣∣
∞∑
m=1

ω(m)

mσ+iτ̂

∣∣∣∣∣
2

=

∞∑
m=1

1

m2σ
+

∞∑
m=1

1

m2σ

∞∑
k=1

∞∑
l=1

k 6=l

1

a(σ+iτ̂)kb(σ+iτ̂)l

1

a(σ−iτ̂)lb(σ−iτ̂)k

=

∞∑
m=1

1

m2σ

(
1 +

1
aσ+iτ̂

1
bσ−iτ̂

1− 1
aσ+iτ̂ bσ−iτ̂

1
aσ−iτ̂

1
bσ+iτ̂

1− 1
aσ−iτ̂ bσ+iτ̂

−
1

(ab)2σ

1− 1
(ab)2σ

)

≤
∞∑
m=1

1

m2σ

(
1 +

1

|aσ+iτ̂ bσ−iτ̂ − 1|2
+

1

(ab)2σ − 1

)
<∞.

Thus,
N∑
k=0

|ζ(σ + ikh+ iτ̂ , ω)|2 � N.



Discrete universality of the Riemann zeta-function in short intervals 398

Hence, for all τ ∈ R,

N∑
k=0

|ζ(σ + ikh+ iτ, ω)|2 =

N∑
k=0

∣∣∣ζ (σ + ikh+
[ τ
h

]
h+ τ̂ , ω

)∣∣∣2
=

N+[τ/h]∑
k=[τ/h]

|ζ(σ + ikh+ iτ̂ , ω)|2 � N(1 + |τ |).

Lemma 18. The measure

QN,h(A) =
1

N + 1
#
{

0 ≤ k ≤ N :
(
p−ikh : p ∈ P

)
∈ A

}
, A ∈ B(Ωh),

converges weakly to the Haar measure mh
H as N →∞.

Proof. The lemma is Lemma 2 of [11].

For A ∈ B(H(D)) and ω ∈ Ωh, define

PN,n,h(A) =
1

N + 1
#{0 ≤ k ≤ N : ζn(s+ ikh) ∈ A}

and

PN,n,h,ω(A) =
1

N + 1
#{0 ≤ k ≤ N : ζn(s+ ikh, ω) ∈ A}.

Lemma 19. The measures PN,n,h and PN,n,h,ω both converge weakly to the same
probability measure Vn,h on (H(D),B(H(D))) as N →∞.

Proof. We use Lemma 18 and repeat the proof of Lemmas 12 and 13, and apply
the invariance of the Haar measure mh

H .

Lemma 20. Suppose that K ⊂ D is a compact set. Then

lim
n→∞

lim sup
N→∞

1

N + 1

N∑
k=0

sup
s∈K
|ζ(s+ ikh)− ζn(s+ ikh)| = 0

and, for almost all ω ∈ Ωh,

lim
n→∞

lim sup
N→∞

1

N + 1

N∑
k=0

sup
s∈K
|ζ(s+ ikh, ω)− ζn(s+ ikh, ω)| = 0.

Proof. It is well known that, for fixed σ, 1/2 < σ < 1,∫ T

0

|ζ(σ + it)|2 d t� T.
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From this and Lemma 5, we deduce that, for 1/2 < σ < 1 and τ ∈ R,

N∑
k=0

|ζ(σ + iτ + ikh)|2 �h N(1 + |τ |).

Therefore, reasoning as in the proof of Lemma 7, leads to the first equality of the
lemma. The second equality of the lemma is obtained similarly by using Lemma 17.

For A ∈ B(H(D)) and ω ∈ Ωh, define

PN,h,ω(A) =
1

N + 1
#{0 ≤ k ≤ N : ζ(s+ ikh, ω) ∈ A}

Lemma 21. The measures PN,h and PN,h,ω as N → ∞ both converge weakly to
the limit measure Ph of Vn,h as n→∞.

Proof. We use Lemmas 19 and 20 and follow the proof of Theorem 8.

We will use two following equivalents of weak convergence of probability mea-
sures.

Lemma 22. Let Pn, n ∈ N, and P be probability measures on (X,B(X)). Then the
statements

1◦ Pn converges weakly to P as n→∞;

2◦ For every open set G ⊂ X,

lim inf
n→∞

Pn(G) ≥ P (G);

3◦ For every continuity set A of the measure P ,

lim
n→∞

Pn(A) = P (A)

are equivalent.

The lemma is a part of Theorem 2.1 of [2].

Lemma 23. The measure Ph in Lemma 21 coincides with Pζ,h.

Proof. Let A ∈ B(H(D)) be a continuity set of the measure Ph (Ph(∂A) = 0, where
∂A is a boundary of A). Then, in view of Lemma 21 and 3◦ of Lemma 22,

(20) lim
N→∞

PN,h,ω(A) = Ph(A).

On the probability space (Ωh,B(Ωh),mh
H), define the random variable η by

η(ω) =

{
1 if ζh(s, ω) ∈ A,
0 otherwise.
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By the definition of η, we have

(21) Eη =

∫
Ωh

η dmh
H = mh

H{ω ∈ Ωh : ζh(s, ω) ∈ A} = Pζ,h(A).

In virtue of Lemmas 15 and 16, we have

(22) lim
N→∞

1

N + 1

N∑
k=0

η
(
ϕk(ω)

)
= Eη

for almost all ω ∈ Ωh. However, by the definitions of η and ϕh,

1

N + 1

N∑
k=0

η
(
ϕk(ω)

)
=

1

N + 1
#{0 ≤ k ≤ N : ζ(s+ ikh, ω) ∈ A}.

From this, and (21) and (22), we find that

lim
N→∞

1

N + 1
#{0 ≤ k ≤ N : ζ(s+ ikh, ω) ∈ A} = Pζ,h(A).

This and (20) show that Ph(A) = Pζ,h(A) for every continuity set A of the measure
Ph. Since all continuity sets constitute the determining class [2], we have that
Ph = Pζ,h.

Proof of Theorem 9. By Lemma 14, PN,M,h converges weakly to the measure Vh as
N →∞. However, by Lemma 23, the measure Vh coincides with Pζ,h.

It is convenient to connect Theorems 8 and 9. Let

P̂ζ,h =

{
Pζ if L(P, h, π) is linearly independent,
Pζ,h if L(P, h, π) is linearly dependent.

Then we have the following corollary from Theorems 8 and 9.

Corollary 24. PN,M,h converges weakly to P̂ζ,h as N →∞.

For F : H(D)→ H(D), define

PN,M,F,h(A) =
1

M + 1
#{N ≤ k ≤ N +M : F (ζ(s+ ikh)) ∈ A}, A ∈ B(H(D)).

Theorem 25. Suppose that F : H(D) → H(D) is a continuous operator. Then
PN,M,F,h converges weakly to the measure P̂ζ,hF

−1 as N →∞.

Proof. Since PN,M,F,h = PN,M,hF
−1, the theorem is corollary of Corollary 24,

continuity of F and Theorem 5.1 of [2].

4. PROOF OF UNIVERSALITY



401 Antanas Laurinčikas

We recall the Mergelyan theorem on the approximation of analytic functions
by polynomials [13].

Lemma 26. Suppose that K ⊂ C is a compact set with connected complement,
and the function f(s) is continuous on K and analytic in the interior of K. Then,
for every ε > 0, there exists a polynomial p(s) such that

sup
s∈K
|f(s)− p(s)| < ε.

For proving universality theorems, we additionally need the explicit form of
the support of the measure P̂ζ,h. We recall that the support of P̂ζ,h is a minimal

closed set Sζ,h ⊂ H(D), such that P̂ζ,h(Sζ,h) = 1. The set Sζ,h consists of all
elements g ∈ H(D) such that, for every open neighbourhood G of g, the inequality
P̂ζ,h(G) > 0 holds. We remind that

S = {g(s) ∈ H(D) : g(s) 6= 0 or g(s) ≡ 0}

Lemma 27. The support of P̂ζ,h is the set S.

Proof. It is well known, see, for example, [8], that the support of Pζ is the set S.
Thus, it remains to consider the case of the measure Pζ,h.

We write the random element ζh(s, ω) in the form

ζh(s, ω) =
∏
p∈P0

(
1− ω(p)

ps

)−1 ∏
p∈P\P0

(
1− ω(p)

ps

)−1
def
= XY.

For p ∈ P \ P0, the random variables ω(p) are independent. Therefore, repeating
the proof of Lemma 6.5.5 of [8] that proves that the support of Pζ is the set S, we
obtain that the support of random element Y is the set S. The random elements
X and Y are independent, moreover, X is not degenerate at zero. Therefore, the
support of ζh(s, ω) is the set S. Since the support of ζh(s, ω) is the support of the
measure Pζ,h, the lemma is proved.

Proof of Theorem 1. First part. By Lemma 26, there exists a polynomial p(s) such
that

(23) sup
s∈K

∣∣∣f(s)− ep(s)
∣∣∣ < ε

2
.

Since, in view of Lemma 26, the function ep(s) is an element of the support of the
measure P̂ζ,h, we have that

(24) P̂ζ,h(Gε) > 0,

where

Gε =

{
g ∈ H(D) : sup

s∈K

∣∣∣g(s)− ep(s)
∣∣∣ < ε

2

}
.
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This, the definitions of PN,M,h and Gε, Corollary 24 and 2◦ of Lemma 22 give the
inequality

lim inf
N→∞

1

M + 1
#

{
N ≤ k ≤ N +M : sup

s∈K

∣∣∣ζ(s+ ikh)− ep(s)
∣∣∣ < ε

2

}
> 0.

Combining this with (23) gives the first inequality of the theorem.

Second part. Define the set

Ĝε =

{
g ∈ H(D) : sup

s∈K
|g(s)− f(s)| < ε

}
.

Then the boundary ∂Ĝε lies in the set{
g ∈ H(D) : sup

s∈K
|g(s)− f(s)| = ε

}
,

therefore, ∂Ĝε1 ∩ ∂Ĝε2 = ∅ for different positive ε1 and ε2. Hence, P̂ζ,h(Ĝε) > 0

for at most countably many ε > 0. In other words, the set Ĝε is a continuity set
of the measure P̂ζ,h for all but at most countably many ε > 0. Thus, Corollary 24
and 3◦ of Lemma 22 imply the equality

(25) lim
N→∞

PN,M,h(Ĝε) = P̂ζ,h(Ĝε)

for all but at most countably many ε > 0. However, inequality (23) shows that
Gε ⊂ Ĝε. Thus P̂ζ,h(Ĝε) ≥ P̂ζ,h(Gε), and the second assertion of the theorem
follows by (24) and (25).

Proof of Theorem 2. First, we will find the support of the measure P̂ζ,hF
−1. Let

g1 be an arbitrary element of the set Ha1,...,ar;F (D), and G ⊂ Ha1,...,ar;F (D) be
any open neighbourhood of g1. Then F−1G is an open set, and, in view of the
inclusion F (S) ⊃ Ha1,...,ar;F , belongs to S. Since S is the support of P̂ζ,h,

P̂ζ,hF
−1(G) = P̂ζ,h(F−1G) > 0.

Hence, the support of P̂ζ,hF
−1 contains the set Ha1,...,ar;F (D), and thus contains

its closure.

We will separate 2 cases: r = 1 and r ≥ 2.

Let r = 1. By Lemma 26, there exists a polynomial p(s) such that

(26) sup
s∈K
|f(s)− p(s)| < ε

4
.

Thus, p(s) 6= a1 on K if ε is small enough. Therefore, by Lemma 26 again, there
exists a polynomial p1(s) such that

(27) sup
s∈K

∣∣∣(p(s)− a1)− ep1(s)
∣∣∣ < ε

4
.
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For brevity, let g1(s) = a1 + ep1(s). Obviously, g1(s) ∈ Ha1;F (D), i.e., g1(s) is an

element of the support of the measure P̂ζ,hF
−1. Therefore,

(28) P̂ζ,hF
−1(Gε) > 0,

where

Gε =

{
g ∈ H(D) : sup

s∈K
|g(s)− g1(s)| < ε

2

}
.

Hence, in virtue of Theorem 25 and 2◦ of Lemma 22,

lim inf
N→∞

1

M + 1
#

{
N ≤ k ≤ N +M : sup

s∈K
|F (ζ(s+ ikh))− g1(s)| < ε

2

}
> 0.

This together with (26) and (27) proves the first part of the theorem.

Now, let

Ĝε =

{
g ∈ H(D) : sup

s∈K
|g(s)− f(s)| < ε

}
.

Then, as in the proof of Theorem 1, we obtain that the set Ĝε is a continuity set of
the measure P̂ζ,h for all but at most countably many ε > 0. Hence, by Theorem 25
and 3◦ of Lemma 22, the limit

lim
N→∞

1

M + 1
#

{
N ≤ k ≤ N +M : sup

s∈K
|F (ζ(s+ ikh))− f(s)| < ε

}
= P̂ζ,h(Ĝε)

exists for all but at most countably many ε > 0. Since inequalities (26) and (27)
imply the inclusion Ĝε ⊂ Gε, this and (28) proves the second part of the theorem.

Now, let r ≥ 2. Then the function f(s) is an element of the support of the
measure P̂ζ,hF

−1. Thus, we have that P̂ζ,hF
−1(Ĝε) > 0, and Theorem 25 and

Lemma 22 prove the both parts of the theorem.

5. PROOF OF THEOREM 3

Theorem 3 is an consequence of Theorem 2, the classical Rouché theorem,
and conditions of the theorem.

Proof of Theorem 3. Let, for brevity,

σ0 =
σ1 + σ2

2
and r̂ =

σ2 − σ1

2
.

We apply Theorem 2 with K = {s ∈ C : |s − σ0| ≤ r̂} and f(s) = s − σ0. Since
Reaj 6∈ (−1/2, 1/2), the function f(s) 6= aj in the strip D, j = 1, . . . , r. Thus,
the function f(s) on the disc K satisfies the conditions of Theorem 2. In virtue of
Theorem 2, we have that there exists a constant c > 0 such that, for every ε > 0
and sufficiently large N ,

(29)

{
N ≤ k ≤ N +M : sup

s∈K
|F (ζ(s+ ikh))− f(s)| < ε

}
≥ cM.
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Now, let ε satisfy the inequality

ε <
1

10
sup

|s−σ0|=r̂
|f(s)| = r̂

10
.

Then, for the above k,

sup
|s−σ0|=r̂

|F (ζ(s+ ikh))− f(s)| < sup
|s−σ0|=r̂

|f(s)|.

This shows that the hypotheses of the Rouché theorem, see, for example, [18], are
satisfied. Therefore, the functions F (ζ(s+ ikh)) and s− σ0 have the same number
of zeros in the interior of the disc K. This and (29) prove the theorem.
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