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Daugybinių išskirčių identifikavimo metodas pagreitinto gedimų laiko
(AFT) - regresijos modeliams

Santrauka

Šio tyrimo tikslas pateikti išskirčių ieškojimo metodų normaliosioje tiesinėje regresijoje modifikacijas

pagreitinto gedimų laiko (AFT) regresiniams modeliams ir palyginti juos. Šiame darbe nagrinėjami

trys išskirčių identifikavimo metodai: BP ir David-Gather (DG), grindžiamu vienu iš dviejų vertin-

imo metodų: mažiausiųjų kvadratų bei robastiniu. Pirmosios dalies tikslas modifikuoti BP išskirčių

ieškojimo metodą pagreitinto gedimų laiko (AFT) regresiniams modeliams. Antrosios dalies tik-

slas: generuojant duomenis palyginti visus tris metodus bei pateikti praktinius pavyzdžius. Naudo-

jant duomenų generavimą gauta, kad daugelyje situacijų BP metodas geriau identifikuoja išskirtis

už abu DG metodus. Atlikus procedūrą su realiais duomenimis, rezultatai gauti tokie patys, kaip ir

simuliacijų metu. Gauti rezultatai įrodo, kad BP metodą galime naudoti pagreitinto gedimų laiko

(AFT) regresinių modelių išskirtims ieškoti.

Raktiniai žodžiai : išskirtys, pagreitinto gedimų laiko (AFT) regresija, BP metodas, David Gather

metodas, robastiniai įvertiniai.

Multiple Outliers Identification Method in Accelerated Failure Time
(AFT) – Regression Models

Abstract

The purpose of the study is to give modifications of outliers identification methods for normal linear

regression to more general case of accelerated failure time (AFT) regression and compare them. In

this work three outlier search methods are investigated: BP and David Gather (DG) based on one of

two parameter estimation methods: ordinary least squares and robust. The objective of the first part

is to modify BP outlier search method for accelerated failure time (AFT) regression models. The

objective of the second part is to compare all three methods using data generation and to provide

practical examples. In many situations, BP outlier search method identifies outliers better then both

DG methods (ordinary least squares and robust). Analysis of real data examples confirms simulation

results. Obtained results proved, that BP outlier search method can be useful for outliers search in

accelerated failure time (AFT) regression model.

Key words : outliers, accelerated failure time (AFT) regression, BP method, Davies Gather method,

robust estimation.
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1. Introduction

The main objective of the master thesis is to investigate a new outlier identification method

in accelerated failure time (AFT) models and to create an outlier search procedure struc-

ture. The subject of outlier identification in accelerated failure time models is not widely

investigated.

There are two different definitions of outliers. Firstly, the outlier region is defined as a set

out(X) such that with a very small probability at least one observation Xi from the sample is

going to fall into out(X) if the considered model holds. The first definition: an outlier is an

observation which falls into the outlier region.

In the second case, the value xi of Xi is an outlier if the probability distribution of Xi

is different from the probability distribution given by the considered model - it is called

contaminants.

If these two definitions are analyzed using true model, then in the first sense with a very

small probability some outliers are possible, but using the second definition contaminants

are absent. If contaminants are present, then the model does not hold for all observations.

It is important to mention, that it is possible that contaminants do not fall into the outlier

region. That means that contaminants are not necessarily outliers (in the first sense). Hence,

the two notions are different. On the other hand, if the alternative distribution is concentrated

in the outlier region, almost all outliers coincide using both definitions. In such cases, search

methods for outliers and contaminants can be compared.

In this master thesis a new multiple outlier identification method for accelerated failure

time (AFT) regression model based on robust estimation is presented. This method was

developed based on the BP method [1] (described in the 3 section) and compared with the

generalized Davies Gather method (which was applied to an accelerated failure time (AFT)

regression model). Model’s accuracy was established during data simulations for the AFT

model, also it was tested on the real data and compared with the generalized Davies Gather

method.

The rest of the work is organized as follows. Literature review is presented in Chapter

2. Outlier’s definitions, outlier search in AFT models and the new model construction are

presented in Chapter 3. Comparative analysis of the methods by simulation are given in
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Chapter 4. The application of the new model to the real data is described in Chapter 5.

Conclusions are presented in Chapter 6.

2. Literature review

For i.i.d. data X1, ...,Xn modelled by parametric models of the form Xi ∼ F(x;θ), θ ∈ Θ,

many outlier’s identification methods were proposed in the statistical literature. However,

the majority of the methods were given for the normal distribution (see [7, 12, 15, 33, 36,

39], see surveys in [4, 40]. Several methods were given for the exponential and gamma

distributions, see [9, 18, 19, 21, 23–26, 41].

Many authors suppose that the number of possible outliers s are fixed. This assumption

leads to only two possible conclusions: exactly s amount of observations are identified as

outliers or none of the outliers are identified. It is more natural to consider methods which

do not specify the number of suspected observations or at least specify the upper limit s.

Such methods are not frequent and are modeled only for normal ([7, 17, 33]) or exponential

samples ([20, 25, 26]). The only method which does not specify the upper limit s is the

[12] method for normal samples. Bagdonavičius and Petkevičius proposed a method for

outlier identification in samples from location-scale and shape-scale families of probability

distributions [3].

Many outliers identification methods are proposed for the normal linear regression model.

Outlier detection methods for linear regression model are described in the books of Fox [14],

Barnett and Lewis [4], Riani and Atkinson [32], Rousseeuw and Leroy [22] and Chatterjee

and Hadi [8].

It is common that estimated residuals based on ordinary least squares estimators (OLSE)

of the regression parameter are used for many methods. If observations of internal or exter-

nal studentized residuals are large, then corresponding observations are declared as outliers.

Other methods consider more sophisticated functions of estimate residuals. Methods based

on Cook’s distance [10, 11], DFFITS [38], COVRATIO [5] statistics are implemented in stan-

dard statistical software. Peña [30] proposed to use well-chosen linear functions of Cook’s

distances. However, many authors remarked that if multiple outliers exist, then that all these

OLSE based methods are not suitable – methods values have strong masking effect. Masking
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effect means that not all outliers are identified as outliers ("masked"). Also some of these

methods give large swamping effect, which means that many regular observations will be

falsely identified as outliers.

Internal studentized residuals based on robust estimators of model parameters were stud-

ied in Rousseeuw and Van Zomeren work [34] and to reject outlier observations with large

residuals values was proposed. The method described is much more convenient and accurate

than methods based on ordinary least squares estimators (OLSE) in terms of masking and

swamping effects.

The breakthrough in multiple outlier identification method improvement was made by

Nurunnabi and Dai [29]. They modified Peñas method deleting “suspected” observations

from the data and creating an obtained residuals set. Also Hadi, Rahmatullah Imon and

Nurunnabi and Dai [16, 29, 31] studied a method based on group’s deleted residuals. If sets

of “suspected” observations are selected properly, then latter methods gives good results. In

the other hand, sometimes selecting proper sets leads to unexpected results, especially when

datasets are large, i.e. using BACON [6] algorithm.

Bagdonavičius and Petkevičius [1] proposed a new multiple identification method on

robust estimation, which is based on a result giving asymptotic properties of extreme studen-

tized residuals.

In following sections generalizations of Davies-Gather (DG) method (given for the nor-

mal non-regression model) and Bagdonavičius-Petkevičius (BP) method (given for the nor-

mal regression model) to the case of accelerated failure time (AFT) models will be considered

and their performance in terms of swamping and masking values will be compared.

3. Theoretic models and results

3.1. Accelerated failure time (AFT) model

Suppose that regression data are independent random vectors

(Y1,(x(1))T ), ...,(Yn,(x(n))T ), (1)

where

x(i) = (xi0,xi1, ...,xim)
T , xi0 = 1, (2)
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is the vector of covariates for the ith object, and Yi is the dependent variable.

Suppose that the AFT regression model

Yi = lnTi = β0 +β1xi1 + · · ·+βmxim + εi, i = 1, ...,n,

is considered; here εi/σ ∼ F0(x), F0 is a specified function. Denote by f0 the density of εi/σ .

The following three regression models are the most popular in survival analysis and reli-

ability theory (see Table 1):

Distribution F0(x)

AFT-lognormal Φ(x)

AFT-Weibull 1− e−ex

AFT-loglogistic 1
1+e−x

Table 1: AFT-model distributions

Using matrix notation, the model is:

Y = Xβ + ε, (3)

where Y = (Y1, ...,Yn)
T , β = (β0, β1, ...,βm)

T , ε = (εi, ...,εn)
T , X = [xi j] is n×(m+1) matrix

of covariates.

3.2. Definition of outliers and outlier regions for AFT models

Let us generalize the definition of the outlier region given in Davies and Gather [12] for

non-regression normal data to the case of AFT models.

For an AFT model the right-sided αn-outlier region can be defined as follows:

outr(αn,F0) = {(y,x) ∈ (R×Rm+1 : y−β
T x > σF−1

0 (1−αn)}

and the left-sided αn-outlier region is

outl(αn,F0) = {(y,x) ∈ (R×Rm+1 : y−β
T x < σF−1

0 (αn)}.

The two-sided α-outlier region is

out(αn,F0) =
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{(y,x)∈ (R×Rm+1 : y−β
T x<σF−1

0 (αn/2)}∪{(y,x)∈ (R×Rm+1 : y−β
T x>σF−1

0 (1−αn/2)}.

If f0 is symmetric (as for AFT-lognormal and AFT-loglogistic models), then the two-

sided outlier region is simpler:

out(αn,F0) = {(y,x) ∈ (R×Rm+1 : y−β
T x ∈R/[σF−1

0 (α/2)],σF−1
0 (1−α/2)]}. (4)

The αn value is chosen supposing that if the AFT model (1) holds, then for a fixed α ∈

(0,0.1]

P
{ n⋂

i=1

{(Yi,x(i)) /∈ outαn}
}
=
(
P{(Yi,x(i)) /∈ outαn}

)n
= 1−α. (5)

The equality (5) means that under the model (1) the probability that none of the random

vectors (Yi,(x(i))T ) falls into αn - outlier region is 1−α . This equality implies that

αn = 1− (1−α)1/n. (6)

The sequence αn decreases from α to 0 as n goes from 1 to ∞.

The vector (Yi,(x(i))T ) value is called outlier for a sample of size n if it falls into the

outlier region outαn .

The number of outliers Dn under the model (1) has the binomial distribution B(n,αn) and

the expected number of outliers in the sample is EDn = nαn. Note that EDn→− ln(1−α)≈

ᾱ as n→ ∞. For example, if α = 0.05 then − ln(1− ᾱ) ≈ 0.05129 and for n ≥ 10 the

expected number of outliers is approximately 0.051� n, i.e. it practically does not depend

on n and is negligible with regard to the sample size n.

The definition of an outlier means that the value of (Yi,(x(i))T ) is an outlier if it is far

away from the regression plane (or line). The cause of an outlier may be unusual values of Yi

or x(i) (or both).

The value of (Yi,(x(i))T ) is a high leverage point if the value of x(i) is far away from the

bulk of the covariate values. Otherwise, it is a low leverage point ([34]). So a low leverage

point is an outlier if Yi takes an unusual value. A high leverage point is an outlier if it is far

away from the regression plane, i.e. if it is a bad leverage point. A high leverage point is

non-outlier if it is near to the regression plane, i.e. if it is a good leverage point.

So the outliers are bad high leverage points or low leverage points with unusual values of

the dependent variable Y .
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3.3. Generalization of Davies-Gather metod for AFT models

In section 3.1 was shown that by logarithmic transformation the AFT models are transformed

to linear regression models with various distributions of error terms. The distribution of the

error terms may be non-symmetric, cf. the AFT-Weibulll model.

After logarithmic transformation the data are

Yi = lnTi = β0 +β1xi1 + · · ·+βmxim + εi, i = 1, ...,n,

εi/σ ∼ F0(x), F0 is a specified function.

Let β̂ and σ̂ be robust estimators of the parameters β and σ . Denote by Ŷi = β̂ T x(i), ε̂i =

Yi− Ŷi, and H = [hi j]n×n = X(XT X)−1XT the predicted values and unstandardized residuals,

and leverage matrix, respectively. Set hi = hii.

The studentized residuals are

ri =
ε̂i

σ̂
√

1−hi
. (7)

Define gn,αn using the condition

P{ri ≤ gn,α , i = 1, ...,n|H0}= P{max
1≤i≤n

ri ≤ gn,α |H0}= 1−α, (8)

So gn,α is the α critical value of the random variable max1≤i≤n ri.

Generalized Davies-Gather method for right outliers identification: right outliers are

absent when max1≤i≤n ri≤ gn,α and outliers exist when max1≤i≤n ri > gn,α . They are selected

finding the minimal i such that r(i) > gn,α . Observations corresponding to r(i), ...,r(n) are

declared as right outliers.

If estimators are equivariant, then the distribution of max1≤i≤n ri is parameter-free under

the AFT model.

hn,1−αn is defined using the condition

P{ri ≥ hn,1−α , i = 1, ...,n|H0}= P{ min
1≤i≤n

ri ≥ hn,1−α |H0}= 1−α, (9)

So hn,1−α is the 1−α critical value of the random variable min1≤i≤n ri.

Generalized Davies-Gather method for left outliers identification: left outliers are ab-

sent when min1≤i≤n ri ≥ hn,1−α . The probability of such event is 1−α . Left outliers exist
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when min1≤i≤n ri < hn,1−α . They are selected finding the maximal i such that r(i) < hn,1−α .

Observations corresponding to r(i), ...,r(n) are declared as left outliers.

Let us consider two-sided case.

Suppose that the distribution of εi is symmetric with respect to 0.

Generalized Davies-Gather method for outliers identification (symmetric case): if max1≤i≤n |ri| ≤

gn,α/2, then it is concluded that outliers are absent. If max1≤i≤n |ri| > gn,α , then it is con-

cluded that outliers exist. They are selected in the following way. Find the minimal i such

that |r|(i) > gn,α . Observations corresponding to |r|(i), ..., |r|(n) are declared as outliers. Out-

liers satisfying the inequality r(i) > gn,α/2 are declared as right outliers and outliers satisfying

the inequality r(i) <−gn,α/2 are declared as left outliers.

Suppose that the distribution of εi is non-symmetric.

Generalized Davies-Gather method for left and right outliers identification (nonsymmet-

ric distributions): if max1≤i≤n ri ≤ gn,α/2 and min1≤i≤n ri ≥ hn,1−α/2, then it is concluded

that the right outliers do not exist. The probability of such event is α . Otherwise, it is de-

clared that outliers exist. Observations corresponding to i: ri > gn,α/2 are declared as right

outliers and observations corresponding to j: r j < hn,1−α/2 are declared as left outliers.

3.4. Theoretic background for the BP identification method

Suppose that a c.d.f. F0 belongs to the domain of attraction G0, i.e. normalizing constants

an > 0 exist and bn ∈ R such that limn→∞ Fn
0 (anx+bn) = e−e−x

.

One of possible choices of the sequences {bn} and {an} is

bn = F−1
0 (1− 1

n
), an = 1/(n f0(bn)). (10)

Suppose that the function f0 is not symmetric. The c.d.f. and p.d.f. are 1−F0(−x) and

f0(−x) respectively. Set

b∗n =−F−1
0 (

1
n
), a∗n = 1/(n f0(−b∗n)). (11)

In the particular case of the normal distribution equivalent form of an = 1/bn can be used.

Expressions of bn and an for some most used distributions are given in the following Table.
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Distribution F0(x) bn an

Normal Φ(x) ∈ G0 Φ−1(1−1/n) 1/bn

Type I extreme value 1− e−ex ∈ G0 ln lnn e−bn = 1/ lnn

Type II extreme value e−e−x ∈ G0 −ln(−ln(1−1/n)) ebn/(n−1)

Logistic 1
1+e−x ∈ G0 ln(n−1) n/(n−1)

Table 2: Classification table

Suppose that for any ε > 0

lim
x→+∞

xε [1−F0(x)) = 0, lim
x→+∞

xε [F0(−x)) = 0. (12)

Note that for all three considered probability distributions these conditions are satisfied:

1) Normal distribution: F0(x) =Φ(x). Using the fact that 1−Φ(x)∼ x−1ϕ(x) as x→+∞,

we have

lim
x→+∞

xε [Φ(−x)] = lim
x→+∞

xε [1−Φ(x)] = lim
x→+∞

xε−1
ϕ(x) = 0.

2) Extreme value distribution: F0(x) = 1− e−ex
. We have

lim
x→+∞

xε [F0(−x)] = lim
x→+∞

xε [1−e−e−x
] = lim

x→+∞
xε [1− (1−e−x+o(e−x))] = lim

x→+∞
xεe−x = 0.

lim
x→+∞

xε [1−F0(x)] = lim
x→+∞

xε [e−ex
] = lim

x→+∞

xε

eex = 0.

3) Logistic distribution: F0(x) = 1
1+e−x . We have

lim
x→+∞

xε [1−F0(x)] = lim
x→+∞

xε [F0(−x)] = lim
x→+∞

xε 1
1+ ex = 0.

Note that bn = F−1
0 (1− 1

n)→ ∞ as n→ ∞ and if the conditions (12) are satisfied, then for

any δ > 0

lim
n→∞

bn

nδ
= 0, lim

n→∞

an

nδ
= 0. (13)

Indeed, denoting x = F−1
0 (1− 1

n), we have:

lim
n→∞

bn

nδ
= lim

n→∞

F−1
0 (1− 1

n)

nδ
= lim

x→+∞
x[1−F0(x)]δ =

lim
x→+∞

(
x1/δ [1−F0(x)]

)δ

= 0,

and applying l’Hopitals rule we have

0 = lim
n→∞

bn

nδ
= lim

n→∞

F−1
0 (1− 1

n)

nδ
= lim

n→+∞

1
n2

δnδ−1 f (F−1
0 (1− 1

n))
=

11



lim
n→+∞

1
δnδ+1 f (bn)

= lim
n→+∞

an

δnδ
.

We supposed that εi/σ ∼ F0(x). The c.d.f. of |εi|/σ is G0(x) = F0(x)−F0(−x), x ≥ 0 and

the density is g0(x) = f0(x)− f0(−x).

If the conditions (12) are satisfied, then for any ε > 0

lim
x→+∞

xε(1−G0(x)) = lim
x→+∞

xε(1−F0(x)+F0(−x)) = 0, lim
x→+∞

xεG0(−x) = 0. (14)

We used the fact that F(−x) = 0 for all x > 0.

So if b̃n = G−1
0 (1−1/n), ãn = 1/ng0(b̃n), then for any δ > 0

lim
n→∞

b̃n

nδ
= 0, lim

n→∞

ãn

nδ
= 0. (15)

For symmetric distributions G0(x) = 2F0(x)−1.

Let us suppose that the covariates are fixed or normally distributed for any fixed n. We

need some conditions on the behaviour of the covariates, the c.d.f F0 and estimators of the

parameters β and σ as n→ ∞.

Denote by X0 the sub-matrix of X without the first column of X and by x(i)0 the subvector

of the vector x(i) without the first coordinate.

Conditions A. Consider a model that satisfies the following conditions:

1. 1
nXT X → Q, where Q is non-degenerate symmetric matrix;

2. max1≤i≤n ||x(i)||= O(bn) as n→ ∞; here ||x(i)||2 =
m

∑
j=0

x2
i j ;

3. β̂ and σ̂ are consistent estimators of β and σ , the limit distribution of (
√

n(β̂ −

β )T ,
√

n(σ̂ −σ))T is non-degenerate.

4. F0 ∈ G0 and for any ε > 0 limx→+∞ xε [1− F0(x)) = 0, limx→+∞ xε [F0(−x)) = 0,

limx→∞ x3 f0(x) = 0, limx→∞ x f0(x)/(1−F0(x))1/2 = 0.

Condition A1 is usual in asymptotic analysis of robust estimators of parameters. Condi-

tion A2 means that if covariates are unbounded, as n→ ∞, then they approach infinity not

too quickly. If covariates are bounded, i.e. max1≤i≤n ||x(i)|| = O(1), then Condition A2 is

automatically satisfied. Condition 4 is satisfied for all three considered distributions F0.

12



Denote by Ŷi = β̂ T x(i), ε̂i =Yi−Ŷi, and H = [hi j]n×n =X(XT X)−1XT the predicted values,

unstandardized residuals, and leverage matrix, respectively. Note that under Condition A

max
i, j

hi j = max
i, j

(x(i))T
√

n
n(XT X)−1 x( j)

√
n
= O(

b2
n

n
)→ 0 (16)

as n→∞ because n(XT X)−1→Q−1 by Condition A 1, and bn/
√

n→ 0 by (13). In particular,

r0 = min
i

√
1−hii→ 1 (17)

Set hi = hii. The studentized residuals are

ri =
ε̂i

σ̂
√

1−hi
. (18)

Order the random variables ri:

r(1) ≤ ...≤ r(n).

Theorem 1. Suppose that the c.d.f. F0 belongs to the domain of attraction G0 and Conditions

A hold. Then for fixed s(r(n)−bn

an
,
r(n−1)−bn

an
, ...,

r(n−s+1)−bn

an

)
d→ L0 (19)

as n→ ∞; here

L0 = (− lnE1,− ln(E1 +E2), ...,− ln(E1 + ...+Es)) (20)

and E1, ...,Es are i.i.d. standard exponential random variables.

Proof. The c.d.f. of the random variable εi/σ is F0 ∈ G0. Set ρi = εi/(σ
√

1−hi) and order

these random variables:

ρ(1) ≤ ...≤ ρ(n).

For any i = 1, ...,s the following equality holds:

r(n−i+1)−bn

an
=

r(n−i+1)−ρ(n−i+1)

an
+

ρ(n−i+1)−bn

an
. (21)

Note that |ri| ≤ |ρi|+ |ri−ρi|, and let us consider the difference

ri−ρi =
1√

1−hi

(
ε̂i

σ̂
− εi

σ

)
=

1√
1−hi

(
−(β̂ −β )T x(i)

σ̂
+ εi(

1
σ̂
− 1

σ
)

)
=

13



1
σ̂
√

1−hi

(
−(β̂ −β )T x(i)+

1√
n

εi

σ

√
n(σ̂ −σ)

)
. (22)

By Condition A 3 and by (16)

σ̂ =σ +oP(1), max
1≤i≤n

1√
1−hi

≤ 1
mini, j

√
1−hi j

= (1−max
i, j

hi j)
−1/2 = 1+O(

b2
n

n
) =O(1).

(23)

By Condition A 3
√

n(β̂ −β ) converges in distribution to a non-degenerate random vari-

able and by Condition A 2 max1≤i≤n ||x(i)||= O(bn). Hence, applying the Cauchy-Schwartz

inequality for any i we have

max
1≤i≤n

|(β̂ −β )T x(i)| ≤ ||
√

n(β̂ −β )|| 1√
n

max
1≤i≤n

||x(i)||= OP(
bn√

n
). (24)

Theorem 2.1.1 in [13] applied to the random variables |εi|/σ implies that there exist a

random variable V1 with the c.d.f. e−e−x
such that

1
σ
√

n
max

1≤i≤n
|εi|= (b̃n + ãnV1 +oP(ãn))/

√
n = oP(1), (25)

here b̃n = G−1
0 (1−1/n), ãn = 1/ng0(bn), g0 = G′0. We used the result (15).

By Condition A 3 the sequence
√

n(σ̂ −σ) converges in distribution to a non-degenerate

random variable. Hence, the equality (22) and the results (23)-(25) imply that

max
1≤i≤n

|ri−ρi|= OP(
bn√

n
).

The inequalities

ρi− max
1≤ j≤n

|r j−ρ j| ≤ ri ≤ ρi + max
1≤ j≤n

|r j−ρ j|, i = 1, ...,n,

imply

ρ(n− j+1)− max
1≤i≤n

|ri−ρi| ≤ r(n− j+1) ≤ ρ(n− j+1)+ max
1≤i≤n

|ri−ρi|, j = 1, ...,s,

so

|r(n− j+1)−ρ(n− j+1)| ≤ max
1≤i≤n

|ri−ρi|= OP(
bn√

n
).

and
r(n−i+1)−ρ(n−i+1)

an
= OP(

bn

an
√

n
). (26)

Condition A4 implies:

lim
n→∞

bn√
nan

= lim
x→∞

x f0(x)/(1−F0(x))1/2 = 0.

14



Using (23) let us write the second term of the equality (21) in the form

ρ(n−i+1)−bn

an
=

ε(n−i+1)

σ(1−h(n− j+1))
1/2 −bn

an
.

ε(n−i+1)
σ
−bn

an
+OP(

b2
n

n
)
ε(n−i+1)

anσ
(27)

Theorem 2.1.1 in [13] implies that

ε(n−i+1)

σ
= bn +anVj +o(an),

where Vj has non-degenerated distribution.

So

OP(
b2

n
n
)
ε(n−i+1)

anσ
= O(

b3
n

nan
).

Condition A4 implies:

lim
n→∞

b3
n

nan
= lim

x→∞
x3 f0(x) = 0.

The equalities (21), (26), and (27) imply that for any i = 1, ...,s

|r|(n−i+1)−bn

an
=

|ε|(n−i+1)
σ
−bn

an
+oP(1). (28)

The s-dimensional random vector such that its ith component is the first term of the right side

converges in distribution to L0. It follows from Theorem 2.1.1 of [13] applied to the random

variables |εi|/σ . Thus, the result (19) holds.

The proof is complete.

Let us consider the case of random covariates. Note that in this case the random vectors

x(i)0 are supposed to be i.i.d. with the mean µ = (µ1, ...,µm)
T = E(x(i)0 ) and the matrix of the

second moments Q0 = (q j j′) = E(x(i)0 (x(i)0 )T ), j, j′ = 1, ...,m. Set q00 = 1, q0 j = q j0 = µ j,

j = 1, ...,m, and Q=(q j j′), j, j′= 0, ...,m. The law of large numbers implies that 1
nXT X P→Q.

So Condition A 1 is simply replaced by the following: Q is non-degenerate.

Condition A 2 is replaced by the following: max1≤i≤n ||x(i)|| = OP(bn) as n→ ∞. This

condition is satisfied if the distribution of each x(i)0 has finite support which is natural in

most practical situations. Even this is not necessary. Let us show that it is satisfied if the

distribution of covariates is non-degenerate normal (it’s support is not finite).

Proposition 1. If x(i)0 ∼ Nm(µ,Σ), xi j ∼ N(µ j,σ
2
j ), then max1≤i≤n ||x(i)||= O(bn) as n→ ∞.
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Proof. Theorem 2.1.1 of [13] implies that for any j = 1, ...,m

max
1≤i≤n

|xi j|= µ j +σ jbn +
σ j

bn
Vj +oP(1),

where Vj is a random variable with the c.d.f. e−e−x
. For any M > 0

P
{

max
1≤i≤n

|xi j| ≤Mbn
}
= P

{
Vj ≤ bn

bn(M−σ j)−µ j +oP(1)
σ j

}
.

For any fixed M > σ j the right side of the inequality converges to infinity in probability

because bn→+∞. Hence, for any ε > 0 there exist M > 0, N = N(ε)> 0 such that

P{max
1≤i≤n

|xi j| ≤Mbn}> 1− ε as n > N.

So for any j = 1, ...,m : max1≤i≤n |xi j|= OP(bn) as n→ ∞. It implies that

max
1≤i≤n

||x(i)||= max
1≤i≤n

(
m

∑
j=0

x2
i j)

1/2 ≤ max
1≤i≤n

m

∑
j=0
|xi j| ≤

m

∑
j=0

max
1≤i≤n

|xi j|= OP(bn). (29)

The proof is complete.

It can be shown that Theorem 1 holds in the case of random covariates, too.

3.5. Robust estimators for AFT regression models

The choice of the estimators β̂ and σ̂ is important when outlier detection problem is consid-

ered. When outliers exist the ML estimators from the complete sample are not stable.

Distribution K0(x) d

Normal Φ(x/
√

2) 2.2219

Type I extreme value 1/(1+ e−x) 1.9576

Type II extreme value 1/(1+ e−x 1.9576

Logistic 1− (x−1)ex+1
(ex−1)2 1.3079

Table 3: Values of d for various probability distributions

For a fixed value of β , denote by r2
( j)(β ) the ordered values of the residuals ε2

i = (Yi−

β
T x(i))2 (in increasing order). The LTS estimator minimizes the sum of squares

Sk(β ) =
k

∑
j=1

ε
2
( j)(β ),
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where so-called trimming constant k satisfies the condition n
2 < k≤ n. The n−k observations

with the largest residuals will not affect the estimator.

The parameter σ is estimated by the statistic

σ̂ = Qn = dW([0.25n(n−1)/2]), (30)

where Wi j = |ε̂i− ε̂ j|, 1 ≤ i < j ≤ n, W(l) is the lth order statistic from C2
n = n(n− 1)/2

random variables Wi j.

The constant d has the form d = 1/K−1
0 (5/8), where K−1

0 (x) is the inverse of the c.d.f of

ε1− ε2, εi ∼ F0.

Expressions of K−1
0 (x) and values d are given in Table 3.

If the distribution F0 is symmetric around zero, then no further corrections are done.

If F0 is not symmetric or the mean of εi is not equal to zero, then the estimator of β0 is

corrected. For example, in the case of the AFT-Weibull model the estimator of of β0 has the

form:

β̂0 = β̃ +0.33999∗ σ̂ ,

where β̃0 is estimated using the LTS method.

The robust LTS estimators were computed using R package robustbase ([27, 37]).

3.6. BP outlier search method

3.6.1. Identification of right outliers

Suppose that F ∈ G0. Let an,bn be defined by (10). Set

U+
(n−i+1)(n) = 1−F

χ2
2i
(2e−(r(n−i+1)−bn)/an), (31)

where F
χ2

2i
(x) is the c.d.f. of the chi-square distribution with 2i degrees of freedom. Set

U+(n,s) = max
1≤i≤s

U+
(n−i+1). (32)

If the AFT model with a specified F0 and Conditions A hold, then Theorem 1 implies that

the limit distribution (as n→∞) of the random variable U (n)(s) coincides with the distribution

of the random variable

V+(s) = max
1≤i≤s

V+
i ,

17



where V+
i = 1−F

χ2
2i
(2(E1+ ...+Ei)), i= 1, ...,s, and E1, ...,Es are i.i.d. standard exponential

random variables. The random variables V+
1 , ...,V+

s are dependent identically distributed and

the distribution of each V+
i is uniform: V+

i ∼U(0,1).

Denote by vα(s) the α critical value of the random variable V+(s). They are found many

times simulating i.i.d. s standard exponential random variables and computing the values of

V+(s).

Outlier search procedure begins with investigation of observations corresponding to the

largest values of ri. In Bagdonavičius and Petkevičius [1] article it is recommended to begin

with five largest values. So take s = 5 and compute the value of the statistic U+(n,5) =

max1≤i≤5U+
(n−i+1)(n).

If U+(n,5) ≤ v+α (5), then it is concluded that outliers are absent and no further investiga-

tion is done. If U+(n,5) > v+α (5), then it is concluded that outliers exist and the following

classification scheme is done.

Note that (see the classification scheme below) if U+(n,5) > v+α (5), then minimum one

observation is declared as an outlier. So the probability to declare absence of outliers does

not depend on the following classification scheme.

Step 1. Set d1 = max{i ∈ {1, ...,5} : U+
(n−i+1)(n) > v+α (5)}. If d1 < 5, then classification is

finished at this step: d1 observations are declared as outliers, other observations are declared

as non-outliers. If d1 = 5, then it is possible that the number of outliers is higher than 5. Then

the observation corresponding to i = 1 (i.e corresponding to |r|(n))) is declared as an outlier

and we proceed to the step 2.

Step 2. The above written procedure is repeated taking max1≤i≤5U+
(n−i)(n− 1) = U+(n−

1,5) instead of U+(n,5); here

U+
(n−i)(n−1) = 1−F

χ2
2i
(2e−(r(n−i)−bn−1)/an−1), i = 1, ...,5,

Set d2 = max{i ∈ {1, ...,5} : U+(n−1)(n−i) > vα(5)}. If d2 < 5, the classification is finished

and d2 +1 observations are declared as outliers.

If d2 = 5, then it is possible that the number of outliers is higher than 6. In such case,

the observation corresponding to the largest residual |r|(n−1) is declared as an outlier, in total

2 observations (i.e. corresponding to r(n),r(n−1)) are declared as outliers at this step, but

classification is not finished and the procedure should be repeated.
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Classification finishes at the lth step, if dl < 5. (l − 1) outliers were declaired in the

previous steps and dl outliers in the last one. The total number of observations declared as

outliers is l−1+dl . These observations correspond to r(n), ...,r(n−dl−l+2).

From the computational point of view such method requires to find robust estimators and

standardized residuals once. Linear time is needed for implementation of the classification

procedure. Note that for fixed α (α = 0.05, for example) only one critical value vα(5)

(v0.05(5) = 0.9853, for example) is needed. Illustrative example showing simplicity of the

BP method’s application in 3.6.5 section.

3.6.2. Identification of left outliers

Let a∗n,b
∗
n be the normalizing constants defined by (11). Set

U−(i)(n) = 1−F
χ2

2i
(2e(r(i)−b∗n)/a∗n), (33)

where F
χ2

2i
(x) is the c.d.f. of the chi-square distribution with 2i degrees of freedom. Set

U−(n,s) = max
1≤i≤s

U−(i)(n). (34)

If the AFT model with a specified F0 and Conditions A hold, then Theorem 1 implies

that the limit distribution (as n→ ∞) of the random variable U−(n,s) coincides with the

distribution of the random variable

V−(s) = max
1≤i≤s

V−i ,

where V−i = 1−F
χ2

2i
(2(E1+ ...+Ei)), i= 1, ...,s, and E1, ...,Es are i.i.d. standard exponential

random variables. The random variables V−1 , ...,V−s are dependent identically distributed and

the distribution of each V−i is uniform: V−i ∼U(0,1).

Denote by v−α (s) the α critical value of the random variable V−(s). They are found

simulating i.i.d. s standard exponential random variables and computing the values of V−(s).

The critical values v−α (s) are approximated by the critical values v−α (s) = v+α (s).

The left outliers search method coincides with the right outliers search method replacing

+ to - in all formulas.
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3.6.3. Identification of two-sided outliers for symmetric distributions

Let an,bn by defined by (10). If F ∈ G0, then set

U(n−i+1)(n) = 1−F
χ2

2i
(2e−(|r|(n−i+1)−b2n)/a2n). (35)

Set

U(n,s) = max
1≤i≤s

U(n−i+1)(n). (36)

Denote by vα(n,s) the α critical value of the statistic U(n,s). Theorem 1 and Remark 2

([3]) imply that the limit distribution (as n→∞) of the random variable U(n,s) coincides with

the distribution of the random variable V+(s). The critical valuses vα(n,s) are approximated

by the critical values vα(s) = v+α (s). The outliers search method coincides with the right

outliers search method skipping upper index + in all formulas.

3.6.4. Identification of two-sided outliers for non-symmetric distributions

Suppose that the function f0 is not symmetric (for example AFT-Weibull). Let an,bn,a∗n,b
∗
n

be defined by 10, 11.

Begin outlier search using observations corresponding to the largest and the smallest

values of r̂i. Compute the values of statistics U−(n,s) and U+(n,s). If U−(n,s)≤ vα/2(s) and

U+(n,s) ≤ vα/2(s), then it is concluded that outliers are absent and no further investigation

is done.

If U−(n,s) > vα/2(s) or U+(n,s) > vα/2(s), then it is concluded that outliers exist. If

U−(n,s)> vα/2(s), then left outliers are searched as in Section 3.6.2. If U+(n,s)> vα/2(s),

then right outliers are searched in Section 3.6.1. The difference is that α is replaced by α/2

in all formulas.

3.6.5. Illustrative right outliers example

To illustrate simplicity of the BP method, let us consider an illustrative example of its appli-

cation (sample size n = 30, r = 7 outliers). The sample size of n = 30 from Weibull distribu-

tuion was generated. The last 7 observations were replaced by outliers. The regression data

(x j,y j) and the robust residuals r(n− j+1) are presented below:
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j X j Yj r(n− j+1) j X j Yj r(n− j+1)

1 4.3913260 5.47390926 0.23939917 16 1.6317853 0.83141322 -1.46632251

2 0.6889999 1.32292754 -0.17412374 17 -1.1770141 -1.80546474 -1.31302904

3 0.3228709 0.94531960 -0.18463099 18 3.7063257 3.11150483 -1.30474626

4 -4.1343077 -3.62693403 -0.30189729 19 3.5882593 4.00311988 -0.37657768

5 -2.9045486 -3.54841355 -1.34765425 20 -1.4872407 -0.36049057 0.26802210

6 0.7551341 2.41317329 0.74563577 21 -0.8830237 -0.03498023 0.01697442

7 -3.2840811 -3.16817867 -0.65679695 22 -1.7204924 -1.59618227 -0.63758299

8 1.1929285 1.77817425 -0.21775959 23 4.8576262 5.66352051 -0.01722873

9 -2.9889060 -2.50644893 -0.31878905 24 -2.8707830 6.87729607 8.14548145

10 0.3017340 -0.02289087 -1.03470683 25 0.1237114 6.88755257 5.32744173

11 2.8610408 2.49645136 -1.08297317 26 -4.4949313 6.85646198 9.84835468

12 -5.3709688 -4.17428219 0.34681885 27 1.9828775 6.74523635 3.55357514

13 0.9351036 1.49180254 -0.24342270 28 0.8563729 6.68461173 4.49191429

14 7.6619640 7.39084309 -1.10107093 29 4.1665989 6.80239476 1.67502211

15 -2.5825133 -1.56844291 0.16704422 30 -0.4780308 6.90775528 5.88999271

Steps of the classification procedure by the BP method is presented in the table below

(see Table 4)

U(30)(30) U(29)(30) U(28)(30) U(27)(30) U(26)(30) U(30,5)

1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000

U(29)(29) U(28)(29) U(27)(29) U(26)(29) U(25)(29) U(29,5)

1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000

U(28)(28) U(27)(28) U(26)(28) U(25)(28) U(24)(28) U(28,5)

0.9999999 1.0000000 1.0000000 1.0000000 0.9999967 1.0000000

U(27)(27) U(26)(27) U(25)(27) U(24)(27) U(23)(27) U(27,5)

0.9999991 1.0000000 1.0000000 0.9999240 0.4246993 1.0000000

Table 4: Classification table

First, we compute (see line 1 of Table: 4) of the statistic U(30,5)=max1≤i≤5U−
(30−i+1)(30)=

1. So, U(20,5) = 1 > 0.9853 = v0.05(5), null hypothesis was rejected and that concludes,

that outliers exist. The outliers search can be started.

Step 1. The inequality U(26)(30) = 1.0000 > 0.9583 = v0.005(5) so we conclude that

outliers exist. The number d1 is equal to the selected limit 5. So it is possible that the number
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of outliers might be greater than 5. We reject the largest in absolute value 30th observation

as an outlier and continue the search of outliers.

Step 2. The inequality U(25)(29) = 1.0000 > 0.9583 = v0.005(5) implies that d2 = 5. So

we declare as an outlier the observation with the second largest value of the residual. So two

observations are declared as outliers. We continue the search of outliers.

Step 3. The inequality U(24)(28) = 0.9999967 > 0.9583 = v0.005(5) implies that d3 = 5.

The third largest in absolute value observation is declaired as an outlier. The search of outliers

continues.

Step 4. The inequality U(23)(27) = 0.4246993 < 0.9583 = v0.005(5) and U(24)(27) =

0.9999240 > 0.9583 = v0.005(5) imply that d4 = 4. So four additional observations are de-

clared as outliers. The outlier search is finished. In all, seven observations were declared as

outliers, as we expected.

4. Practical investigation

4.1. Simulation scheme

The simuation scheme was used to compare outlier identification methods. It is described as

follows.

Suppose that n is the size of a sample. If we want the first r observations to be outliers

with the probability equals one, we must generate observations using any probability distri-

bution concentrated with the probability equals one in the outlier region. We shall call such

observations contaminated outliers (c-outliers). The remaining n− r observations are gener-

ated using the AFT regression model (3). Realizations of these n− r observations may be

outliers with very small probability.

For fixed n = 20,50,100,1000 we generated univariate i.i.d. zi ∼ N(0,1), i = 1, ...,n,

Wi∼Weibull(ν ,θi) (LLi∼ Loglogistic(ν ,θi),LNi∼ Lognormal(µi,σ)) where shape ν = 1.5

and scale θi = e1+zi (for lognormal µi = 1+ zi,σ = 1). For i = r + 1, ...,n we generated

εi ∼ F0(x) (see Table:1 F0 values for different cases). For i = 1, ...,r we generated i.i.d.

random variables εi following the truncated exponential distribution E (θ ,zαn) with various

values of the scale parameter θ and left truncation values zαn (for example in AFT-Weibull
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case zαn = log(−log(αn)), AFT-Loglogistic zαn = log(1−αn)− log(αn), AFT-Lognormal

zαn = Φ−1(1−αn), where Φ−1(x) is the inverse distribution function of the standard normal

distribution), so εi fall with the probability one into the region (zαn,+∞). Then we computed

the values of Yi =Wi + εi (i.e. we took βo = 0,β1 = 1). Note that the inequality |εi|> zαn is

equivalent to the inequality |Yi−Wi|> zαn , so for i = 1, ...,r the observations (Yi,Wi) fall into

the αn-outlier region. If θ increases, then the mean distance from the border of the outlier

region and the spread of outliers in this region increase.

The α = 0.05 was fixed for the definition of outlier region (see (5) formula).

The simulations presented below were performed using R software. For any fixed sample

size n, fixed number of c-outliers r, and fixed alternative or null hypothesis, the performance

of each method was investigated using 10000 simulated samples. The robust LTS estimators

were computed using R package robustbase ([27, 37]).

4.2. AFT-Weibull regression model

4.2.1. Comparison between BP and Davies Gather for right outlier search method

Outlier identification methods are ideal if each outlier can be detected and each non-outlier

can be declared as a non-outlier. In practice it is impossible to detect outliers with the proba-

bility one. Two errors are possible: (a) an outlier is not declared as such (masking effect); (b)

a nonoutlier is declared as an outlier (swamping effect). In this work name “masking” is for

the mean number of non-detected c-outliers and name “swamping” is for the mean number of

“normal” observations declared as outliers in the simulated samples. If c-outliers are absent,

then swamping is simply the mean number of observations declared as outliers.

Method n=20 n=50 n=100 n=1000

α α α α

BP 0.0488 0.0487 0.0483 0.0554

DG rob 0.049 0.0467 0.049 0.0539

DG 0.0482 0.0515 0.0479 0.0511

Table 5: The proportions α = pO values given that c-outliers are absent for Right AFT-Weibull regression

model
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Table 5 shows the values of the proportions pO of samples declared as having outliers.

From the Table 5 we can see that when n increase pO values decreases. For all three

methods (BP, DG robust, DG) all α values are around 0.05, this shows us that when we do

not have c-outliers in small number samples we can find some outliers.

Let’s compare these three methods with some outliers (r) and check how these methods

work fixing different sample sizes.

r 2

Method/ θ 0.05 0.01 1 5

Masking Swamping Masking Swamping Masking Swamping Masking Swamping

BP
0.942

(out of 2)

0.0949

(out of 18)

0.832

(out of 2)

0.0977

(out of 18)

0.3268

(out of 2)

0.0935

(out of 18)

0.0714

(out of 2)

0.1042

(out of 18)

DG rob
1.362

(out of 2)

0.0123

(out of 18)

1.2415

(out of 2)

0.0163

(out of 18)

0.5083

(out of 2)

0.0158

(out of 18)

0.1336

(out of 2)

0.0166

(out of 18)

DG
1.4947

(out of 2)

0

(out of 18)

1.3611

(out of 2)

0

(out of 18)

0.6654

(out of 2)

0.0001

(out of 18)

0.3194

(out of 2)

0.0001

(out of 18)

Table 6: The masking and swamping values for Right AFT-Weibull model (n = 20)

r 5

Method/ θ 0.05 0.01 1 5

Masking Swamping Masking Swamping Masking Swamping Masking Swamping

BP
0.2684

(out of 5)

0.1333

(out of 45)

0.2785

(out of 5)

0.1278

(out of 45)

0.0168

(out of 5)

0.1625

(out of 45)

0.0018

(out of 5)

0.1648

(out of 45)

DG rob
2.2957

(out of 5)

0.0054

(out of 45)

2.3519

(out of 5)

0.0039

(out of 45)

0.4148

(out of 5)

0.005

(out of 45)

0.0839

(out of 5)

0.0068

(out of 45)

DG
4.0742

(out of 5)

0.0001

(out of 45)

4.0593

(out of 5)

0

(out of 45)

1.4319

(out of 5)

0

(out of 45)

1.0102

(out of 5)

0

(out of 45)

Table 7: The masking and swamping values for Right AFT-Weibull model (n = 50)

From the results we can see that masking values decrease if the parameters characterizing

remoteness of c-outliers increase. For n = 20,50,100, and 1000 the masking values are

presented accordingly in Tables 6, 7, 8 and 9.
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r 10

Method/ θ 0.01 0.05 0.1 1

Masking Swamping Masking Swamping Masking Swamping Masking Swamping

BP
0.2661

(out of 10)

0.1038

(out of 90)

0.2519

(out of 10)

0.1081

(out of 90)

0.2576

(out of 10)

0.1064

(out of 90)

0.0028

(out of 10)

0.1134

(out of 90)

DG rob
2.4844

(out of 10)

0.0028

(out of 90)

2.4572

(out of 10)

0.0018

(out of 90)

2.5641

(out of 10)

0.0018

(out of 90)

0.1962

(out of 10)

0.0021

(out of 90)

DG
8.8944

(out of 10)

0

(out of 90)

8.9111

(out of 10)

0

(out of 90)

8.8874

(out of 10)

0

(out of 90)

2.7243

(out of 10)

0

(out of 90)

Table 8: The masking and swamping values for Right AFT-Weibull model (n = 100)

r 100

Method/ θ 0.001 0.005 0.02 0.05

Masking Swamping Masking Swamping Masking Swamping Masking Swamping

BP
0

(out of 100)

0.0196

(out of 900)

0

(out of 100)

0.022

(out of 900)

0

(out of 100)

0.0206

(out of 900)

0

(out of 100)

0.0199

(out of 900)

DG rob
0

(out of 100)

0.0001

(out of 900)

0

(out of 100)

0.0001

(out of 900)

0.0001

(out of 100)

0.0001

(out of 900)

0.0001

(out of 100)

0

(out of 900)

DG
99.8376

(out of 100)

0

(out of 900)

99.8391

(out of 100)

0

(out of 900)

99.8401

(out of 100)

0

(out of 900)

99.8215

(out of 100)

0

(out of 900)

Table 9: The masking and swamping values for Right AFT-Weibull model (n = 1000)

Let’s describe the results for small (n = 20), medium (n = 100), and large (n = 1000)

samples separately.

1) n = 20. In Table 6 data shows that comparing masking values (in terms of the numbers

of nonidentified c-outliers) of BP and DG robust methods the latter method’s values are

larger than BP method’s, for all θ (when many outliers are concentrated near the outlier

region border). For all small θ ≤ 0.1 more than half of outliers were found using BP method,

but only about third of outliers were found using DG robust method. However increasing θ

value (more than 0.1) both methods show better results. Talking about DG method without

robust estimation masking values with all θ values are much bigger then BP or DG robust

methods. DG method without robust estimation shows worst results then DG with robust

estimation. Therefore, when n = 20 and θ are small BP method shows better results at

identifying outliers, but increasing θ both BP and DG robust methods begin to show good
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results, DG method without robust estimation identifies outliers badly. It is important to

notice that for all θ swamping values of DG methods are smaller than BP method’s, however

for both methods swamping values are small enough to conclude that BP method shows

better results, because masking values for all θ are significantly smaller than DG and DG

robust methods.

2) n = 100. Table 8 data shows that comparing masking values of BP and DG robust

methods the latter method’s values are larger than BP method’s, for all θ . For all small

θ ≤ 0.1 DG method masking values are around 2.5, which means that less than seven and

a half outliers out of ten were identified, however masking values of DG robust method

decreases to approximately 0.2 when θ value increases from 0.1 to 1. Using BP method

more than 97% of outliers were identified, for all θ . Talking about DG method without

robust estimation masking values are very high near outlier border, when θ = 1 masking

value are also big and equal 2.7243. Therefore, when n = 100 and θ are small BP method

shows better results at identifying outliers, but increasing θ BP and DG robust methods begin

to show good results. It is important to notice that for all θ swamping values of DG methods

are smaller than BP method’s, DG without robust estimation method swamping values with

all θ are equal 0. However all three methods swamping values are small enough to conclude,

that BP method shows better results than DG or DG robust methods.

3) n = 1000. In Table 9 data for all θ shows that all masking values of BP method are

equal 0, however DG robust method majority of masking values are around 0. This shows,

that for all θ BP method finds all outliers and DG robust method finds almost all outliers.

DG method without robust estimation shows very bad results, masking values with all θ

values are very big (near 100). For all θ on all methods swamping values are around 0,

but it is important to notice that DG methods swamping values are smaller than BP method.

Therefore, BP and DG robust methods swamping values are particularly small and with large

sample size (n) detects outliers similar. DG method without robust estimation can not detect

correctly outliers.

Conclusion: In most considered situations, the BP method is the best outlier identifi-

cation method. However, with large simple size n = 1000 DG robust method have similar

performance.
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4.2.2. Comparison between BP and Davies Gather for left outlier search method

For the left outlier search in AFT-Weibull regression model we can see (see Table 10), that

for all methods (BP, DG robust and DG) with different n, pO values are near 0.05 (theoretical

α). Table 10 gives the values of the proportions pO of samples declared as having outliers.

Method n=20 n=50 n=100 n=1000

α α α α

BP 0.0396 0.0345 0.041 0.0572

DG rob 0.0483 0.0555 0.0488 0.0539

DG 0.0507 0.0518 0.0486 0.0521

Table 10: The proportions α = pO values given that c-outliers are absent for Left AFT-Weibull regression

model

Let’s compare these three methods with some outliers (r) and check how this methods

works with different sample sizes n and different truncated exponential distribution scale

parameter θ . (see Tables: 11, 12, 13 and 14)

r 2

Method/ θ 0.05 0.1 1 5

Masking Swamping Masking Swamping Masking Swamping Masking Swamping

BP
0.1345

(out of 2)

0.2583

(out of 18)

0.1214

(out of 2)

0.2722

(out of 18)

0.0619

(out of 2)

0.2512

(out of 18)

0.0158

(out of 2)

0.2569

(out of 18)

DG rob
0.6435

(out of 2)

0.0165

(out of 18)

0.6222

(out of 2)

0.019

(out of 18)

0.321

(out of 2)

0.0194

(out of 18)

0.1057

(out of 2)

0.0176

(out of 18)

DG
1.2297

(out of 2)

0

(out of 18)

1.2417

(out of 2)

0

(out of 18)

1.0436

(out of 2)

0

(out of 18)

0.8712

(out of 2)

0

(out of 18)

Table 11: The masking and swamping values for Left AFT-Weibull model (n = 20)

Masking decreases if the parameters characterizing remoteness of c-outliers increase.

Therefore describe the results for small (n = 20), medium (n = 100), and large (n = 1000)

samples separately.

1) n= 20. In Table 11 data shows that comparing masking values (in terms of the numbers

of nonidentified c-outliers) of BP and DG robust methods the latter method’s values are
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r 5

Method/ θ 0.05 0.1 1 5

Masking Swamping Masking Swamping Masking Swamping Masking Swamping

BP
0.0026

(out of 5)

0.29

(out of 45)

0.0029

(out of 5)

0.2867

(out of 45)

0.0023

(out of 5)

0.2857

(out of 45)

0.0007

(out of 5)

0.2841

(out of 45)

DG rob
0.4442

(out of 5)

0.0123

(out of 45)

0.4343

(out of 5)

0.0142

(out of 45)

0.1372

(out of 5)

0.0125

(out of 45)

0.0339

(out of 5)

0.0113

(out of 45)

DG
4.3436

(out of 5)

0

(out of 45)

4.3928

(out of 5)

0

(out of 45)

3.4885

(out of 5)

0

(out of 45)

3.278

(out of 5)

0

(out of 45)

Table 12: The masking and swamping values for Left AFT-Weibull model (n = 50)

r 10

Method/ θ 0.01 0.05 0.1 1

Masking Swamping Masking Swamping Masking Swamping Masking Swamping

BP
0.0013

(out of 10)

0.2734

(out of 90)

0.0013

(out of 10)

0.271

(out of 90)

0.001

(out of 10)

0.2624

(out of 90)

0.001

(out of 10)

0.2584

(out of 90)

DG rob
0.2036

(out of 10)

0.009

(out of 90)

0.2154

(out of 10)

0.0099

(out of 90)

0.2125

(out of 10)

0.0087

(out of 90)

0.0436

(out of 10)

0.0094

(out of 90)

DG
9.9703

(out of 10)

0

(out of 90)

9.9794

(out of 10)

0

(out of 90)

9.9827

(out of 10)

0

(out of 90)

8.4776

(out of 10)

0

(out of 90)

Table 13: The masking and swamping values for Left AFT-Weibull model (n = 100)

r 100

Method/ θ 0.001 0.005 0.02 0.05

Masking Swamping Masking Swamping Masking Swamping Masking Swamping

BP
0

(out of 100)

0.2033

(out of 900)

0

(out of 100)

0.2017

(out of 900)

0

(out of 100)

0.1978

(out of 900)

0

(out of 100)

0.1964

(out of 900)

DG rob
0

(out of 100)

0.0052

(out of 900)

0

(out of 100)

0.0063

(out of 900)

0

(out of 100)

0.006

(out of 900)

0

(out of 100)

0.0062

(out of 900)

DG
100

(out of 100)

0

(out of 900)

100

(out of 100)

0

(out of 900)

100

(out of 100)

0

(out of 900)

100

(out of 100)

0

(out of 900)

Table 14: The masking and swamping values for Left AFT-Weibull model (n = 1000)

larger than BP method’s, for all θ (when many outliers are concentrated near the outlier

region border). DG method without robust estimation show worst results than DG method
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with robust estimation or BP method. In other hand, it is important to notice that for all

θ swamping values of DG methods are smaller than BP method’s. However, BP method

has larger swamping effect and less masking effect than DG robust or DG without robust

estimation methods and that mean BP method is better than DG methods.

2) n = 100. Table 13 data shows that comparing masking values of BP and DG robust

methods the latter method’s values are larger than BP method’s, for all θ . For all small θ

(θ ≤ 0.1). DG robust method masking values are around 0.2, θ increasing to 1 DG robust

masking value decreases around zero. BP method masking values are around 0 for all θ . DG

without robust estimation method masking values are very high (around 10), when θ increase

masking values decrease very slowly. Therefore, when n = 100 and θ are small BP method

shows better results at identifying outliers, but increasing θ both BP and DG robust methods

begin to show good results. DG wihout robust estimation do not show good results and this

method do not correctly detect outliers for medium sample sizes. It is important to notice

that for all θ swamping values of DG methods are smaller than BP method’s.

3) n= 1000. In Table 14 data for all θ shows that all masking values of BP and DG robust

methods are equal 0. This shows, that for all θ both methods finds all outliers. Different view

shows DG method without robust estimation, whit all θ values masking value are equal 100.

That means DG method without robust estimation can not find any outlier. In other hand,

for all θ swamping values on DG methods are around 0, but BP method is around 0.20.

Although, BP and DG robust methods swamping values are particularly small (around 0)

and both methods are simillar.

Conclusion: Therefore, the results are very similar as Right AFT-Weibull event (see Sec-

tion: 4.2.1). In most considered situations, the BP method is the best outlier identification

method. It is important to notice that DG robust method have the same performance with

large simple size n = 1000 on left outlier search method. DG method without robust esti-

mation have big masking values with different sample sizes and this method can not use for

searching outliers.

4.2.3. Comparison between BP and Davies Gather for two-sided outlier search method

In this section was investigated medium size value (n = 100) outlier search method. This

outlier search method was created by Section 3.6.4, so for detailed analysis see: 4.2.1 and
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4.2.2 Sections results.

Let’s compare BP and Davies-Gather methods with 10 outliers (rle f t = 5,rright = 5) and

check how this three methods works for two-sided method with different truncated exponen-

tial distribution scale parameter θ . (see Tables: 15 and 16).

rright 5

Method/ θ 0.01 0.05 0.1 1

Masking Swamping Masking Swamping Masking Swamping Masking Swamping

BP
0.0133

(out of 5)

0.121

(out of 95)

0.0158

(out of 5)

0.1165

(out of 95)

0.0178

(out of 5)

0.1108

(out of 95)

0.0094

(out of 5)

0.1171

(out of 95)

DG rob
0.5549

(out of 5)

0.0026

(out of 95)

0.5573

(out of 5)

0.0017

(out of 95)

0.5771

(out of 5)

0.0021

(out of 95)

0.5643

(out of 5)

0.0024

(out of 95)

DG
4.8788

(out of 5)

0

(out of 95)

4.8757

(out of 5)

0

(out of 95)

4.8769

(out of 5)

0

(out of 95)

4.8848

(out of 5)

0

(out of 95)

Table 15: The masking and swamping values for right outlier search in AFT-Weibull model (n = 100)

rle f t 5

Method/ θ 0.01 0.05 0.1 1

Masking Swamping Masking Swamping Masking Swamping Masking Swamping

BP
0.0001

(out of 5)

0.2655

(out of 95)

0.0002

(out of 5)

0.2538

(out of 95)

0.0001

(out of 5)

0.2562

(out of 95)

0.0001

(out of 5)

0.2518

(out of 95)

DG rob
0.0331

(out of 5)

0.0104

(out of 95)

0.0358

(out of 5)

0.0093

(out of 95)

0.0369

(out of 5)

0.0091

(out of 95)

0.0352

(out of 5)

0.0109

(out of 95)

DG
0.7906

(out of 5)

0.0005

(out of 95)

0.7455

(out of 5)

0.0004

(out of 95)

0.7628

(out of 5)

0.0007

(out of 95)

0.7618

(out of 5)

0.0008

(out of 95)

Table 16: The masking and swamping values for left outlier search in AFT-Weibull model (n = 100)

Tables 15, 16 shows that comparing masking values of DG robust and BP methods the

latter method’s values are larger than BP method’s, for all θ (for left and right outliers). For

left outlier search BP method masking value are near 0 with all θ values while DG robust

method masking values are approximately 0.35. DG method without robust estimation have

much biggest masking values than DG robust or BP methods. Talking about right outliers

search BP method masking values increasing from 0.0133 to 0.0178 when θ increase from
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0.01 to 0.1, but when θ = 1 masking value decreasing to 0.0094. For DG robust method

masking values are bigger than BP method more than 50 times, DG method without robust

estimation in this case works much worst and masking values are around 5 with all θ values.

It is important to notice that for all θ (for left and right outlier search) swamping values of

DG methods are smaller than BP method’s. Therefore all three models swamping values

are small enough to conclude, that BP method show better results than DG robust and DG

methods.

Conclusion: This two-sided outlier search method showed very similar results as previ-

ously investigated right and left outlier search methods (see 4.2.1 and 4.2.2 Sections results).

With medium (n = 100) sample size BP method are better than DG and DG robust methods,

especially when outliers are near outlier region border (θ < 1).

4.3. AFT-Loglogistic regression model

4.3.1. Comparison between BP and Davies Gather for right outlier search method

In this section performance of BP and Davies Gather methods for AFT Loglogistic regression

model was analyzed. Table 17 shows the values of the proportionspO of samples declared as

having outliers. All three methods α values are near 0.05, which means that swamping effect

should be minimal. Analyzing BP methods value, when n = 1000, we notice that shown

value α = 0.0787, this means that pO is bigger than theoretical α .

Method n=20 n=50 n=100 n=1000

α α α α

BP 0.0398 0.0417 0.0526 0.0787

DG rob 0.0515 0.0522 0.0507 0.0488

DG 0.0525 0.0523 0.0527 0.0498

Table 17: The proportions α = pO given that c-outliers are absent for Right AFT-Loglogistic regression model

Let’s check how BP, DG robust and DG methods works with some outliers r and inves-

tigate swamping and masking effect. For n = 20,50,100 and 1000 the masking values are

presented in Tables: 18, 19, 20, 21.
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r 2

Method/ θ 0.05 0.1 1 5

Masking Swamping Masking Swamping Masking Swamping Masking Swamping

BP
1.1484

(out of 2)

0.1818

(out of 18)

1.1637

(out of 2)

0.1829

(out of 18)

0.8503

(out of 2)

0.1987

(out of 18)

0.3336

(out of 2)

0.2134

(out of 18)

DG rob
1.7433

(out of 2)

0.0079

(out of 18)

1.7467

(out of 2)

0.0099

(out of 18)

1.4259

(out of 2)

0.0124

(out of 18)

0.6716

(out of 2)

0.0164

(out of 18)

DG
1.9021

(out of 2)

0

(out of 18)

1.9107

(out of 2)

0

(out of 18)

1.7627

(out of 2)

0

(out of 18)

1.1635

(out of 2)

0

(out of 18)

Table 18: The masking and swamping values for Right AFT-Loglogistic model (n = 20)

r 5

Method/ θ 0.05 0.1 1 5

Masking Swamping Masking Swamping Masking Swamping Masking Swamping

BP
0.1995

(out of 5)

0.2952

(out of 45)

0.2028

(out of 5)

0.2824

(out of 45)

0.1018

(out of 5)

0.2852

(out of 45)

0.0379

(out of 5)

0.2988

(out of 45)

DG rob
4.6263

(out of 5)

0.002

(out of 45)

4.6463

(out of 5)

0.0028

(out of 45)

3.5691

(out of 5)

0.0027

(out of 45)

1.4312

(out of 5)

0.0057

(out of 45)

DG
4.9857

(out of 5)

0

(out of 45)

4.9829

(out of 5)

0

(out of 45)

4.8223

(out of 5)

0

(out of 45)

3.366

(out of 5)

0

(out of 45)

Table 19: The masking and swamping values for Right AFT-Loglogistic model (n = 50)

r 10

Method/ θ 0.01 0.05 0.1 1

Masking Swamping Masking Swamping Masking Swamping Masking Swamping

BP
0.1052

(out of 10)

0.2527

(out of 90)

0.1195

(out of 10)

0.2641

(out of 90)

0.1145

(out of 10)

0.2493

(out of 90)

0.0621

(out of 10)

0.2681

(out of 90)

DG rob
9.8156

(out of 10)

0.0005

(out of 90)

9.8066

(out of 10)

0.0003

(out of 90)

9.8121

(out of 10)

0.0006

(out of 90)

7.8148

(out of 10)

0.0006

(out of 90)

DG
9.9993

(out of 10)

0

(out of 90)

9.9993

(out of 10)

0

(out of 90)

9.9993

(out of 10)

0

(out of 90)

9.8076

(out of 10)

0

(out of 90)

Table 20: The masking and swamping values for Right AFT-Loglogistic model (n = 100)

Masking decreases if the parameters characterizing remoteness of c-outliers increase. Let

us discuss the results for small (n = 20), medium (n = 100), and large (n = 1000) samples
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r 100

Method/ θ 0.001 0.005 0.02 0.05

Masking Swamping Masking Swamping Masking Swamping Masking Swamping

BP
0.0313

(out of 100)

0.18

(out of 900)

0.0351

(out of 100)

0.1898

(out of 900)

0.0267

(out of 100)

0.1935

(out of 900)

0.032

(out of 100)

0.1857

(out of 900)

DG rob
99.995

(out of 100)

0

(out of 900)

99.9958

(out of 100)

0

(out of 900)

99.995

(out of 100)

0

(out of 900)

99.9949

(out of 100)

0

(out of 900)

DG
99.9996

(out of 100)

0

(out of 900)

99.9999

(out of 100)

0

(out of 900)

99.9997

(out of 100)

0

(out of 900)

99.9996

(out of 100)

0

(out of 900)

Table 21: The masking and swamping values for Right AFT-Loglogistic model (n = 1000)

separately.

1) n = 20. Table 18 shows that when θ < 1 the masking values (in terms of the numbers

of nonidentified c-outliers) of the BP-method identifies about 0.75 outliers out of 2 and DG

robust method identifies about 0.25 outliers out of 2. It is important to notice that for all

θ masking values of BP and DG robust methods are not satisfactory having in mind that

there is 2 outliers in the sample. Masking values for both methods decrease when θ increase,

however, BP method masking values are smaller than DG robust method values. DG method

without robust estimation shows worst results then BP and DG robust method. In this sample

BP method has a heavier swamping effect, but smaller masking effect. Increasing θ values

we notice that BP values varies about 0.2 when at that time DG robust swamping values also

increase but are much smaller, DG method swamping values are equal 0. Therefore we can

state that with small sample size BP method works better than DG robust or DG methods

because have smaller masking effect.

2) n = 100. Table 20 shows that the masking values of the BP-method are much smaller

then DG robust method with different θ . In this case DG robust and DG methods has heavy

masking effect and DG robust method with θ = 1 identifies only about 22% of outliers out of

10, DG without robust estimation identifies 2%, when BP method identifies more than 94%

of outliers. In other hand DG robust and DG methods have less swamping effect impact than

BP method with all θ , but all three methods swamping values are small enough. Considering

all data it can be stated that BP method works better than DG robust and DG method with

medium sample size.
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3) n = 1000. Table 21 shows that DG robust and DG method have an enormous masking

effect for all θ and less than 1% of outliers would be identified out of 100. This means

DG robust and DG methods can not "catch" true outliers and can not be used for outlier

identification for large samples. BP method for large sample size works correctly and have

small masking effect on values. Swamping values in this event are not important, because

masking value for DG robust and DG methods are near outlier value. In other hand DG

robust and DG methods do not have swamping effect for all θ . For BP method swamping

effect is minimum. Therefore DG robust and DG methods for large sample size are wrong,

BP method works correctly.

Conclusion: BP method identifies outliers in AFT Loglogistic model more successfully

than DG robust and DG methods.

4.3.2. Comparison between BP and Davies Gather for two-sided outlier search method

In this section was investigated medium size value (n = 100) outlier search method. This

outlier search method was created by Section 3.6.3.

Let’s compare BP, DG robust and DG methods with 10 outliers (rle f t = 5,rright = 5) and

check how this three methods works for two-sided method with different truncated exponen-

tial distribution scale parameter θ . (see Table: 22).

r 10

Method/ θ 0.01 0.05 0.1 1

Masking Swamping Masking Swamping Masking Swamping Masking Swamping

BP
0.7997

(out of 10)

0.1086

(out of 90)

0.8135

(out of 10)

0.1113

(out of 90)

0.7886

(out of 10)

0.1049

(out of 90)

0.4361

(out of 10)

0.112

(out of 90)

DG rob
9.8266

(out of 10)

0.0001

(out of 90)

9.8122

(out of 10)

0.0005

(out of 90)

9.8093

(out of 10)

0.0003

(out of 90)

7.823

(out of 10)

0.0011

(out of 90)

DG
9.9994

(out of 10)

0

(out of 90)

9.9988

(out of 10)

0

(out of 90)

9.999

(out of 10)

0

(out of 90)

9.8126

(out of 10)

0

(out of 90)

Table 22: The masking and swamping values for Two-Sided outlier search in AFT-Loglogistic model (n= 100)

Table 22 shows very similar results as we see in Section 4.3.1. Table 22 shows that the

masking values of the BP-method are much smaller then DG robust method with different θ .
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In this case DG robust and DG methods has heavy masking effect and BP robust method with

θ = 1 identifies only about 22% of outliers out of 10, DG without robust estimation identifies

2%, when BP method identifies more than 95% of outliers. In other hand DG robust and DG

methods have less swamping effect impact than BP method with all θ , but all three methods

swamping values are small enough. Considering all data it can be stated that BP method

works better than DG robust and DG methods with medium sample size for two-sided outlier

search case.

4.4. AFT-Lognormal regression model

4.4.1. Comparison between BP and Davies Gather for right outlier search method

In this section performance of BP, DG robust and DG methods for AFT Lognormal regression

model was analyzed. Table 23 shows the values of the proportionspO of samples declared as

having outliers. All three methods α values are near 0.05, which means that swamping effect

should be minimal. Analyzing BP methods value, when n = 1000, we notice that shown

value α = 0.0879, this means that pO is bigger than theoretical α .

Method n=20 n=50 n=100 n=1000

α α α α

BP 0.0248 0.0287 0.0418 0.0879

DG rob 0.0424 0.0465 0.0477 0.0533

DG 0.0456 0.0525 0.0547 0.0551

Table 23: The proportions α = pO values given that c-outliers are absent for right AFT-Lognormal regression

model

Let’s check how BP, DG robust and DG methods works with some outliers r and inves-

tigate swamping and masking effect. For n = 20,50,100 and 1000 the masking values are

presented in Tables: 24, 25, 26, 27.

Masking decreases if the parameters characterizing remoteness of c-outliers increase. Let

us discuss the results for small (n = 20), medium (n = 100), and large (n = 1000) samples

separately.
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r 2

Method/ θ 0.05 0.1 1 5

Masking Swamping Masking Swamping Masking Swamping Masking Swamping

BP
1.6493

(out of 2)

0.1091

(out of 18)

1.6403

(out of 2)

0.1092

(out of 18)

1.1486

(out of 2)

0.1223

(out of 18)

0.3526

(out of 2)

0.143

(out of 18)

DG rob
1.8432

(out of 2)

0.0077

(out of 18)

1.8301

(out of 2)

0.0087

(out of 18)

1.2754

(out of 2)

0.0107

(out of 18)

0.4413

(out of 2)

0.0161

(out of 18)

DG
1.9368

(out of 2)

0

(out of 18)

1.9366

(out of 2)

0

(out of 18)

1.5126

(out of 2)

0

(out of 18)

0.9094

(out of 2)

0

(out of 18)

Table 24: The masking and swamping values for Right AFT-Lognormal model (n = 20)

r 5

Method/ θ 0.05 0.1 1 5

Masking Swamping Masking Swamping Masking Swamping Masking Swamping

BP
1.4628

(out of 5)

0.1747

(out of 45)

1.5351

(out of 5)

0.1766

(out of 45)

0.461

(out of 5)

0.1962

(out of 45)

0.0737

(out of 5)

0.198

(out of 45)

DG rob
4.8079

(out of 5)

0.0013

(out of 45)

4.8109

(out of 5)

0.001

(out of 45)

2.8318

(out of 5)

0.0027

(out of 45)

0.8491

(out of 5)

0.005

(out of 45)

DG
4.9747

(out of 5)

0

(out of 45)

4.9762

(out of 5)

0

(out of 45)

4.0189

(out of 5)

0

(out of 45)

2.4048

(out of 5)

0

(out of 45)

Table 25: The masking and swamping values for Right AFT-Lognormal model (n = 50)

r 10

Method/ θ 0.001 0.05 0.1 1

Masking Swamping Masking Swamping Masking Swamping Masking Swamping

BP
1.3387

(out of 10)

0.1577

(out of 90)

1.3064

(out of 10)

0.1608

(out of 90)

1.3065

(out of 10)

0.1549

(out of 90)

0.3916

(out of 10)

0.1788

(out of 90)

DG rob
9.9087

(out of 10)

0.0002

(out of 90)

9.8977

(out of 10)

0.0001

(out of 90)

9.9056

(out of 10)

0

(out of 90)

5.606

(out of 10)

0.0003

(out of 90)

DG
9.9956

(out of 10)

0

(out of 90)

9.997

(out of 10)

0

(out of 90)

9.9972

(out of 10)

0

(out of 90)

8.3419

(out of 10)

0

(out of 90)

Table 26: The masking and swamping values for Right AFT-Lognormal model (n = 100)

1) n = 20. Table 24 shows that when θ < 1 the masking values (in terms of the numbers

of nonidentified c-outliers) of the BP-method identifies about 0.35 outliers out of 2 and DG
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r 100

Method/ θ 0.001 0.005 0.02 0.05

Masking Swamping Masking Swamping Masking Swamping Masking Swamping

BP
1.723

(out of 100)

0.0548

(out of 900)

1.7791

(out of 100)

0.0607

(out of 900)

1.8221

(out of 100)

0.0568

(out of 900)

1.6423

(out of 100)

0.0572

(out of 900)

DG rob
99.9992

(out of 100)

0

(out of 900)

99.9993

(out of 100)

0

(out of 900)

99.9988

(out of 100)

0

(out of 900)

99.9995

(out of 100)

0

(out of 900)

DG
100

(out of 100)

0

(out of 900)

100

(out of 100)

0

(out of 900)

99.9996

(out of 100)

0

(out of 900)

100

(out of 100)

0

(out of 900)

Table 27: The masking and swamping values for Right AFT-Lognormal model (n = 1000)

robust method identifies about 0.15 outliers out of 2 and DG method identifies about 0.06

outliers out of 2. It is important to notice that for all θ masking values of three methods

are not satisfactory having in mind that there is 2 outliers in the sample. Masking values for

three methods decrease when θ increase, however, BP method masking values are smaller

than DG robust and DG methods values. In this sample BP method has a heavier swamping

effect, but smaller masking effect. Increasing θ values we notice that BP swamping values

varies about 0.14 when at that time DG robust swamping values also increase but are much

smaller, DG method swamping values are 0. Therefore we can state that with small sample

size BP methods works better than DG robust or DG method because have smaller masking

effect. DG method without robust estimation with small sample sizes do not work correctly.

2) n = 100. Table 26 shows that the masking values of the BP-method are much smaller

then DG robust method with different θ . In this case DG robust and DG methods has heavy

masking effect, but DG robust method is better then DG method without robust estimation,

because DG robust method has smaller masking effect. DG robust method with θ = 1 iden-

tifies only about 45% of outliers out of 10, when BP method identifies about 96% of outliers.

In other hand DG robust method has less swamping effect impact than BP method with all

θ , but both of the methods swamping values are small enough. Considering all data it can be

stated that BP method works better than DG robust and DG methods with medium sample

size.

3) n = 1000. Table 27 shows that DG robust and DG method have an enormous masking

effect for all θ and for DG robust method less than 1% of outliers would be identified out of
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100. DG method without robust estimation can not define any outlier. This means DG robust

and DG methods can not "catch" true outliers and can not be used for outlier identification

for large samples. BP method for large sample size works correctly and have small masking

effect on values. Swamping values in this event are not important, because masking values

for DG robust and DG methods are near outlier value. In other hand DG robust and DG

methods do not have swamping effect for all θ . For BP method swamping effect is minimum.

Therefore DG robust and DG methods for large sample size are wrong, BP method works

correctly.

Conclusion: BP method identifies outliers in AFT Lognormal model more successfully

than DG robust and DG methods.

4.4.2. Comparison between BP and Davies Gather for two-sided outlier search method

In this section was investigated medium size value (n = 100) outlier search method. This

outlier search method was created by Section 3.6.3.

Let’s compare BP, DG robust and DG methods with 10 outliers (rle f t = 5,rright = 5) and

check how this two methods works for two-sided method with different truncated exponential

distribution scale parameter θ . (see Table: 28).

r 10

Method/ θ 0.01 0.05 0.1 1

Masking Swamping Masking Swamping Masking Swamping Masking Swamping

BP
3.6216

(out of 10)

0.0561

(out of 90)

3.5855

(out of 10)

0.0534

(out of 90)

3.6331

(out of 10)

0.0521

(out of 90)

1.3875

(out of 10)

0.0704

(out of 90)

DG rob
9.9068

(out of 10)

0.0001

(out of 90)

9.9094

(out of 10)

0

(out of 90)

9.9029

(out of 10)

0

(out of 90)

5.5856

(out of 10)

0.0005

(out of 90)

DG
9.9963

(out of 10)

0

(out of 90)

9.9968

(out of 10)

0

(out of 90)

9.9961

(out of 10)

0

(out of 90)

8.3298

(out of 10)

0

(out of 90)

Table 28: The masking and swamping values for two sided outlier search in AFT-Lognormal model (n = 100)

Masking decreases if the parameters characterizing remoteness of c-outliers increase.

Table 28 shows that the masking values of the BP-method are much smaller then DG robust

method with different θ . In this case, DG robust and DG methods has heavy masking effect,

but DG robust method is better then DG method without robust estimation, because DG
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robust method has smaller masking effect. DG robust method with θ = 1 identifies only

about 45% of outliers out of 10, when BP method identifies about 86% of outliers. In other

hand, DG robust method has less swamping effect impact than BP method with all θ , but

both of the methods swamping values are small enough. Considering all data it can be stated

that BP method works better than DG robust and DG methods with medium sample size for

two-sided outlier search. In this section we got very similar results as 4.4 Section.

5. Real data example

In this section real data set example (from [28] and [35]) using BP and DG robust method

was investigated.

5.1. Wayne Nelson data set

Wayne Nelson [28] studied failure times of 76 units of insulating fluids. Testing was per-

formed at various constant elevated voltages ranging from 26 to 38 kilovolts (kV). The num-

ber of batches assigned to the different voltage levels were 3,5,11,15,19,15, and 8, respec-

tively. This experiment was run long enough to observe the failures of all items. The voltage

levels vi, the numbers of items tested under the same voltage level, and the failure times Ti

were shown in scatter plot (see Figure 1). To check how correctly BP and DG robust method

works, was created three outliers (1 left and 2 right)

Figure 1 suggests transformation of variables. The voltage levels vi and the failure times

Ti were transformed by natural logarithm (see Figure 2)

The AFT-Weibull regression model is:

log(Ti) = 65.722−18.112log(vi)

Using BP method all three outliers were found, using DG robust method one left and one

right (from two) were found (see Figure 3).

After removal of outliers AIC values for three different AFT models (AFT-Weibull, AFT-

lognormal and AFT-lognormal) were compared. Table 29) shows that the AFT-Weibull

model is the most appropriate (AFT-Weibull has smallest AIC value). The chi-square good-
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Figure 1: Scatterplot of Wayne Nelson data

Figure 2: Scatterplot of Wayne Nelson logarithmic data

ness of fit test for AFT-Weibull model given by Bagdonavičius-Levulienė-Nikulin [2] accepts

the AFT-Weibull model (p− value = 0.4604).

Distribution AIC

AFT-Weibull 607.0694

AFT-Loglogistic 612.8227

AFT-Lognormal 613.3748

Table 29: AFT regressions AIC values for Wayne Nelson data
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Figure 3: Scatterplot of Wayne Nelson data with outliers (found by BP and DG robust methods)

5.2. Small-leaved lime trees grown in Russia

In this section data from small-leaved lime trees grown in Russia [35] were investigated. This

dataset was taken from R package GLMsData. A data frame consists of 385 observations with

4 different attributes: foliage, DBH, age and origin. To the outliers search we used data from

trees of a natural origin (origin = Natural). The foliage (the foliage biomass, in kg (oven

dried matter)) and DBH (the tree diameter, at breast height, in cm) are shown in scatter plot

(see: Figure 4). In this case age was not investigated.
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Figure 4: Scatterplot of log(Foliage) and log(DBH)

Using AFT-Lognormal model BP method two outliers (red points) were found, using DG

robust method one outlier (blue triangle) was found (see Figure 5).

Figure 5: Scatterplot of log(Foliage) and log(DBH) with outliers (found by BP and DG robust methods)

After removal of outliers AIC values for three different AFT models (AFT-Weibull, AFT-

lognormal and AFT-lognormal) were compared. Table 30 shows that the AFT-Lognormal

model is the most appropriate (AFT-Lognormal has smallest AIC value).
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Distribution AIC

AFT-Weibull 286.5589

AFT-Loglogistic 291.9761

AFT-Lognormal 284.5503

Table 30: AFT regressions AIC values for Small-leaved lime trees data

6. Conclusions

In many situations, the BP outlier identification method has superior performance as com-

pared to existing methods for accelerated failure time regression models. BP and DG robust

methods in all situations show better results then DG method without robust estimation. The

BP method is based on an asymptotic result, so it should not be applied for samples of very

small size n ≤ 15. Two real life examples confirm suggestion that BP method identifies

outliers better than DG robust method.
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