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Abstract: We study a class of fractional stochastic differential equations (FSDEs) with coefficients
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1. Introduction

The models defined by stochastic differential equations (SDEs)

Xt = x0 +
∫ t

0
g(Xs) ds + σ

∫ t

0
Xβ

s dBs, β > 1/2, β 6= 1, (1)

where B is a standard Brownian motion, g is a continuous function on (0, ∞), x0 > 0 is
nonrandom initial value, and σ > 0 is a constant, include several well-known models such
as Chan–Karolyi–Longstaff–Sanders (CKLS), Cox–Ingersoll–Ross (CIR), Ait–Sahalia (AS),
Cox–Ingersoll–Ross variable-rate (CIR VR), and others used in many financial applications
[1–6]. The positivity is a desirable property for many financial models, such as option
pricing, stochastic volatility, and interest rate models. Thus, it is important to find con-
ditions under which the solutions to Equation (1) are positive. Preservation of positivity
is a desirable modelling property, and in many cases the non-negativity of numerical
approximations is needed for the scheme to be well defined. Therefore, many numerical
methods have been developed to preserve the positivity of the approximate solution in the
case of the positive true solution.

For an SDE to have a unique global solution (i.e., with no explosion in a finite time)
for any given initial value, the coefficients of the equation are in general required to satisfy
the linear growth and local Lipschitz conditions. These conditions are not satisfied in the
models mentioned. The existence of positive solutions of SDEs corresponding to these
models and implicit numerical schemes preserving the positivity were studied in [1–6].

An important research area in financial mathematics is the long memory phenomenon
in financial data. Hence, since fractional Brownian motion (fBm) BH introduces a memory
element, there is much attention in recent years to models with fBm. Consider the FSDEs

Xt = x0 +
∫ t

0
g(Xs) ds + σ

∫ t

0
Xβ

s dBH
s , β > 1/2, β 6= 1, (2)
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with H ∈ (1/2, 1). The stochastic integral in Equation (2) is a pathwise Riemann–Stieltjes
integral, but SDE (2) cannot be treated directly since the functions k(x) = xβ, β > 1/2,
β 6= 1, do not satisfy the usual Lipschitz conditions.

For fractional CIR, CKLS, and AS models, the existence of a unique positive solu-
tion of Equation (2) was obtained in [7–14]. The proof can be provided in several ways.
One approach is based on the consideration of the conditions under which the equation

Yt = y0 +
∫ t

0
h(s, Ys) ds + BH

t , H ∈ (1/2, 1), (3)

admits a unique positive solution, where h(t, x) is a locally Lipschitz function with respect
to the space variable x ∈ (0, ∞). This approach was used in [7–9,11,14], where the inverse
Lamperti transform was used to obtain conditions under which Equation (1) admits a
unique positive solution for fractional CIR, CKLS, and AS models. Unfortunately, we can-
not apply the proof of positivity of the solution of (3) given in [14] (e.g., it is not applicable
to the AS model).

Marie [10] used the rough-path approach to find the existence of a unique positive
solution of the fractional CKLS model.

A simulation of the fractional CIR process was given in [11] by using the Euler approx-
imation. In [8,14] an almost sure strongly convergent approximation of the considered SDE
solution is constructed using the backward Euler scheme, which is positivity preserving.

In this paper, we consider the SDE

Yt = y0 + (β− 1)
∫ t

0
h(Ys) ds− (β− 1)σBH

t , β > 1, (4)

where y0 is a constant. This type of equation is obtained after the Lamperti transformation
of the FSDE (2). The purpose of the paper is finding sufficiently simple conditions when the
solution of (4) for β > 1 and H ∈ (1/2, 1) is positive. Moreover, using the backward Euler
scheme, which preserves the positivity for (4), we obtain an almost sure convergence rate
for X. Since the problem of the statistical estimation of the long-memory parameter H is of
great importance, we construct an estimate of the Hurst index H ∈ (1/2, 1) in the same
way as for the diffusion coefficient satisfying the usual Lipschitz conditions (see [15,16]).
This can be done since the solution of Equation (2) is positive. More results on parameter
estimations for the FSDEs can be found in the book [17].

The paper is organized as follows. In Section 2, we present the main results of the
paper. In Section 3, we prove the main auxiliary result on the existence and uniqueness of a
positive solution for SDE (4). Section 4 contains proofs of the main theorems. In Section 5,
we consider fractional CKLS and AS models as examples. Finally, in Appendix A, we recall
the Love–Young inequality, the chain rule for Hölder-continuous functions, and some
results for fBm.

2. Main Results

We are interested in conditions under which the SDE

Xt = x0 +
∫ t

0
Xβ

s f (X1−β
s ) ds + σ

∫ t

0
Xβ

s dBH
s , β > 1, H ∈ (1/2, 1), (5)

has a unique positive solution. The stochastic integral in Equation (5) is a pathwise
Riemann–Stieltjes integral.

To state our main results, we assume that the following conditions on the function f
in (5) are satisfied:

(C1) f is a locally Lipschitz on (0,+∞);
(C2) There exist constants a > 0 and α > 0 such that

f̂ (x) := − f (x) >
a

x1+α



Mathematics 2020, 9, 18 3 of 14

for all sufficiently small x ∈ (0, ∞);
(C3) The function f̂ (x) satisfies the one-sided Lipschitz condition, that is, there exists a

constant K ∈ R such that

(x− y)
(

f̂ (x)− f̂ (y)
)
6 K(x− y)2

for all x, y ∈ (0,+∞).

Theorem 1. If a function f satisfies conditions (C1)–(C3), then Equation (5) is well defined and
has a unique positive solution X ∈ Cγ([0, T]) of order γ ∈ ( 1

2 , H) for H ∈ ( 1
2 , 1), where Cγ([0, T])

denotes the space of Hölder-continuous functions of order γ > 0 on [0, T].

Consider the SDE

Yt = y0 + (β− 1)
∫ t

0
f̂ (Ys) ds− (β− 1)σBH

t , y0 = x1−β
0 , t > 0, H ∈ ( 1

2 , 1). (6)

A strong approximation of the SDE that has locally Lipschitz drift for H ∈ ( 1
2 , 1)

is constructed by applying the backward Euler scheme in [14] (see also [1] for H = 1
2 ).

By using the backward Euler scheme, which preserves positivity for (6), we obtain an
almost sure convergence rate for X.

A sequence of uniform partitions of the interval [0, T] we denote by π = {tn
k =

k
n T, 1 6 k 6 n} and let and h = tn

k − tn
k−1, 1 6 k 6 n. We introduce the backward Euler

approximation scheme for Y

Yn,k+1 = Yn,k + (β− 1) f̂ (Yn,k+1)h− σ(β− 1)
(

BH
tn
k+1
− BH

tn
k

)
, Yn,0 = y0, 0 6 k 6 n− 1. (7)

The following assumption is needed for the positivity of the backward Euler approxi-
mation scheme to be preserved:

(C4) Let F̂(x) = x− (β− 1) f̂ (x)h on (0, ∞), where the function f̂ (x) satisfies condi-
tion (C3). There exists h0 > 0 such that limx→+∞ F̂(x) = +∞ and limx→0+ F̂(x) = −∞ for
0 < h < h0.

Remark 1. Please note that under condition (C3), the function F̂(x) is strictly monotone on (0, ∞)
for small h. This follows from (C3) and the inequality

(x− y)
(

F̂(x)− F̂(y)
)
= (x− y)2 − (β− 1)(x− y)

(
f̂ (x)− f̂ (y)

)
h >

(
1− K+(β− 1)h

)
(x− y)2 > 0,

where K+ = max{0, K}. Thus, from the condition (C4) it follows that for each b ∈ R, the equation
F(x) = b has a unique positive solution for 0 < h < h0. As a result, we see that the positivity is
preserved by the backward Euler approximation scheme.

For the simplicity of notation, we introduce the symbol Oω. Let (Zn) be a sequence
of r.v.s, let ς be an a.s. nonnegative r.v., and let (an) ⊂ (0, ∞) be a vanishing sequence.
Then Zn = Oω(an) means that |Zn| ≤ ς · an for all n. In particular, Zn = Oω(1) means that
the sequence (Zn) is a.s. bounded.

Theorem 2. Suppose that the function f in (5) is continuously differentiable on (0,+∞) and
satisfies condition (C2) and that there exists a constant K ∈ R such that the derivative is bounded
above by K, that is, f ′(x) 6 K. If the sequence of uniform partitions π of the interval [0, T] is such
that h < h0, then for all T > 0 and H ∈ ( 1

2 , 1),

sup
06t6T

|Yt −Yn
t | = Oω(n−H

√
ln n), (8)
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where

Yn
t = Yn,k +

t− tn
k

h
(
Yn,k+1 −Yn,k

)
, t ∈ (tn

k , tn
k+1], k = 0, . . . , n− 1, Yn

n,0 = y0.

Moreover,

sup
06t6T

∣∣Xt −
(
Yn

t
)−1/(β−1)∣∣ = {Oω

(
n−H
√

ln n
)

for β ∈ (1, 2],
Oω

(
(n−H

√
ln n)1/(β−1)) for β > 2,

(9)

where X is the solution of Equation (5).

For positive solutions of Equation (5), we construct a strongly consistent and asymp-
totically normal estimator of the Hurst parameter H from discrete observations of a single
sample path.

For a real-valued process X = {Xt, t ∈ [0, T]}, we define the second order increments
along uniform partitions as

∆(2)
n,k X = Xtn

k+1
− 2Xtn

k
+ Xtn

k−1
, 1 6 k 6 n− 1.

Theorem 3. Let X be a unique positive solution of SDE (5) with H ∈ ( 1
2 , 1). Then

Ĥn = H + Oω

((
ln n

n

)1/2
)

and

2 ln 2
√

n
(

Ĥn − H
) d−→ N (0, σ2

H)

with known variance σ2
H defined in Appendix, where

Ĥn =
1
2
− 1

2 ln 2
ln

 Ṽ(2)X
2n,T

Ṽ(2)X
n,T

, Ṽ(2)X
n,T =

n−1

∑
k=1

∆(2)
n,k X

Xβ
tn
k

2

.

3. Auxiliary Results

As mentioned in Introduction, we are interested in conditions under which the SDE
(6) has a unique positive solution.

Proposition 1. Suppose that a function f satisfies conditions (C1)–(C3). If y0 > 0, k1 > 0,
and k2 ∈ R, then there exists a unique positive solution of Equation (6) such that Y ∈ Cγ([0, T]),
T > 0, where γ ∈ ( 1

2 , H) and H ∈ ( 1
2 , 1).

We easily to see that the same proof as in Proposition 1 [8] remains valid for Proposi-
tion 1.

Applying Proposition 1 to the fractional AS model and Heston-3/2 volatility model,
we obtain that the trajectories of these models are positive (see Section 5). Our proof scheme
gives no answer about the behavior of the trajectories of the CKLS model

Xt = x0 +
∫ t

0
(a1 − a2Xs) ds + σ

∫ t

0
Xβ

s dBH
s , β > 1, H ∈ ( 1

2 , 1), (10)

with the initial value x0 > 0 and deterministic constants a1 > 0, a2 ∈ R, and σ > 0.
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Now we will explain why we cannot give an answer about the behavior of the
trajectories of the CKLS model. Consider the SDE

Yt = y0 + (β− 1)
∫ t

0

(
a2Ys − a1Yβ/(β−1)

s
)
ds− (β− 1)σBH

t , H ∈ ( 1
2 , 1). (11)

Suppose that the solution of the SDE (11) is positive. Then by applying the chain rule
(see Appendix A.2) and the inverse Lamperti transform Xt = Y−1/(β−1)

t we can prove that
X is a positive solution of (10).

Unfortunately, it is easy to see that the function f̂ (x) = a2x − a1xβ/(β−1) does not
satisfy condition (C2). So, we cannot apply Proposition 1 and say anything about the
positivity of the solution of (11).

Computer modelling using Wolfram Mathematica shows that the trajectories of the
process Y may have negative values for y0 > 0 (see Figure 1).

To investigate the probability of reaching the negative values by the process Y when
t ∈ [0, 1], we simulate the “exact” solution by using the backward Euler approximation
scheme for step size h = 10−3 and repeat this process 103 times counting the trajectories
with negative values. We observe that the solution has a higher probability to reach
the negative values for small initial values Y0 and that for large enough values of Y0,
this probability tends to zero. Additionally, the probability increases for greater values of
the parameters σ, β (see Figures 2b and 3) and decreases for greater values of the parameters
H, a2 (see Figures 2a and 4b). The influence of a1 on the probability (see Figure 4a) is not
noticeable in comparison with other parameters.

(a) (b)

Figure 1. Trajectory of Y: (a) with negative values. (b) with positive values.

(a) (b)

Figure 2. Probability that the trajectories have negative values: (a) Dependence of probability on Y0 for different H.
(b) Dependence of probability on Y0 for different σ.
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(a) (b)

Figure 3. Probability that the trajectories have negative values: (a) Dependence of probability on β when H = 0.55.
(b) Dependence of probability on β when H = 0.95.

(a) (b)

Figure 4. Probability that the trajectories have negative values: (a) Dependence of probability on a1. (b) Dependence of
probability on a2.

Thus, we can only state that Equation (10) has a solution Xt = Y−1/(β−1)
t until the

moment at which Y becomes zero. On the other hand, we do know that the CKLS model
driven by a standard Brownian motion (see [6]) with β > 1 and the fractional CKLS model
with 1/2 6 β < 1 (see [8]) have positive solutions.

4. Proofs

The main tool for proving Theorem 1 is Proposition 1.

Proof of Theorem 1. Set Xt = Y−1/(β−1)
t and x0 = y−1/(β−1)

0 , where Y is a solution of
Equation (6). Since the process Y is positive and continuous, for s, t ∈ [0, T], we get

|Y−β/(β−1)
t −Y−β/(β−1)

s | = |Y
β/(β−1)
t −Yβ/(β−1)

s |
Yβ/(β−1)

t Yβ/(β−1)
s

6
1

inf06t6T Y2β/(β−1)
t

β

β− 1
sup

06t6T
Y1/(β−1)

t · |Yt −Ys| . (12)

Thus, Xβ
s is a Hölder-continuous process up to the order γ ∈ ( 1

2 , H) on [0, T]. The pro-

cess Xt = Y−1/(β−1)
t is the solution of Equation (5). Indeed, by chain rule we obtain

Xt =Y−1/(β−1)
t = Y−1/(β−1)

0 − 1
β− 1

∫ t

0
Y−β/(β−1)

s dYs

=y−1/(β−1)
0 − β− 1

β− 1

∫ t

0
Y−β/(β−1)

s f̂ (Ys) ds +
σ(β− 1)

β− 1

∫ t

0
Y−β/(β−1)

s dBH
s

=x0 +
∫ t

0
g(Xs) ds + σ

∫ t

0
Xβ

s dBH
s .
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Proof of Theorem 2. We repeat the outlines of the proof of Theorem 3 in [8]. Please note
that under the conditions of the theorem, conditions (C1)–(C3) are satisfied. Thus, there
exists a unique positive solution of SDE (6).

By the definition of Yn, for any t ∈ (tn
k , tn

k+1], we have

Yt −Yn
t =Yt −

t− tn
k

h
Yn,k+1 −

tn
k+1 − t

h
Yn,k

=
tn
k − t

h
(β− 1)

[ ∫ tn
k+1

t
f̂ (Ys) ds− σ

(
BH

tn
k+1
− BH

t
)]

+
tn
k+1 − t

h
(β− 1)

[ ∫ t

tn
k

f̂ (Ys) ds− σ
(

BH
t − BH

tn
k

)]
+

t− tn
k

h
(
Ytn

k+1
−Yn,k+1

)
+

tn
k+1 − t

h
(
Ytn

k
−Yk

)
.

Since the process Y is positive and continuous, from (A5) it follows that

∣∣Yt −Ys
∣∣ 6(β− 1)

∫ t

s
| f̂ (Yu)| du + (β− 1)σ

∣∣BH
t − BH

s
∣∣

6(β− 1)(t− s) sup
06u6T

| f̂ (Yu)|+ (β− 1)Kω |t− s|H
√
|ln |t− s||

=Oω

(
|t− s|H

√
|ln |t− s||

)
,

and the asymptotic behavior of the first two terms is Oω(n−H
√

ln n ). Thus, it remains to
obtain the asymptotics of the last two terms.

Please note that

Ytn
k+1
−Yn,k+1 =Ytn

k
−Yn,k + (β− 1)

∫ tn
k+1

tn
k

[
f̂ (Ys)− f̂ (Yn,k+1)

]
ds

+ (β− 1)σζk+1
(
Ytn

k+1
−Yn,k+1

)
h,

where ζk+1 = f̂ ′(Ytn
k+1

+ θ(Yn,k+1 −Ytn
k+1

)), θ ∈ (0, 1). Then

Ytn
k+1
−Yn,k+1 =

1
1− (β− 1)ζk+1h

[
Ytn

k
−Yn,k + (β− 1)

∫ tn
k+1

tn
k

[
f̂ (Ys)− f̂ (Ytn

k+1
)
]
ds
]

=
k+1

∑
i=1

Ii

k+1

∏
j=i

(
1− ζ j(β− 1)h

)−1, (13)

where

Ii = (β− 1)
∫ tn

i

tn
i−1

[
f̂ (Ys)− f̂ (Ytn

i
)
]
ds.

Please note that 1− ζi(β− 1)h > 1− (β− 1)K+h > 0 for h < ((β− 1)K+)−1 since
f ′(x) 6 K, where K+ = max{0, K}. Applying the inequality ln 1

1−x 6 x
1−x , x < 1, we get

k+1

∏
j=i

(
1− ζ j(β− 1)h

)−1
6(1− (β− 1)K+h)−(k+1−i) 6 e

n ln 1
1−(β−1)K+h

6e
n (β−1)K+h

1−(β−1)K+h 6 e
(β−1)K+T

1−(β−1)K+h .

Furthermore,∣∣∣∣ ∫ tn
k

tn
k−1

[
f̂ (Ys)− f̂ (Ytn

k
)
]
ds
∣∣∣∣ 6 Tn−1 max

06t6T

∣∣ f̂ ′(Yt)
∣∣ max

tn
k−16t6tn

k

∣∣Yt −Ytn
k

∣∣ = Oω

(
nH
√

ln n
)
.
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This finishes the proof of (8).
It remains to prove (9). We will use the well-known inequalities

|xp − yp| 6 |x− y|p, 0 < p < 1,

|xp − yp| < p|x− y|(max{|x|, |y|})p−1, p > 1.

Since Xt = Y−1/(β−1)
t , we have

sup06t6T
∣∣Xt −

(
Yn

t
)−1/(β−1)∣∣ = sup06t6T

∣∣Y−1/(β−1)
t −

(
Yn

t
)−1/(β−1)∣∣ = sup06t6T

|Y1/(β−1)
t −

(
Yn

t

)1/(β−1)
|

Y1/(β−1)
t

(
Yn

t

)1/(β−1) .

Please note that

inf
06t6T

Yn
t > min

066n
Yn,k > 0.

Thus

sup06t6T
∣∣Xt −

(
Ŷn

t
)−1/(β−1)∣∣ 6



sup06t6T
|Yt−

(
Ŷn

t

)
|1/(β−1)

Y1/(β−1)
t

(
Ŷn

t

)1/(β−1) if β > 2,

sup06t6T
|Yt−Ŷn

t |
YtŶn

t
if β = 2,

1
β−1 sup06t6T

|Yt−Ŷn
t |

Y1/(β−1)
t

(
Ŷn

t

)1/(β−1)

×
(

max
{

sup06t6T |Yt|, sup06t6T |Ŷn
t |
}) 2−β

β−1

if 1 < β < 2.

From (8) and the finiteness of sup0≤t≤T |Yt| we have

sup
0≤t≤T

∣∣Ŷn
t
∣∣ ≤ sup

0≤t≤T

∣∣Ŷn
t −Yt

∣∣+ sup
0≤t≤T

|Yt| ≤ Oω

(
n−H
√

ln n
)
+ sup

0≤t≤T
|Yt| = Oω(1).

This finishes the proof of (9).

Proof of Theorem 3. Repeats the proof of Theorem 2 in [8]. It is based on the following
lemma.

Lemma 1. Assume that the conditions of Theorem 1 are satisfied and β > 1. Then

∆(2)
n,i X = σXβ(tn

i )∆
(2)
n,i BH + Oω(n−2γ),

where γ ∈ (1/2, H).

Proof. Let g(x) = xβ f (x1−β). Then can we write the second-order increments of the
process X as follows:

∆(2)
n,k X =

( ∫ tn
k+1

tn
k

[
g(Xs)− g(Xtn

k
)
]
ds−

∫ tn
k

tn
k−1

[
g(Xs)− g(Xtn

k
)
]
ds
)

+ σ

( ∫ tn
k+1

tn
k

[
Xβ

s − Xβ
tn
k

]
dBH

s −
∫ tn

k

tn
k−1

[
Xβ

s − Xβ
tn
k

]
dBH

s

)
+ σXβ

tn
k
∆(2)

n,i BH .
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Applying inequality (12), condition (C1), and the fact that Y ∈ Cγ([0, T]), γ ∈ ( 1
2 , H),

we obtain∣∣g(Xt)− g(Xs)
∣∣ =|Y−β/(β−1)

t f (Yt)−Y−β/(β−1)
s f (Ys)|

6| f (Yt)| · |Y−β/(β−1)
t −Y−β/(β−1)

s |+ Y−β/(β−1)
s | f (Yt)− f (Ys)|

6 sup
06t6T

| f (Yt)| ·
1

inf06t6T Y2β/(β−1)
t

β

β− 1
sup

06t6T
Y1/(β−1)

t · |Yt −Ys|

+ sup
06t6T

Y−β/(β−1)
t sup

06t6T
| f ′(Yt)| · |Yt −Ys| = Oω(n−γ) .

Thus∫ tn
k+1

tn
k

∣∣g(Xs)− g(Xtn
k
)
∣∣ ds = Oω(n−1−γ) and

∫ tn
i

tn
i−1

∣∣g(Xs)− g(Xtn
k
)
∣∣ds = Oω(n−1−γ).

Moreover, by the Love–Young inequality (see Appendix A.1), (12), and the Hölder
continuity of BH we get∣∣∣∣∫ tn

i

tn
i−1

[
Xβ

s − Xβ
tn
i

]
BH

s

∣∣∣∣ 6 Cγ,γ
1

inf06t6T Y2β/(β−1)
t

β

β− 1
sup

06t6T
Y1/(β−1)

t KY,TGγ,Tn−2γ,

where KY,T = sups,t∈[0,T]
s 6=t

|Yt−Ys |
|s−t|γ < ∞ a.s. Thus, the lemma is proved.

5. Examples

Example 1. Ait–Sahalia model. The Ait–Sahalia-type SDE has the form

Xt = x0 +
∫ t

0
(a1X−1

s − a2 + a3Xs − a4Xr
s) ds + σ

∫ t

0
Xβ

s dBH
s (14)

with the initial value x0 > 0 and r > 2β − 1, where H ∈ ( 1
2 , 1), β > 1, and deterministic

constants a1, a2, a3, a4 > 0 and σ > 0.
By using the Lamperti transformation Yt = X−(β−1)

t we get

Yt = y0 − (β− 1)
∫ t

0
f (Ys) ds− σ(β− 1)BH

t = y0 + (β− 1)
∫ t

0
f̂ (Ys) ds− (β− 1)σBH

t ,

where f̂ (x) = − f (x) and

f (x) = a1x
β+1
β−1 − a2x

β
β−1 + a3x− a4x−

r−β
β−1 .

The function f is continuously differentiable on (0,+∞). Condition (C2) is satisfied since

f̂ (x)− a4

2
x−

r−β
β−1 =

a4

2
x−

r−β
β−1 − a1x

β+1
β−1 + a2x

β
β−1 − a3x → ∞ as x→ +0

with a = a4/2, α = r−β
β−1 − 1 > 0.
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Now we verify condition (C3). Please note that

f̂ ′(x) =− a1
β + 1
β− 1

x
2

β−1 + a2
β

β− 1
x

1
β−1 − a3 − a4

r− β

β− 1
x−

r−1
β−1

=− x−
r−1
β−1

(
a4

r− β

β− 1
+ a1

β + 1
β− 1

x
1+r
β−1 − a2

β

β− 1
x

r
β−1

)
− a3

=− x
2

β−1

(
a1

β + 1
β− 1

− a2
β

β− 1
x−

1
β−1 + a4

r− β

β− 1
x−

r+1
β−1

)
− a3.

Since the derivative f̂ ′(x) is continuous on (0, ∞), limx→0+ f̂ ′(x) = −∞,
and limx→+∞ f̂ ′(x) = −∞, there is a constant K such that f̂ ′(x) 6 K for all x ∈ (0, ∞).

Now the mean value theorem implies

(x− y)
(

f̂ (x)− f̂ (x)
)
= f̂ ′(c)(x− y)2 6 K(x− y)2, (15)

where c = x + θ(y − x), θ ∈ (0, 1). Thus, Equation (14) has a unique positive solution on
(0,+∞).

Let us verify condition (C4). Please note that

F̂(x) =x− (β− 1) f̂ (x)h = x− (β− 1)
(
− a1x

β+1
β−1 + a2x

β
β−1 − a3x + a4x−

r−β
β−1
)

h

=(β− 1)
(

a1x
β+1
β−1 − a2x

β
β−1 − a4x−

r−β
β−1
)

h +
(
1 + a3(β− 1)h

)
x

is continuous on (0, ∞). It is clear that 1 + a3(β− 1)h > 0 for any h > 0 and

lim
x→0+

F̂(x) = −∞ and lim
x→+∞

F̂(x) = +∞.

Since the function f̂ satisfies condition (C3), condition (C4) is satisfied as well. Therefore, the
conditions of Theorem 2 are satisfied.

Example 2. Heston-3/2 volatility mode. Consider the SDE

Xt = x0 +
∫ t

0
a1Xs(a2 − Xs) ds + σ

∫ t

0
Xβ

s dBH
s (16)

with the initial value x0 > 0, where H ∈ ( 1
2 , 1), 1 < β < 2, and deterministic constants

a1, a2, σ > 0. If β = 3/2, then we call the SDE (16) the fractional Heston-3/2 volatility model.
By using the Lamperti transformation Yt = X−(β−1)

t we get

Yt = y0 − (β− 1)
∫ t

0
f (Ys) ds− σ(β− 1)BH

t = y0 + (β− 1)
∫ t

0
f̂ (Ys) ds− σ(β− 1)BH

t ,

where f̂ (x) = − f (x) and

f (x) = a1a2x− a1x−
2−β
β−1 .

The function f is continuously differentiable on (0,+∞). Condition (C2) is satisfied since

f̂ (x)− a1

2
x−

2−β
β−1 =

a1

2
x−

2−β
β−1 − a1a2x → ∞ as x→ +0

with a = a1/2, α = 2−β
β−1 − 1 > 0. Now we verify condition (C3). Please note that

f̂ ′(x) =− a1a2 − a1
2− β

β− 1
x−

1
β−1 < −a1a2.
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Applying inequality (15), we obtain condition (C3). Thus, Equation (16) has a unique positive
solution on (0,+∞). From the obtained result it follows that the Heston-3/2 volatility model has a
unique positive solution on (0,+∞).

Let us verify condition (C4). Please note that

F̂(x) =x− (β− 1) f̂ (x)h = x− (β− 1)
(
− a1a2x + a1x−

2−β
β−1
)

h

=
(
1 + a1a2(β− 1)h

)
x− (β− 1)a1x−

2−β
β−1 h

is continuous on (0, ∞). It is clear that 1 + a3(β− 1)h > 0 for any h > 0 and

lim
x→0+

F̂(x) = −∞ and lim
x→+∞

F̂(x) = +∞.

Since the function f̂ satisfies condition (C3), condition (C4) is satisfied as well. Thus the
conditions of Theorem 2 are satisfied.

6. Conclusions

In this paper, we gave sufficiently simple conditions under which the solution of SDE

Yt = y0 − (β− 1)
∫ t

0
f (Ys) ds− (β− 1)σBH

t , β > 1, H ∈ (1/2, 1), (17)

has a unique positive solution. By applying the chain rule and the inverse Lamperti
transform Xt = Y−1/(β−1)

t , we proved that X is a positive solution of equation

Xt = x0 +
∫ t

0
Xβ

s f (X1−β
s ) ds + σ

∫ t

0
Xβ

s dBH
s , β > 1, (18)

under certain conditions on the function f .
Equation (18) describes models, such as fractional Ait–Sahalia and Heston-3/2 volatil-

ity, in which the positivity is important for many financial applications. Usually, we are not
aware of an explicit expression for the solution, and therefore we considered computable
discrete-time approximations, which can be used in Monte Carlo simulations. To approxi-
mate the solution of Equation (17), we used an implicit Euler scheme, which preserves the
positivity of the numerical scheme. By applying the inverse Lamperti transform to Y we
obtained an approximation scheme for the original SDE (18). Moreover, we obtained the
almost sure convergence rate for both processes.

Not all models defined by the stochastic differential Equation (18) necessarily have
positive trajectories. The paths of the fractional CKLS model are not necessarily positive, in
contrast to the classical CKLS model driven by the standard Brownian motion with β > 1
or fractional CKLS model with 1/2 6 β < 1.

The statistical estimation of the long-memory parameter H is of great importance,
therefore, we constructed its estimate. For the first time, we obtained an estimate of
the Hurst index for the solution of Equation (18). Finally, the positivity of solution of (18)
allowed us to construct an estimate of the Hurst index, which is not only strongly consistent,
but also asymptotically normal.
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Appendix A

Appendix A.1. Love–Young Inequality

For any a < b, Cγ([a, b]) denotes the space of Hölder-continuous functions of order
γ > 0 on [a, b]. Let f ∈ Cλ([a, b]) and g ∈ Cµ([a, b]) with λ + µ > 1 and

K f = sup
s,t∈[a,b]

s 6=t

| f (t)− f (s)|
|s− t|λ

, Kg = sup
s,t∈[a,b]

s 6=t

|g(t)− g(s)|
|s− t|µ .

Love–Young inequality states that for any y ∈ [a, b],∣∣∣∣ ∫ b

a
f dg− f (y)

[
g(b)− g(a)

]∣∣∣∣ 6 Cµ,λK f Kg(b− a)λ+µ (A1)

with Cµ,λ = ζ(µ + λ), where ζ(s) is the Riemann zeta function, i.e., ζ(s) = ∑n>1 n−s ([17],
p. 10).

Appendix A.2. Chain Rule

Let f = ( f1, . . . , fd) : [a, b] → Rd be a function such that for each k = 1, . . . , d,
fk ∈ Cλ([a, b]), λ ∈ (1/2, 1]. Let g : Rd → R be a differentiable function with locally
Lipschitz partial derivatives g′k, k = 1, . . . , d. Then the functions g′l ◦ f are Riemann–Stieltjes
integrable with respect to fk, and

(g ◦ f )(b)− (g ◦ f )(a) =
d

∑
k=1

∫ b

a
(g′k ◦ f ) d fk,

(see [18]).

Appendix B. Several Results on fBm

Recall that fBm BH = {BH
t , t > 0} with the Hurst index H ∈ (0, 1) is a real-valued

continuous centered Gaussian process with covariance

E(BH
t BH

s ) =
1
2
(
s2H + t2H − |t− s|2H).

For H = 1
2 , fBm is a Brownian motion. To consider the strong consistency and

asymptotic normality of the given estimators, we need several facts regarding BH .

Limit results (see [17,19]). Let

V(2)B̂H

n,T =
n2H−1

T2H(4− 22H)

n−1

∑
k=1

(
∆(2)

n,k BH)2, H 6= 1
2

.

Then (see [17], pp. 46, 52, 58, 66)

V(2)B̂H

n,T −−−→
n→∞

1 a.s.

and
√

n

 V(2)B̂H

n,T − 1

V(2)B̂H

2n,T − 1

 d−→ N (0; ΣH), ΣH =

(
Σ11 Σ12
Σ12 Σ22

)
, (A2)
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where N (0; ΣH) is a Gaussian vector with

Σ11 =2
(

1 +
2

(4− 22H)2

∞

∑
j=1

$̂ 2
H(j)

)
, Σ22 =

1
2

Σ11,

Σ12 =Σ21 =
1

22H(4− 22H)2 ∑
j∈Z

$̃ 2
H(j),

$̂H(j) =
1
2
[
− 6|j|2H − |j− 2|2H − |j + 2|2H + 4|j− 1|2H + 4|j + 1|2H],

$̃H(j) =
1
2
[
|j + 1|2H + 2|j + 2|2H − |j + 3|2H + |j− 1|2H − 4|j|2H − |j− 3|2H + 2|j− 2|2H

]
.

Moreover,
V(2)B̂H

n,T = 1 + Oω

(
n−1/2 ln1/2 n

)
(A3)

and
√

n ln
V B̂H

2n,T

V B̂H
n,T

d−→ N (0, σ2
H)

with σ2
H = 3

2 Σ11 − 2Σ12.

Hölder-continuity of BH . It is known that almost all sample paths of an fBm BH are locally
Hölder of order strictly less than H ∈ (0, 1). To be more precise, for all T > 0, there exists a
nonnegative random variable Gγ,T such that E(|Gγ,T |p) < ∞ for all p > 1, and

|BH
t − BH

s | 6 Gγ,T |t− s|γ a.s. (A4)

for all s, t ∈ [0, T], where γ ∈ (0, H) (see [17], p. 4).

Sample modulus for BH . The function $H(u) = uH
√
|ln u| for u > 0 is a sample modulus

for BH , i.e., for almost all ω ∈ Ω, there is Kω < ∞ such that

|BH
t (ω)− BH

s (ω)| 6 Kω$H(|t− s|) for t, s ∈ [0, T] (A5)

(see [20], p. 48).
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