
VILNIUS UNIVERSITY

FACULTY OF MATHEMATICS AND INFORMATICS

MODELLING AND DATA ANALYSIS MASTER’S STUDY
PROGRAMME

Master’s thesis

Forecasting Nonstationary and Nearly Nonstationary
Time Series Using Machine Learning Methods

Nestacionarių ir beveik nestacionarių laiko eilučių
prognozavimas naudojant mašininio mokymosi

metodus

Reda Vaičiūnaitė

Supervisor: doc. dr. Jurgita Markevičiūtė

Vilnius, 2021



Forecasting Nonstationary and Nearly Nonstationary Time Series Using
Machine Learning Methods

Abstract

The purpose of the study is to examine whether the differences between nonstationary and nearly non-
stationary time series have a significant impact on forecasting using machine learning models. One of the
main objectives is to verify the ability of the machine learning models to make quite accurate one-step ahead
predictions for both nonstationary and nearly nonstationary time series. Another objective is to compare
the forecasting performance of machine learning and traditional statistical models. For the analysis three
machine learning models, including the Multilayer Perceptron (MLP) network, Recurrent Neural Network
(RNN) and Support Vector Regression (SVR), and a single traditional statistical method Autoregressive In-
tegrated Moving Average (ARIMA) are used. This work consists of the simulation study, including the first
order autoregressive time series case analysis, and the application to the real world data with an example of
financial market time series. The results show that in most cases machine learning models predict both non-
stationary and nearly nonstationary time series quite accurately. However, machine learning models are not
able to make significantly better predictions for the time series, which follow a random walk, in comparison
to the traditional statistical methods.

Key words : nonstationary time series, nearly nonstationary time series, machine learning methods, statis-
tical time series forecasting models, time series forecasting

Nestacionarių ir beveik nestacionarių laiko eilučių prognozavimas naudojant
mašininio mokymosi metodus

Santrauka

Šio tyrimo tikslas yra ištirti, ar skirtumai tarp nestacionarių ir beveik nestacionarių laiko eilučių yra
reikšmingi prognozavimui, naudojant mašininio mokymosi metodus. Vienas iš pagrindinių uždavinių yra
patikrinti, ar mašininio mokymosi metodai gali pateikti gana tikslią vieno žingsnio į priekį prognozę tiek
nestacionarioms, tiek beveik nestacionarioms laiko eilutėms. Kitas uždavinys yra palyginti mašininio moky-
mosi bei tradicinių statistinių modelių prognozavimo tikslumą. Tyrime taikomi trys mašininio mokymosi
modeliai: daugiasluoksnio perceptrono neuroninis tinklas (MLP), rekurentinis neuroninis tinklas (RNN) ir
palaikančiųjų vektorių regresijos modelis (SVR), bei vienas tradicinis statistinis modelis - autoregresinis inte-
gruotas slenkamųjų vidurkių (ARIMA) metodas. Šį darbą sudaro simuliacinis tyrimas, kuriame naudojama
pirmojo laipsnio autoregresinė laiko eilutė, bei modelių pritaikymas laiko eilutei, sudarytai iš realių finansų
rinkos duomenų. Remiantis rezultatais, daugeliu atvejų, mašininio mokymosi metodai tiek nestacionarias,
tiek beveik nestacionarias laiko eilutes prognozuoja gana tiksliai. Tačiau, laiko eilutėms, kurių trajektorijos
panašios į atsitiktinį klaidžiojimą, mašininio mokymosi modeliai nepateikia reikšmingai geresnių prognozių
lyginant juos su tradiciniais statistiniais metodais.

Raktiniai žodžiai : nestacionarios laiko eilutės, beveik nestacionarios laiko eilutės, mašininio mokymosi
metodai, statistiniai laiko eilučių prognozavimo modeliai, laiko eilučių prognozavimas
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Introduction
The efficient forecasting of time series plays an important role in various fields. In many real

world situations, the ability to anticipate the future is very essential and necessary, for instance, to
businesses it helps to set goals, properly allocate their budget or make important financial decisions
and adjustments in strategy required to avoid a decrease in profit, for investors forecasting of future
earnings assists to make profitable investments, in meteorology a knowledge about the weather in
the future makes it possible to foresee natural disasters and there are only a few examples where
forecasting has a major impact. For a long time, various statistical models have been used in an
attempt to get predictions of the observations in different areas under consideration. However, the
efforts to find the model which would be efficient for every time series forecasting were unsuccessful
due to the various characteristics of series. It was found that very huge influence in the efficiency of
forecasting and selection of the appropriate model has the stationarity of time series. The presence
of persistence met in a major part of the real world time series usually makes many difficulties
in forecasting due to the randomness in their behaviour [38, 55]. The high degree of persistence
is related with the presence of the unit roots in time series or their, for example, autoregressive,
representations and that indicates the nonstationarity of time series [38, 55]. Usually, the time
series with a high degree of persistence and the unit roots very close to unity, which are called as
nearly nonstationary, have more similar properties and tendencies in the behaviour to nonstationary
time series than stationary ones. Such time series in practical examples often are simply treated as
nonstationary.

A great number of investigations have been performed to analyze the nonstationary time series
by trying to find the model which would be able to make most accurate predictions in various
forecasting problems and it remains the area of interest. After when the machine learning models
have been proposed and applied for the time series forecasting it was noticed that they are able to
deal with a complex behaviour of the nonstationary time series and show a quite well forecasting
performance in most cases, sometimes even outperform traditional statistical models. Many related
works could be found with the applications of machine learning models for the different time series
forecasting, however, to our knowledge, no prior studies have examined what effect the changes in
the degree of persistence in time series has on forecasting using machine learning models, therefore
this is the main interest of this work.

The analysis of the first order autoregressive time series (AR(1)) case offers an appropriate
framework on which to test whether there are some significant differences in the nonstationary
and nearly nonstationary time series forecasting using machine learning models. Therefore, the
simulation study is performed in this work to apply several of the most commonly used machine
learning models and examine their ability to make one-step predictions, which are of significant
importance in various applications, for both nonstationary and nearly nonstationary time series.
Three machine learning models are chosen in the experimental part of this study: Multilayer Per-
ceptron (MLP) network, Recurrent Neural Network (RNN) and Support Vector Regression (SVR).
The traditional statistical autoregressive integrated moving average (ARIMA) model is included in
the experiment as a benchmark and the comparison of the forecasting performance of models is pre-
sented. There could be formulated two hypotheses which are required to be approved or denied in
this work. One of them is that machine learning models could achieve similarly well performance
on both nonstationary and nearly nonstationary time series forecasting. Another is that machine
learning models could outperform traditional statistical forecasting models on the nonstationary
and nearly nonstationary time series forecasting.

In addition, the effect of the changes in the value of the AR(1) coefficient for the forecasting
performance of models is examined and the real world application is presented. Due to the fact that
time series of the financial markets usually have a high degree of persistence, in this experiment
forecasting performance of models is tested and compared using the Offset Market Exchange Gross
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Index of Vilnius (OMX Vilnius GI) data.
The rest of the work is organized as follows. In Chapter 1, the literature review is presented,

including the discussion of several various traditional statistical and machine learning models, their
applications for the nonstationary real world time series forecasting with their strengths and weak-
nesses in making predictions. Additionally, some works related to the findings of the similarities
between nonstationary and nearly nonstationary time series are reviewed. In Chapter 2 the main
definitions and theoretical concepts, required for the experimental part of this work, are discussed,
including the nonstationary and nearly nonstationary AR(1) processes, selected statistical (ARIMA)
and machine learning (MLP, RNN and SVR) models and forecasting performance metrics. In Chap-
ter 3, simulation study and the real world data application of the time series forecasting are explored
using models described in Chapter 2. Final conclusions are given in Chapter 4.
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1 Literature review
In the real world, it is very important to observe how variables change over time. The set of

observations collected at certain time intervals is referred to as time series data [36]. Time series
analysis has become very important in many fields including economics, medicine, meteorology,
engineering, politics, and others. One of the most important and widely discussed topics in time
series analysis is a prediction of future values. Analyzing sequential observations it was noticed
that values in the future usually depend on the present or previous observations. Such dependence
encouraged deeper analysis of time series and first attempts to predict future events from the oc-
curred data. Very significant was an introduction to autoregressive (AR) models by G.U. Yule in
1926 [44]. The autoregressive model represents an opportunity to forecast the variable of interest
using a linear combination of some number of historical measurements. After successful supple-
ment by E. Slutsky who in 1937 presented Moving Average (MA) schemes and proposed to use a
weighted linear sum of last forecasting errors for future value prediction, H. Wold (1938) decided
to combine these models into an autoregressive moving average (ARMA) model [44]. It is impor-
tant to emphasize that using ARMA model for modeling real-life time series requires time series
to be stationary for making precise predictions. Time series whose statistical properties, such as
mean, variance and autocorrelation do not depend on time are defined as stationary. Nevertheless,
in the real world nonstationary time series, whose statistical properties change over time, are more
common and forecasting models based on the assumption of stationarity are using after applying
some mathematical transformations for these time series. One basic transformation is to compute
the differences between consecutive observations, better known as differencing. This method helps
to eliminate or reduce trend and seasonality and stabilize the mean and variance of a time series. G.
E. P. Box and G. Jenkins (1970, 1976) popularized the statistical ARMA model by suggesting dif-
ferencing to make the series stationary. The approach proposed by Box and Jenkins which is known
as the Box-Jenkins methodology produced an autoregressive integrated moving average (ARIMA)
model. ARIMA models and the Box-Jenkins methodology became one of the most widely used
time series forecasting methods in practice. [44] Further developments of time series forecasting
address the issues of dealing with the non-constant volatility of the data. R. F. Engle (1982) in-
troduced to an autoregressive conditional heteroscedastic (ARCH) model which has been widely
used to model volatility of time series and was developed to better account for a non-constant be-
havior in comparison to ARIMA models [23, 63]. ARCH model assumes that the conditional (not
fixed over time, changes depending on the available data) variance is linearly dependent on one or
more last squared values of the time series [12]. After four years T. Bollerslev (1986) suggested the
generalized ARCH (GARCH) model which represent a linear relationship of conditional variance
against some number of last previous squared time series values and conditional variance values
[12, 23]. However, these already mentioned and many other traditional econometric models for
time series prediction are established on the assumption that data are stationary. Applying some
mathematical transformations for time series, such as differencing mentioned above, is not always
efficient. The selection of the suitable transformation is a challenging task and sometimes it is com-
pletely ineffective when we choose to investigate time series which fluctuates in a highly nonlinear
and nonstationary way. After many attempts to forecast nonstationary time series as accurately as
possible, there was noticed that the traditional statistical econometric models cannot exhibit great
advantages in processing complex nonlinear and nonstationary data and prediction results may be
unsatisfactory [76].

A great breakthrough has been made after proposing machine learning (ML) methods as alter-
natives to statistical ones for the time series forecasting [69]. Machine learning is an application of
Artificial Intelligence (AI) that brings together statistics and computer science to enable computers
automatically learn how to do a given task and improve from experience without being programmed
to do so.
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One of the main machine learning based techniques is Neural Networks (NN) which proved
to be very suitable to pattern recognition, nonlinear signal processing, classification and also time
series forecasting, especially if they are nonstationary and nonlinear [3, 6]. F. E. H. Tay and L. Cao
in their paper (2001) represent NN as “universal function approximators that can map any non-
linear function without a priori assumptions about the properties of the data” [65]. There is a wide
choice of different NN algorithms available in the literature.

Earliest delivered is an Artificial Neural Network (ANN), which works similar to the human
brain. ANN try to recognize regularities and patterns in the input data, involve understanding and
learning from experience until finally, they are able to provide generalized results based on the ac-
quired knowledge [3]. The simplest ones are feedforward ANN (FANN) and their probably most
widely used form is the multilayer perceptron (MLP), derived in 1960 [30]. MLP network (MLPN)
presents a nonlinear functional mapping from input nodes, which are the past observations of the
time series, to the output nodes – predicted future values [3]. To perform a nonlinear mapping be-
tween input and output layers this network uses some number of hidden nodes/neurons placed into
one or more layers. Trying to get accurate precisions it is important to consider an optimal ANN
architecture by specifying the number of nodes and hidden layers and finding the optimal values
for the connection weights [30]. Hidden nodes are used to increase the flexibility of the model,
nevertheless, an inappropriate network size can cause contrary results. An insufficient number of
hidden nodes leads to the inability of a neural network to learn data and solve the problem, whilst
too many hidden neurons transform learning and generalization into memorizing data, which could
be the reason of an overfitting, long and unnecessary training time, difficult implementation of
the model and falling into local minima [30]. I. Kaastra and M. Boyd in their paper (1995) [33]
provide a very informative practical introductory guide in the design of a neural network for fore-
casting economic time series data and affirm that “a neural network with one hidden layer with a
sufficient number of hidden neurons is capable of approximating any continuous function”. Also,
they summarize several suggestions for selecting the optimal number of hidden neurons for three-
layer network proposed by different researchers: use the geometric pyramid rule (Masters), which
specifies that the number of hidden neurons is equal to the square root of the product of the number
of input and output neurons or ranges from one-half to two times this value, choose the number of
hidden nodes equal to 75% (D. Baily and D. M. Thompson) of or between one-half to three times (J.
O. Katz) the number of input neurons or double the number of hidden neurons until the network’s
performance on the testing set deteriorates (O. Ersoy). Authors summarize, that optimal number
of hidden neurons could be found by experimentation such as training a group of NN with different
numbers of hidden neurons and choosing the one which has the least error or changing the number
by adding or removing hidden nodes during training until network performance starts deteriorat-
ing. From this paper and many others, it is obvious that there is no general rule for the selection
of an appropriate number of hidden layers and nodes because what is appropriate for one time se-
ries may not be at all suitable for others due to their various characteristics. Besides the selection
of network size, another main problem of constructing an optimal ANN architecture is to find the
optimal values of connection weights. That could be done using the training algorithm and several
of them are mentioned in [30]: Quick-Prop (QP), Orthogonal Least Square (OLS), Levemberg-
Marquart (LM), Resilient Propagation (RPROP) and Back Propagation Algorithm (BP), by em-
phasizing widely used BP method, first introduced by Werbos in 1974 for three layer perceptron
network. BP algorithm helps to reduce errors of prediction by adjusting network biases and weights
into those that minimize the error function using a gradient descent technique [30]. After the suc-
cessful introduction of this algorithm many variations have been proposed, such as Quick Back
Propagation (QBP), Resilient Back Propagation (RBP), Broyden – Fletcher – Goldfarb – Shanno
Quasi-Newton Back Propagation (BFGS) [54]. Previous studies have shown, that ANN with a BP
training algorithm often outperforms traditional econometric forecasting models analyzing non-
stationary time series with irregular fluctuations and accidental pattern changes due to “its unique
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non-parametric, non-assumable, noise-tolerant and adaptive properties” [34]. J. Kamruzzaman and
R. A Sarker (2003) used three ANN based forecasting models: standard Back Propagation (BP),
Scaled Conjugate Gradient Algorithm (SCG) and Back Propagation with Regularization (BPR) for
predicting currency exchange rates of Australian Dollar with six other currencies and showed that
all of them outperformed the traditional ARIMA model [34]. The same conclusion was made by
Dr. S. K. Safi (2013) who predicted electricity consumption in Gaza Strip by comparing simple
ANN (MLPs using a BP algorithm) and ARIMA models [54]. Authors in [15] propose an informa-
tive comparison of neural networks and conditional heteroscedastic models like ARCH, GARCH,
GARCH in mean (GARCH-M), threshold GARCH (TGARCH), exponential GARCH (EGARCH)
and integrated GARCH (IGARCH) for forecasting the exchange rate time series, by demonstrat-
ing that NN models have better performance and can be effectively employed even to estimate the
volatility. In this paper two networks are used: already widely discussed MLP and Radial Basis
Function Network (RBFN), where the second one gives superior forecasting results due to better
extraction of the information necessary to perform a good generalization from the training set.

RBFN has a similar architecture to MLP but there are some differences: RBFN cannot have
more than one hidden layer, is often easier to be trained than MLP and the hidden nodes use radial
basis functions (RBF) as the identity activation functions [15, 70]. Input and hidden nodes in RBFN
are connected directly without using weights, each hidden node contains RBF and the weighted sum
of the outputs of RBF is equal to the predicted value. RBFN acts as local approximation networks
while MLPN works globally due to the fact that the outputs in RBFN are determined by specified
hidden nodes in certain local receptive fields and in MLPN they are decided by all the neurons [70].
RBF gives an output depending on the distance between incoming variables and center positions
and on the width of the RBF unit [53]. It is obvious, that RBFN has few additional parameters,
compared to MLP, that have to be determined. The parameters of RBF units are established in
three steps of the training activity: firstly, using some form of clustering algorithm the unit centers
are determined, after that, the widths are specified by the nearest-neighbour method and finally
multiple linear regression techniques are used to calculate the weights connecting the RBF units
and output nodes [70]. More detailed information about the determination of parameters of the
RBF and a comparison between RBFN and BP models used to the short-term system load forecast-
ing is presented in [53]. The results of this research show that the RBFN better provide peak and
total load forecasts for the next day, has a shorter training time than BP and can also compute, at no
additional computational cost, reliability measures such as an extrapolation index and a confidence
interval for the forecast, which is an expression of local goodness of fit. Although this research
demonstrates that very good predictions can be obtained using Gaussian function as an activation
function, in [27] it is declared that the choice of basis function strongly depends on the data set and
it is useful to evaluate the effects of more recognized basis functions suitable for RBF networks,
such as multiquadratic, inverse multiquadratic, thin plane spline, cubic or linear basis function. Au-
thors in [60] propose to incorporate Bayesian regularization (BR) method into RBFN and introduce
the Bayesian regularized RBFN (BR-RBFN) model. Bayesian regularization converts a nonlinear
regression into a “well-posed” statistical problem in the manner of a ridge regression and helps to
make neural network more robust [41]. Using regularization methods helps to penalize the network
complexity and to avoid or reduce the risk of network overfitting and overtraining. The research
in [60] shows that BR-RBFN is able to effectively capture the nonlinear behaviour of daily stock
return and perform well with prediction accuracy.

In traditional NN all input (and output) variables are assumed to be independent of each other
but it was noticed that sometimes incorporating the sequence dependency could be very useful in
forecasting. This idea was implemented by introducing the Recurrent NN (RNN), which is well
known due to memorizing its previous computations and applying them in the subsequent forecast-
ing steps. Differently from other NN, RNN uses not only input data but also the historical infor-
mation of the previous outputs for making further prediction. Although RNN is hard to train and
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the problem of vanishing gradient or exploding gradient may appear, this model quickly became a
competitive forecasting method [28, 50, 69]. Authors of [11] demonstrated that RNN could be used
for the short-term forecasting of wind speed and provide better predictions than do standard linear
ARIMA models. An additional suggestion was proposed in this paper to incorporate other mea-
surable covariates which could provide a significant forecast improvement. A comparative study of
the performance of ARIMA, multi-layer feed-forward NN (MFNN) or otherwise known as MLP
with BP and RNN models in predicting compressor failures of a repairable system and detecting
reversals was carried out in [29]. The results of this investigation show that MFNN generates poorer
forecasts and the lowest percentage of correct reversal detection compared with ARIMA and RNN
which both almost perfectly managed with these tasks. However, authors emphasize that the higher
long term forecasting errors suggest using ARIMA and RNN for short term predictions. One of
the main disadvantages of RNN is that it can remember only a few earlier steps in the sequence
[50, 69]. As the solution to this challenging problem was proposed a special kind of RNN called
Long Short-Term Memory (LSTM) network, which is very efficient and widely analyzed nowadays.
LSTM contains a series of reconnected memory modules and each of them is composed of a cell,
which remembers values over arbitrary time intervals, and three gates (input, output and forget)
to regulate the flow of information into the cell. Results of the research in [76] show that LSTM
can cope perfectly with the complex electric load time series, which poses a great challenge for
long-horizon time series forecasting due to the high non-stationarity and non-seasonality, also can
make reliable predictions and outperform many other forecasting methods. However, LSTM uses
many computational resources and it is really hard to train due to a long training time.

The literature review shows that many different NN methods have been proposed for the non-
stationary time series forecasting but, obviously, it is not possible to single out a specific one that is
perfectly suitable in all cases. Due to the different weaknesses and strengths of various models, the
idea of creating combinations of models was suggested. One of the most widely used is the hybrid
ARIMA-ANN model. Previous studies have shown that ARIMA could be a perfect tool for linear
predictions while the ANN could not handle both linear and nonlinear patterns equally well but has
a good performance in the face of nonlinear problems [43, 73]. The researches in [73] and [43]
confirm that the combination of these models can often improve the accuracy of forecasting the
real world time series, which usually contain both linear and nonlinear patterns, and can increase
the chance to capture different patterns in the data. Another interesting and successful suggestion
is to preprocess time series using wavelet transform (WT) before feeding it into the ANN model as
input. WT spreads the main time series into subcomponents called wavelets, which are a scaled and
shifted version of the fixed function namely the mother wavelet [2, 26]. Two researches in [26] and
[2] propose a hybrid model composed of discrete WT (DWT) and widely used ANN type the MLP
NN (MLPNN) by calling this combination WTMLPNN and WA-ANN respectively. Authors of
these papers based on other related works and their experimental results present WT as an effective
tool in analyzing nonstationary time series which helps to provide useful decompositions of the time
series, capture useful information from data on various decomposition levels and thus improve the
performance of ANN which sometimes has limitations with non-stationary data and requires data
preprocessing. Results of researches show that WT combination with ANN is able to provide bet-
ter forecasting results compared to traditional ANN and ARIMA models. In [37] the hybrid model
called the wavelet RBF neural network (WRBFNN) is proposed by comparing its performance
with wavelet feed forward neural network (WFFNN) model which is just differently named WT
combination with MLPNN. Four time series are considered with different characteristics: Chaotic
McGlass data (nonlinear and stationary in mean and variance), Electricity Usage (nonstationary on
variance), Traffic Fatalities (nonstationary on mean and variance with linear trend) and Canadian
Lynx data (nonstationary on mean and variance with nonlinear trend). Comparative results show
that for prediction of nonlinear and stationary data both methods can be used but WRBFNN is su-
perior to WFFNN. However, according to the authors, when applied models to nonstationary data
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forecasting WRBFNN will achieve higher generalization performance only on time series with a
simple pattern and on those with a complex pattern WFFNN is a better choice.

After a successful introduction of NN, V. Vapnik and his co-workers designed the Support
Vector Machines (SVM) technique (1995) which, similarly to NN, initially was useful in solving
pattern classification problems, such as text or images classification, face identification or handwrit-
ing recognition [3]. Later it was noticed that SVM could perform well in time series forecasting due
to its remarkable generalization performance, the sparse representation of solution and the ability
not to fall into local minima, which is one of the major problems of NN [10]. SVM algorithm
applied to regression problems is called Support Vector Regression (SVR). The main idea in SVR
is to map data points of the input space into higher dimensional feature space using a nonlinear
mapping and to estimate the regression by using a set of linear functions that are defined in this
space. [3, 10] This property helps for the quality and complexity of the solution to be indepen-
dently controlled, irrespective of the dimension of the input space [3]. After data mapping, SVR
carries out the regression estimation by minimizing risk, which is measured by the new type of
loss function called ε-insensitive loss function proposed by Vapnik and tries to find a decision rule
with good generalization capacity by using the structural risk minimization (SRM) principle [3,
10]. This unique principle usually helps SVR to achieve higher generalization performance than
traditional NN could reach by implementing the empirical risk minimization (ERM) [10]. One of
the main advantages of SVR is that linear functions could be used for training in the high dimen-
sional feature space without difficulties just by solving a linearly constrained quadratic optimization
problem (QPP) [3]. This feature makes the solution “always unique and globally optimal, unlike
other networks’ training which requires nonlinear optimization with the danger of getting stuck
into local minima” [10]. It should be emphasized that applying SVR to forecasting one of the most
important tasks is to choose kernel function which is used for dealing with feature spaces of ar-
bitrary dimensionality without the explicit computation of the nonlinear mapping [10]. Functions
that satisfy Mercer’s condition could be kernel functions and probably most widely used are linear,
polynomial, radial basis function (RBF), Gaussian and neural network (NN) kernels [3, 10]. Like
using NN for time series forecasting the essential task is to select optimal values for parameters
the same problem remains important by implementing SVR. The good performance of SVR in
time series forecasting usually depends on the proper selection of values of kernel parameters, the
regularization constant and the tube size [10]. There is no one best method for choosing optimal
parameters but some techniques such as cross-validation or Bayesian inference could be used to
solve this problem. Authors in [10] use SVR for financial time series forecasting and choose the
Gaussian function as the kernel function due to its good performance under general smoothness
assumptions, the ability to deal with strongly nonlinear data and better results obtained compared
to those that have been received using a polynomial kernel. The optimal values of parameters in this
research are those that produce the best result in the validation set. Authors in this paper show that
SVR could be perfectly applied in inherently noisy and nonstationary financial time series forecast-
ing, outperform multilayer back-propagation neural network, here shortly called as BP, and perform
similar to regularized RBFN due to the ability of SVR and regularized RBFN to minimize the reg-
ularized risk function. In this research also an interesting suggestion to use adaptive parameters is
proposed. Authors remark that “in nonstationary financial time series, it is usually believed that
the information provided by the recent training data points is more important than that provided by
the distant training data points” and as the solution, they suggest to use ascending regularization
constant and descending tube which helps to place more weights on the recent training data points
and less on the distant points. The results of the research show that adaptive parameters proposed
by incorporating the nonstationarity of financial time series could help to achieve higher general-
ization performance in forecasting. Another comparative research was proposed by R. Achanta in
[1] for electric load forecasting using SVR with polynomial kernel function and MLP trained with
BP algorithm. Obtained results as in [10] show SVR superiority against MLP with BP and it is
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concluded that SVR with proper selection of parameters could be a good replacement for some of
the NN based models for electric load forecasting. However, despite all advantages, SVM based
forecasting method requires an enormous amount of computation and a very long training time
when the data set, used for training, is large [3].

During the last few decades, many different SVM forecasting algorithms have been proposed.
Trying to simplify computations and ensure higher precision in forecasting J. A. K. Suykens and
J. Vandewalle suggested a least squares version of SVM (LS-SVM) that transforms the traditional,
long and computationally difficult QPP to a simultaneous linear system problem [3, 19, 35]. In LS-
SVM the least squares loss function is used to construct the optimization problem based on equality
constraints instead of the ε-insensitive loss function and inequality constraints used in SVM [35,
66]. LS-SVM used for regression is called LS-SVR [35]. According to the comparison of SVR
and LS-SVR made by H. Wang and D. Hu (2005) [66], using LS-SVR for function estimation
the sparseness is lost, which is an attractive property of SVR but to get a sparse solution they
introduce a simple pruning method. Their research shows that the generalization performance of
the LS-SVM with the SVM for regression is comparable but LS-SVR is preferred for large scale
regression problems due to its high efficiency solution procedure. An extensive comparative study
of the LS-SVR, ARIMA, ANN (MLP using the Levenberg-Marquardt (LM) algorithm) and SVR
performance in the streamflow, which is known as very complex and difficult to model time series,
forecasting was proposed in [58]. Results of this research show that the performance of the ARIMA
is worse in some cases than other AI methods, due to its failure to capture the pattern of extreme
values while other methods are able to deal with the nonlinear and highly complex behaviour of
the streamflow process. The overall comparison shows that LS-SVR outperforms or obtains similar
good predictions as other models for the streamflow forecasting. In [46] LS-SVR is successfully
applied for meteorological time series (solar irradiance, wind speed and direction, air temperature,
relative humidity, and pressure) a single-step (1 h ahead) prediction and a comparison between LS-
SVR, MLPN, RBFN and RNN is proposed for predicting the future values based on the past values
of air temperature and pressure. Comparative results show that LS-SVR performs better than other
ANN architectures, from which the best predictions were obtained by using RNN and the worst
prediction performance achieved by MLPN.

Specially, for dealing with nonstationarity of time series, L. Cao and Q. Gu in [9] proposed a
modified version of SVM called Dynamic SVM (DSVM). DSVM used for regression also could
be renamed into DSVR. This model suggests using an exponentially increasing regularization con-
stant and an exponentially decreasing tube size to deal with structural changes in the data instead of
fixed ones used in standard SVR. Actually, this proposed idea is similar to the selection of adaptive
parameters suggested in [10]. Both researches in [10] and [9] show that the dynamic selection of pa-
rameters could be very useful in forecasting nonstationary time series. DSVR method is developed
by incorporating the idea of discounted least squares (DLS) into SVR, which propose weighting
recent training data points more heavily than distant observations used for training. The experiment
is made to compare the performance of DSVR and SVR using different simulated and real data sets.
The experimental results show that DSVR could be more advantageous and robust method in fore-
casting nonstationary time series than the SVR. Also, DSVR uses fewer support vectors compared
to SVR, resulting in a sparser representation of the solution. However, authors note that exponential
weight functions are effective in analyzed cases but the application of other weight functions needs
to be more investigated as well as other procedures used for the selection of optimal control rates
to control the ascending regularization constant and descending tube.

As the combinations of various models have proven to be very effective in time series fore-
casting, many hybrid models have been proposed incorporating the models based on SVM. Due to
the fact that ARIMA well performs on linear time series predicting while SVM, like ANN, focus
much on the nonlinear fitting and cannot accurately forecast the linear basic part of time series, the
hybrid model of ARIMA and SVM (ARIMA-SVM) was proposed in [47] for the short-term load
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forecasting. Authors note that the power load series usually is cyclical, slowly increasing and very
sensitive to external factors such as the weather or days of the week. According to the results of a
simulation, using ARIMA for the load forecasting, external factors cannot be taken into account and
the deviation series obtained is cyclical though the random fluctuation is constant in a short period
of time. SVM is used here to extract the sensitive component from the deviation and to improve
the prediction accuracy. By adding the forecasting load deviation to the forecasting load higher
precision is achieved than using ARIMA or SVR separately. T. Zhou, F. Wang and Z. Yang in
[75] showed that SVM could be successfully combined with DWT preprocess. This hybrid model
called WSVM provide the most precise nonstationary groundwater depth series predictions com-
pared to ANN, SVM, and WA-ANN models. This paper reaffirms the efficiency of hybrid models
in nonstationary time series forecasting.

A large number of existing studies in the broader literature have confirmed that machine learn-
ing methods usually achieve a quite high generalization performance in solving nonstationary and
nonlinear time series forecasting problems and usually outperform traditional statistical time se-
ries prediction models. Obviously, each time series under consideration is unique and has specific
properties that need to be taken into account when trying to predict its future values as accurately
as possible. Therefore, a vast amount of papers has been published focusing on specific time series
of interest to the authors and using different machine learning methods for time series forecasting
in an attempt to find the best one for a particular case. Even when analyzing time series from the
same domain, some studies show that some method is best suited for predicting such time series,
while another research finds another best-suited model that outperforms the latter. Different find-
ings of various researches are determined not only by different data used for forecasting but also
by a different choice of data preprocessing method (if used), parameter selection technique, model
architecture construction, the inclusion of additional improvements or other reasons. However, the
large number of published researches allows noting the common main characteristics of different
machine learning methods used for time series forecasting. NN and SVM based models are, prob-
ably, the most widely used, analyzed, and developed compared to other machine learning methods.
G. Zhang, B. E. Patuwo and M. Y. Hu in [72] presented a state of the art discussion about the recent
works in ANN for time series forecasting. A huge survey, based on publications and information
found in other informative sources, of SVM applications for time series prediction is presented in
[57]. All information in these two broad reviews and all literature sources used in this literature
review are summarized by presenting the main general advantages and disadvantages of the NN
and SVM based models in the Tables 1 and 2.

The literature review shows that there is an extended amount of works concerned on stationary
and nonstationary time series forecasting while the research in the nearly nonstationary time series
forecasting remains quite limited. Before describing the nearly nonstationary time series, it could be
noted that one of the most commonly used ways for the testing of the stationarity in real world time
series is to check the presence or absence of unit roots in an appropriate, for example autoregressive,
representation of a given time series. It is well known that when the autoregressive characteristic
equation of the process/time series has no unit roots, the process is assumed as stationary and
therefore exhibits mean reversion in that it moves towards the long-term mean. Alternatively, if
the process has a unit root, its trajectory is very fluctuant/unstable without the clear tendency of
tending to any particular point that indicates the absence of having a mean reverting property. Such
processes are characterized as nonstationary and, it is said that they follow a random walk. [38]
Therefore, based on the unit root presence it seems that the processes could be divided into two
groups: stationary and nonstationary. Even the unit root tests, such as Dickey-Fuller (DF), which
is one of the best known and most widely used, Augmented Dickey-Fuller (ADF), Phillips-Perron
(PP), Ng and Perron (NGP) or others, are used to confirm the null hypothesis that the process/time
series is nonstationary and if it is denied the alternative hypothesis that the process is stationary is
accepted [24]. However, it was noticed that the stationary processes, which has a root very close
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ADVANTAGES DISADVANTAGES
ANN

1. Data-driven self-adaptive methods well
suited for problems whose solutions
require knowledge that is difficult to specify
but for which there are enough
data or observations.
2. Nonlinear approaches which are capable
of performing nonlinear modeling
without a prior knowledge about
the relationships between input and
output variables.
3. Can generalize and often correctly infer
the unseen part of data even if the
sample data contain noisy information.
4. Universal functional approximators
which are able to approximate any
continuous function to any desired
accuracy.
5. Not dependent on linear, stationary
processes.

1.Accuracy of predictions strongly depends
on the architecture of network selection.
2. Have a large number of free parameters
to be estimated.
3. Are prone to have overfitting and
overtraining problems.
4. There are no structured methods to find
the optimal architecture of ANN,
therefore, time consuming experiments
and trial-and-error procedures are often
used.
5. Black-box methods because there is no
explicit form to explain and analyze the
relationship between inputs and outputs.
6. For static linear processes with little
disturbance, they may not be better than
linear statistical methods.
7. Not guaranteed to converge to optimal
solution.
8. Could not handle both linear and
nonlinear patterns equally well.
9. Usually require more data and computer
time for training.

RBFN (compared to ANN)
1. Have simpler fixed three-layer
architecture and often are easier to train.
2. Are locally tuned.

1. The choice of basis function is problem
dependent.
2. Accuracy of predictions strongly
depends on the number of RBF units
and parameters of RBF units.

RNN (compared to ANN)
1. Can learn the temporal dependence from
the data and use historical information
for making further predictions that
usually helps to achieve higher accuracy
in forecasting.

1. The problem of vanishing gradient or
exploding gradient is very common
(could be solved using LSTM).
2. Are hard to train.
3. Are not able to keep track of long-term
dependencies (could be solved using
LSTM).

Table 1. The advantages and disadvantages of neural network models.
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ADVANTAGES DISADVANTAGES
SVR

1. The quality and complexity of the
solution can be independently
controlled, irrespective of the dimension
of the input space.
2. Based on the SRM principle they are
typically superior compared to ANN in
their ability to generalize.
3. Guaranteed to converge to optimal
solution.
4. Nonlinear aspect of the prediction
problem.
5. Not dependent on linear, stationary
processes.
6. Has a small number of free parameters.
7. Not model dependent.
8. The sparse representation of solution.

1. Accuracy of predictions strongly
depends on the parameters and kernel
function selection.
2. There is no optimal method for the
adaptation of free parameters as well as
no formal proof of optimality for the
selection of kernel function.
3. Cannot accurately forecast the linear
basic part of time series.
4. Usually require long training time and
enormous amount of computation when
the data set, used for training, is large.

LS-SVR (compared to SVR)
1. The transformation of QPP into a
simultaneous linear system problem
simplifies the computations.
2. Are preferred for large scale regression
problems due to a high efficiency
solution procedure.

1. The sparseness of the solution is lost.

DSVR (compared to SVR)
1. Can deal with structural changes in data
due to the different weighting of data
points.
2. Are more robust in nonstationary time
series forecasting.
3. Could result in a sparser representation
of the solution.

1. The selection of the weight function and
the procedure used to find optimal
control rates needs to be more
investigated.

Table 2. The advantages and disadvantages of models based on SVR.
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to unity, usually act more likely to nonstationary processes and this led to the introduction of an
additional group of processes called as nearly nonstationary. Such processes are still of great interest
and require further investigation, especially in the problems of forecasting.

It could be found in the related literature that the unit root tests usually have low power against
stable processes with roots near unity [17, 24, 49]. In other words, they usually approve the null
hypothesis when the nearly nonstationary processes are tested, that in forecasting problems suggest,
for example, to apply difference for making the process stationary, which theoretically is already
assumed as stationary. When the difference is applied for the nearly nonstationary process, it is
noninvertible and such process is called overdifferenced [56]. These findings about the inability of
unit root tests to deny the null hypothesis which, based on their main idea, should be denied, have
caused concern in econometrics and it was started to consider how it could affect the forecasting
of processes. It is known that before applying models for the time series forecasting it is very
important to check the stationarity of the time series which helps to choose an appropriate model
and improve our predictions, therefore, for example, overdifferencing of the process can cause high
inefficiency in forecasting [17]. The idea of using unit root tests in forecasting problems was to
avoid overdifferencing and clearly separate stationary and nonstationary processes, therefore their
inability to distinguish in a finite sample the null hypothesis from the alternative one, when the unit
root of the process is close to unity, attracted attention of researchers.

Authors of [17] conducted a Monte Carlo study to verify the usefulness of unit root tests for
selecting forecasting models and explored the extent to which pretesting for unit roots improves the
accuracy of predictions in a canonical first order autoregressive (AR(1)) model with the trend, for
a variety of sample sizes, forecast horizons, and degrees of persistence, corresponding to differ-
ent autoregressive parameter values. They compared the performance of three forecasting models:
AR(1) in levels with the linear deterministic trend by naming it as L, random walk with drift (D)
and the model suggested by DF unit root pretest using 5% finite-sample critical values (P) (if the
null hypothesis is approved then the model D is used, alternatively - the model L is applied). The
performance of models was evaluated by its unconditional prediction mean squared error (PMSE)
(see more in [12]) in 20000 Monte Carlo trials and for each value of autoregressive parameter/de-
gree of persistence (for the simplicity it could be defined as β), equal to 1, 0.99, 0.97, 0.9 or 0.5,
the ratios PMSE(D)/PMSE(L), PMSE(D)/PMSE(P) and PMSE(P)/PMSE(L) were calculated for
all selected combinations of sample sizes (minimum value is 25, maximum - 1000) and forecast
horizons (values ranging from 1 to 100). Based on the PMSE ratios it was confirmed that for the
clearly nonstationary processes (β = 1) the DF pretest is unlikely to reject the model in differences
and D model, which is actually the true model of such processes, is uniformly more accurate than
the L model. Accordingly, for the obviously stationary processes (β = 0.5) P and L almost always
tend to coincide and these models uniformly dominate the D model by showing that falsely adopt-
ing the model in differences can cause a very high loss in forecasting accuracy. These results are
not unexpected and more interesting are those obtained by forecasting the processes with the value
of β closer to 1. It was found that for β = 0.99 the pretest is unlikely to reject the null hypothesis
and assumes theses processes as nonstationary, while for β equal to 0.97 or 0.9 the DF test lacks
power and rarely rejects the null hypothesis only for small or moderate sample size and by growing
of sample size the unit root null is rejected more often. The results of the research show that nei-
ther D nor L dominates always when the processes with β equals to 0.99, 0.97 or 0.9 are predicted
and forecast accuracy depends on β, sample size and forecast horizon. It is interesting that for all
of these three β values predictions from L are more accurate than those from D when the sample
size is bigger while by taking the smaller samples the loss in forecast accuracy from estimates of
L is much greater than the loss from inappropriately using the model in difference, especially for
long forecast horizons. According to the authors, the poor relative performance of the L model
for small sample size and large forecast horizons is due to the magnified distortions resulting from
the DF small-sample bias, which plague the L model, as forecast horizon grows. Also, using L for
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processes with large unit roots in small samples, especially at long forecast horizons, there is an
occasional possibility of L to draw some explosive forecasts and these predictions with extremely
large errors dominate the PMSE which becomes much bigger compared to the one that is obtained
using D, despite the fact that the PMSE of D worsens for longer forecast horizons. Besides, authors
apply the simulation with a parameterization which is likely to be representative for some real world
macroeconomic data and the results obtained approve the fact that for the processes with the unit
root very close to unity, such as 0.99 or sometimes even 0.97, unit root tests are tend to approve
the null hypothesis and it is not recommended to use always the L model, intended tor the station-
ary time series forecasting. By summing up all results, authors conclude that ”the best forecasting
model is not necessarily the true model” and the inability of unit root tests to select the true model
for the processes having a root near unity could be very helpful in the forecasting problems. This
quite wide review of the research in [17] shows that the forecasting of the nearly nonstationary time
series is a quite difficult problem and the accuracy of forecasting of such processes could be very
dependent on the factors such as sample size and forecast horizon, however, the similarities between
nearly nonstationary and nonstationary processes definitely exist in forecasting problems. In the re-
search in [8], similarly as in this work, one-step ahead forecasting for the samples (of length 100)
generated from the AR(1) process without a trend component (differently from the article [17])
is performed using an autoregressive model in levels and an autoregressive model in differences.
The results of this research show that for the generated processes with 1 > β > 0.9 the model in
differences is superior and based on the Said-Dickey and Philips-Perron unit root tests it could be
also confirmed that for such processes the null hypothesis tends to be approved. Authors of [49]
analyze the predictions of the nearly nonstationary AR(1) processes with additive outliers by using
the standard multistep-ahead predictor for a Gaussian AR(1) process and two unit root tests (DF
and SSL, proposed by Shin et al. (1996)). The results of this research also confirm that the unit root
tests can improve the accuracy of forecasts when β is very close to 1 (but smaller than 1) even if
there are outliers in the process, at least for the three-step ahead predictions and quite small samples.
J. H. Stock in [64] analyzed the forecasting of the univariate AR(1) without trend and with a root
local to unity by using ordinary least squares (OLS) levels and random walk models with 2 unit root
tests (DF and DF-GLS proposed by Elliot et al. (1996)). Final conclusions in [64] are, in principle,
similar to those in [17] but it could be noted that Stock additionally applied models for the AR(1)
simulations with β bigger than 1 (1.01 and 1.02). Such processes with |β| > 1 are explosive and
the variance of them grows exponentially with a time [16], also they are rarely met in practice and
usually not analyzed. Nevertheless, it could be noticed in the research that unit root tests approve
the null hypothesis for such processes but the forecast errors obtained are larger, especially when
β = 1.02, compared to those which are given for the processes with, for example, 1 > β > 0.97.
Also, it is interesting that when β = 1.01 the lower forecast error is given by using random walk
model, while when β = 1.02 OLS levels model performs better, at least when the sample size is
quite small (100 observations) and forecast horizon is 2, 10, 20 or 50.

Based on all the literature related to the nearly nonstationary time series forecasting which have
been discussed here, it could be noticed that there obviously exist some similarities between non-
stationary and nearly nonstationary time series. This conclusion could be made due to the fact that
for the nearly nonstationary time series unit root tests are often tend to approve the null hypothesis
that proposes for us to use forecasting models, intended for the nonstationary time series forecast-
ing, and thus usually helps to reach a better forecasting accuracy. The literature review shows that
ML algorithms could be very useful for the nonstationary time series forecasting and sometimes
even outperform traditional statistical forecasting models, however all attempts to find the relevant
studies considering specifically nearly nonstationary time series forecasting using ML models were
unsuccessful. If we assume that models which are suitable for the nonstationary time series fore-
casting are appropriate for the nearly nonstationary time series forecasting then it could be said that
we definitely could use ML models to make the predictions of the nearly nonstationary time series.
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However, some questions remain unanswered, such as if the ML models could outperform tradi-
tional statistical models in the nearly nonstationary time series forecasting, if the same architecture
of the ML model which is selected as optimal for the nonstationary time series is also optimal for
the nearly nonstationary time series or which ML model helps to obtain highest forecast accuracy
for the nearly nonstationary time series. These questions are an area of interest in this work.
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2 Preliminarities
This section introduces the main definitions and concepts of the first order autoregressive pro-

cesses, nonstationary and nearly nonstationary time series, forecasting models, which have been
chosen in the experiment of this work and forecasting performance metrics.

2.1 First order autoregressive process (AR(1))
Autoregressive processes (AR) are very important in applications of statistics and time series

forecasting. The idea of the autoregressive models is to explain the present value of the time series
xk by a function of p past values, xk−1, xk−2, . . . , xk−p. The value of p determines the number of
time periods into the past, used for making a prediction of the current value of the time series, and
it is also called the order of the autoregressive processes AR(p). [68] In this work the main focus is
given on the first order autoregressive process AR(1) which could be very useful in analyzing the
time series forecasting models due to the fact that its structure is simple and interpretable in a wide
range of contexts. The AR(1) is defined by the equation:

xk = βxk−1 + εk, k ∈ 1, 2, . . ., x0 = 0, (1)

where (εk) are random disturbances (innovations or error terms) at time k which usually are inde-
pendent and identically distributed (i.i.d.) as N (0, σ2) and β is an unknown parameter to be esti-
mated [20, 45]. Parameter β is very important in the autoregression, for example, when |β| < 1,
the AR(1) process, defined in the Eq. 1, is said to be stable and over time it becomes less affected
on the changes in the past, while in the case |β| > 1, the process is explosive and it means that the
effect of the changes in the past increases with time [45]. As it was noted in the literature review
in the Section 1, the explosive processes are quite rarely applied for the practical purposes because
usually time series which are less affected on the past are analyzed, therefore typically values of
the AR(1) coefficient β are assumed to be less than one (or equal to one). Also, it is well known
from the literature review that when |β| < 1 in the Eq. (1), the AR(1) process is stationary while
when |β| = 1, the process is nonstationary. Usually, nonstationary time series with β = 1 is called
random walk [16].

In practice, by creating an autoregressive representation of a real world time series under con-
sideration, it is required to estimate the unknown parameter β. For this purpose such methods as
Yule-Walker equations (method of moments) or maximum likelihood estimate (MLE) are used but
customarily, the least squares estimator (LSE) is applied [20, 45]:

β̂ =

∑n
k=1 xk−1xk∑n
k=1 x

2
k−1

.

Based on the related literature (see, for example, [20, 45]) some important properties of the stan-
dartized LSE of β could be shortly presented. One of them is that for |β| < 1 the standartized LSE
of β is asymptotically normal if εt are i.i.d.:(

n∑
k=1

x2
k−1

)1/2

(β̂ − β)
R−−−→

n→∞
N (0, 1), (2)

where R−−−→
n→∞

is a notation of the convergence in distribution R. However, if |β| = 1 the limiting
law of the standardized LSE of β is non-normal and it has been showed that:(

n∑
k=1

x2
k−1

)1/2

(β̂ − 1)
R−−−→

n→∞

1
2
(W 2(1)− 1)(∫ 1

0
W 2(t)dt

)1/2 , (3)
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where W denotes a standard Wiener process (W (t), t ∈ [0, 1]).
Also, in this work a great attention is paid on the nearly nonstationary time series and, based on

the literature review, the AR(1) process is assumed to be nearly nonstationary when the parameter
β is close to one or, in other words, the process has a root near unity. The nearly nonstationary
AR(1) is generated as a triangular array [45]:

xn,k = βnxn,k−1 + εk, k = 0, 1, . . . , n, n = 1, 2, . . . , (4)

where βn → 1, as n → ∞. Most commonly, βn in the Eq. (4) is replaced by using the parame-
terization βn = eγ/n, where γ is a some fixed real number, or βn = 1 − γ/n with γ > 0 [20, 45].
Therefore, based, for example, on the first parameterization and AR(1) model, defined in the Eq.
(4), it could be noticed that:

• when γ = 0, then βn = 1 and process is nonstationary;

• when γ < 0 and n is fixed, then 0 < βn < 1 and process is stationary;

• when γ > 0 and n is fixed, then βn > 1 and process is explosive (blows up in finite sample);

• when γ < 0 and γ/n is close to 0, then βn is close to 1 and process is nearly nonstationary.

Some other parameterizations of βn could be found in [45].
The literature review in the Section 1 shows that by using unit root tests for the AR(1) processes

with a root near unity, despite the fact that theoretically they are assumed to be stationary, the null
hypothesis, that the process is nonstationary, is often approved. Therefore, it was started to doubt
if the approximation (2) is satisfactory for the nearly nonstationary processes. G. B. A. Evans and
N. E. Savin (1981, 1984) in [21, 22] showed that the statistical properties of the LSE of β and
associated unit root tests in a stationary AR(1), having a root near unity, are very similar to those
which has a random walk. Based on that, Evans and Savin asserted that for the nearly nonstationary
processes the approximation (3) can be used. However, later researches showed that neither (2) nor
(3) are appropriate to approximate the distribution of standardized LSE of β for the AR(1) processes
with a root near unity. [45] Many investigations in the literature have been proposed for the limit
distribution of the standardized LSE of the coefficient in the nearly nonstationary AR(1) and some
of them are summarized in [45]. For example, P. C. B. Phillips (1987) in [51] showed that:

n(β̂n − βn)
R−−−→

n→∞

∫ 1

0
Uγ(t)dW (t) + 1

2

(
1− σ

σ′

)∫ 1

0
U2
γ (t)dt

, (5)

where γ < 0, σ′ = limn→∞E (n−1(
∑n

k=1 εk)
2) and Uγ is an Ornstein-Uhlenbeck process

(Uγ(t), t ∈ [0, 1]). The approximation (5) is used when innovations εk are strong mixing while
when they are i.i.d. we have [45, 51]:

n(β̂n − βn)
R−−−→

n→∞

∫ 1

0
Uγ(t)dW (t)∫ 1

0
U2
γ (t)dt

.

2.2 Autoregressive Integrated Moving Average (ARIMA) model
Autoregressive Integrated Moving Average (ARIMA) model is one of the most commonly used

models for the time series forecasting [48]. In the acronym ARIMA the combinations of letters
”AR”, ”I”, ”MA” stand for autoregressive, integrated and moving average accordingly. In other
words, ARIMA uses the autoregressive (AR(p)) and moving average (MA(q)) models with d-th
order differencing of time series. Assume that xt denotes the observation of time series at time t,
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εt is an i.i.d. random error term at time t with zero mean and time is a discrete variable. The AR(p)
model is a linear combination of p past observations of time series and could be written as [40, 48]:

xt =

p∑
i=1

αixt−i + εt, (6)

where αi are unknown parameters.
The MA(q) model is a linear combination of q past forecast errors (also called random shocks

or innovations) and mathematical expression of this model is [40, 48]:

xt =

q∑
i=1

βiεt−i + εt, (7)

where βi are unknown parameters.
As it was mentioned in the literature review in the Section 1, differencing is a commonly used

method which helps to make the series stationary by taking d differences of nonstationary time
series. For example, the first order differences of xt are computed by ∇xt = xt − xt−1, then the
second order differences are given by ∇2xt = ∇xt−∇xt−1, therefore the d-th order differences of
xt are computed by [40]:

∇dxt = ∇d−1xt −∇d−1xt−1 (8)

By making a combination of the expressions in Eq. (6), (7) and (8) the ARIMA(p,d,q) model
could be written as [40]:

∇dxt =

p∑
i=1

αi∇dxt−i +

q∑
i=1

βiεt−i + εt, α ∈ Rp, β ∈ Rq.

In addition, it could be noted that when the stationary time series is forecasting and the differencing
is not used, then ARIMA(p,0,q) and ARMA(p,q) models are equivalent (just a combination of
AR(p) and MA(q)) and could be written as:

xt =

p∑
i=1

αixt−i +

q∑
i=1

βiεt−i + εt.

Therefore, it could be noticed that,for example, for the stationary AR(1) time series (defined in the
Eq. (1)) the ARIMA(1,0,0) is the equivalent/true model and the prediction of the observation at the
moment t is given by:

x̂t = α1xt−1 + εt.

Accordingly, for the nonstationary AR(1) time series or random walk the ARIMA(0,1,0) is the
equivalent/true model, thus:

x̂t = xt−1 + εt.

2.3 Artificial Neural Networks (ANNs)
Artificial Neural Networks (ANNs) are one of the main tools used in the machine learning.

Based on the literature review, the simplest and usually used ANNs are feedforward networks in
which the connections between nodes do not form a cycle and the information is only processed
in one direction, from the input to the output. One of the most important feedforward ANNs are
Multilayer perceptrons (MLPs).
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2.3.1 Multilayer Perceptron (MLP)

Multilayer perceptrons (MLPs) are, probably, the most widely used ANNs in the forecasting
problems. MLP networks are constructed of multiple layers of nodes/neurons and each neuron in
one layer is directly connected to the neurons of the subsequent layer. MLP has to be composed
of a minimum of three layers and consists of input layer, one or more hidden layers and output
layer. In addition, bias neurons, connected to each unit in the hidden and output layers, could be
included. The bias neuron has a value of positive one and is analogous to the intercept term in a
regression equation. Figure 1 illustrates the diagrammatically depiction of the three-layer MLP for
the one-step forecasting.

xt−1

xt−2

...

xt−n

wij

Bias +1

bhj

σ

...

σ

vj

Bias +1
bo

x̂t

Input Layer Hidden Layer Output Layer

Figure 1. The architecture of the three-layer MLP (created by the author).

Input layer consists of n nodes representing the input features xt−1, xt−2, . . . , xt−n used to find
the value of prediction of the time series value x at the moment t (x̂t) which is represented by a single
output node in the output layer. Hidden layer contains m nodes and each j-th (j = 1, 2, . . . ,m)
hidden neuron is connected with each i-th (i = 1, 2, . . . , n) input node by the weighted connection
with the coefficient wij for weighting. Every hidden node transforms the input values with a linear
summation of weighted inputs by adding bias terms bhj , followed by a nonlinear activation function
σ. There are many different functions that can be used as the nonlinear activation function, such
as rectified linear unit (ReLU) or hyperbolic tangent (tanh) (see Table 3), but usually the logistic
sigmoid function is applied [3]:

σ(u) =
1

1 + e−u
.

The output values of activation functions are multiplied by weights vj then summed by adding the
bias term bo and the obtained value is equal to x̂t. The computation of the output value could be
written using the following mathematical expression [3, 5]:

x̂t =
m∑
j=1

vjσ

(
n∑

i=1

wijxt−i + bhj

)
+ bo, ∀t.

Before using MLP for the time series forecasting the weights and biases must be initialized.
Usually, they are set to random numbers. The main idea of the training neural network is to find
optimal weights and biases that minimize prediction error and for this purpose MLP commonly
uses the backpropagation algorithm. [3, 30, 67]
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2.3.2 Backpropagation algorithm (BP)

Backpropagation algorithm is, probably, the most common training procedure for the MLP
network. It employs an iterative optimization method, known as gradient descent, to compute and
update the connection weights and biases in an attempt to minimize the error between the output
of an MLP network and the desired output. After each forward pass through the network, back-
propagation algorithm is used to perform a backward pass by calculating the gradient of the error
function with respect to the networks parameters (weights and biases) [5].

For the simpler notation, each hidden node and a single output node of the three-layer MLP,
illustrated in Figure 1, are denoted as hj and o respectively. The input and the output of the j-th
hidden node could be denoted as zhj and ahj respectively:

zhj =
n∑

i=1

wijxt−i + bhj, (9)

ahj = σ(zhj).

The output node also has its input and output that could be denoted as zo and ao respectively:

zo =
m∑
j=1

vjahj + bo, (10)

ao = φ(zo). (11)

Here φ is the activation function applied to the output node. Usually, the linear/identity function
is used in the output layer [67], thus, the value of this function is equal to the input value of the
function (see Table 3) and also it could be noticed that the output of the node o is equal to the
predicted value of xt:

ao = zo = x̂t.

To evaluate how close x̂t is to the expected output xt the error/loss function E is used. One of the
most common choices is the summed squared error (SSE) function [5] and based on the considered
one-step forecasting problem it could be written as follows:

E =
1

2
(xt − x̂t)

2 =
1

2
(xt − ao)

2. (12)

The 1/2 is added to ease the calculation of derivative of the loss function.
The relation between the whichever input node, j-th hidden node and the output node of the

MLP network could be diagrammatically illustrated as below by including denoted inputs and out-
puts of the hidden hj and output o nodes: The diagram above (Figure 2) shows the forward pass

xt−i

wij

bhj

1

zhj hj ahj

vj

bo

1

zo o ao E

Figure 2. Diagram of the single relation between nodes in different MLP layers (created by the
author).

through the network and the main idea of backpropagation is to go backwards by calculating the
21



partial derivatives of the loss function with respect to the each weight and bias of the network. All
gradients are computed using the chain rule [5] due to the fact that the loss function does not di-
rectly depend on network parameters. By going backwards, first of all, the derivatives of the loss
function with respect to the weights between hidden and output layers are calculated [5, 7]:

∂E

∂vj
=

∂E

∂ao

∂ao
∂vj

=
∂E

∂ao

∂ao
∂zo

∂zo
∂vj

. (13)

Based on Eq. (12):

∂E

∂ao
=

∂

∂ao

(
1

2
(xt − ao)

2

)
= (xt − ao)(−1) = −(xt − ao) = −(xt − x̂t). (14)

The second of the three derivatives in the last part of the Eq. (13) is equal to the 1 due to the fact
that the ao is the linear/identity function giving the constant value. By taking the partial derivative
of zo with respect to vj and using Eq. (10) gives:

∂zo
∂vj

=
∂

∂vj

(
m∑
j=1

vjahj + bo

)
= ahj, (15)

since only one of the terms in the sum is related to the specific weight vj .
By substituting Eq. (14) and (15) into Eq. (13) we have the derivative of E with respect to vj

as:
∂E

∂vj
= −(xt − x̂t)ahj. (16)

Assume that −(xt − x̂t) = δo and the above relation in Eq. (16) can be rewritten as:

∂E

∂vj
= δoahj. (17)

The negative gradient of the loss function defined in Eq. (17) multiplied by the constant called
the learning rate or step size (η), which determines the gradient’s influence, shows the level of
adjustment (∆vj) of the weight vj and adjusted weight could be defined as v∗j [5]:

v∗j = vj +∆vj = vj − η
∂E

∂vj
= vj − ηδoahj.

In principle, the partial derivatives of the loss function with respect to the weights between
input and hidden layers are calculated similarly [5, 7]:

∂E

∂wij

=
∂E

∂ahj

∂ahj
∂wij

=
∂E

∂ahj

∂ahj
∂zhj

∂zhj
∂wij

. (18)

Taking all dependencies into account and using chain rule the partial derivative of E with respect
to ahj gives:

∂E

∂ahj
=

∂E

∂zo

∂zo
∂ahj

=
∂E

∂ao

∂ao
∂zo

∂zo
∂ahj

. (19)

From Eq. (13) and (17):
∂E

∂ao

∂ao
∂zo

= δo (20)

The partial derivative of zo with respect to ahj is calculated based on Eq. (10):

∂zo
∂ahj

=
∂

∂ahj

(
m∑
j=1

vjahj + bo

)
= vj. (21)
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Substituting Eq. (20) and (21) in Eq. (19) we obtain:
∂E

∂ahj
= δovj. (22)

It is known that the logistic sigmoid function is applied in the hidden layer, thus the derivative of
the output of the j-th hidden node ahj with respect to its input zhj is given by (see Table 3):

∂ahj
∂zhj

= ahj(1− ahj). (23)

The last partial derivative in Eq. (18) is calculated based on Eq. (9):

∂zhj
∂wij

=
∂

∂wij

(
n∑

i=1

wijxt−i + bhj

)
= xt−i. (24)

Substituting Eq. (22), (23) and (24) in (18) gives:
∂E

∂wij

= δovj(ahj(1− ahj))xt−i. (25)

The part of the Eq. (25), which is able to change during the training while network parameters
are adjusting, is denoted as δhj and the partial derivative of the loss function with respect to each
weight wij could be rewritten as:

∂E

∂wij

= δhjxt−i.

Each weight wij is adjusted in the same way as vj [5, 7]:

w∗
ij = wij +∆wij = wij − η

∂E

∂wij

= wij − ηδhjxt−i.

Biases correspond to a weight of an additional edge with a fixed input of 1. Therefore, bias
weights, for the simplicity called simply biases, are updated similarly as weights between nodes of
different networks layers, except that there is no input from a previous layer in bias units. To find
the partial derivative of the loss function with respect to bo previous calculations in Eq. (13), (14)
and (10) could be used:

∂E

∂bo
=

∂E

∂ao

∂ao
∂bo

=
∂E

∂ao

∂ao
∂zo

∂zo
∂bo

= δ0
∂

∂bo

(
m∑
j=1

vjahj + bo

)
= δ0(1) = δ0.

Updated value of the bo is given by [7]:

b∗o = bo +∆bo = bo − η
∂E

∂bo
= bo − ηδ0.

The derivative of E with respect to bhj is calculated based on Eq. (22), (23) and (9):

∂E

∂bhj
=

∂E

∂ahj

∂ahj
∂bhj

=
∂E

∂ahj

∂ahj
∂zhj

∂zhj
∂bhj

= δ0vjahj(1− ahj)
∂

∂bhj

(
n∑

i=1

wijxt−i + bhj

)
= δ0vjahj(1− ahj)(1) = δ0vjahj(1− ahj) = δhj.

Adjusted bhj is written as [7]:

b∗hj = bhj +∆bhj = bhj − η
∂E

∂bhj
= bhj − ηδhj.

Using backpropagation as the training algorithm for the MLP network the number of backward
passes is defined by the number of iterations/epochs and all parameters (vj , wij , bo, bhj) are adjusted
after each iteration. The updated weights and biases are used for training the network at each epoch
until the initially predefined last iteration is achieved or the determined minimum error has been
reached.
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2.4 Recurrent Neural Networks (RNNs)
Fully connected Recurrent Neural Networks (RNNs) look quite similar to MLP networks be-

cause they also have input, hidden and output layers and use the forward pass technique to find
predictions for the time series values. However, RNN is able to keep in memory previous compu-
tations in hidden units by saving them into so-called context units and later using this information
of context units as inputs [39], while in MLP network inputs of hidden nodes are not dependent to
previous outputs in separate test cases.

Suppose, that the architecture of RNN consists of three layers with n nodes in the input layer, m
neurons in the hidden layer, a single node in the output layer and two additional bias neurons, like
in MLP, illustrated in Figure 1. RNN with a single output node is used for the one-step forecasting
and firstly we are trying to find the prediction of the time series value x at the moment t (x̂t) based
on the previous observations xt−1, xt−2, . . . , xt−n. After that, RNN could be applied again to find
the following x prediction at the moment t + 1 (x̂t+1) and then the difference between MLP and
RNN could be clearly seen. In this case MLP just takes xt, xt−1, . . . , xt−n−1 as input features, and
the weighted sum of them by adding bias term is the input of each neuron in the hidden layer,
while in RNN hidden nodes depend not only on input features but also rely on the output values
of hidden nodes in the previous calculation when x value at the moment t was predicting. For the
mathematical expressions the same notations could be used as in Section 2.3, by adding additional
index τ = (1, 2, . . . , T ) which defines the time step or the stage of computations. Then the input
and the output of the j-th hidden node at the time step τ could be written as:

zhτj =
n∑

i=1

wijxτ(t−i) +
m∑
p=1

upjah(τ−1)pj + bhj, (26)

ahτj = σ(zhτj). (27)

Here ah(τ−1)pj in the Eq. (26) defines the output of the p-th (p = 1, 2, . . . ,m) node in the hidden
layer at the previous (τ − 1) time step which is connected with each j-th hidden node at the current
(τ ) time step by the weighted connection with the coefficient upj . It could be noticed that at the first
time step (τ = 1) the network does not have any previous computations that need to be memorized
and all m values of ah(τ−1)pj are equal to 0, therefore the inputs of the hidden nodes in RNN and
MLP have the same mathematical expressions. In each hidden node the nonlinear activation func-
tion σ is applied for the input zhτj and then the output of j-th hidden node is equal to the value of
this function, similarly as in MLP. Equations of the most commonly used activation functions and
their derivatives are presented in the Table 3.

Function Equation Derivative
Linear/Identity σ(u) = u σ′(u) = 1
Logistic sigmoid σ(u) = 1

1+e−u σ′(u) = σ(u)(1− σ(u))

Hyperbolic tangent (tanh) σ(u) = tanh(u) = 2
1+e−2u − 1 σ′(u) = 1− σ(u)2

Rectified Linear Unit (ReLU) σ(u) =

{
0 for x 6 0

x for x > 0
σ′(u) =

{
0 for x 6 0

1 for x > 0

Table 3. Most commonly used activation functions [18, 74]

The input and output of the output node at the time step τ in RNN act exact the same as in MLP
(see Eq. (10) and (11)) and are given by:

zoτ =
m∑
j=1

vjahτj + bo,
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aoτ = φ(zoτ ).

From the above equations it could be noticed that all weights and biases are not dependent on
the time step τ and that is because in RNN they are shared throughout the entire network and all
time steps [39]. Therefore, the network does not change between time steps and only the inputs and
outputs differ.

Suppose that we have vectors xτ = (xτ(t−1), xτ(t−2), . . . , xτ(t−n)), zhτ = (zhτ1, zhτ2, . . . , zhτm),
ahτ = (ahτ1, ahτ2, . . . , ahτm), zoτ = (zoτ ), aoτ = (aoτ ), bh = (bh1, bh2, . . . , bhm) and bo = (bo) and
matrices W of weights wij , U of weights upj and V of weights vj where i = (1, 2, . . . , n); j, p =
(1, 2, . . . ,m). Using these notations Eq. (26), (27), (10) and (11) could be rewritten as [13, 39]:

zhτ = Wxτ + Uah(τ−1) + bh,

ahτ = σ(zhτ ),
zoτ = Vahτ + bo,

aoτ = φ(zoτ ).
A single RNN at the time step τ with one input Iτ , one hidden Hτ and one output Oτ layers

is visualized on the left of the Figure 3. The extended RNN model in a time sequential manner is
illustrated on the right of the Figure 3.

Iτ

Hτ

Oτ

τ

xτ

W,bh

zhτ
ahτ

V,bo

zoτ
aoτ

τ = 1 τ = 2 τ = 3 τ = T

I1 I2 I3 IT

W,bh W,bh W,bh W,bh

H1 H2 H3
… HT

U U U U

O1 O2 O3 OT

V,bo V,bo V,bo V,bo

Figure 3. The architecture of the three-layer RNN (on the left) and RNN model unfolded in time
(on the right) (created by the author).

Usually, RNN, similarly to MLP, uses backpropagation as its training algorithm. However, due
to dependency between calculations in a current and previous time steps RNN requires a special
form of backpropagation called Backpropagation Through Time (BPTT) [13].

2.4.1 Backpropagation Through Time algorithm (BPTT)

In principle, BPTT is very similar to standard BP which is widely presented in Section 2.3.2
and here are introduced only main concepts.

Suppose that Eτ is the loss function at the time step τ . For the purpose to introduce the main
idea of BPTT it is better not focus on a specific function but there are many different functions that
could be applied to calculate the loss between the output of algorithm and the given target value,
such as most commonly used root mean squared error (RMSE), mean squared error (MSE), mean
average error (MAE) or others (see more in the Section 2.6). The loss over all T time steps is
obtained as follows:

E =
T∑

τ=1

Eτ .

25



Using BPTT, as well as standard BP, for the training of the network a backward pass through
the different layers of the network are performed by calculating the gradient of the loss function
with respect to networks weights and biases. BPTT consists of a repeated application of the chain
rule. Due to the fact that all networks parameters are shared across the whole time sequence, when
we are calculating the derivative of the total loss with respect to V it is possible to differentiate to
it at each time step and sum all together [13]:

∂E

∂V
=

T∑
τ=1

∂Eτ

∂V
=

T∑
τ=1

∂Eτ

∂aoτ

∂aoτ

∂zoτ
∂zoτ
∂V

. (28)

The derivative of the total loss with respect to bo is given using Eq. (28) just replacing V with bo.
More difficult task is to find the derivative of E with respect to U which is obtained as follows

[13]:
∂E

∂U
=

T∑
τ=1

∂Eτ

∂U
=

T∑
τ=1

∂Eτ

∂aoτ

∂aoτ

∂zoτ
∂zoτ
∂ahτ

∂ahτ

∂U
. (29)

Note that in RNN the sequential dependency between the outputs of the hidden layers at adjacent
time steps exists, thus ahτ partially depends on ah(τ−1) which partially depends on ah(τ−2) and that is
until we reach the last time step. Every hidden layer has a weighted connection with the hidden layer
at the previous time step with the coefficient U for weighting. Consequently, the partial derivative
of ahτ with respect to U could be calculated as [13]:

∂ahτ

∂U
=

∂ahτ

∂U
+

∂ahτ

∂ah(τ−1)

∂ah(τ−1)

∂U
=

∂ahτ

∂U
+

∂ahτ

∂ah(τ−1)

(
∂ah(τ−1)

∂U
+

∂ah(τ−1)

∂ah(τ−2)

∂ah(τ−2)

∂U

)
.

Calculation in the above equation continues using the same logic until we reach the last hidden layer
at the time step τ = 1. It could be shortened and written as:

∂ahτ

∂U
=

∂ahτ

∂ahτ

∂ahτ

∂U
+

∂ahτ

∂ah(τ−1)

∂ah(τ−1)

∂U
+

∂ahτ

∂ah(τ−2)

∂ah(τ−2)

∂U
+ · · ·+ ∂ahτ

∂ah1

∂ah1

∂U
=

τ∑
k=1

∂ahτ

∂ahk

∂ahk

∂U
.

(30)
By substituting Eq. (30) in Eq. (29) we obtain:

∂E

∂U
=

T∑
τ=1

∂Eτ

∂U
=

T∑
τ=1

τ∑
k=1

∂Eτ

∂aoτ

∂aoτ

∂zoτ
∂zoτ
∂ahτ

∂ahτ

∂ahk

∂ahk

∂U
.

The derivative of E with respect to W is calculated analogously as the derivative of E with
respect to U [13]:

∂E

∂W
=

T∑
τ=1

∂Eτ

∂W
=

T∑
τ=1

τ∑
k=1

∂Eτ

∂aoτ

∂aoτ

∂zoτ
∂zoτ
∂ahτ

∂ahτ

∂ahk

∂ahk

∂W
. (31)

The derivative of the total loss with respect to bh is given using Eq. (31) just replacing W with bh.
Further calculation of partial derivatives could be done based on equations presented in Section

2.3.2. After each iteration on which the BPTT is used to go backwards through the network all
weights and biases are updated using the following equation:

A := A− η
∂E

∂A
,

where A defines any of weights (W,U,V) or biases (bh,bo) and η is learning rate.
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2.5 Support Vector Regression (SVR)
The Support Vector Regression (SVR) is an adaptation of the very powerful machine learning

theory based tool, intended for the classification, namely Support Vector Machines (SVM), for
the regression problems [71]. The concept of SVR could be illustrated by formulating a typical
regression problem. Suppose that the set of data T = {(xi, yi), i = 1, . . . , l} ⊂ X×R is considered,
where X denotes the input space, xi ∈ RN is an N -dimensional vector of the model inputs, yi ∈ R
is an actual value of a target, representing the desired output, and l is a total number of data patterns.
One of the main aims in SVR is to determine a regression function f(x) which could obtain values
with a not larger than ε deviation from each of the actually obtained targets yi of the considering
data [62]. The regression problems could be classified as linear and nonlinear, thus, for the linear
case the function f(x) could be written as:

f(x) = 〈w, x〉+ b, with w ∈ X , b ∈ R, (32)

where w is a weight vector, x is the vector of input vectors xi, b is a constant (analogous to the
intercept term in a regression equation) and 〈·, ·〉 denotes the dot product in X [62].

The second basic aim in SVR is to ensure that f(x) is as flat as possible and flatness in the
case of Eq. (32) means a small w [14, 62]. That could be implemented by minimizing the norm of
w (‖w‖) which can be changed to 1

2
‖w‖2 = 1

2
〈w,w〉 without changing the solution and ensuring

mathematical convenience [52]. The regression problem could be written as a convex optimization
problem [62]:

minimize
1

2
‖w‖2

subject to

{
yi − 〈w, xi〉 − b 6 ε

〈w, xi〉+ b− yi 6 ε.

(33)

The implicit assumption in the Eq. (33) exists that the convex optimization problem is feasible
or in other words, that it is possible to find a function f that can approximate all pairs (xi, yi) with ε
precision [62]. However, usually, due to the high variety of data in the time series, this optimization
problem is not feasible or we just may want to allow for some errors, therefore, analogously to the
modified version of SVM: the soft margin SVM, introduced by V. Vapnik and C. Cortes in 1995,
the slack variables ξi, ξ∗i could be included into the optimization problem (33), which help to cope
with otherwise infeasible constraints [52, 62]. In other words, the slack variables ξi and ξ∗i specify
the upper and the lower errors respectively subject to an error tolerance ε. SVR uses the so-called
Vapnik’s ε-insensitive loss function, penalizing the errors between the predicted values and the
desired outputs, which are bigger than the tolerated error ε [4]. Several types of loss functions
exist, such as linear, quadratic or Huber, but the most commonly used is the linear ε-insensitive loss
function which is defined as [4]:

Lε(yi) =

{
0 for |yi − (〈w, xi〉+ b)| 6 ε

|yi − (〈w, xi〉+ b)| − ε otherwise.

The visual representation of the linear SVR and ε-insensitive loss function is illustrated in the
Figure 4. In the graph on the left of the Figure 4 a straight line denotes the regression function f(x)
and the ε, usually called as the non-sensitive loss or the precision parameter [42], represents the
radius (dashed lines) of the so-called tube located around the f(x). The area between the dashed
lines (in the tube) is called as ε-insensitive zone [42], where the loss function, represented in the
graph on the right of the Figure 4, assumes zero value and the prediction errors with magnitudes
equal to or smaller than ε are not penalized, while the pairs (xi, yi) outside the tube have the errors
ξi or ξ∗i which are penalized by the ε-insensitive loss function.
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Figure 4. A schematic representation of the linear SVR (on the left) and ε-insensitive loss function
(on the right) (created by the author).

After introducing the slack variables the convex optimization problem, defined in the Eq. (33),
could be rewritten and has the following formulation:

minimize
1

2
‖w‖2 + C

l∑
i=1

(ξi + ξ∗i )

subject to


yi − 〈w, xi〉 − b 6 ε+ ξi

〈w, xi〉+ b− yi 6 ε+ ξ∗i
ξi, ξ

∗
i > 0, i = 1, . . . , l,

(34)

where the constant C > 0, usually called as the penalty parameter or the regularization constant,
determines the trade-off between the flatness of f (small w) and the degree to which deviations
larger than ε are tolerated [62]. For example, larger value of C gives more weight to minimizing
the error, while the smaller C gives more weight to minimizing the flatness [4].

By introducing Lagrange multipliers or dual variablesαi, α
∗
i , ηi, and η∗i , which are nonnegative

real numbers (αi, α
∗
i , ηi, η

∗
i > 0), the Lagrange function, called Lagrangian, could be constructed

from the objective function and the corresponding constraints (defined in the Eq. (34)) and written
as [4, 62]:

L =
1

2
‖w‖2 + C

l∑
i=1

(ξi + ξ∗i )−
l∑

i=1

(ηiξi + η∗i ξ
∗
i )

−
l∑

i=1

αi(−yi + 〈w, xi〉+ b+ ε+ ξi)

−
l∑

i=1

α∗
i (yi − 〈w, xi〉 − b+ ε+ ξ∗i )

(35)

Lagrangian is optimized based on the Karush–Kuhn–Tucker (KKT) conditions. According to
the KKT conditions, the partial derivatives of the Lagrangian with respect to the variables
b,w, ξi and ξ∗i are taken by setting them equal to zero while the partial derivatives of the Lagrangian
with respect to the Lagrange multipliers return the constraints which are required to be less than or
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equal to zero [4, 62]:
∂L

∂b
=

l∑
i=1

(α∗
i − αi) = 0 (36)

∂L

∂w
= w −

l∑
i=1

(αi − α∗
i )xi = 0 (37)

∂L

∂ξi
= C − αi − ηi = 0 (38)

∂L

∂ξ∗i
= C − α∗

i − η∗i = 0 (39)

∂L

∂αi

= yi − 〈w, xi〉 − b− ε− ξi 6 0

∂L

∂α∗
i

= −yi + 〈w, xi〉+ b− ε− ξ∗i 6 0

∂L

∂ηi
=

l∑
i=1

ξi 6 0

∂L

∂η∗i
=

l∑
i=1

ξ∗i 6 0.

Also, based on the KKT conditions, the products of the Lagrange multipliers and the constraints
are equal to zero [4, 62]:

αi(−yi + 〈w, xi〉+ b+ ε+ ξi) = 0 (40)

α∗
i (yi − 〈w, xi〉 − b+ ε+ ξ∗i ) = 0 (41)

ηiξi = 0 (42)

η∗i ξ
∗
i = 0 (43)

Substituting Eq. (36), (37), (38) and (39) into Eq. (35) gives the dual optimization problem
[62]:

maximize − 1

2

l∑
i,j=1

(αi − α∗
i )(αj − α∗

j )〈xi, xj〉 − ε

l∑
i=1

(αi + α∗
i ) +

l∑
i=1

yi(αi − α∗
i )

subject to
l∑

i=1

(αi − α∗
i ) = 0 and αi, α

∗
i ∈ [0, C]

Based on the Eq. (37), the mathematical expression of the weight vector w could be written as
follows:

w =
l∑

i=1

(αi − α∗
i )xi. (44)

Also parameter b needs to be computed and for this case several remarks could be made. Firstly,
by giving the mathematical expressions of the Lagrange multipliers ηi and η∗i from the Eq. (38) and
(39) and substituting them into the Eq. (42) and (43) gives:

(C − αi)ξi = 0 (45)

(C − α∗
i )ξ

∗
i = 0. (46)
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From the Eq. (45) and (46) it could be noticed that only sample pairs (xi, yi) with αi or α∗
i equals

to C lie outside the ε-insensitive tube because then the parameter ξi or ξ∗i is bigger than zero and
equality is satisfied. It follows that, when the sample pair is outside of the tube then αi or α∗

i is
nonzero but they cannot both be zero because then it indicates that the sample pair belongs to the
lower and upper boundary, which is not possible [4]. Therefore, based on Eq. (40), (41), (45) and
(46) it could be concluded that:

− yi + 〈w, xi〉+ b+ ε > 0 and ξi = 0 if αi < C

− yi + 〈w, xi〉+ b+ ε 6 0 and ξi = 0 if αi > 0

Analogous conclusion could be made with α∗
i and summarizing both analysis on αi and α∗

i we have:

max{yi − 〈w, xi〉 − ε|αi < C or α∗
i > 0} 6 b 6 min{yi − 〈w, xi〉 − ε|αi > 0 or α∗

i < C}. (47)

By taking some αi, α
∗
i ∈ (0, C) the inequalities in the Eq. (47) become equalities and it allows to

solve the issue of computing b. [62]
A final note of the linear SVR could be made by substituting the mathematical expression of w

given in the Eq. (44) into the linear regression function defined in the Eq. (32) that gives:

f(x) =
l∑

i=1

(αi − α∗
i )〈xi, x〉+ b. (48)

Conjointly, Eq. (44) and (48) refer to the so-called Support Vector expansion. It could be noticed
that w can be completely described as a linear combination of the data patterns xi as well as the
complete algorithm can be described in terms of dot products between the data. Also, based on the
Eq. (40) and (41), as it was already noted, the Lagrange multipliers may be nonzero only for the data
samples outside the ε-tube (|f(xi)−yi| > ε) while for the samples inside the tube (|f(xi)−yi| < ε)
the dual variable αi, α

∗
i has to be zero such that the KKT condition would be satisfied because the

second factors in these equations of the condition are nonzero. [62] Therefore, the sums (αi − α∗
i )

in the Eq. (48) are nonzero only for the data samples outside the ε-insensitive tube and they are
involved into the final decision function by eliminating those which are equal to zero and do not
make sense. The data patterns that have nonzero Lagrange multipliers are called the support vectors
which “support” the definition of the approximate function and allows us to rewrite the the linear
regression function defined in the Eq. (48):

f(x) =
l∑

i=1

(αk − α∗
k)〈xi, xk〉+ b k = 1, 2, . . . , n, (49)

where xk denotes the support vector and n is the number of support vectors [71].
The formulation of the optimization problem in the dual form is very advantageous because

then the input vectors are simply multiplied as dot products and the complexity of a function’s
representation by support vectors is independent of the dimensionality of the input space X [62,
71]. These observations are useful in dealing with the nonlinear SVR.

By solving the nonlinear regression problem using SVR, the inputs x are nonlinearly mapped
into a high dimensional feature space F by a nonlinear function φ(x) (φ : X → F ), therefore the
decision function becomes [62, 71]:

f(x) = 〈w, φ(x)〉+ b (50)

Basically, the main idea and all calculations when analyzing the nonlinear regression problems
using SVR are similar to those which were already presented for the linear case, just by replacing
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all instances of xi in calculations with φ(xi). Therefore, only the main concept and differences
could be introduced. For example, the convex optimization problem, defined in the Eq. (34) for the
nonlinear case could be written as [71]:

minimize
1

2
‖w‖2 + C

l∑
i=1

(ξi + ξ∗i )

subject to


yi − 〈w, φ(xi)〉 − b 6 ε+ ξi

〈w, φ(xi)〉+ b− yi 6 ε+ ξ∗i
ξi, ξ

∗
i > 0, i = 1, . . . , l.

(51)

It could be noted, that dealing with the nonlinear regression problems by using SVR the optimiza-
tion problem corresponds to finding as flat as possible function in the feature space, not in input
space [62]. Based on the Eq. (51) the dual form of the nonlinear SVR optimization problem can
be expressed as [71]:

maximize − 1

2

l∑
i,j=1

(αi − α∗
i )(αj − α∗

j )〈φ(xi), φ(xj)〉 − ε
l∑

i=1

(αi + α∗
i ) +

l∑
i=1

yi(αi − α∗
i )

subject to
l∑

i=1

(αi − α∗
i ) = 0 and αi, α

∗
i ∈ [0, C].

However, the computation of 〈φ(xi), φ(xj)〉 in the feature space could be too complex to perform
and here the SVR proposes an advantageous solution: to perform the computation in the input space
by using a kernel functionK(xi, xj) = 〈φ(xi), φ(xj)〉 to yield the inner products in the feature space
[71]. As it was mentioned in the literature review, any functions that satisfy Mercer’s condition (see
more in [62]) can be used as a kernel function and several of the most commonly used kernels in
SVR are presented in the Table 4 [14, 71].

Kernel function Equation
Linear K(xi, xj) = 〈xi, xj〉
Polynomial K(xi, xj) = [γ〈xi, xj〉+ c]d

Sigmoid K(xi, xj) = tanh[γ〈xi, xj〉+ c]
Radial basis function (RBF) K(xi, xj) = exp(−γ|xi − xj|2)
Gaussian K(xi, xj) = exp(−|xi, xj|2/2σ2)

Table 4. Most commonly used kernel functions.

Finally, by replacing 〈φ(xi), φ(xj)〉 with the kernel function, the decision function for the non-
linear case defined in the Eq. (50) could be rewritten based on the Eq. (49) [71]:

f(x) =
l∑

i=1

(αk − α∗
k)K(xi, xk) + b.

2.6 Forecasting performance metrics
The main idea of the time series forecasting is to make predictions for the future observations

by using the certain model. For the purpose of assessing the quality of forecasting models the most
important step is to evaluate the accuracy of predictions [59]. Typically, different forecasting perfor-
mance metrics are used to evaluate how close the predicted values are to the expected/real values
of time series. The literature review shows that the most commonly used are these absolute and
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squared forecasting error measures: Mean Absolute Error (MAE), Mean Squared Error (MSE) and
Root Mean Squared Error (RMSE) which are calculated using the following formulas respectively
[31, 59]:

MAE =
1

n

n∑
t=1

|xt − x̂t|,

MSE =
1

n

n∑
t=1

(xt − x̂t)
2,

RMSE =

√√√√ 1

n

n∑
t=1

(xt − x̂t)2 =
√
MSE.

Here xt is the measured value of the time series at the time t, x̂t is the predicted value of xt and n
denotes the number of observations/predictions.

Also very useful are scaled error measures and one of them is the Mean Absolute Scaled Error
(MASE). Differently from the MAE, MSE and RMSE, which are scale-dependent metrics, the
result of MASE is independent of the scale of the data [31]. By using this metric the errors are
scaled based on the in-sample MAE from the naïve (random walk) forecasting method, in which
the one-step prediction for the each observation, used for the model fitting (in-sample), is equal to
the actual value of the previous observation [31]. MASE is given by using the following formula:

MASE =
1

n

n∑
t=1

(
|xt − x̂t|

1
m−1

∑m
i=2 |xi − xi−1|

)
=

MAE
1

m−1

∑m
i=2 |xi − xi−1|

.

Here m denotes the number of observations in-sample and n is the number of predictions. The
value of MASE is less than one if the predictions obtained using the constructed model are better
than the average one-step naïve forecast computed in-sample and, conversely, it is greater than one
if the predictions are worse than the average one-step naïve forecast computed in-sample [31].
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3 Experimental results
In the experiment, different models are used for the nonstationary and nearly nonstationary

time series forecasting. The performance of the ARIMA is benchmarked against the performance
of MLP, RNN and SVR models. MLP network was trained with the backpropagation learning algo-
rithm and backpropagation through time was used as the training algorithm for RNN. The objective
of this experiment is to verify the ability of different models to make one-step predictions for the
nonstationary and nearly nonstationary time series and make a comparison of the performance of
models under consideration.

The literature review shows that ML models could be applied for the nonstationary time series
forecasting and, in most cases, could make quite accurate predictions. It should be kept in mind
that the nearly nonstationary time series also exist but forecasting of such time series is not widely
studied in the literature and is the area of interest. A thorough search of the relevant literature
yielded no related works investigating specifically the nearly nonstationary time series forecasting
using ML models. Therefore, the experiment is performed to apply several ML models for the
nonstationary and nearly nonstationary time series forecasting in an attempt to determine whether
ML methods could give quite accurate predictions for both nonstationary and nearly nonstationary
time series.

Simulated time series are used for the purpose to analyze the influence of nonstationarity for
the time series forecasting. The idea is to check whether ML models could deal with nearly non-
stationary time series similarly as well as with nonstationary time series. The comparison of the
performance of models is accomplished to identify which ML model could obtain more accurate
predictions for the simulated time series and to check if these models could show better or at least as
good performance in forecasting as a traditional econometric model. At the end of the experiment,
the application of the real world data is used for the purpose of making more general conclusions
about the forecasting performance of models when they are used to predict the time series which
follow a random walk.

3.1 The performance of models of the simulated time series forecasting
First of all, in the experiment, one simulated nonstationary and a nearly nonstationary time

series were used to construct the appropriate architecture of models and make the first comparison
of the performance of models under consideration. The first order autoregressive (AR(1)) process
with the coefficient β equal to 1 and 0.99, representing the nonstationary and nearly nonstationary
time series respectively, were generated. Random number generator was set to the fixed value for
the purpose to analyze a single AR(1) realization. The length of both simulated time series is equal
to 3000 data points in time. For the purpose of demonstration, Figure 5 shows both simulated AR(1)
processes, used at the beginning of the experiment.

Each simulated time series was divided into three data sets. 80% of all data was used for the
training and validation of the network by taking 70% of this data subset for the training, development
and fitting the model parameters and using the remaining part of the data subset as validation data
to provide an evaluation of a model fit on the training data set while tuning model hyperparameters.
The test sample consisted of 20% of all data and was used to evaluate the final model with optimal
parameters.

After splitting the data all features in the data subsets were transformed by using the so-called
Min-Max scaling to translate each feature to a given range between zero and one and thus to make
faster and more stable learning process. This scaling is typically done using the following equation:

Xscaled =
X −Xmin

Xmax −Xmin

,
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Figure 5. Simulated nontastionary and nearly nonstationary AR(1) time series.

where X is the real value of a feature, Xscaled is the normalized value of X , Xmin and Xmax are
minimum and maximum values respectively in the range of features. It should also be mentioned
that in the experiment 2 previous values of the time series are used to predict a future value.

After the preparation of data for further use, each of the ML models intended for the time series
forecasting was constructed with several different combinations of parameters by trying to find more
appropriate architecture of the model and get more accurate predictions for the AR(1) processes.
Three metrics (MSE, RMSE and MAE) were used for the forecasting performance evaluation. Ad-
ditionally, for the final evaluation after the selection of the optimal parameters, metric MASE was
included, to check, whether the constructed model performs better in forecasting compared to the
naïve method, which simply set all forecasts for the in-sample data (or training data) to be the value
of the last observation.

The experiment is divided into two parts by analyzing the performance of forecasting models
for simulated nonstationary and nearly nonstationary time series separately. In each part after the
comparison of models, used for the forecasting of a single AR(1) realization, the performance of
models was evaluated using more AR(1) realizations. For the nonstationary and nearly nonstation-
ary time series forecasting more realizations of AR(1) were generated by changing the fixed value
of a random number generator. Additionally, for the purpose of a deeper analysis of nearly nonsta-
tionary time series forecasting, the effect of changing the value of parameter β was examined. Due
to the fact that the construction of the optimal model architecture is really time consuming and the
experiment is not based on a case study, the same parameters, previously determined as optimal
for the single AR(1) realization, were used for all of the AR(1) realizations forecasting. Using the
same parameters could also show the influence of the architecture of the model for the time series
forecasting which is another interesting part of the experiment. Although, the validation data set
was used to evaluate a model fit on the training data set while tuning model hyperparameters and all
optimal parameters were already defined, it was decided to keep the same structure of data splitting
and divide each AR(1) realization into three data sets (training, validation and testing).

Finally, by taking maximum, minimum and average values of metrics, used to evaluate the
model performance of each time series realization forecasting, the experimental results are sum-
marized and the comparison of different models is presented.

3.1.1 Nonstationary time series forecasting

The AR(1) time series with the coefficient β = 1, illustrated on the left of Figure 5, was used
for the first comparison of the performance of forecasting models. Firstly, for the purpose to find
optimal parameters, the time series was divided into three parts. The training data set consisted
of the first 1680 data points, for the validation further 720 data points were used and the testing
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data set contained the rest 600 observations. ML models were trained using several combinations
of parameters and the one with which the smallest errors on the validation data were obtained was
considered as optimal. All ML models require to define the number of inputs which is equal to
2 because it was already mentioned that 2 previous values of the time series are used to find the
prediction of a further value. Consequently, the number of outputs is equal to 1. The selection of
other parameters depending on each model and the performance of forecasting the analyzed AR(1)
time series are described below.

3.1.1.1 Hyperparameters tuning of Multilayer Perceptron (MLP)

The literature review shows that the three-layer MLP with a sufficient number of hidden nodes
could give appropriate results in nonstationary time series forecasting, consequently, it was decided
to use only one hidden layer in the network. The construction of the MLP network architecture
requires defining a number of hidden nodes and there was chosen to try the performance of the
network with 2, 4, 5, 6, 8 and 10 hidden nodes. To implement backpropagation it is also important
to define a learning rate and through the experiments was noticed that using a bigger value than
0.0001 such as 0.01, 0.001 or even 0.0005 the squared error defined in Eq. (12) starts to increase
very fast at each iteration that could imply overshooting local minimum. Therefore, it was decided
to use a learning rate equal to 0.0001. Initial weights and biases were set to random numbers
with a uniform distribution over the interval [0,1). The logistic sigmoid and ReLU functions were
used as the nonlinear activation functions in the hidden layer and the linear/identity function was
used in the output layer, as presented in Section 2.3.2. By trying to find out how many forward and
backward passes we need for the training of the network was noticed that the training and validation
loss decrease when the number of iterations increases, thus more iterations could help to get more
accurate predictions. However, it is known that a large number of iterations could cause overfitting
when the model starts to memorize the training data by showing a good fit on them while it does not
generalize well on new, unseen data. Usually, as the number of iterations increases, at first, both
the training loss and the validation loss start decreasing, but after a certain point, the validation
error starts to increase while the training error continues to decrease, and then it is assumed that the
overfitting appears. Therefore, was experimented to use 10000 iterations and then, after finding the
most appropriate parameters of the network and considering the behavior of train and validation
loss functions, to decide whether a such number of iterations is sufficient or whether it needs to be
reduced/increased.

Hence, 12 different architectures of the MLP network were evaluated after the final iteration
was reached. The evaluation of the final predictions obtained using MLP network with different
activation functions and a number of hidden nodes was made using 3 metrics (MSE, RMSE and
MAE) on the scaled training and validation data. Figure 6 shows all combinations of parameters
used for the construction of the MLP network and values of metrics used to measure the forecasting
performance in the validation data set. It could be noticed that using ReLU activation function
and 10 hidden nodes the error obtained on the validation data is really huge compared to other
combinations of parameters.

The Table 5 includes combinations of parameters giving 10 smallest values of all performance
metrics. It has to be highlighted that in this experiment all included tables representing combina-
tions of models parameters giving smallest values of performance metrics are shown in a sorted
order by RMSE, MSE and MAE (computed on the validation data) accordingly. It could be seen
from the Table 5, that using ReLU activation function the better performance could be reached than
using sigmoid function. It is interesting that later, when more realizations of time series were pre-
dicted using ReLU in the hidden layer, it was noticed, that the errors obtained on several time series
were really large compared to those obtained using sigmoid activation function. However, due to
the fact that in this experiment the optimal parameters are selected based on the single time series
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Figure 6. All combinations of parameters used to construct the MLP network for the nonstationary
time series forecasting and values of performance metrics calculated on scaled validation data.

realization, it was decided to choose ReLU as the optimal activation function in the MLP network.
It could also be noticed from the Table 5 that the network with ReLU function in the hidden layer
shows the best performance with 6 hidden nodes. Therefore, the architecture of MLP with ReLU
activation function, 2 input nodes, 6 hidden nodes and a single output node is considered as optimal
by taking 10000 iterations and a learning rate equal to 0.0001 to train the network.

Activation
function

Number of
hidden nodes

Learning
rate

Number of
iterations

Validation data Train data
MSE RMSE MAE MSE RMSE MAE

ReLU 6 0.0001 10000 0.000138 0.011760 0.009513 0.000137 0.011690 0.009179
ReLU 4 0.0001 10000 0.000144 0.011996 0.009716 0.000142 0.011907 0.009339
ReLU 8 0.0001 10000 0.000146 0.012074 0.009808 0.000142 0.011905 0.009348
ReLU 2 0.0001 10000 0.000147 0.012111 0.009814 0.000144 0.012020 0.009423
ReLU 5 0.0001 10000 0.000152 0.012328 0.010001 0.000150 0.012251 0.009589
Sigmoid 6 0.0001 10000 0.000166 0.012893 0.010360 0.000158 0.012568 0.009950
Sigmoid 8 0.0001 10000 0.000177 0.013297 0.010714 0.000164 0.012788 0.010153
Sigmoid 4 0.0001 10000 0.000178 0.013353 0.010758 0.000165 0.012851 0.010196
Sigmoid 10 0.0001 10000 0.000179 0.013364 0.010755 0.000166 0.012875 0.010211
Sigmoid 2 0.0001 10000 0.000185 0.013617 0.010964 0.000172 0.013124 0.010404

Table 5. 10 combinations of parameters used to construct the MLP network for the nonstationary
time series forecasting giving smallest values of performance metrics on the scaled validation data.

The MSE function was used to ensure that 10000 iterations did not cause overfitting. For the
purpose to more clearly display the behaviour of MSE function when the decrease of training and
validation error is quite fast and then slows down, line chart is splitted and on the left of Figure 7
the training and validation loss after 3-500 iterations are shown and on the right the remaining part
of loss functions is presented. The training error after the first two iterations is very large (1.631
and 0.555) but after that backpropagation helps to adjust weights and biases of the network and
then after the third iteration the loss suddenly decreases until it reaches 0.011. Validation loss also
has a huge decrease after the second iteration (from 1.052 to 0.034) then after the third iteration
it decreases until 0.011. After the fourth iteration validation loss slightly increase until 0.012 and
later starts to steadily decrease. The fluctuation of loss function at the beginning of the training
is acceptable because the network requires more time to learn and is not able to generalize well.
Due to the large changes of loss values first two iterations are not included into the Figure 7 for the
more clear demonstration. Generally, we could see that both training and validation losses steadily
decrease and at the end of iterating the gap between these functions becomes infinitesimal (about
0.000001). Therefore, it was decided that 10000 iterations does not cause overfitting and allows to
reach quite small errors of predictions.
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Figure 7. The training and validation loss (MSE) of the MLP with the optimal parameters after each
of 3-500 iterations (on the left) and after the 500-10000 iterations (on the right). All calculation are
made on the scaled data.

After the constructing an optimal architecture of MLP with BP and selecting other important
parameters, test data was used to evaluate the final model. The Figure 8 shows the unscaled pre-
dicted data and actual values of AR(1) with the coefficient β = 1 by showing training, validation
and test data sets separately. The Figure 9 is included to take a closer look at predicted values. It
could be seen that the predicted values are quite accurate, although a small shift could be seen and
the model does not ideally handles all spikes in the data.

Figure 8. Actual and predicted nonstationary AR(1) time series with β = 1 using MLP with optimal
parameters (ReLU activation function, 6 hidden nodes, learning rate equals to 0.0001 and 10000
iterations).
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Figure 9. Last 100 actual and predicted values of training, validation and test data sets using MLP
for the forecasting.

3.1.1.2 Hyperparameters tuning of Recurrent Neural Network (RNN)

In this experiment for the time series forecasting it was decided to use the three layer RNN
and to check whether the ability of the RNN to keep in memory previous computations helps to
achieve better forecasting performance and outperform the three layer MLP or whether both net-
works provide similar results. The architecture of RNN is very similar to MLP and, as in MLP,
there are 4 most important parameters that have to be defined: activation function in the hidden
layer (in the output layer, as in MLP, the linear/identity function is used), number of hidden nodes,
size of learning rate and number of iterations required to train the network. There was decided to
use the same activation functions (ReLU and sigmoid) and numbers of hidden nodes (2, 4, 5, 6, 8,
10) as in MLP network. Through the experiments it was noticed, that for the RNN, a slightly bigger
than 0.0001 learning rate is more preferable and helps more faster achieve the better performance
of forecasting, therefore, was chosen to use two values of learning rate equal to 0.01 and 0.001. For
the purpose of checking, whether the predictions obtained are more accurate with bigger or smaller
number of iterations, it was decided to use 4500 and 6000 iterations and then after looking at the
validation and training loss functions to conclude if the number of iterations should be increased
or decreased.

Figure 10. All combinations of parameters used to construct the RNN for the nonstationary time
series forecasting and values of performance metrics calculated on scaled validation data.

The Figure 10 shows all combinations of parameters used for the construction of RNN and
the values of three metrics used to measure the forecasting performance in validation data set. It
could be noticed that the network with only 2 hidden nodes and a smaller learning rate (0.001)
is inappropriate combination regardless of which activation function and number of iterations are
used. Also, using sigmoid activation function in the hidden layer, the bigger value of learning rate
helps to achieve better performance of forecasting, while by using ReLU function and more than 5
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hidden nodes, the difference between errors obtained using different values of learning rate is not
so obvious. It could be seen that the increase of the number of iterations has a bigger influence
for the sigmoid activation function compared to ReLU function, but not in all combinations of
parameters with sigmoid function, more iterations help to achieve better forecasting performance.
In general, smaller errors between actual (scaled) and predicted validation data could be get using
ReLU activation function and 6-10 hidden nodes or 5 hidden nodes and a bigger learning rate or
using sigmoid activation function with a bigger learning rate.

The Table 6 is included to show 10 combinations of parameters giving smallest errors on the
scaled validation data. It could be seen that values of metrics do not change very significantly
between these 10 most optimal combinations. As it was already noticed from the Figure 10, usu-
ally, the increase of the number of iterations does not significantly affect the errors obtained using
the ReLU activation function and same architecture of the network and the change of errors after
rounding is not even seen or is very small. As in MLP network, the better choice is to use ReLU
activation function in the hidden layer by comparing it to the sigmoid function. Values of MSE and
RMSE are smallest when the ReLU activation function, 8 hidden nodes and learning rate equals to
0.001 are used in the network while MAE shows that the better choice is to use 10 hidden nodes
and a bigger learning rate (0.01) taking more iterations for the training of the network. However,
it was decided to rely on the values of MSE and RMSE and choose less hidden nodes (8) in the
network and less iterations (4500).

Validation data Train dataActivation
function

Number of
hidden nodes

Learning
rate

Number of
iterations MSE RMSE MAE MSE RMSE MAE

ReLU 8 0.001 4500 0.000125 0.011200 0.009027 0.000127 0.011269 0.008963
ReLU 8 0.001 6000 0.000125 0.011200 0.009028 0.000126 0.011236 0.008933
ReLU 10 0.01 6000 0.000126 0.011207 0.009024 0.000126 0.011213 0.008895
ReLU 6 0.001 4500 0.000126 0.011208 0.009031 0.000126 0.011209 0.008889
ReLU 6 0.001 6000 0.000126 0.011208 0.009031 0.000126 0.011206 0.008883
ReLU 6 0.01 6000 0.000126 0.011210 0.009034 0.000126 0.011213 0.008892
ReLU 6 0.01 4500 0.000126 0.011214 0.009035 0.000126 0.011213 0.008889
ReLU 5 0.01 6000 0.000126 0.011214 0.009034 0.000126 0.011214 0.008894
ReLU 8 0.01 6000 0.000126 0.011218 0.009031 0.000126 0.011209 0.008887
ReLU 4 0.01 6000 0.000126 0.011235 0.009046 0.000126 0.011227 0.008911

Table 6. 10 combinations of parameters used to construct the RNN network for the nonstationary
time series forecasting giving smallest values of the performance metrics on the scaled validation
data.

Figure 11. The training and validation loss (MSE) of the RNN with the optimal parameters af-
ter each of 1-1000 iterations (on the left) and after the 1000-4500 iterations (on the right). All
calculation are made on the scaled data.
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When there was noticed that the increase of number of iterations from 4500 to 6000 does not
change values of errors very significantly, it was decided to look how do the MSE values, calculated
on the validation and training data, change after each of 4500 iterations. From the Figure 11 it could
be seen that both training and validation loss functions are decreasing and that could be treated
as there is no overfitting because the validation loss does not start to increase at the same point.
However, after looking closer at the values of validation loss it was noticed that using less iterations
and, thus, making the training process shorter and less computationally expensive, similarly small
value of error (MSE) could be obtained as using all 4500 iterations for the training of the network.
It was calculated that through the 1000-2000 iterations the decrease of value of MSE was equal to
about 0.000258 while through the 2000-4500 iterations the decrease was incredibly small (about
0.000000015). Therefore, it was decided that 2000 iterations could be enough to get quite small
errors between the predicted and real values of validation data. For the purpose of confirming that,
the values of three metrics, obtained using the selected optimal parameters and 4500 iterations for
the training, were compared to those which were obtained taking 2000 iterations. From the Table 7
we could see that, by taking much less iterations, the values of error functions, calculated after the
final iteration was reached, are very similar. The value of RMSE slightly increased but the value
of MAE is even smaller than using more iterations, thus indicating that the decision of using the
smaller number of iterations for the training was appropriate and useful.

Validation data Train dataActivation
function

Number of
hidden nodes

Learning
rate

Number of
iterations MSE RMSE MAE MSE RMSE MAE

ReLU 8 0.001 4500 0.000125 0.011200 0.009027 0.000127 0.011269 0.008963
ReLU 8 0.001 2000 0.000125 0.011201 0.009025 0.000128 0.011304 0.008996

Table 7. The comparison of values of the performance metrics calculated on the scaled validation
data using the optimal parameters of RNN and changing the number of iterations, required for the
training of the network.

The Figures 12 and 13 show real and predicted values of nonstationary AR(1) time series using
RNN. It could be noticed that predictions are quite accurate but, similarly as using MLP, the small
shift could be noticed and it looks like the network predicts future value very close to the previous
value.

3.1.1.3 Hyperparameters tuning of Support Vector Regression (SVR)

SVR has three important factors that affect its quality and should be defined before applying
model for the time series forecasting: the penalty parameter C, the non-sensitive loss ε and the
kernel function with its parameters. In this experiment it was decided to use sigmoid, linear and
radial basis (RBF) kernel functions. The values of C and ε were defined as 2i, where i = 1, . . . , 9,
and 0.1j , where j = 2, . . . , 5, respectively. Also by using sigmoid and RBF kernels there was
required to define kernel parameter γ and there was chosen to use 0.1j , where j = 1, . . . , 4, as its
value. Figure 14 is included here to show, how changing the selected values of kernel function, C
and ε affect the values of performance metrics, calculated on validation data set.

It could be noticed from the Figure 14 that by using linear kernel with a bigger value of ε, the
least values of metrics are obtained compared to those which are given using a smaller value of ε
and the change of C does not very significantly affect the forecasting performance. When the RBF
or sigmoid kernel is used, from the Figure 14 it looks like the value of C becomes very important.
We could see that the bigger value of C is a better choice by combining it with RBF kernel, while by
using sigmoid kernel, oppositely, the smaller value of C gives the better forecasting performance.
However, it should be emphasized that the change of value of sigmoid and RBF kernels parameter
γ here makes a biggest influence for the obtained results. Through the experiments it was noticed
that, using RBF kernel with a smaller value of C and a value of γ bigger than 0.0001 the error
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Figure 12. Actual and predicted nonstationary AR(1) time series with β = 1 using RNN with
optimal parameters (ReLU activation function, 8 hidden nodes, learning rate equals to 0.001 and
2000 iterations).

Figure 13. Last 100 actual and predicted values of training, validation and test data sets using RNN
for the forecasting.

obtained are quite small and comparable to those which are given by using a bigger value of C.
Similarly, by using sigmoid kernel with a bigger value of C and a value of γ smaller than 0.1 also,
in most cases, quite accurate predictions could be made.

For the purpose of concentrating more on the most optimal combinations of SVR parameters,
the Table 8 is included to show combinations giving the smallest values of performance metrics. It
was noticed that different metrics suggest different most optimal combinations of SVR parameters
and, due to the fact that all values in this table are sorted in order by RMSE, MSE and MAE
accordingly, 15 combinations of parameters were taken by including the one with the smallest
value of MAE. Based on the values of RMSE and MSE the most optimal combination consisted
of the RBF kernel function with values of C, ε and γ equal to 32, 0.01 and 0.1 respectively. It
could be seen that the linear kernel with the C equals to or bigger than 4 and ε equals to 0.01 also
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Figure 14. All combinations of three parameters used to construct the SVR for the nonstationary
time series forecasting and values of performance metrics calculated on scaled validation data.

show a quite well performance of forecasting. It is interesting that the most optimal combination
of parameters, based on the value of MAE, is the sigmoid kernel function with values of C, ε and γ
equal to 256, 0.01 and 0.01 respectively. Based on the RMSE metric, there are 14 combinations of
parameters with a smaller RMSE value than the one with a least value of MAE. For the purpose of
making the final decision whether to choose the first combination of parameters in the Table 8 or
the fifteenth, it was decided to calculate values of MASE additionally. For the first combination the
value of MASE was equal to 1.013706 while for the fifteenth it was a slightly smaller (1.013563)
that indicates the superiority of this combination against the first one. Therefore, the combination
of sigmoid kernel function with values of C, ε and γ equal to 256, 0.01 and 0.01 respectively was
chosen as optimal. The Figures 15 and 16 are included to graphically depict the real and predicted
values of the nonstationary AR(1) time series using SVR with optimal parameters. Similarly, as
using RNN, we could notice a small shift between the real and predicted values even though the
predictions look quite accurate.
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Validation data Train dataKernel
function C ε γ MSE RMSE MAE MSE RMSE MAE
RBF 32 0.01 0.1 0.0001255 0.0112035 0.0090299 0.0001259 0.0112215 0.0089030
Linear 16 0.01 0.0001256 0.0112090 0.0090401 0.0001259 0.0112215 0.0089034
Linear 64 0.01 0.0001256 0.0112090 0.0090397 0.0001259 0.0112221 0.0089037
Linear 32 0.01 0.0001256 0.0112093 0.0090406 0.0001259 0.0112226 0.0089045
Linear 8 0.01 0.0001257 0.0112098 0.0090403 0.0001259 0.0112208 0.0089011
Linear 256 0.01 0.0001257 0.0112104 0.0090432 0.0001260 0.0112236 0.0089057
Linear 128 0.01 0.0001257 0.0112107 0.0090433 0.0001260 0.0112228 0.0089045
Linear 512 0.01 0.0001257 0.0112113 0.0090449 0.0001260 0.0112236 0.0089060
RBF 64 0.01 0.1 0.0001257 0.0112116 0.0090475 0.0001258 0.0112175 0.0089075
Linear 4 0.01 0.0001257 0.0112134 0.0090401 0.0001259 0.0112196 0.0088940
RBF 128 0.01 0.01 0.0001257 0.0112134 0.0090319 0.0001259 0.0112207 0.0088883
RBF 512 0.01 0.01 0.0001258 0.0112146 0.0090452 0.0001260 0.0112247 0.0088991
RBF 128 0.01 0.1 0.0001258 0.0112176 0.0090572 0.0001259 0.0112191 0.0089122
RBF 256 0.01 0.1 0.0001259 0.0112184 0.0090578 0.0001259 0.0112200 0.0089172
Sigmoid 256 0.01 0.01 0.0001259 0.0112184 0.0090287 0.0001260 0.0112258 0.0089013

Table 8. 15 combinations of parameters used to construct the SVR for the nonstationary time series
forecasting giving smallest values of the performance metrics on the scaled validation data.

Figure 15. Actual and predicted nonstationary AR(1) time series with β = 1 using SVR with
optimal parameters (sigmoid kernel function with values of C, ε and γ equal to 256, 0.01 and 0.01
respectively).

3.1.1.4 Application of ARIMA

ARIMA(p, d, q) model has three parameters that have to be defined: p, d and q. For the
nonstationary AR(1) time series forecasting the simplest one and usually used is ARIMA(0,1,0),
better known as a random walk model. Therefore, in this experiment was decided to use this model
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Figure 16. Last 100 actual and predicted values of training, validation and test data sets using SVR
for the forecasting.

as a benchmark in an attempt to compare the performance of ML models and the simple statistical
forecasting model in the nonstationary time series forecasting.

The model was fitted on the first 2400 data points of the simulated nonstationary time series
and after that the predictions were generated for the each element on the test set which consists of
the rest 600 data points. Figure 17 is included to show the real test data and predicted values using
ARIMA(0,1,0). It could be seen that predictions look quite accurate with a small shift.

Figure 17. Actual and predicted test data of nonstationary AR(1) time series with β = 1 using
ARIMA(0,1,0) (on the left) by extracting additionally last 100 values (on the right).

3.1.1.5 Comparison of the performance of models of the single AR(1) realization forecasting

After the tuning hyperparameters and applying all selected models for the nonstationary AR(1)
time series forecasting, four metrics (MSE, RMSE, MAE and MASE) were used for the final eval-
uation of the forecasting performance of each model. The main interest of this experiment was to
find out how well ML models with the defined optimal parameters could make the one-step pre-
dictions on the new unseen data and to compare the forecasting performance of these models with
the traditional statistical model used as a benchmark. The real values of the test data set with the
obtained predictions were already visualised and from the visual perspective it could be concluded
that the predictions obtained using all 4 models under considerations look quite accurate. However,
it was noticed that the small shift appears between the real and predicted values.

The related literature shows that, when the process follows a random walk, its previous values
contain no useful information for the making predictions of future values [25]. Therefore, the
best prediction of xt+1 for this process having the minimum MSE is x̂t+1 = xt and this is the most
important implication of the random walk hypothesis (see more in [25]). There have been published
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many works about the forecasting of the stock prices, which usually follow the random walking, and
it was confirmed that usually the best forecasting model of such time series is the naïve model which
propose to use the previous observation as the prediction of the current data point. One of these
works is the article [61] whose authors apply Time Delay Feed Forward Network (TDNNs) and
Elman Network (RNN) for the one-step ahead forecasting of the detrended S&P 500 stock market
index time series. Authors show that, even though these models were able to make particularly
accurate predictions for the modulated sinusoidal signal which frequency ranges from weak low to
strong high, unfortunately, they did not succeed to predict the next day value of the stock market
index time series better than just taking the value of the previous day, although many combinations
of networks parameters have been tried.

In our case the analyzed nonstationary AR(1) time series is the random walk process and even
though many different combinations of parameters of ML models under consideration have been
experimented by taking more input values or hidden nodes, changing the data splitting proportions
or generating a longer time series, the best obtained one-step predictions were always close to the
previous values of time series.

In the Table 9 the final results are presented and it could be noticed that SVR shows the best
forecasting performance in a comparison with MLP, RNN and ARIMA models. Based on the
values of MSE, RMSE and MAE metrics, RNN performs similarly well as SVR and also slightly
outperforms ARIMA(0,1,0) model. However, MLP network obtains highest values of errors and
the conclusion could be made that not all ML models could outperform traditional statistical model.
By looking at the values of MASE we could see that all of them are very close to 1 what indicates
that models predict similarly as the naïve model in-sample. Based on the random walk hypothesis
these results are not surprising, however, all models generate slightly more accurate predictions for
the test data than the naïve model does that for the data in-sample.

MSE RMSE MAE MASE
MLP 0.965848 0.982775 0.786389 0.986095
RNN 0.907514 0.952635 0.766646 0.961338
SVR 0.905128 0.951382 0.764673 0.958864
ARIMA(0,1,0) 0.910015 0.953947 0.768717 0.959644

Table 9. Final values of metrics used to evaluate the forecasting performance of models on the test
data set of the single nonstationary AR(1) realization.

3.1.1.6 Comparison of the performance of models of the 100 AR(1) realizations forecasting

By using the same parameters which were defined as optimal for the single AR(1) realiza-
tion forecasting, all models were applied for the 100 other realizations of the AR(1) time series.
Forecasting performance of models was evaluated for the each of 100 time series using the same
four metrics as before (MSE, RMSE, MAE and MASE). The evaluations were made using the
predictions of the test data sets. The Table 10 shows minimum, maximum and average values of
the performance metrics in the range of 100 evaluations for the each model. It could be seen that
the maximum values of metrics by using the MLP and RNN models are incredibly high. It could
indicate that the architecture of these networks is very dependent on the specific time series and
inappropriate parameters strongly affect the performance of forecasting. However, by looking at
the minimum values of metrics, we could notice that the architecture of the neural networks was
appropriate not only for the single AR(1) realization, analyzed at the begining of the experiment,
and some of 100 time series were predicted also quite accurately. SVR demonstrates its superiority
over the neural network models due to the fact that it shows quite well generalization capacity on
many different nonstationary time series even by using the same hyperparameters. Therefore, the
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accuracy of predictions obtained using SVR is not so strongly depended on parameters as apply-
ing neural network models. Even though the SVR predicts quite accurately, the ARIMA model
outperforms all ML models by looking at the average values of metrics.

Therefore, by concluding the results obtained, it could be noticed that some of ML models
could slightly outperform the traditional statistical model in nonstationary time series forecasting
just when the specific case is analyzed due to the dependency between the forecasting performance
and the model parameters. The selection of ML models parameters is really time consuming but the
appropriate combination of parameters helps to obtain quite accurate one-step predictions. How-
ever, the predictions of the single AR(1) realization made by using ML models do not very signifi-
cantly differs from those obtained with the simple ARIMA model which is more simple and easier
to use.

MSE RMSE MAE MASE
MIN MAX AVG MIN MAX AVG MIN MAX AVG MIN MAX AVG

MLP 0.9820 734.7689 17.3268 0.9910 27.1066 2.2573 0.7782 24.1288 1.8692 0.9628 30.5597 2.3463
RNN 0.9201 2860.0210 70.3936 0.9592 53.4792 4.1990 0.7600 44.5505 3.5400 0.9384 56.4242 4.4457
SVR 0.9033 1.2786 1.0258 0.9504 1.1307 1.0123 0.7505 0.9074 0.8080 0.9210 1.1492 1.0118
ARIMA(0,1,0) 0.8922 1.1708 1.0088 0.9446 1.0821 1.0040 0.7456 0.8703 0.8009 0.9232 1.0936 1.0026

Table 10. Minimum, maximum and average values of metrics used to evaluate the forecasting
performance of models on the test data set of the 100 nonstationary AR(1) realizations.

3.1.2 Nearly nonstationary time series forecasting

The AR(1) time series with the coefficient β = 0.99, illustrated on the right of Figure 5, was
used to clarify whether ML models could give quite accurate predictions for the nearly nonstation-
ary time series and to make a first comparison of forecasting models. Nearly nonstationary time
series forecasting was performed analogously as for the nonstationary time series and, first of all,
was trying to find the optimal architectures of models. For the construction of each network there
was decided to use the same combinations of parameters as were applied for the nonstationary time
series forecasting and to check, whether the same combinations are optimal for both nonstation-
ary and nearly nonstationary time series or whether they require different parameters to get more
accurate predictions.

3.1.2.1 Hyperparameters tuning of Multilayer Perceptron (MLP)

Through the search of optimal parameters of the MLP network was noticed that there could
be found similar tendencies between nonstatinary and nearly nonstationary time series forecasting.
Experiment results showed that by using a learning rate bigger than 0.0001 errors obtained of the
loss function are very large and the network performs better with a bigger number of iterations as
in nonstationary time series forecasting. From the Figure 18 we could see that using the ReLU
activation function in the hidden layer and 10 hidden nodes for the nearly nonstationary time series
forecasting very inaccurate predictions are obtained as in nonstationary time series forecasting.
However, while the combination of ReLU and 8 hidden nodes for the nonstationary time series was
an appropriate choice, now we could see that this combination should be eliminated due to the large
errors obtained on the validation data set.

The Table 11 shows that using ReLU activation function more accurate predictions could be
get than using sigmoid function through the same number of iterations. It is interesting that for the
nearly nonstationary and nonstationary time series forecasting using MLP network, the same com-
bination of parameters (ReLU activation function, 6 hidden nodes, learning rate equals to 0.0001
and 10000 iterations) helps to get smallest values of performance metrics.
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Figure 18. All combinations of parameters used to construct the MLP network for the nearly nonsta-
tionary time series forecasting and values of the performance metrics calculated on scaled validation
data.

Validation data Train dataActivation
function

Number of
hidden nodes

Learning
rate

Number of
iterations MSE RMSE MAE MSE RMSE MAE

ReLU 6 0.0001 10000 0.000942 0.030686 0.024773 0.000935 0.030570 0.024095
ReLU 2 0.0001 10000 0.000951 0.030843 0.024927 0.000941 0.030682 0.024137
ReLU 5 0.0001 10000 0.000956 0.030916 0.024972 0.000947 0.030775 0.024240
ReLU 4 0.0001 10000 0.000956 0.030921 0.024991 0.000947 0.030773 0.024196
Sigmoid 6 0.0001 10000 0.001039 0.032229 0.026069 0.001024 0.032006 0.025110
Sigmoid 8 0.0001 10000 0.001053 0.032448 0.026223 0.001042 0.032274 0.025325
Sigmoid 10 0.0001 10000 0.001065 0.032628 0.026386 0.001052 0.032442 0.025447
Sigmoid 4 0.0001 10000 0.001071 0.032727 0.026451 0.001059 0.032545 0.025530
Sigmoid 2 0.0001 10000 0.001096 0.033104 0.026782 0.001081 0.032874 0.025787
Sigmoid 5 0.0001 10000 0.001158 0.034037 0.027556 0.001140 0.033762 0.026469

Table 11. 10 combinations of parameters used to construct the MLP network for the nearly non-
stationary time series forecasting giving smallest values of the performance metrics on the scaled
validation data.

Figure 19. The training and validation loss (MSE) of the MLP with the optimal parameters after
each of 3-500 iterations (on the left) and after the 500-10000 iterations (on the right). All calculation
are made on the scaled data.

After the selection of optimal parameters there was important to verify if 10000 iterations
does not cause overfitting. For this purpose the MSE function was used to calculate the errors of
predictions in training and validation data sets after each iteration as it was done before. After the
first two iterations, as might have been expected using randomly generated weights at the beginning
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of training the network, the training loss was quite big (1.687 and 0.738) while after the third
iteration it decreased until 0.006. The validation loss also had a huge decrease after the second
iteration (from 0.513 to 0.0078), then after the third iteration it slightly increased until 0.0091 and
after that it started to steadily decrease. Figure 19 shows the both validation and training loss after
each of 3-10000 iterations, by excluding first two iterations for the more clear demonstration without
huge changes of values of loss functions. In general, validation and training loss functions steadily
decrease and after the final iteration the difference between them is very small (about 0.000007),
therefore, 10000 iterations does not cause overfitting and helps to reach quite small values of the
performance metrics used in this experiment.

The performance of the constructed MLP model, used for the nearly nonstationary time series
forecasting, was depicted visually in the Figures 20 and 21. It could be seen that all predictions are
not very ideal, the small shift could be noticed and a little bit smaller values are predicted at the
peaks of the data but, in principle, they look quite accurate.

Figure 20. Actual and predicted nearly nonstationary AR(1) time series with β = 0.99 using MLP
with optimal parameters (ReLU activation function, 6 hidden nodes, learning rate equals to 0.0001
and 10000 iterations).

3.1.2.2 Hyperparameters tuning of Recurrent Neural Network (RNN)

By using the same combinations of parameters for the construction of the RNN model for the
nearly nonstationary time series forecasting it was noticed that some combinations, which showed
quite well performance of the nonstationary time series forecasting, were outperformed by others.
However, some combinations of network’s parameters were not appropriate or gave quite small
values of error functions for both nonstationary and nearly nonstationary time series forecasting.
By comparing Figures 10 and 22 it could be noticed that the combination of two hidden nodes and
a smaller learning rate (0.001) is not a good choice in an attempt to get smaller values of errors
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Figure 21. Last 100 actual and predicted values of training, validation and test data sets using MLP
for the forecasting.

for both nearly nonstationary and nonstationary time series as well as sigmoid activation function
with a smaller learning rate. It could also be seen that the increase of number of iterations does not
cause very significant and clearly seen changes of values of performance metrics for the majority
of combinations of parameters, especially when the ReLU activation function is used in the hidden
layer.

Figure 22. All combinations of parameters used to construct the RNN for the nearly nonstationary
time series forecasting and values of performance metrics calculated on scaled validation data.

The Table 12 shows that, differently from the nonstationary time series forecasting using RNN,
for the nearly nonstationary time series, applying sigmoid activation function in the hidden layer,
smaller values of the performance metrics are obtained. Based on the value of RMSE, the most
optimal combination of parameters consists of sigmoid function, 5 hidden nodes, 0.01 learning rate
and 6000 iterations while the value of MAE is smallest when 6 hidden nodes and less iterations
(4500) are used for the training of the network. The value of MSE after rounding is not very
informative by trying to select a single combination because it is the same for all 7 first combinations
in the Table 12. After considering obtained results, it was decided to choose the combination with
sigmoid activation function, learning rates equals to 0.01, 6 hidden nodes and a smaller number of
iterations (4500), due to the fact, that for this combination value of MAE is smallest and the value
of RMSE is quite similar to the one which is obtained by using 5 hidden nodes and 6000 iterations.

By looking at the training and validation loss (MSE) functions, which are presented in the Fig-
ure 23, we could see that, at the beginning of the training of the network, both curves are fluctuating
but after about 100 iterations they start to steadily decrease. This decrease continues till the end of
iterating and after the last iteration values of training and validation loss functions are quite small
and similar, the difference between them are only about 0.000000177. There was tried to slightly
increase the number of iterations but it did not give very significant results in the performance of
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Validation data Train dataActivation
function

Number of
hidden nodes

Learning
rate

Number of
iterations MSE RMSE MAE MSE RMSE MAE

Sigmoid 5 0.01 6000 0.000911 0.030184 0.024353 0.000912 0.030191 0.023937
Sigmoid 6 0.01 4500 0.000911 0.030185 0.024345 0.000911 0.030188 0.023927
Sigmoid 5 0.01 4500 0.000911 0.030185 0.024357 0.000912 0.030195 0.023940
Sigmoid 6 0.01 6000 0.000911 0.030186 0.024347 0.000911 0.030184 0.023929
Sigmoid 8 0.01 6000 0.000911 0.030188 0.024347 0.000911 0.030183 0.023926
Sigmoid 10 0.01 6000 0.000911 0.030188 0.024347 0.000911 0.030181 0.023927
ReLU 6 0.001 4500 0.000911 0.030191 0.024356 0.000911 0.030177 0.023944
ReLU 10 0.01 6000 0.000912 0.030192 0.024349 0.000912 0.030191 0.023928
ReLU 6 0.001 6000 0.000912 0.030193 0.024357 0.000911 0.030176 0.023942
Sigmoid 10 0.01 4500 0.000912 0.030195 0.024350 0.000911 0.030189 0.023921

Table 12. 10 combinations of parameters used to construct the RNN network for the nearly non-
stationary time series forecasting giving smallest values of the performance metrics on the scaled
validation data.

predicting validation data and it was noticed that the validation loss starts to increase by using a
slightly more iterations. Therefore, it was decided that 4500 iterations is an optimal choice and
does not cause overfitting.

Figure 23. The training and validation loss (MSE) of the RNN with the optimal parameters af-
ter each of 1-1000 iterations (on the left) and after the 1000-4500 iterations (on the right). All
calculation are made on the scaled data.

Real and predicted values of the nearly nonstationary AR(1) time series using RNN are visu-
alized in the Figures 23 and 24. It looks like predictions using RNN are more accurate than using
MLP and this models better deals with spikes in data. However, as in all previous figures, which
show last 100 actual and predicted values, a small shift is noticeable.

3.1.2.3 Hyperparameters tuning of Support Vector Regression (SVR)

After applying the same SVR parameters for the nearly nonstationary time series forecasting as
were used for the nonstationary time series, some similar tendencies have been found. By compar-
ing Figures 14 and 26 it could be seen that by using RBF and sigmoid kernel functions, the values
of metrics change quite similarly for both nearly nonstationary and nonstationary time series. There
also exists a strong dependency between errors obtained and the value of kernel parameter γ, hence,
for example, by choosing RBF kernel with smaller value of C and γ equals to 0.0001 as well as sig-
moid kernel with bigger value of C and γ equals to 0.1 very inaccurate predictions are made. This
is the reason why these huge jumps of values in Figures 14 and 26 exist. By taking linear kernel
function for the nonstationary time series forecasting it was noticed that the best choice of the value
of ε is 0.01 while for the nearly nonstationary time series, for the majority of combinations, the
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Figure 24. Actual and predicted nearly nonstationary AR(1) time series with β = 0.99 using RNN
with optimal parameters (sigmoid activation function, 6 hidden nodes, learning rate equals to 0.01
and 4500 iterations).

Figure 25. Last 100 actual and predicted values of training, validation and test data sets using RNN
for the forecasting.

better results are obtained with the smaller value of ε, judging by the changes of MSE which are
more clearly seen.

Although by looking at the graphical representations of the performance metrics, calculated
on the validation data using different SVR parameters, we could see some similarities between
nonstationary and nearly nonstationary time series, after comparing combinations, which gave the
smallest values of metrics, some differences were found. From the Table 13 it could be noticed
that the nearly nonstationary time series requires the smaller value of ε and the bigger value of C
in an attempt to get more accurate predictions by comparing to the nonstationary time series. The
values of MSE and RMSE are smallest when the sigmoid kernel is used with the values of C, ε and γ
equal to 512, 0.00001 and 0.01 respectively. However, the most optimal combination of parameters,
based on the value of MAE, consists of RBF kernel function with the values of C, ε and γ equal to
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Figure 26. All combinations of three parameters used to construct the SVR for the nearly nonsta-
tionary time series forecasting and values of performance metrics calculated on scaled validation
data.

256, 0.001 and 0.1 respectively. For the final decision whether the first or the second combination
of parameters should be chosen as optimal, similarly as before (for the nonstationary time series
forecasting), there was decided to calculate values of MASE. By using the first combination, the
value of MASE was equal to 1.017411 while for the second combination it was slightly smaller
(1.017306). Therefore, RBF kernel function with values of C, ε and γ equal to 256, 0.001 and 0.1
respectively were defined as optimal parameters.

For the purpose of demonstration of the real and predicted values of nearly nonstationary AR(1)
time series using SVR, Figures 27 and 28 are included. It could be seen that predicted values are
quite accurate but a small shift exists.
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Validation data Train dataKernel
function C ε γ MSE RMSE MAE MSE RMSE MAE
Sigmoid 512 0.00001 0.01 0.0009142 0.0302361 0.0243865 0.0009133 0.0302217 0.0239153
RBF 256 0.001 0.1 0.0009145 0.0302406 0.0243840 0.0009138 0.0302294 0.0238875
Linear 256 0.00001 0.0009146 0.0302426 0.0243914 0.0009135 0.0302240 0.0239120
RBF 32 0.001 0.1 0.0009148 0.0302455 0.0243889 0.0009135 0.0302246 0.0238936
Linear 512 0.00001 0.0009148 0.0302458 0.0243943 0.0009133 0.0302202 0.0239113
RBF 64 0.0001 0.1 0.0009148 0.0302465 0.0243921 0.0009133 0.0302209 0.0238872
RBF 32 0.00001 0.1 0.0009149 0.0302479 0.0243947 0.0009138 0.0302294 0.0238899
Linear 512 0.0001 0.0009150 0.0302483 0.0243987 0.0009131 0.0302182 0.0239113
Linear 128 0.00001 0.0009150 0.0302488 0.0243973 0.0009139 0.0302300 0.0239129
Sigmoid 512 0.0001 0.01 0.0009150 0.0302492 0.0244002 0.0009133 0.0302212 0.0239155

Table 13. 10 combinations of parameters used to construct the SVR for the nearly nonstationary
time series forecasting giving smallest values of the performance metrics on the scaled validation
data.

Figure 27. Actual and predicted nearly nonstationary AR(1) time series with β = 0.99 using SVR
with optimal parameters (RBF kernel function with values of C, ε and γ equal to 256, 0.001 and
0.1 respectively).

3.1.2.4 Application of ARIMA

From the theory it is known, that when the absolute value of the coefficient β of the AR(1) time
series is smaller than 1, then the time series is assumed to be stationary. The stationary AR(1) is an
equivalent to the ARIMA(1,0,0), therefore the future values of this time series could be predicted
based on the previous observations. In our case, the AR(1) time series was simulated by taking the
value of β equals to 0.99 which is smaller than 1, thus the predictions of this time series could simply
be found by using ARIMA(1,0,0) model. Similarly as for the nonstationary time series forecasting,
the model was fitted on the first 2400 data points and then for the each observation in the test data
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Figure 28. Last 100 actual and predicted values of training, validation and test data sets using SVR
for the forecasting.

set the predictions were generated using ARIMA(1,0,0). Real and predicted values of the test data
set are shown in the Figure 29. It looks like from the visual perspective that the traditional statistical
model ARIMA is an appropriate choice for the linear nearly nonstationary time series and using
this model quite accurate predictions could be generated.

Figure 29. Actual and predicted test data of nearly nonstationary AR(1) time series with β = 0.99
using ARIMA(1,0,0) (on the left) by extracting additionally last 100 values (on the right).

In addition, it was decided to apply automatic ARIMA which is able to use unit root tests and
some information criterion and itself generates the optimal values of parameters p, d and q that
would be suitable for the data to provide better forecasting (see more in [32]). The suggestion of
automatic ARIMA was to use ARIMA(0,1,0) which shows that, even though the value of AR(1)
coefficient β is smaller than 1 and the time series are treated as stationary, it actually behaves more
likely to nonstationary time series and are suggested to be differenced. From the visual perspective
the obtained predictions using ARIMA(0,1,0) look very similarly as using ARIMA(1,0,0), therefore
the visual representation is not included here and the accuracy of forecasting between these two
models is compared in the following section.

3.1.2.5 Comparison of the performance of models of the single AR(1) realization forecasting

Final evaluations of the forecasting performance of each model obtained by using four met-
rics are presented in the Table 14. It could be seen that, based on the values of MSE, RMSE and
MASE, the most accurate predictions are obtained by using ARIMA(1,0,0) which is an equivalent
to the analyzed AR(1) time series. However, SVR shows also quite well forecasting performance
and, based on the values of MAE, it even slightly outperforms the ARIMA(1,0,0). It is interesting
that the model suggested by the automatic ARIMA performs worse than original ARIMA(1,0,0),
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by showing that nearly nonstationary time series should not be predicted as the nonstationary time
series. These results could be compared to those in the research in [8] where also nearly nonstation-
ary AR(1) were predicted. Authors of this article found that for the simulated AR(1) processes with
1 > β > 0.9 it is suggested to use differencing to obtain better forecasting performance, however,
in this experiment we could see that more accurate predictions could be made without differencing
of time series. The reason of these different results could be that the size of samples significantly
differs: in the research in [8] there are 100 generated data points while in this experiment the length
of the time series is equal to 3000. Based on the conclusions of [17] it was noticed that for the nearly
nonstationary time series with a larger sample size it is more preferable to use the true models of
processes, as in our case the ARIMA(0,1,0) for the AR(1) forecasting, therefore these findings can
be confirmed in this experiment. Based on the value of MAE the ARIMA(0,1,0) model is even the
worst choice for the nearly nonstationary time series forcasting, while the values of MSE, RMSE
and MASE show that it is better to predict values of the nearly nonstationary time series using the
simple statistical model, which is appropriate for the nonsationary time series forecasting, instead
of the ML model MLP.

From the visual perspective, similarly as in nonstationary time series forecasting, the shift be-
tween real and predicted values were noticed by using all models. The reason could be that, as it
was noticed in the literature review, the nearly nonstationary AR(1) time series often has similar
behaviour to the nonstationary time series which are the random walk processes and the suggestion
of automatic ARIMA also confirms that there are some similarities between these processes. After
many attempts to find the optimal parameters of the models the best obtained predictions were al-
ways quite close to the values of the previous observation. However, based on the values of MASE
we could see that all models under consideration predict slightly more accurately than the naïve
model in-sample.

MSE RMSE MAE MASE
MLP 0.922818 0.960634 0.770478 0.965926
RNN 0.911371 0.954657 0.768276 0.963165
SVR 0.909887 0.953880 0.767394 0.962060
ARIMA(1,0,0) 0.909636 0.953749 0.768066 0.957243
ARIMA(0,1,0) 0.915987 0.957072 0.772890 0.963255

Table 14. Final values of metrics used to evaluate the forecasting performance of models on the
test data set of the single nearly nonstationary AR(1) realization.

3.1.2.6 Comparison of the performance of models of the 100 AR(1) realizations forecasting

After applying all models with the defined optimal parameters for the 100 nearly nonstationary
AR(1) realizations forecasting, the final evaluations of the forecasting performance were made and
presented in the Table 15. It was noticed that the best forecasting performance could be reached by
using the original AR(1) equivalent - ARIMA(1,0,0) model. However, RNN and SVR could obtain
also quite accurate predictions and the ability of RNN to remember previous calculations and make
the training process sequential helps to reach quite well results, even slightly better than SVR could
achieve which was one of the best models for the single realization of the nearly nonstationary AR(1)
forecasting. However, based on the average values of metrics, all ML models are outperformed
by traditional statistical ARIMA models, even by the ARIMA(0,1,0) which was outperformed by
SVR and RNN when the single realization of the nearly nonstationary AR(1) was predicted. The
differences between the average errors, computed using ARIMA(1,0,0) and ARIMA(0,1,0), are not
very significant, therefore overdifferencing of the nearly nonstationary time series does not improve
our predictions but it also does not cause high inefficiency in forecasting.
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Another remark of this experiment is that all ML models by using the same parameters (which,
possibly, are not the most optimal for all simulated time series) for the more realizations of the
nearly nonstationary time series forecasting could manage significantly better than predicting more
different nonstationary time series realizations. Therefore it could be assumed that the accuracy
of predictions of the nearly nonstationary time series is less dependent on the model parameters,
probably, due to the fact that those time series do not have so many radical changes between each
other or very unstable mean and variance as nonstationary time series have.

MSE RMSE MAE MASE
MIN MAX AVG MIN MAX AVG MIN MAX AVG MIN MAX AVG

MLP 0.9129 4.3813 1.1630 0.9554 2.0931 1.0664 0.7601 1.3359 0.8431 0.9345 1.6562 1.0532
RNN 0.8964 1.3565 1.0338 0.9468 1.1647 1.0159 0.7465 0.9340 0.8104 0.9131 1.1888 1.0125
SVR 0.8955 1.8217 1.0392 0.9463 1.3497 1.0181 0.7453 1.0108 0.8114 0.9116 1.2395 1.0137
ARIMA(1,0,0) 0.8937 1.1726 1.0091 0.9454 1.0829 1.0041 0.7465 0.8713 0.8011 0.9211 1.0915 1.0004
ARIMA(0,1,0) 0.8950 1.1762 1.0135 0.9460 1.0845 1.0063 0.7459 0.8688 0.8029 0.9236 1.0909 1.0027

Table 15. Minimum, maximum and average values of metrics used to evaluate the forecasting
performance of models on the test data set of the 100 nearly nonstationary AR(1) realizations.

3.1.2.7 The effect of the changing coefficient β of AR(1) for the performance of models

For the purpose of making more general conclusions about the nearly nonstationary time series
forecasting it was decided to apply already constructed models for the 100 simulated AR(1) time
series realizations with different values of parameter β. The aim of this part of the experiment
was to check how the forecasting performance of models changes when the time series approaches
stationarity, therefore all models with the same hyperparameters, which have been assumed as op-
timal for the single nearly nonstationary AR(1) forecasting, were used to more clearly see the effect
of changing the value of β for the accuracy of predictions. Two values of parameter β equal to
0.97 and 0.95 were chosen and, similarly as before, four metrics were used (MSE, RMSE, MAE
and MASE) for the forecasting performance of each model evaluations. Minimum, maximum and
average values of the forecasting performance metrics, calculated on the test data sets of each of
simulated realizations of AR(1), are presented in the Table 16.

MSE RMSE MAE MASE
β Model MIN MAX AVG MIN MAX AVG MIN MAX AVG MIN MAX AVG

MLP 0.8955 1.4330 1.0318 0.9463 1.1971 1.0150 0.7485 0.9222 0.8090 0.9098 1.1580 1.0055
RNN 0.8979 1.1997 1.0146 0.9476 1.0953 1.0068 0.7476 0.8853 0.8032 0.9063 1.1117 0.9983
SVR 0.8978 1.3048 1.0204 0.9475 1.1423 1.0096 0.7453 0.8906 0.8052 0.9036 1.1125 1.0008
ARIMA(1,0,0) 0.8939 1.1715 1.0093 0.9455 1.0824 1.0042 0.7462 0.8706 0.8011 0.9135 1.0873 0.9954

0.97

ARIMA(0,1,0) 0.9038 1.1896 1.0239 0.9507 1.0907 1.0114 0.7480 0.8724 0.8071 0.9186 1.0968 1.0028
MLP 0.8934 1.1958 1.0168 0.9452 1.0935 1.0079 0.7462 0.8862 0.8041 0.9005 1.1059 0.9943
RNN 0.8999 1.1787 1.0126 0.9486 1.0857 1.0058 0.7483 0.8749 0.8025 0.9009 1.0970 0.9923
SVR 0.8969 1.1871 1.0161 0.9470 1.0895 1.0076 0.7458 0.8787 0.8040 0.8979 1.0966 0.9942
ARIMA(1,0,0) 0.8938 1.1710 1.0093 0.9454 1.0821 1.0042 0.7460 0.8705 0.8012 0.9079 1.0818 0.9903

0.95

ARIMA(0,1,0) 0.9121 1.2042 1.0344 0.9550 1.0974 1.0166 0.7521 0.8765 0.8115 0.9166 1.0987 1.0031

Table 16. Minimum, maximum and average values of metrics used to evaluate the forecasting per-
formance of models on the test data set of the 100 AR(1) with β equals to 0.97 and 0.95 realizations.

As might have been expected, the true/equivalent model (ARIMA(1,0,0)) of the AR(1) time
series shows the best forecasting performance. From the comparison of models ARIMA(1,0,0) and
ARIMA(0,1,0) it could be seen that overdifferencing of the time series does not help to improve
the performance of forecasting and these processes with β equals to 0.97 or, especially, to 0.95 are
more close to stationarity than to nonstationarity. It could be noticed that average values of MSE,
RMSE and MAE are the same or very similar when the ARIMA(1,0,0) is used for the AR(1) with
β equals to 0.97 and 0.95 forecasting, but, when we use ARIMA(0,1,0), average values of errors
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increase when the value of β decreases. Also it could be noted that even though ARIMA(0,1,0)
outperformed ML models for the 100 AR(1) with β = 0.99 realizations forecasting, by reducing
the value of β to 0.97 it outperforms only the MLP model and with β = 0.95 ARIMA(0,1,0) is
even the worst model giving the largest forecasting errors. These results confirm the idea which was
mentioned in the literature review, that it is very important to test the stationarity of the time series
before using forecasting models and overdifferencing can cause some inefficiencies in forecasting.

Even though the ARIMA(1,0,0) outperforms ML models, they also are able to make quite
accurate predictions for the AR(1) time series with β equal to 0.97 or 0.95, even if selected hyper-
parameters are not the most optimal for all of those time series. Possibly, by predicting a specific
time series and choosing more optimal parameters for this case, the accuracy of predictions ob-
tained using ML models would be even more accurate. Additionally, it could be noticed that with
a smaller value of β AR(1) time series become more stable and easier to be predicted for all of
analyzed ML models based on the fact that, when the value of β decreases from 0.97 to 0.95, the
values of all forecasting performance metrics also decreases that shows smaller forecasting errors
obtained. Similarly as in the comparison of models used to make the predictions for the 100 AR(1)
time series with β = 0.99, by taking smaller values of β the best forecasting performance shows
RNN model compared to other ML models as well as MLP performs worst. However, by taking
into account all these results and some findings in the related works, where the ability of ML mod-
els to deal with strongly nonstationary and nonlinear time series has been proved as well as some
difficulties in handling with linear parts of the time series have been noticed by using ML models,
this simulation study could also confirm that traditional statistical models (without differencing)
should be the more appropriate choice for the time series which approach stationarity, especially if
they are linear (as in the analyzed case).

Figure 30. Simulated AR(1) time series with β = 1.01 (on the left) and β = 1.02 (on the right).

Additionally, it was decided to apply the same constructed models for the explosive AR(1) time
series with β value equal to 1.01 and 1.02 for the purpose of testing if these models are also able
to deal with blowing up in finite sample. First of all, the single simulated AR(1) with β = 1.01
and another with β = 1.02 were tested. Both time series are visually depicted in the Figure 30. By
keeping the same data splitting into training, validation and test data sets we could see that there is
a huge explosion in the test data set while in other data subsets the changes of values in time are not
so big, therefore it was interesting to check if constructed ML models will be able to make quite
accurate predictions for this explosion after learning from the more stable part of time series.

However, from the Figure 31 we could see that ARIMA models make quite accurate predictions
for the test data of the explosive AR(1) time series and significantly outperforms constructed ML
models. It is interesting that MLP, which was outperformed by RNN and SVR in all previous cases,
is able to deal with the high explosion in time series, while other two ML models are completely
incapable to predict these sharp rises of simulated AR(1). Due to the fact that values of the time
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Figure 31. Actual and predicted values of AR(1) with β equals to 1.01 and 1.02 using all constructed
models for the forecasting.

series as well as values of the performance metrics are very large and, based on all metrics, models
are ranked in the same order by their accuracy, the Figure 32 is included to show the percentage
values of the single metric (MAE) of each model. It could be seen that RNN and SVR obtain equally
large errors and compared to MLP they are three times larger, while the errors obtained using
ARIMA models are relatively small. In addition, all models were applied for more realizations of
these explosive AR(1) time series, however, all models showed similar forecasting performance for
all of the realizations.

Therefore, it could be concluded that constructed ML models, unfortunately, did not succeed
in making accurate predictions for the AR(1) time series with value of β larger than 1, even though
they were able to quite well forecast many different realizations of the AR(1) with β smaller that 1.
These experimental results could indicate that the forecasting of the explosive AR(1) time series is
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Figure 32. Simulated AR(1) time series with β = 1.01 (on the left) and β = 1.02 (on the right).

a special case which has to be analyzed separately in the further researches. The ability of MLP to
capture the explosion of time series allows for us to assume that the selection of the more appropri-
ate hyperparameters of the ML models could help to improve their forecasting performance and,
perhaps, to make quite accurate predictions.

3.2 The performance of models of the real world data forecasting
One of the main interests of this work is to test the performance of ML models of the time

series, with a high degree of persistence, forecasting. The random walk, analyzed in the simulation
study, is one of the best known examples of a time series with a high degree of persistence as well
as the nearly nonstationary AR(1) time series with a value of the parameter β close to 1, which also
has a similar behaviour to random walk. It is known that the time series of financial market usually
follow a random walk, therefore it was decided that such time series application could be useful in
this experiment. The data of the Offset Market Exchange Gross Index of Vilnius (OMX Vilnius
GI) were used (found in the Nasdaq official page). This the local all-share index is one of the best
known indexes in the Lithuania which includes all the stocks on the Main and Secondary lists of
the Vilnius market. OMX Vilnius GI shows the gross return of the stocks it includes.

Daily values of the index from 2000-01-01 to 2020-12-18 have been used in the experiment.
Before applying models for the forecasting of this real world time series, it was important to elim-
inate duplicates and add missing dates by replacing missing values into average values obtained
using the rolling mean which is better known as a simple moving average (SMA). SMA uses a slid-
ing window to take the average of values over a set number of time periods. Due to the facts that the
daily data are analyzed and the maximum period, containing missing values, was 6 days, the size
of the window was set to 7 by calculating the SMA in each of 7 days period and using computed
values instead of missing ones. Completely prepared data are visualized in the Figure 33.

Based on the fact that the time series of financial market follow a random walk, it was assumed
that the analyzed time series could be modeled by the AR(1) model. The Yule-Walker method
was used to estimate the AR(1) parameter β and the estimated value was equal to 0.99948474.
Therefore, based on the assumption which has been made, it could be said that the analyzed real
world time series is nearly nonstationary, because the estimated value of β is less than one but very
close to unity.

The preparation of data for the forecasting was the same as in the simulation study (see more in
the beginning of the Section 3.1), time series was divided into training, validation ant test data sets
by keeping the same proportions and all values were scaled using the Min-Max scaling. The train-
ing data set consisted of the fist 4288 index values from 2000-01-01 to 2011-09-27, the validation
data set contained further 1838 observations from 2011-09-28 to 2016-10-08 and for the testing
the rest 1532 values were used from 2016-10-09 to 2020-12-18. After that, both neural network
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Figure 33. Prepared data of the Offset Market Exchange Gross Index of Vilnius (OMX Vilnius GI)
used in the experiment.

models with the single hidden layer (MLP and RNN) and SVR model have been applied for the
analyzed time series by trying to find optimal hyperparameters of models. Many different com-
binations of parameters have been tested and it was noticed that all ML models with significantly
different parameters, compared to those which have been tested in the simulation study, obtain very
inaccurate predictions. The optimal combination of parameters was selected based on the smallest
values of the forecasting performance metrics, calculated on the validation data. It was found that
MLP with ReLU activation function in the hidden layer, 8 hidden nodes, size of the learning rate
equals to 0.00001 and 80000 iterations shows the best forecasting performance. Using RNN most
accurate predictions were obtained with ReLU activation function, 6 hidden nodes, 0.01 learning
rate and 6000 iterations. The most optimal combination of parameters for the SVR was RBF ker-
nel function with values of values of C, ε and γ equal to 1024, 0.0001 and 0.1 respectively. All
ML models with the selected optimal parameters and two statistical models (ARIMA(1,0,0) and
ARIMA(0,1,0)) were applied for the time series of the OMX Vilnius GI forecasting. Actual and
predicted values of this time series using each of five analyzed models are visually depicted in the
Figures 34, 35, 36 and 37. By looking at these Figures, it looks like all models made quite accurate
predictions, therefore, for the more clear demonstration, the Figures 38, 39, 40 and 41 are included,
which show last 100 actual and predicted values of analyzed time series in each of the data sub-
sets (training, validation and test). It could be noticed that all models predict not very ideally but
quite accurate. From the visual perspective it looks like there are no significant differences in the
predictions which are obtained using ARIMA(1,0,0) and ARIMA(0,1,0). RNN also shows quite
good forecasting performance, while MLP and SVR are not able to deal with all spikes in data. It
is interesting, that SVR, which in the majority of previous examples showed quite well forecasting
performance and often outperformed neural network models, especially MLP, in this case performs
worst, at least by looking at the predictions of the testing data. For the final comparison of the fore-
casting performance of models Table 17 is included in which the values of metrics, used to evaluate
the accuracy of predictions on the test data set, are presented.
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Figure 34. Actual and predicted values of the OMX Vilnius GI using MLP with optimal parameters
(ReLU activation function, 8 hidden nodes, learning rate equals to 0.00001 and 80000 iterations).

Figure 35. Actual and predicted values of the OMX Vilnius GI using RNN with optimal parameters
(ReLU activation function, 6 hidden nodes, learning rate equals to 0.01 and 6000 iterations).
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Figure 36. Actual and predicted values of the OMX Vilnius GI using SVR with optimal parameters
(RBF kernel function with values of C, ε and γ equal to 1024, 0.0001 and 0.1 respectively).

Figure 37. Actual and predicted test data of the OMX Vilnius GI using ARIMA(1,0,0) (on the left)
and ARIMA(0,1,0) (on the right).
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Figure 38. Last 100 actual and predicted values of training, validation and test data sets of the OMX
Vilnius GI using MLP for the forecasting.

Figure 39. Last 100 actual and predicted values of training, validation and test data sets of the OMX
Vilnius GI using RNN for the forecasting.

Figure 40. Last 100 actual and predicted values of training, validation and test data sets of the OMX
Vilnius GI using SVR for the forecasting.

Figure 41. Last 100 actual and predicted values of test data set of the OMX Vilnius GI using
ARIMA(1,0,0) (on the left) and ARIMA(0,1,0) (on the right).
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MSE RMSE MAE MASE
MLP 10.8019 3.2866 1.8968 1.1465
RNN 9.9400 3.1528 1.8632 1.1262
SVR 11.1064 3.3326 1.9699 1.1907

ARIMA(1,0,0) 9.8331 3.1358 1.8716 1.2174
ARIMA(0,1,0) 9.8084 3.1318 1.8663 1.2140

Table 17. Final values of metrics used to evaluate the forecasting performance of models on the
test data set of the OMX Vilnius GI.

It could be seen that based on the values of MSE and RMSE, ARIMA(0,1,0) shows the best
forecasting performance, while SVR performs worst as might have been expected after looking
at the graphical representation of predictions. However, based on the MAE and MASE metrics,
RNN model outperforms all other models and, for instance, values of MASE show that all ML
models perform better in a comparison to statistical models. By looking at the values of MASE, we
could also see that all models perform worse than the naïve model in-sample and from the visual
perspective it was noticed that with all models a small shift appears between the real and predicted
values of the OMX Vilnius GI, which was also almost always seen in the examples of the simulation
study. That confirms the fact that time series which are based on the random walk or has very similar
behaviour to random walk (as analyzed market index), are very difficult to predict and all models
are tend to obtain the most accurate prediction at a current time which is very close to the value
of previous observation. Therefore, based on all results discussed in this part of the experiment, it
can be concluded that ML models are able to slightly outperform traditional statistical models in
the real world time series, which follow a random walk, forecasting, and, possibly, more difficult
architecture or other ML models may be able to show even better forecasting performance, however
the randomness in the behaviour of such time series could be the reason for the ML models to not
make significantly better predictions than those, for example, which could be obtained using the
simple naïve model.
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4 Conclusions
The main idea of this work is to examine what differences are between nonstationary and nearly

nonstationary time series forecasting performance using machine learning models. The literature
review shows that the nearly nonstationary time series have similar properties and tendencies in the
behaviour to the nonstationary ones and in practical applications of the machine learning models
for the time series forecasting it is usual to divide time series only into two groups: stationary
and nonstationary. However, the impact of changes in the degree of persistence in time series on
forecasting using machine learning models is not considered and this is the area of interest.

One of the objectives in this study was to construct machine learning models (MLP, RNN
and SVR) and test if they are able to achieve quite well performance on both nonstationary and
nearly nonstationary time series forecasting. Results of the simulation study and the application
of the real world data show that machine learning models could be a really effective tool to make
quite accurate predictions for the nonstationary and nearly nonstationary time series, however, the
accuracy of predictions obtained is very dependent on the parameters of models. Based on the
simulation study where the constructed machine learning models have been applied for 100 AR(1)
realizations forecasting it was noticed that models unequally respond (at least MLP and RNN) to the
nonstationary and nearly nonstationary time series. It means that every example of a true random
walk has to be considered as a special case due to the high randomness in the behaviour, while
the time series which have only a similar behaviour to the random walk or are almost stationary
do not have so many drastic changes and are more easily to predict. The analysis of the explosive
time series also shows that this is a very unique case and also requires to be analyzed separately.
Therefore, it could be assumed that the changes in the degree of persistence in time series could
affect the forecasting performance of machine learning models.

Another objective of this work was to test if machine learning models could outperform tradi-
tional statistical models. Simulation results show that some of the machine learning models, as in
this case RNN and SVR, are able to outperform commonly used statistical model ARIMA when
the specific case of the nonstationary time series is predicted. However, the application of models
for the more different realizations of nonstationary time series shows that the strong dependency on
parameters of the machine learning models can cause high inefficiencies in forecasting what could
mean that using machine learning models for the nonstationary time series forecasting for a long
time it may be necessary to constantly update the model parameters what is really time consuming
and is the weakness of the machine learning models. In the case of the nearly nonstationary time
series forecasting, it was noticed that SVR (in the simulation study of a single AR(1) realization)
and RNN (in the real world application) based on some forecasting performance metrics were able
to slightly outperform traditional statistical models. However, overall, for the nearly nonstation-
ary time series forecasting, it is more preferable to use traditional statistical models due to the fact
that they show better or very similar forecasting performance to the machine learning models and
are much easier to use. Possibly, more difficult machine learning models may be able to get more
accurate predictions for the nearly nonstationary time series and outperform statistical models.

Taking all results into account, it could be concluded that the time series which are based on a
random walk or follow a random walk are quite difficult to predict. For such time series, usually,
the best prediction is very close to the value of the previous observation and it could be noticed
that, even though all analyzed models in most cases are able to make quite accurate predictions,
they always are tend to have smallest errors giving the prediction at the current time similar to the
value of the observation a day before. Therefore, despite the fact that the changes in the degree of
persistence in time series have an effect on the forecasting performance, for the time series with a
high degree of persistence the simple naïve model could be quite good choice instead of difficult
and time consuming constructions of more difficult, for example, machine learning, models. Also,
it can be concluded that even though nowadays machine learning models usually are described as
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one of the most effective tools for the time series forecasting (especially for the nonstationary ones),
they are tend to lose their power in the face of the randomness of the time series and usually are not
able to make significantly better predictions in a comparison with traditional statistical models or
even with the simplest naïve model.
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