
VILNIUS UNIVERSITY

FACULTY OF MATHEMATICS AND INFORMATICS

MODELLING AND DATA ANALYSIS MASTER’S STUDY PROGRAMME

Master’s thesis

Outlier Detection in Multidimensional Streaming Data

Išskirčių identifikavimas daugiamačiuose srauto

duomenyse

Lina Ribokaitė

Supervisor PhD Jolita Bernatavičienė

Vilnius, 2021

Table of contents
Abstract . 3
Santrauka . 4
List of abbreviations and symbols . 5
Introduction . 7
Aims and tasks . 10
1. Theoretical part . 11

1.1. Literature review . 12
1.2. Distance-based outlier detection algorithms . 16

1.2.1. Exact-Storm . 17
1.2.2. Approx-Storm . 19
1.2.3. Abstract-C . 20
1.2.4. MCOD . 22

1.3. Development of distance-based outlier detection algorithms 27
1.3.1. Implementing SVM .. 27
1.3.2. Implementing K-Means clustering . 31

1.4. Performance measures . 35
2. Experimental results . 37

2.1. Datasets. 38
2.2. Application on real-world datasets . 40

2.2.1. Varying parameter k . 41
2.2.2. Varying parameter R . 44
2.2.3. Varying parameter W . 46
2.2.4. Varying parameter S . 49

2.3. Using SVM for algorithms improvement . 54
2.4. Outliers clustering . 61
2.5. Conclusions of experimental results . 66

Conclusions . 69
References . 71
Appendix Nr. 1. 73
Appendix Nr. 2. 77
Appendix Nr. 3. 79

Acknowledgement

The author is thankful for the HPC resources provided by the IT APC at the Faculty
of Mathematics and Informatics of Vilnius University Information Technology Research
Center.

2

Abstract

Outlier detection is an important task in many areas such as fraud detection, network
analysis, sensor data analysis, etc. With increasing demand of stream data analysis, there
is a need of efficient algorithm that can detect outliers in real-time. This master thesis
aims to develop existing outlier detection algorithms when processing multidimensional
streaming data.

The research consists of overview on present outlier detection methods and will focus
on distance-based outlier detection algorithms for stream data. Four distance-based out-
lier detection algorithms were chosen to analyse in detail and some improvements were
suggested.

First improvement is related to implementation of Support Vector Machines. By using
SVM we can retrieve useful information about the behaviour of the data and use it in out-
lier detection. In the experimental part it is proved that the combination of distance-based
algorithms and SVM improves outlier detection accuracy, mostly by increasing precision.

Another improvement is related to the output of outlier detection algorithms. Typi-
cally simple outlier list is returned. In the work we tried implementing outliers clustering
which provides additional information that helps to understand the behaviour and frequen-
cy of outliers in real-time. This improvement let us highlight outliers’ tendencies and this
is very useful information since outlier detection in stream data is usually performed by
using only most recent data and not the whole dataset.

Key words: Stream Data, Outlier Detection, Distance-based Outliers with Implemented
SVM, Outliers Clustering.

3

Santrauka

Išskirčių identifikavimas gali būti panaudojamas įvairiose srityse, tokiose kaip apga-
vysčių aptikimas, ryšių analizė, jutiklinių duomenų analizė ir t.t. Vis didėjant srauto duo-
menų analizės poreikiams, viena iš svarbių sričių yra efektyvaus išskirčių identifikavimo
algoritmo sukūrimas. Kadangi ši sritis vis dar yra vystoma, šio magistrinio darbo tikslas ir
yra prisidėti prie išskirčių identifikavimo algoritmų, kurie geba efektyviai apdoroti srauto
duomenis, vystymo.

Magistrinis darbas susideda iš išskirčių identifikavimo algoritmų apžvalgos, detaliau
fokusuojantis į vieną sritį – atstumais grįstus išskirčių aptikimo metodus. Darbe pasirinkta
detaliau analizuoti keturis gerai žinomus išskirčių aptikimo algoritmus ir pasiūlyta kelios
algoritmų modifikacijos versijos.

Pirmoji modifikacija yra susijusi su SVM algoritmo panaudojimu. Naudojant SVM
mes galime išgauti naudingos informacijos apie analizuojamus duomenis ir ją panaudoti
kartu su atstumais grįstais išskirčių aptikimo algoritmais. Eksperimentinėje dalyje paro-
dome, kad kombinuojant atstumais grįstus algoritmus su SVM galime pagerinti išskirčių
aptikimo tikslumą.

Kita pasiūlyta modifikacija yra susijusi su algoritmų grąžinamu rezultatu. Dažniausiai
algoritmai grąžina paprastą sąrašą identifikuotų išskirčių. Šiame darbe pabandėme reali-
zuoti išskirčių klasterizavimą, kurio panaudojimas leidžia išgauti papildomą informaciją,
leidžiančią suprasti bendrą identifikuojamų išskirčių vaizdą, išskirčių prigimtį bei dažnį.
Ši implementacija gali parodyti išskirčių tendencijas ir tai dirbant su srauto duomenimis
yra svarbi informacija, nes išskirčių aptikimas dažniausiai atliekamas analizuojant ne visą
duomenų aibę, bet naudojant slenkančio lango principą.

Raktiniai žodžiai: Srautiniai duomenys, Išskirčių identifikavimas, Atstumais grįstų iš-
skirčių identifikavimas, Išskirčių aptikimas panaudojant SVM, Išskirčių klasterizavimas.

4

List of abbreviations and symbols

Abstract-C - Abstracted-neighbourship-based Outlier Detection using counts;
Approx-Storm - variant of Storm algorithm, which performs effective approximations in
order to reduce memory usage;
DODDS - Distance-based Outlier Detection in Data Streams;
Exact-Storm - variant of Storm algorithm, where entire window is allocated in memory
and exact outlier detection answer returned;
MCOD - Micro-cluster-based Continuous Outlier Detection;
RBF - Radial Basis Function;
Storm - Stream Outlier Miner;
SVM - Support Vector Machines;

ci - centroid of ith cluster in K-means clustering;
D - dataset;
D(n, T) - time-based window;
Dn - count-based window;
D(R,k) - set of distance-based outliers;
I(R,k) - set of inliers;
k - the neighbours count threshold;
k′ - the number of clusters;
l - the number of features for multidimensional data point;
m - the number of objects in a dataset;
MC - micro-cluster;
mcci - the center of the ith micro-cluster;
n - the number of non-expired objects;
o - data point;
o.exps - expiration time of k most recent neighbour of data point o;
o.frac_before - ratio between the number of preceding neighbours which are safe inliers
for o and the number of safe inliers in the window;
o.mc - an identifier of a micro-cluster to which object o is assigned;
o.pn - list of preceding neighbours for data point o;
o.sn - number of succeeding neighbours for data point o;
o.t - arrival time of data point o;
P - complete object set;
P - partition in K-Means clustering;
PD - the list of data points that are not in micro-clusters;
R - the distance threshold for distance-based outlier detection;
s(i) - a Silhouette score for choosing k′ in K-Means clustering;

5

S - window slide (number of data points used to define the step by which a window is
slided in count-based window);
T - window size for time-based window (time period);
Tend - time-based window end;
Tstart - time-based window start;
wi - linear SVM weight assigned for ith feature;
W - window size for count-based window (number of data points in a window);
Wn - window size for time-based window counted in number of data points;
ρ - controlled fraction of safe inlier.

6

Introduction

Outlier detection is widely discussed topic in many areas. The process of outlier de-
tection is closely related to clustering. Clustering aims to classify data points into groups
while outlier detection aims to highlight points that do not fall into any group. Generally
outlier detection intends to find observations that significantly differ from the rest of the
data. Since it is such a wide topic usually it is divided into areas according to the specified
problem.

Outlier detection can be used in many research areas, such as statistics, data mining,
sensor networks, environmental science, distributed systems, spatiotemporal mining, etc.
Also it has been studied on a large variety of data types, such as high-dimensional data,
uncertain data, stream data, graph data, time series data, spatial and spatiotemporal data
[1].

Originally outlier detection algorithms were built for batch mode when all the data are
available at once. With increasing importance of real-time decisions they were modified
for working with stream data when new data arrives continuously. In this paper we focus
on outlier detection in multidimensional stream data.

Definition 1. Multidimensional data. A combination of features o = (o1,o2,...,ol)

characterizes a particular object o. Having the number of features l and the number
of objects m, objects are described as oi = (oi1,oi2,...,oil), i = 1,...,m where i is the
order of object in the dataset. If objects oi, i = 1,...,m are described by more than
one feature, they are called multidimensional data.

Definition 2. Data stream. An infinite series of data points ...,oi−2,oi−1,oi,... where
data point oi is received at time oi.t is called data stream.

Outlier detection can be used for such problems as fraud detection, network intrusion
detection, spam recognition, error detection in databases, unusual sensor data analysis,
sudden changes in financial market, detecting abnormal transactions or medical anomaly
detection. The data for listed problems can be analysed in batch mode but all of these
cases are examples of continuous processes (continuous stream of data) so being able to
perform an outlier detection together with incoming stream can add value to monitoring
the processes.

With increasing demand of real-time decision-making, stream data analysis is beco-
ming more and more important. However, new challenges arise when we are working
with real-time data. Some outlier detection models are developed depending on the speci-
fic data type or specific problem, so when applied on different datasets the performance of
a model is not as good as expected. Also since new data arrives continuously, size of the
whole dataset is increasing rapidly during the time and this is the reason why resource-
constraint as well as speed of computations needs to be taken into account.

7

Keeping in mind these challenges many outlier detection algorithms for stream data
were suggested. Since importance of real-time decisions is increasing, the topic becomes
more and more important and the researchers are working on the development of these al-
gorithms. In this project I will be focusing on developing distance-based outlier detection
algorithms when working with stream data.

At the beginning in the paper work we will focus on review of existing outlier detec-
tion algorithms. Later we will move on distance-based outlier detection approaches and
analyse few algorithms in detail, apply them on real-world datasets and discuss their ad-
vantages and disadvantages. Further will be introduced suggested improvements, presen-
ted corresponding experimental results and compared to the results of classical distance-
based outlier detection algorithms. In advance outlier clustering is introduced which helps
to retrieve additional information about outliers reported by algorithms.

Basic conclusions of the thesis compose of the analysis and improvement of distance-
based outlier detection algorithms for stream data. The algorithms require to define 4
parameters, some of them need to be adapted according to the dataset so one part of
the experiments is focused on the impact of choosing right parameter values. General
trends on how changing parameter values affect outlier detection are highlighted in the
experimental part and conclusions.

Another part of experiments consists of comparing the results of classical distance-
based outlier detection algorithms and modified algorithms. One of the main observations
about distance-based outlier detection was that if we treat all the features of multidimen-
sional dataset equally in some cases it becomes hard to identify the outliers because out-
lierness occurs by a change of few data point attributes out of many. For this reason we
have decided to take advantage of Support Vector Machines and use the information ret-
rieved from trained SVM to learn the behaviour of labeled outliers. This modification
helps us to improve outlier detection accuracy.

One more suggested implementation was outliers clustering. After experimenting
on predicted outliers clustering, we saw that in some situations clustering gathers similar
outliers and this may be valuable information. With time such grouping can show anomaly
patterns and give suggestions about the nature and frequency of outliers.

The thesis proceeds as follows. In the next section main aims and tasks of the thesis
are formulated. In Section 1 theoretical part on outlier detection in stream data is presen-
ted. Section 1.1 gives literature review on existing outlier detection algorithms. Section
1.2 introduces the concept behind a group of algorithms called distance-based outlier de-
tection. In the section 4 distance-based algorithms are presented in detail, which are
Exact-Storm, Approx-Storm, Abstract-C and MCOD. Section 1.3 consists of describing
suggested improvements for distance-based outlier detection algorithms. Improvements is
related to implementing SVM for better outlier detection accuracy and outliers clustering
for retrieving additional information about predicted outliers. Section 1.4 is dedicated to

8

performance measures which later on are used for evaluating outlier detection algorithms.
Section 2 is assigned for experimental part. Section 2.1 presents 4 real-world datasets that
are used in experimental part. Section 2.2 presents results of described algorithms applied
on real-world datasets and the influence of changing algorithm parameters on overall ac-
curacy. Section 2.3 consists of presenting results of suggested implementations. Section
2.4 shows what additional information can be retrieved from clustering predicted outliers.
Concluding the second part Section 2.5 generalizes the remarks and observations from
empirical section. Finally main results and conclusions are listed and discussed in final
Conclusions.

9

Aims and tasks

Outlier detection is an important task in such areas as fraud detection, network ana-
lysis, sensor data analysis, etc. With increasing demand of stream data analysis, there
is a need of efficient algorithm that can detect outliers in real-time. This master thesis
aims to develop existing outlier detection algorithms when processing multidimensional
streaming data. The research consists of analysis on present outlier detection methods and
suggested approach.

Tasks:

• Overview existing outlier detection algorithms for streaming data;

• Analyse 3-4 selected distance-based outlier detection algorithms;

• Identify advantages and disadvantages of selected algorithms;

• Describe performance measures that are used for comparing outlier detection algo-
rithms;

• Develop and validate selected distance-based outlier detection algorithms;

• Apply these algorithms on several real-world datasets and describe experimental
results;

• Evaluate how suggested improvements influence algorithm performance.

10

1. Theoretical part

In this part general knowledges and definitions on the topic of outlier detection in
stream data is presented. Firstly we will discuss what are the types of outlier detection
algorithms. Then we will focus on distance-based outlier detection and describe four
algorithms in detail. Later on some theory behind the suggested implementations will
be presented. At the end we will make a short review of the performance measures that
are most common for evaluating outlier detection algorithms and later will be used in
experimental part.

In general case outlier is defined as a data instance that differs significantly from other
observations. They can be categorized into 3 groups [1]:

1. Global or Point Outliers - a data point is a global outlier if it deviates significantly
from the rest of the dataset. Most outlier detection methods are dedicated to point
outliers.

2. Contextual or Conditional - a data point is contextual outlier if it deviates signi-
ficantly from the rest of the dataset with respect to a specific context. The context
should be specified for a certain problem. For example, if our data is temperature
then date and location may be accepted as contextual attributes.

3. Collective - a data subset is a collective outlier if a subset deviates significantly
from the entire dataset. In this case single data point can’t be defined as an outlier.

The main idea of detecting outliers is measuring how different data point is compared
to the so called normal data (data that are usual or expected for a certain dataset). Let’s
introduce notation outlier score.

Definition 3. Outlier score. A score that represents the degree of the deviation of a
data instance is called outlier score [2].

By using this measure data points can be ranked and according to the score outliers
are identified. There are various algorithms for outlier score calculations. Some of them
will be presented in detail in the following sections.

Initially many outlier detection algorithms were introduced to deal with batch data
(where all of the data are available before running the algorithm). Currently more and
more algorithms are adapted for streaming data. In this work we focus on working with
data streams when the data comes continuously.

Since stream data are not available for processing at once, calculations must be repe-
ated over and over again with newly arriving data. Because the flow is continuous not only
outlier detection accuracy is a very important performance measure for outlier detection
but also velocity and memory usage.

Outlier detection problem have already been discussed by many researchers. Follo-
wing section consists of literature review on the topic of outlier detection in stream data.

11

1.1. Literature review

Number of studies is dedicated to outlier detection topic. Most of them focus on
working with batch data. However, interest on outlier detection in streaming data has
increased significantly during the last decade. Vast number of outlier detection algorithms
are described in the articles [1, 2, 3, 4]. According to the base of an algorithm, outlier
detection methods are categorized into these groups: distribution-based, distance-based,
density-based, tree-based, clustering-based and deep learning-based. They are shortly
described below.

Distribution-based
Distribution-based (or Statistical-based) method [1] is motivated on probabilistic data

model. Talking more precisely it is based on statistical hypothesis testing, where null
hypothesis states that data point was generated from the same distribution as the normal
data (reminder: normal data is not related to normal distribution. In this work term

normal data defines the data that are usual or expected for a certain dataset). However,
it is almost impossible to model the distribution accurately for multidimensional data and
this is the main reason why distribution-based outlier detection models are not used very
often.

Distance-based
Distance-based method [1, 2, 5, 3, 4, 6] is based on calculating distances between

the data point and its neighbours. Two main parameters k and R appear in the algori-
thm: data point is labeled as an outlier if less than k data instances in the input data is
within distance R from this data point. For detecting outliers in data streams, distance-
based algorithms are often used because of their good performance. There are quite a big
number of distance-based algorithms introduced but most often you can hear about these:
NETS [5], Thresh-LEAP [4], DUE [4], MCOD [6], Exact-Storm [7], Approx-Storm [7],
Abstract-C [8].

Density-based
Density-based method [1, 2] is based on computing densities of separate data clusters.

In a batch mode an algorithm called LOF (Local Outlier Factor) was suggested. The main
idea is computing outlier score for each data point based on local density around that data
instance. It indicates weather the data point is in dense region or not with respect to its
neighbours. Talking about streaming data an incremental version of LOF called iLOF was
presented [9]. The idea is that for every incoming data point o iLOF finds its k-nearest
neighbours, computes outlier score based on its neighbours outlier score and updates past
data if needed. However, iLOF method requires keeping all the previous data points of
a stream so it needs high memory resources. Simply deleting old data does not solve
the problem because the accuracy reduces. Upgraded version of iLOF called MiLOF
(Memory Efficient Incremental Local Outlier Detection) and its extension MiLOF_F was

12

introduced [10]. The main difference is that instead of keeping all the stream algorithms
summarize outlier score of the data that exceed the memory. This way memory usage is
reduced without losing the information about the old data.

Tree-based
Tree-based method [2] process data by using tree structure. An algorithm called Stre-

aming HS-Tree [11] was proposed for outlier detection in stream data. Such tree consists
of a set of nodes which holds the number of data points within a particular subspace of
the data stream. Streaming HS-Tree requires constant amount of memory and performs
high detection accuracy with fast model updates. Another algorithm proposed for outlier
detection is RS-Forest [2]. In stream mode trees are built by randomly selecting attributes
and splitting values. When tree is constructed it is traversed and the number of instan-
ces falling into each node is computed. Later on this count is used for calculating outlier
score.

Clustering-based
Clustering-based method [1, 2, 10] is based on grouping the data. Depending on an

algorithm, data points are described as outliers if they form small clusters or they are far
away from their cluster centroid. For example, clustering-based algorithm called SVDD
(Support Vector Data Description) is mentioned in a survey of outlier detection techniques
[1]. The main idea is that SVDD conducts a small sphere around the normal data and
uncovered data points are defined as outliers.

Deep learning-based
Deep-learning based method [2] is a very recent approach even in batch mode. Howe-

ver, there are some applications made on streaming data as well. An online unsupervised
deep learning approach is presented in the article [12]. The idea of suggested algorithm
is that firstly data goes through feature extraction system and then it is given to a neural
network. As a result, application learns behaviour of a common data and by using this
information outliers are detected.

These are the main classes of outlier detection algorithms in stream data. Table 1
below shows summarized literature overview with listed algorithm parameter values that
were used in experimental part, measure list used for comparing results and short descrip-
tion of how the results were presented.

To sum up described algorithms have their advantages and disadvantages. Distribution-
based outlier detection method faces the problem that data distribution is usually unknown
and it is quite difficult to accurately model the distribution for multidimensional data.
Tree-based methods usually create over-complex trees so it does not generalize the data
well. Clustering-based method needs initial information about formation of clusters and
later on the initial information may highly affect outlier detection. Deep learning-based

13

Table 1: Summarizes literature review of outlier detection algorithms

Authors Category &
Algorithms Parameters Measures Results

M. Kontaki, A.
Gounaris, A. N.
Papadopoulos,
K. Tsichlas and
Y. Manolopoulos
[6]

Distance-based:
COD, ACOD,
MCOD,
Absract-C

W = 200000;
S = 1;
R ={different for da-
tasets};
k = 10

CPU cost, me-
mory required,
number of dis-
tance computa-
tions, other qu-
alitative measu-
rements

Graphical comparison
of algorithms when
varying parameters
W,k,R and number of
outliers

F. Angiulli and
F. Fassetti [7]

Distance-based:
Exact-Storm,
Approx-Storm

W = 10000;
R ={different for da-
tasets};
k = 50

Precision, re-
call, running
time

Graphical comparison
of algorithms when
varying parameter ρ
(Approx-Storm)

L. Tran, L. Fan
and C. Shahab
[4]

Distance-based:
MCOD,
Exact-Storm,
Abstract-C,
DUE,
Thresh_LEAP,
Approx-Storm

W = 10000
(or W = 100000)*;
S = 500
(or S = 5000);
R ={different for da-
tasets};
k = 50

CPU time and
peak memo-
ry, precision
and recall for
accuracy

Graphical comparison
of algorithms when
varying parameters
W,S,k,R and dataset
dimensionality

S. Yoon, J.G. Lee
and B.S. Lee [5]

Distance-based:
NETS

W = 10000
(or W = 100000);
S = 500
(or S = 5000);
R ={different for da-
tasets};
k = 50

Peak memory,
average CPU
time

Graphical comparison
with other models

M. Saleh, C. Le-
ckie, J. C. Bez-
dek, T. Vaithia-
nathan and X.
Zhang [10]

Density-based:
MiLOF,
MiLOF_F

k = 10,20,30;
c = 50;
I1 = 100,I2 = 10;
b = 500;
(time-based window
used)

Runtime, AUC,
number of data
points in memo-
ry

Graphical comparison
when varying para-
meters c,b

Swee Chuan Tan,
Kai Ming Ting
and Tony Fei Liu
[11]

Tree-based:
Streaming
HS-Trees

W = 250; number of
HS-Trees 25
maxDepth = 15;
sizeLimit = 2.5;

Runtime, AUC
Comparison of algo-
rithm modifications
presented in table

A. Tuor, S, Kap-
lan, B. Hutchin-
son, N. Nichols
and S. Robinson
[12]

Deep learning-
based:
DNN and RNN
models

W: from 400 to 1000;
hidden layers: from 1
to 6; hidden layer di-
mensions: from 20 to
500; learning rate =
0.01; batch size: from
256 to 8092

Cumulative re-
call

Results are given
by varying hyper-
parameters

* depending on the dataset

14

models need training to operate and usually requires high processing time if, for example,
large neural networks for outlier detection are built. Density-based as well as distance-
based methods have been proved to be effective in detecting outliers successfully, but
usually requires huge amount of computations. Also they are based on the selection of
nearest neighbours and needs predefined parameters. However, distance-based as well as
density-based methods are most developed areas because for a long time it showed be-
st performance in the field and also is widely applicable with different data types and
different real-world problems [13].

Distance-based outlier detection method is popular because of its scalability (if you
can get good result on a small database, an algorithm that is highly scalable would work
well on large set as well). Another thing is that you do not need any information about
data distribution. The main requirement for distance-based outlier detection algorithms is
to define a distance function which will be used to find similarity among data instances.
Distance-based outlier detection methods are also quite easy to understand when you want
to know why certain decision about data point outlierness was made. These are the reasons
why this method was chosen for further analysis. Following sections will be focused on
distance-based outlier detection methods.

15

1.2. Distance-based outlier detection algorithms

Distance-based method is most developed area for outlier detection when working
with stream data. In short this specific problem is called DODDS (Distance-Based Outlier
Detection in Data Streams).

Number of studies have been performed on DODDS [1, 2, 3, 4, 6] with overviews of
already existing algorithms, some improvements or newly suggested algorithms. Further
main notations that one needs for understanding DODDS are presented. All used symbols
and abbreviations also can be found in the section List of abbreviations and symbols.

Definition 4. Neighbour. Given a distance threshold R (R > 0), a data point o is a
neighbour of data point o′ if the distance between o and o′ is not greater than R. A
data point is not considered a neighbour of itself [4].

Definition 5. Distance-based Outlier. Given a datasetD, a count threshold k (k > 0)
and a distance threshold R (R > 0), a distance-based outlier in D is a data point
that has less than k neighbours in D [4].

Definition 6. Inlier. A data point that has at least k neighbours within distance R
is called an inlier. [4].

In general we will mark our complete object dataset as P . This set is composed of two
subsets: D(R,k) is a set of distance-based outliers and I(R,k) is a set of inliers. These
sets satisfy following statements: they do not overlap (D(R,k) ∩ I(R,k) = ∅) and they
complete each other (D(R,k) ∪ I(R,k) = P).

In this work we focus on outlier detection in stream data where new data arrives
continuously. Typically it is processed using a sliding window approach which allows
reducing memory usage and processing time. Since stream is arriving continuously it is
impossible to keep all the data in memory and suggested sliding window approach requires
keeping only the newest data. There are two types of sliding windows when working with
data streams: count-based window (it maintains n most recent objects) and time-based

window (it maintains all objects that have arrived during the last T time instances). Formal
definitions for count-based and time-based windows are presented below.

Definition 7. Count-based Window. Given data point on and a fixed window size
W , the count-based window Dn is the set of W data points: on−W+1, on−W+2, ..., on

[4].
Here W is measured in number of data points in a window. After performing window

slide by S we will have window consisted of data points on−W+1+S, on−W+2+S, ..., on+S .

Definition 8. Time-based Window. Given data point on and a time period T , the
time-based window D(n, T) is the set of Wn data points: on′ ,on′+1, ..., on with Wn =

n− n′ + 1 and on.t − on′.t = T where data point on is received at time on.t [4].
16

Every time-based window can have diverse number of data points depending on how
many data points arrive during time period T . After performing window slide by S we
will have window defined by time interval Tstart+S and Tend+S (if we say that previous
window started at Tstart and ended at Tend). An object o expires after T/S slides.

When talking about distance-based outlier detection algorithms usually we need to
define these 3 steps of an algorithm [5, 4]:

1. Expired slide processing. Expired data points are removed from the window.

2. New slide processing. New data points are added to the window.

3. Outlier reporting. Outliers are detected from present window.

To describe how these steps are managed in different distance-based algorithms we
need to introduce terms of preceding neighbour and succeeding neighbour [4]. Preceding
and succeeding neighbours for data point o will be stored in o.pn and o.sn.

Definition 9. Preceding neighbour. Data point o is a preceding neighbour of a data
point o′ if o is a neighbour of o′ and expires before o′.

Definition 10. Succeeding neighbour. Data point o is a succeeding neighbour of a
data point o′ if o is a neighbour of o′ and o expires in the same slide or after o′.

For distance computations any appropriate distance measure can be used, e.g. Eucli-
dean distance, Mahalanobis distance, or some other measure of dissimilarity.

Even though Mahalanobis distance is widely applicable with multidimensional da-
ta, in experimental part Euclidean distance will be used because with big datasets it is
computationally less expensive than Mahalanobis distance. Euclidean distance for multi-
dimensional data (size m with l attributes) between pair of observations (i,j) is defined
by the following formula:

dE(i,j) ≡

√√√√ l∑
k=1

(oik − ojk)2 (1)

In the following subsections 4 distance-based outlier detection algorithms will be pre-
sented: Exact-Storm, Approx-Storm, Abstract-C and MCOD. These algorithms were cho-
sen because in some of the articles [4, 14] authors stated that they show a very good
performance especially in terms of memory and time consumption.

1.2.1. Exact-Storm

Storm (Stream Outlier Miner) is distance-based outlier detection algorithm [7]. There
are two variants of the algorithm: Exact-Storm and Approx-Storm. The latter will be
defined in the following section 1.2.2.

17

Algorithm 1 Exact-Storm
1: function DetectOutlier(data,currentTime,W,S)
2: // remove expired data
3: for (o in currentWindow) do
4: if (o.t <= currentT ime−W) then
5: currentWindow.remove(o)

6: // process new slide
7: for (o′ in newData) do
8: query = getNeighbours(o′, R) //neighbours of o′ within distance R
9: for nei in query do

10: if isSameSlide(o′,nei) then
11: o′.sn = o′.sn+ 1
12: else
13: nei.sn = nei.sn+ 1
14: if size(o′.pn) < k then
15: o′.pn.insert(0,nei)

16: currentWindow.add(o′)
17: // do outlier detection
18: for o in currentWindow do
19: pre = 0
20: for pn in o.pn do
21: if (pn > currentT ime−W) then
22: pre = pre+ 1

23: if (pre+ o.sn < k) then
24: outliers.add(o)

25: return outliers

Exact-Storm is the case when entire window is allocated in the memory and the exact
answer of the data stream outlier query can be computed for a window. In this concept new
notation safe inlier needs to be introduced which will be used for algorithm definition.

Definition 11. Safe inlier. An inlier that have at least k succeeding neighbours is
called safe inlier [7].

In Exact-Storm algorithm to find data point within distance R range query search is
applied (range query is a common operation that retrieves all records where some value
is restricted using an upper and/or lower boundaries). Additionally for each data point
preceding and succeeding neighbours are stored. For data point o, o.sn keeps the number
of succeeding neighbours and o.pn keeps the list of most recent preceding neighbours
(maximum list size is equal to k).

Let us define steps of Exact-Storm algorithm:
Expired slide processing. Expired data points are removed from the window. Howe-

ver, they are not removed from the lists of preceding neighbours.
New slide processing. When data point o′ arrives with new slide, a range query is

issued for identifying neighbours in distance R. The result of the range query is used to
18

initialize o′.pn and o′.sn. In addition all preceding neighbours o of o′ needs to increase its
succeeding neighbours count o.sn by 1.

Outlier reporting. When expired slide and new slide processing are done, outliers in
the current window are reported. Data point o is an outlier in a defined window, if it has
less than k neighbours including succeeding neighbours o.sn and non-expired preceding
neighbours in o.pn.

An advantage of exact-Storm algorithm is that there is no need to store the list of
succeeding neighbours of data point o because they expire after expires o. Disadvanta-
ges of the algorithm is that it does not take into account the situation where data point o
have high number of succeeding neighbours and is safe inlier, and anyway stores k prece-
ding neighbours. Also since expired preceding neighbours are not removed from the list,
algorithm is not very optimal in memory usage.

In Algorithm 1 you can find pseudo code of Exact-Storm.

1.2.2. Approx-Storm

Approx-Storm is based on Exact-Storm algorithm [7]. The main difference is that
some effective approximations are introduced which give highly accurate answers with
reduced memory usage.

First approximation consists of reducing number of data points stored in each window.
In particular, all data points can be partitioned in outliers and inliers. Among inliers there
are safe inliers, which will be inliers in any future windows. However, we can’t simply
remove them from calculations because it can affect newly arrived data points in a way
that they will lose their neighbours. This is why the following strategy was introduced.
Let us define ρ (0 ≤ ρ ≤ 1) - controlled fraction of safe inliers. o becomes a safe inlier
when it has exactly k succeeding neighbours. At this moment, if number of safe inliers
exceeds ρW , then some randomly selected safe inliers are removed from a window.

Second approximation consists of reducing the space for storing neighbours for each
data point. Instead of storing the list o.pn, we only store the ratio between the number of
preceding neighbours of o which are safe inliers and the number of safe inliers in the win-
dow. For each data point this ratio is stored in o.frac_before. Note that o.frac_before
is not exact ratio because it is calculated after randomly removing safe inliers described in
the first approximation.

Let us define steps of Approx-Storm algorithm:
Expired slide processing. Expired data points are removed from the window.
New slide processing. For each new data point o′ its neighbours within distance R

are found and the result is used for introducing o′.frac_before and o′.sn. Also for each
neighbour o of o′, o.sn is incremented.

Outlier reporting. When expired slide and new slide processing are done, outliers
in the current window are reported. Data point o is an outlier in a defined window, if

19

o.frac_before ∗ (o.t− currentT ime+W) + o.sn is less than k.
An advantage of Approx-Storm is that approximations reduce memory requirements.

Disadvantage is that time for processing the expired data is very similar to other distance-
based outlier detection algorithms.

You can find pseudo code of an algorithm Approx-Storm described in Algorithm 2.

Algorithm 2 Approx-Storm
1: function DetectOutlier(data,currentTime,W,S)
2: // remove expired data
3: for (o in currentWindow) do
4: if (o.t <= currentT ime−W) then
5: currentWindow.remove(o)

6: // process new slide
7: for (o′ in newData) do
8: query = getNeighbours(o′, R) //neighbours of o′ within distance R
9: count_before = 0

10: for nei in query do
11: count_before = count_before+ 1
12: if size(o′.pn) < k then
13: o′.pn.add(nei)

14: nei.sn = nei.sn+ 1
15: if nei.sn >= k then
16: if size(safeInlierList) >= W ∗ ρ then
17: rand_ind = random(0,size(safeInlierList))
18: safeInlierList.remove[rand_ind]
19: currentWindow.remove[rand_ind]
20: if nei not in safeInlierList then
21: safeInlierList.add(nei)

22: o′.frac_before = count_before/size(safeInlierList)
23: currentWindow.add(o′)
24: // do outlier detection
25: for o in currentWindow do
26: pre = o.frac_before ∗ (W − currentT ime+ o.t)
27: if (pre+ o.sn < k) then
28: outliers.add(o)

29: return outliers

1.2.3. Abstract-C

An algorithm Abstract-C (Abstracted-neighbourship-based Outlier Detection using
counts), introduced in an article [8], differs from other distance-based outlier detection
algorithms because in memory not the list of data point neighbours is stored but a compact
summary of its neighbourships.

20

The challenge behind this concept was that if we store only summarized neighbour-
ships, we lose direct access to the list of neighbours and later on we need to perform
neighbours search again which increases overall computational cost. However, authors of
an algorithm came up with an idea that we can predict the expiration time of any data
point oi because we know that each point participates in a constant number of windows
W/S (usually for simplicity we choose parameters that W/S would be an integer).

The neighbour count described above for every data point is stored in so called lifetime

neighbour count and is marked as o.lt_cnt. Intuitively for each data point o.lt_cnt have
size of W/S - the number of windows that data point o will participate in.

For better understanding of this concept let’s consider an example [4] illustrated in
Figure 1. Let’s say window size and slide have these parameters W = 3 and S = 1. Let’s
talk about one data point o3. We know that it will participate in 3 windows D3, D4, D5

and will not be participating afterwards because it will be expired by that time. In D3

(which consists of data points o1, o2 and o3) o3 has one neighbour o2 which is within R
distance from o3. We also know that o2 will still be a neighbour in D4, so our lifetime
neighbour count for o3 at that moment will be o3.lt_cnt = [1, 1, 0]. In D4, o3 will have
two neighbours because new neighbour o4 arrives. o4 still will be a neighbour in D5, so at
this moment lt_cnt will be updated to o3.lt_cnt = [2, 1]. In the last window D5, o3 has a
new neighbour o5 and o2 is expired, so we will have o3.lt_cnt = [2].

Figure 1: Example of DODDS when dataset D consists of 7 data points [7]

Generally distance-based outlier detection algorithm Abstract-C can be described by
defining main steps of an algorithm:

Expired slide processing. Expired data points are removed from the window.
New slide processing. For each new data point o′ its neighbours within R needs to

be find and o′.lt_cnt is initialized. For each neighbour o that we found for o′, the list of
lifetime neighbour count o.ln_cnt needs to be updated.

Outlier reporting. When expired slide and new slide processing are done, outliers in
the current window are reported. Data point o is an outlier in a window if it has less than

21

k neighbours in the current window (o.lt_cnt[0] < k). Additionally for each data point o
the first element of o.lt_cnt[0] is removed since we slide our window.

An advantage of Abstract-C is that it does not spend time on searching preceding
neighbours in a current window for each data point. Disadvantage is that the memory
requirements strongly depend on the input data stream and chosen W/S.

Below you can find pseudo code of an algorithm Abstract-C.

Algorithm 3 Abstract-C
1: function DetectOutlier(data,currentTime,W,S)
2: // remove expired data
3: for (o in currentWindow) do
4: if (o.t <= currentT ime−W) then
5: currentWindow.remove(o)

6: // process new slide
7: for (o′ in newData) do
8: query = getNeighbours(o′, R) //neighbours of o′ within distance R
9: for nei in query do

10: for n in W/S do
11: if nei.t > currentT ime−W and nei.t > currentT ime+1−W +

n ∗ S then
12: o′.lt_cnt[n] = o′.lt_cnt[n] + 1

13: currentWindow.add(o′)
14: // do outlier detection
15: for o in currentWindow do
16: if o.lt_cnt[0] < k then
17: outliers.add(o)

18: o.lt_cnt.remove[0]
19: return outliers

1.2.4. MCOD

MCOD is a micro-cluster based continuous outlier detection algorithm. The idea be-
hind the algorithm is that neighbouring information is stored in micro-clusters rather than
using range queries for each data point separately. This property of MCOD adds signi-
ficantly to the performance of overall outlier detection process because memory require-
ments are lowered when one micro-cluster keeps the neighbourhood information of many
data points that fall into the same micro-cluster and it reduces the number of distance
computations.

Initially R and k parameters for outlier detection are fixed. Each micro-cluster MCi

have following properties:

• Each micro-cluster consists of more than k data points;

22

• Micro-cluster is centered at one data point mcci and has radius of R/2.

You can find all additional symbols used for defining MCOD in the list of abbrevia-
tions and symbols. The radius is equal to R/2 because this way the distance between all
data points in a micro-cluster is not bigger than R and we can say that all of these data
points are inliers.

An example from an article [4] is presented in Figure 2 with parameter k = 5. There
are 3 micro-clusters MC1,MC2 and MC3. Data points that fall into micro-cluster are
inliers. Some data points (represented with symbol ’+’) do not fall into any cluster. In the
algorithm these points are stored in a separate list called PD - the list of data points which
do not belong to any micro-clusters. Data points from PD can be either outliers or inliers.
To find out if data point from PD list is outlier or inlier, additional search for neighbours
within distance R is performed. For example, in Figure 2 neighbours of data point o1
and o2 are searched within circles marked with dashed line. o1 in his dashed circle has 6
neighbours so it is an inlier. On the other hand o2 has only 1 neighbour within distance R
so it will be reported as an outlier.

Figure 2: Example of MCOD micro-clusters [4]

For each data point we have an information when the data point arrived o.t and we can
predict when data point expires because parameters W and S are known). Additionally if
data point o belongs to a micro-cluster, this information about exact micro-cluster is stored
in o.mc. Also for each data point we keep the expiration time of k most recent neighbours
in o.exps and the number of succeeding neighbours o.sn.

Let us define steps of an algorithm MCOD:
Expired slide processing. When new data points arrive, window slides and we have

to remove outdated data points from both: micro-clusters as well as PD list. Afterwards
there might be situations that some micro-cluster MCi have less than k + 1 data points.
If this occurs then micro-cluster MCi is eliminated and data points that were in MCi and
still appears in active window is processed as a newly arrived data.

23

New slide processing. For each new data point o there are 3 possible scenarios: it
might be added to the existing micro-cluster, it might become the center of a new micro-
cluster or it might be added to the PD list. If o is within distance R/2 to the center of
nearest micro-cluster then it is added to this micro-cluster. Otherwise in PD list we search
for neighbours within distance R/2 from o. If at least k neighbours are found in PD they
form a new micro-cluster with o as the cluster center. Otherwise o is added to PD list.

Outlier reporting. When expired slide and new slide processing are done, all the data
points that are in PD list and have less than k neighbours within distance R are reported
as outliers.

You can find pseudo code of MCOD algorithm described in Algorithm 4.

Algorithm 4 MCOD
1: function DetectOutlier(data,currentTime,W,S)
2: // remove expired data
3: for (o in currentWindow) do
4: if (o.t <= currentT ime−W) then
5: currentWindow.remove(o)
6: if o.isInCluster = True then
7: removeFromCluster(o)
8: else
9: removeFromPD(o)

10: // process new slide
11: for (o′ in data) do
12: if o′ not in currentWindow then
13: currentWindow.add(o′)

14: nearest_center = findNearestCenter(o′)
15: if nearest_center is not null then
16: min_distance = distance(o′,nearest_center)
17: if min_distance <= R/2 then
18: //add to cluster with center nearest_center
19: addToCluster(nearest_center, o′)
20: else
21: // find neighbours in PD
22: neighboursInR2Distance = findNeighbourR2InPD(o′)
23: if size(neighboursInR2Distance) > k then
24: // form new cluster with center o′
25: formNewCluster(o′, neighboursInR2Distance)
26: else
27: addToPD(o′)

28: // do outlier detection
29: for o in currentWindow do
30: if (o in PD) and (o.exps+ o.sn < k) then
31: outliers.add(o)

32: return outliers

24

An advantage of algorithm MCOD is that pairwise distance computations between
data points are more efficient. Also the memory requirements are lowered since some
information for data points is kept in micro-clusters.

Four quite classical distance-based outlier detection algorithms used for stream data
were presented. They are well known because of their performance. However, these
algorithms have their advantages and disadvantages. In order to compare algorithms to
each other Table 2 is presented.

Table 2: Advantages and disadvantages of discussed distance-based algorithms

Algorithm Advantages Disadvantages

Exact-
Storm

It does not store list of succeeding
neighbours of data point (only the
count of succeeding neighbours).
List of preceding neighbours is limi-
ted to store only k most recent pre-
ceding neighbours.

Is demanding in memory and CPU for sto-
ring preceding neighbour lists (also expi-
red preceding numbers are kept).
It does not take into account that da-
ta point with high number of succeeding
neighbours is safe inlier and anyway stores
list of preceding neighbours.

Approx-
Storm

It does not store the preceding
neighbours for each data point and
keeps only a share of safe inliers.

Time for processing the new data does not
reduce compared to other algorithms even
if approximations are applied.

Abstract-C
Doesn’t spend time on searching
active preceding neighbours in the
window for each data point.

Memory requirements strongly depend on
the dataset and parameters W,S.

MCOD

Has advantage in CPU time becau-
se using micro-clusters ease distance
computations.
Storing the neighbourhood informa-
tion in micro-clusters lowers memo-
ry usage.

MCOD loses advantage if most data
points have less than k neighbours in R/2
and are stored in PD.
It searches for all neighbours in PD for se-
parate data point even if it highly exceeds
k.

To sum up distance-based outlier detection methods for stream data is one of the
most developed areas in the field. It is widely applicable with different data types and
different real-world datasets. Distance-based outlier detection method is popular because
of its scalability and because no information about data distribution is needed. The main
requirement for distance-based outlier detection algorithms is to define a distance function
which will be used for finding similarity between objects and define algorithm parameters
k,R,W and S. Distance-based outlier detection methods are also quite easy to understand
and explain why certain decision about data point outlierness was made.

However, distance-based outlier detection algorithms might react differently to diver-
se datasets (examples will be presented in the experimental part in Section 2.2). Someti-
mes outlierness in multidimensional data can occur in a sudden change of few data point

25

features. If this happens outliers might be skipped because other features behave the same
way as for the majority of the data and since we are calculating the distances where each
feature have equal relevance we might pass over.

To overcome this challenge we will try to implement supervised machine learning
algorithm SVM that can add value to distance-based outlier detection algorithms by ret-
rieving additional information from training subset where outliers are labeled and imple-
menting it to the described algorithms.

26

1.3. Development of distance-based outlier detection algorithms

The idea behind distance-based outlier detection algorithms is calculating distances
between data points. Sometimes this kind of distances are not enough to detect outliers
accurately because it does not consider any initial information which can be useful for
improving outlier detection.

Usually before implementing some algorithm on the dataset we have some known
information (training sample) from which additional information can be retrieved. For
example, if we take a case of outlier detection, beforehand we can indicate what kind of
feature changes define labeled outliers in our training subset.

To retrieve additional information we will implement Support Vector Machines algo-
rithm. We will use training subset with condition that outliers in this subset are labeled
and later on experimentally check how these implementations can improve outlier detec-
tion accuracy.

Another area of development focuses on reported outliers. Traditionally outlier detec-
tion algorithms give a list of data points which are predicted to be outliers. What we are
going to do is group reported outliers and investigate how frequent they arrive and what
kind of common characteristics they have.

1.3.1. Implementing SVM

Support Vector Machines (SVM) is a supervised machine learning algorithm which
can be used for classification or regression problems. In our case we will be talking about
binary classification problem.

Definition 12. Classification. A data mining technique which is used to predict group
membership for data instances is called classification [15].

Generally SVM is a process of extracting patterns from the data. Given a training
subset xi, i = 1,...,m where xi is characterized by l features xi = (xi1,xi2,...,xil) and
each data point have label that indicates to which of two classes yi ∈ {−1,1} (called
negative and positive classes) data point belongs to, a binary SVM is trained to classify
new samples into one of these classes.

The main idea of the algorithm is to find the optimal separating hyperplane (decision
boundary) with the maximal margin between two classes [16] (margin in this concept is
the distances between the hyperplane and the closest data points from each group to the
hyperplane). In other words SVM method seeks to maximize the smallest distances of all
observations to the separating hyperplane. If we working with l-dimensional space then
the hyperplane is a (l − 1)-dimensional subspace.

For better understanding let’s consider 2-dimensional example in Figure 3. In this
case the hyperplane is a line which is separating 2 classes (red and green data points).

27

Possible hyperplanes in this case are black lines. However we need to find the hyperplane
which represents the separation between groups the best.

Figure 3: SVM: 2-dimensional example

If we consider a case of linear SVM where each data point x is represented by a
feature vector x = x1,...,xl. Then the equation of the hyperplane in l-dimensional case
can be defined as:

wTx+ b =
l∑

j=1

wjxj + b = 0, (2)

where w is l-dimensional vector of coefficients corresponding to different data point
features and b is a scalar.

Classification of a dataset with SVM can be linear or non-linear. When we talk about
non-linear separation between groups additional function φ(x) needs to be introduced. If
we have l-dimensional data point x ∈ Rl where Rl is a vector space with l dimensions,
usually for optimisation SVM uses another more complex space called feature space whi-
ch helps to separate the groups and find a hyperplane equation (example shown in Figure
4 where non-linear SVM needs to be applied to accurately separate classes).

Figure 4: SVM: Feature space

Without going deep into explanation we just need to know that this function maps
28

input features to a complex feature space φ(x) : Rl → Rd (which usually is higher dimen-
sion space than input space).

In linear SVM we will have φ(x) = x. When different classes are not separab-
le linearly non-linear functions are used. One of the most popular non-linear function
used for training SVM is RBF (Radial Basis Function) which is defined as φ(x,x′) =

exp(−γ||x − x′||2) where γ defines the influence of new features to decision boundary
and ||x−x′|| is Euclidean distance between two points x and x′. In the experimental part
we will use linear SVM as well as non-linear (trained on RBF function).

Generally if we have a set of m multidimensional data points xi, i = 1,...,m, SVM
intends to maximize the smallest distances of all observations to the separating hyperplane
by solving following unconstrained optimization problem:

min
w,b

1

2
wTw + C

m∑
i=1

L(w,b,xi,yi), (3)

where C > 0 is a penalty parameter and L(w,b,xi,yi) is a loss function.
There are 2 most common loss functions which are called L1-loss SVM and L2-loss

SVM respectively:

max(1− yi(wTφ(xi) + b),0) and max(1− yi(wTφ(xi) + b),0)2. (4)

By using the predictor for any instance we can get to which class: negative or positive,
the data point xj is assigned according to trained SVM. For xj the decision function
(predictor) is defined by a formula:

f(xj) = sgn(wTφ(xj) + b). (5)

One of the properties of linear SVM described in an article ’Feature Ranking Using
Linear SVM’ [16] is that coefficients w ∈ Rl obtained from (3) can be used to decide
the relevance of each feature. If coefficients |wi| is large then the ith feature plays more
important role in the decision function (5). Using this statement we can decide which
features are most important when linear SVM is deciding (predicting) to which class data
point needs to be assigned.

Once we understand the concept of Support Vector Machines we can move forward
and talk about how SVM can be implemented into distance-based outlier detection algo-
rithms.

Applying SVM for learning feature relevance
As discussed previously, if we train linear SVM on classifying a specific subset to 2

groups (outliers and not outliers), the absolute value of coefficients w of trained SVM can
describe the relevance of the attributes for classification decision. The higher the absolute

29

value of coefficient, the greater importance of the feature in separating the data points with
different labels. What we are going to do is using |wi|, i = 1,...,l for defining weighted
Euclidean distance and later on use it in the DODDS algorithms.

In further definition we consider that wi ≥ 0, i = 1,...,l is the weight of ith feature.
Weighted Euclidean distance between pair of observations (xi,xj) with known attribute
coefficients wi is defined by the following formula:

dwE(xi,xj) =

√√√√ l∑
k=1

wk(xik − xjk)2 (6)

Applying SVM for verifying outliers
Another improvement is related to double checking data point outlierness. Distance-

based outlier detection methods with specific datasets may suffer from situations where
false outliers are reported which is called low precision (the detailed concept of precision
and recall will be presented in Section 1.4 Performance measures). Basically low precision
says that many data points which are not outliers are reported as outliers.

To overcome this problem we will use additional filtering of outliers which are de-
tected by using distance-based approaches. This process should reduce the number of
outliers reported and should increase precision. Additional outliers filtering will be repe-
ated in each window and can be defined in 2 steps:

1. Distance-based outlier detection algorithm reports the list of predicted outliers.

2. Reported outliers are checked with trained SVM. If SVM assigns predicted outlier
to common data class (not outliers) then it is eliminated from the list of outliers.

Regarding described improvements related to SVM implementation into distance-
based outlier detection algorithms, in the experimental part we will consider 3 modifi-
cations:

• Using trained linear SVM coefficients for introducing weighted distance which will
be used in distance-based outlier detection algorithms;

• Using trained linear SVM for filtering outliers which are reported by distance-based
outlier detection algorithms;

• Using trained non-linear SVM for filtering outliers which are reported by distance-
based outlier detection algorithms (in this case to find non-linear decision boundary
for training SVM we use RBF function).

30

In the experimental part these modifications will be implemented into distance-based
outlier detection algorithms and their results will be compared. To separate modifications
we will mark them with * respectively, e.g. MCOD algorithm which will use linear SVM
weights for weighted distance will be marked as MCOD*, algorithm where linear SVM
will be used as additional filtering will be marked as MCOD** and algorithm where non-
linear SVM will be used as additional filtering will be marked as MCOD***.

1.3.2. Implementing K-Means clustering

When we are talking about outlier detection in stream data using sliding window
outliers are usually identified in local concept. It means that some data points locally
might be outliers but if we look in a wider concept it might be values that are rare but far
between occurs within a dataset. These kind of data points are called anomalies.

Definition 13. Anomaly. The rare observation which differs significantly from the
common behaviour (behaviour of the majority of the data) is called anomaly.

Most of the outlier detection algorithms focus on detecting outliers but do not investi-
gate them. In some situations it might happen that outliers repeat and have some frequency
which is not easily noticeable especially if we use sliding window approach. I will call
this kind of outliers anomaly patterns. By investigating anomaly patterns we can discover
that some outliers repeat and this information can stimulate some useful observations.

Increase of specific outliers may indicate that something unusual is happening, e.g.
breakdown of equipment or occurrence of a particular event. This topic discussed in an
article [17] simulated idea about how anomaly patterns can be discovered using outliers
clustering in stream data.

The main idea is that if we cluster outliers we can get information about the nature of
the specific group of detected outliers. For example, if a very dense cluster is formed, we
can assume that this is some kind of anomaly pattern and we can investigate what kind of
changes causes these events.

Clustering is a tool for finding similar data points within a dataset. It can be widely
applicable in various areas since clustering requires only one predefined parameter - num-
ber of clusters k′. Generally clustering is the task of grouping a set of objects in such a
way that objects in the same group are more similar to each other than to those in other
groups.

K-Means clustering is a simple and fast clustering technique. The procedure follows
a simple and easy way to classify a given dataset through a certain number of clusters k′

[18].
The main idea of the algorithm is finding k′ centroids which will define separate

clusters. Once centroids are chosen we need to assign each data point to specific cluster
by finding which centroid is closest to a data point. This process is repeated many times

31

in order to adjust centroids that represent the best clustering.
Speaking more specifically the algorithm can be described by 4 steps:

1. Place k′ points in the space taken from the objects that are being clustered. These
points are initial centroids.

2. Assign each object to the group that has the closest centroid.

3. When all objects have been assigned recalculate the positions of the k′ centroids.

4. Repeat Step 2 and 3 until the centroids no longer move.

Usually initial centroids are chosen randomly with a condition that they should not be
close to each other. With number of iterations they are adjusted to form best representative
clusters. Described process with k′ = 2 is illustrated in Figure 5. Let’s shortly discuss how
it works. (a) illustrates initial dataset, (b) initial centroids are introduced, (c) data points
assigned to a closest cluster, (d) positions of centroids adjusted, (e) data points reassigned
to a closest cluster, (f) positions of centroids adjusted and so on.

Figure 5: K-Means clustering (k′=2)

The main task of the algorithm is to minimize a squared error function (distances
between data points and their cluster centroids). For a partition P which consists of k′

non-empty and not overlapping clusters PK , K = 1,...,k′ with centroids cK , K = 1,...,k′

the squared error function is defined as follows:

W (P,C) =
k′∑

K=1

∑
i∈PK

||xi − cK||2, (7)

where xi, i = 1,...,m and cK , K = 1,...,k′ are sets of l-dimensional datapoints.

32

Most of the clustering algorithms are designed to investigate the grouping of data
objects according to a known number of clusters k′. Identifying the number of clusters k′

is an important task for any clustering problem. There are number of different proposed
approaches which helps choosing best k′. We will use Silhouette Method.

The silhouette value measures how similar a point is to its own cluster compared to
other clusters. The silhouette score reaches its global maximum at the optimal k′, it means
we need to find to which k′ silhouette score has highest value.

The silhouette score s(i) for each data point i is defined by a formula:

s(i) =

b(i)−a(i)

max{a(i),b(i)} , if |Ci| > 1

0, if |Ci| = 1
, (8)

where |Ci| is the number of data points in the ith data point cluster.
a(i) here measures similarity of the point i to the data point j of same cluster. It is

calculated by a formula:

a(i) =
1

|Ci| − 1

∑
j∈Ci,i 6=j

d(i,j), (9)

where function d(i,j) measures distance between two data points.
b(i) is the measure of dissimilarity of point i and the point j in other cluster:

b(i) = min
i 6=j

1

|Cj|
∑
j∈Cj

d(i,j). (10)

K-Means clustering and Silhouette Method can be implemented into described outlier
detection methods. Let’s discuss what value can these implementations add to the outlier
detection.

Applying K-Means to outliers clustering
Clustering will be implemented into distance-based outlier detection algorithms desc-

ribed in Sections 1.2. We will use K-Means algorithm which is rather simple and fast
clustering technique. For choosing number of clusters which separates outliers groups
best we will use Silhouette method. Since the patterns of detected outliers might change
during the time, K-Means clustering will be trained every ncl iterations (windows).

Together with clustered outliers the algorithms will present additional information
about clusters:

• Number of data points belonging to a cluster.

• Average distance between cluster data points and centroid.

• Mean feature values of data points in a cluster.

33

After retrieving this additional information some important conclusions about the
group of reported outliers can be done. We will discuss it more precisely in experimental
part.

To sum up, Section 1.3 introduced improvements that could be applied on distance-
based outlier detection algorithms for stream data. One of the improvements is suggested
based on implementing SVM which helps retrieving additional information about labe-
led outliers from training subset. It is expected that these improvements will increase
outlier detection accuracy. Another improvement is suggested to extend the output of out-
lier detection algorithms. It is suggested to implement outliers clustering which provides
additional information about the similarity of outliers.

Further the possible workflow is presented which generalize the suggested improve-
ments for distance-based outlier detection algorithms when working with stream data:

1. Train SVM on given training sample where outliers are labeled.

2. Perform modified distance-based outlier detection with one of the listed modifica-
tions (a-c):

(a) Use linear SVM coefficients for defining weighted distance which then is used
in distance-based outlier detection.

(b) Run distance-based outlier detection and apply additional filtering for identi-
fied outliers by using linear SVM.

(c) Run distance-based outlier detection and apply additional filtering for identi-
fied outliers by using non-linear SVM.

3. Perform K-Means clustering for predicted outliers.

In experimental part of the thesis we will use this approach with suggested additions
and compare the results.

In order to compare described distance-based outlier detection algorithms and inves-
tigate how suggested implementations add value to the classical methods, performance
measures needs to be discussed.

34

1.4. Performance measures

As described in previous sections, there are various algorithms for outlier detection
in stream data. To evaluate which algorithm shows better performance we need to define
measurements that allow us to compare outlier detection algorithms to each other.

Usually when talking about outlier detection in stream data we pay attention to these
3 characteristics: how well algorithm identifies outliers, how fast works an algorithm and
how much memory is needed for overall outlier detection process. Further we will define
what kind of indicators can be used for measuring these characteristics.

Accuracy. Accuracy defines how well an algorithm detects outliers. When dealing
with outlier detection problem usually two indicators are defined for accuracy measure-
ment: Precision and Recall. To define these measures we need to introduce context of
Confusion matrix.

In a binary decision problem we have two different labels, we call them positive and
negative. The decision made by an algorithm can be represented in a confusion matrix
which is shown in Figure 6. The main idea is that confusion matrix has four categories.
True positives (TP) are objects correctly labeled as positives. False positives (FP) refer
to negative objects incorrectly labeled as positive. True negatives (TN) correspond to
negatives correctly labeled as negative. False negatives (FN) refer to positive objects
incorrectly labeled as negative. In our case positive class will be outliers and negative
class inliers.

Figure 6: Confusion matrix [19]

Recall measures how well algorithm identifies real outliers. It is calculated by using
formula:

Recall =
TP

TP + FN

Precision measures how well algorithm identifies outliers with respect to all predicted
outliers. It is calculated by using formula:

Precision =
TP

TP + FP

35

CPU time. When outlier detection is performed with stream data it is critical to
reduce algorithm latency. CPU time is used to compare how fast algorithm processes
defined data steam. CPU time defines the time consumed for running the algorithm.

Memory usage. Memory consumption is another important indicator when wor-
king with stream data. We can’t store all the dataset because then we will need enormous
requirements for memory storage. The smaller algorithm memory consumption the better.
Maximum memory consumed (also called peak memory) is used for comparing different
outlier detection algorithms. It defines the maximum memory consumption when proces-
sing stream data for outlier detection.

To generalize, Section 1 was dedicated to theoretical part behind the algorithms of
outlier detection in stream data. In Section 1.1 we presented an overview on outlier detec-
tion techniques and talked what are the advantages and disadvantages of different outlier
detection algorithms. Then in Section 1.2 we discussed 4 distance-based outlier detection
algorithms for stream data. These algorithms will be used in experimental part. In Section
1.3 we presented necessary theory and the improvements for distance-based algorithms.
In Section 1.4 performance measures were introduced. They will be used in experimental
part to compare the results between algorithms.

Further in 2nd part of the paper we will apply these algorithms on chosen datasets
and discuss the results.

36

2. Experimental results

In Section 1 theoretical part behind distance-based outlier detection algorithms for
stream data were presented. Further we will move on the experimental part and describe
the results observed after applying discussed algorithms on several datasets.

Our experimental part will consist of 4 main subsections which will cover description
of the datasets used, results of applying selected distance-based outlier detection algori-
thms on the chosen datasets, discussing results of modified algorithms and comparing it to
the classical distance-based outlier detection algorithms and lastly presenting the results
of outliers clustering.

Let’s shortly discuss what kind of experiments are presented in the experimental part.
In Section 2.2 we present the application of classical (unchanged) distance-based out-

lier detection algorithms for stream data. Since choice of algorithm parameters is very
important we discuss how changing the parameters (increasing or decreasing parameter
values) affects the results. Based on these experiments default parameter values for each
dataset is defined.

Section 2.3 defines how suggested improvements for distance-based outlier detection
algorithms influence the results. Firstly we introduce what information is learnt from the
training subsets of each dataset. Then we discuss the results of implementing suggested
approaches while comparing modified algorithms with classical (unchanged) algorithms.

In Section 2.4 we talk about outliers clustering and how it might be implemented
into outlier detection algorithms when working with stream data. We learnt that in some
cases (depending on the dataset) outliers clustering might give useful information about
the groups of outliers detected. This information later on can be used for automatically
defining detected outliers in real time.

First of all let’s describe the datasets that are used in experimental part.

37

2.1. Datasets

For outlier detection problem it is difficult to find real-world datasets containing labe-
led outliers. This is why when working with development of outlier detection algorithms
usually open-source datasets are used. Most of them are created from classification da-
tasets by reducing or eliminating classes so that some of the data would differ from the
majority of the data.

In this work four real-world datasets were chosen to be used. All of them are available
in the UCI KDD Archive [20] as well as in Outlier Detection DataSets (ODDS) library
[21] where data are specifically prepared for outlier detection problem. Different data-
sets in respect to the size, number of attributes and outlier rate (Table 3) were chosen to
investigate and analyse how outlier detection algorithms perform using different datasets.

Table 3: Description of datasets

Dataset Size Attributes Outlier rate
Shuttle 49097 9 7.00%
KDD Cup 1999 567479* 3 0.40%
Pendigits 6870 16 2.27%
Forest Cover 286048* 10 0.90%
* for these datasets a subset of 50000 data points are

used in experimental part

Shuttle dataset originally is multi-class classification dataset. In our case the biggest
class is defined as inliers, one class is removed and the rest data points are labeled as
outliers. Modified dataset contains of 49097 records with 7% outlier rate and 9 attributes.

KDD Cup 1999 dataset consists of network data with a task of network intrusion
detection. Originally dataset have 42 attributes but for outlier detection it is reduced to
3 which according to the data providers are defined as the most basic attributes (duration
of connection, number of failed logs in attempts and number of connections to the same
host as the current connection). It contains of 567479 records with 0.4% outlier rate. Each
connection is labeled as either usual, or as an attack. In experimental part we will use a
subset of 50000 data points.

Pendigits is a multiclass classification dataset having 16 attributes and 10 classes (ori-
ginal problem is classification of numbers from 0 to 9). The digit database is created by
collecting 250 samples from 44 writers. For outlier detection problem dataset is modified
in a way that one class is reduced by 90% so it would form outliers and the rest classes are
accepted as inliers. Modified dataset contains of 6870 records with 2.27% outlier rate.

Forest Cover dataset is used for predicting forest cover type from cartographic va-
riables. It takes forestry data from four wilderness areas in Roosevelt National Forest in
northern Colorado. The observations are taken from 30m by 30m patches of forest that are
classified as one of seven cover types. The dataset consists of several cover type classes

38

but we will use only two of them: one is considered as inliers and other as outliers. Initial
dataset have 54 attributes but in our case we will use 10 (binary attributes are removed).
Modified dataset contains of 286048 records with 0.9% outlier rate. Instances from class
2 are considered as inliers and instances from class 4 as outliers. In experimental part we
will use a subset of 50000 data points.

In the Appendix 1 descriptive analysis and graphs of used datasets are placed. For
each dataset two tables are presented: one describes labeled outliers and another describes
the rest of the data. Also parallel coordinates graphs are presented where vertical lines
represent different attributes and data points are represented as a polylines with vertices
on the parallel vertical axes. Red lines in these graphs represent data points which are
labeled as outliers.

Since our algorithms are calculating distances between data points, it is very im-
portant having standardized ranges for data point attributes because values may be from
different range for each attribute. For simplicity scaling on the whole dataset was applied
before running the algorithms.

In the following sections we will discuss the results of distance-based outlier detection
algorithms applied on described datasets.

39

2.2. Application on real-world datasets

In theoretical part the concept of distance-based outlier detection was introduced.
Four algorithms: Exact-Storm, Approx-Storm, Abstract-C and MCOD were presented in
detail. In this section we will discuss results observed after these algorithms were applied
on chosen datasets.

Distance-based outlier detection algorithms have 4 basic parameters:

• k - neighbours count threshold;

• R - distance threshold;

• W - window size;

• S - slide size.

Usually they are set for each dataset separately according to the specifics of the da-
taset, memory facilities and the stream of the data. The results in this section will be
presented for each dataset separately when varying values of parameters.

Parameters W and S determine the volume and the speed of the data streams. They
are the major factors that mostly affect the speed and memory usage of the algorithms.
Values k and R determine the outlier rate and mostly affects outlier detection accuracy.
Memory consumption is also related to k as all the algorithms store information regarding
k neighbours of each data point.

In this research we will analyse what is the influence of changing parameter values
for distance-based outlier detection algorithms when working with stream data. To clearly
see the impact of exact parameter other parameters will be fixed.

From the literature we found that usually window size is set quite big (f. ex. W =

10000 or W = 100000 [4]) but in some cases the smaller window is used (e.g. W = 400

or W = 1000 [12]). If we take smaller window our algorithm will run faster because less
data points need to be processed in a window. Since our goal is working on algorithm
development for faster execution we will consider a case when window size W = 500 and
slide size S = 500 unless stated otherwise (which means that each data point is processed
only in one window).

On the other hand parameters R and k needs to be set for each dataset separately be-
cause the choice of these parameters is strongly related to the dataset specifics, outlier rate
and also chosen W . By experimenting while changing k and R best match of parameters
was chosen. We will consider them as default parameters. These parameters are presented
in Table 4.

Further the research on changing values of parameters is presented. We will start
from varying k and R and prove the choice of default parameters. Then we will move on
varying W and S and see if the change of window size and slide size influence the outlier
detection results. Each case will be discussed in separate subsections.

40

Table 4: Default parameters R and k

Dataset k R

Shuttle 55 0.25
KDD Cup 1999 5 0.35
Pendigits 15 1.10
Forest Cover 10 0.40

2.2.1. Varying parameter k

Parameter k defines how many neighbours are required within assigned distance R so
we could call a data point inlier. Choice of k mostly affects outlier detection accuracy.
More data points are reported as outliers if we increase k and less data points are reported
as outliers if we decrease k. To detect outliers accurately we need to find optimal k which
gives high recall and high precision. However, usually when recall increases precision
decrease and vice versa.

Let’s discuss results for each dataset separately when varying k. In this experiment
parameters R, W and S are fixed (considered default parameters).

Note: pay attention that scales in the graphs may differ. Also in some graphs not all

algorithm curves are visible, it implies that hidden algorithms behave same way as other

algorithms in the graph.

Figure 7: Shuttle dataset: how changes time and accuracy when varying neighbour count k

Shuttle dataset stands out from other datasets with high outlier detection recall and
precision. Figure 7 shows how change of k influences outlier detection processing time
and accuracy. If we look to the 2nd and 3rd graphs we can prove that when we vary k if
recall increase then precision decrease and vice versa. These observations state that va-
rying k has significant impact on algorithm accuracy. On the other hand, processing time
is weakly affected by change of k (1st graph). Also it is worth to highlight how relatively
fast MCOD works with Shuttle dataset. The main reason behind this is that outliers easi-

41

ly differs from the rest of the data and when that happens while using MCOD algorithm,
keeping neighbourship information in micro-clusters significantly lowers processing time.

Figure 8: KDD Cup dataset: how changes time and accuracy when varying k

Influence of varying k for KDD Cup 1999 dataset is illustrated in Figure 8. This
dataset is an example where using distance-based outlier detection algorithms for stream
data gives high recall and low precision (means that labeled outliers are well recognized
but as well many false outliers are reported). Let’s see if increased k can add value to the
accuracy. From the 2nd graph we see that increasing neighbours count from 5 to 25 for
KDD Cup 1999 dataset gives an increment in recall approximately by 7% and is close to
perfect result. Further incrementation of k is not that significant. However, incrementing
k provokes decrease in precision (3rd graph). Talking about algorithm processing time,
once more MCOD stands out with low CPU time while other algorithms is noticeably
affected by changing k. CPU time for Exact-Storm increases when we increment k while
for Approx-Storm and Abstract-C slightly goes down. The main reason behind this is that
Exact-Storm algorithm keeps in memory list of k most recent preceding neighbours and
with bigger k working with this list causes increased CPU time.

Figure 9: Pendigits dataset: how changes time and accuracy with different k

42

Applying distance-based outlier detection algorithms on Pendigits dataset let us reach
recall around 80% with precision around 25%. Figure 9 shows how change of k influen-
ces outlier detection algorithm processing time and accuracy. If we look at 2nd and 3rd
graphs once more we see that if we increase k, recall increase and precision decrease (with
exception of Approx-Storm algorithm where applied approximations gives little bit higher
precision when k = 15). Processing time in this case is insignificantly affected by change
of k, only Abstract-C algorithm shows some ascendant trend in CPU time (1st graph).
Again MCOD is relatively faster when comparing to other algorithms.

Figure 10: Forest Cover dataset: how changes time and accuracy with different k

Impact of varying k for Forest Cover dataset is shown in Figure 10. For this dataset
distance-based outlier detection algorithms do not give great results: recall reaches 60-
70% while precision is very low. This is because outliers are not noticeably separable
from other data (outliers can be recognized only with changes observed in few features of
a data point). CPU time for Exact-Storm algorithm keeps in the same level when changing
k while other algorithms give some noticeable reaction. MCOD CPU time increases when
we increase k because more data points fall into PD list and not micro-clusters and that
increases number of distance computations. On the other hand CPU time for Abstract-C
and Approx-Storm algorithms decreases as in the example with KDD Cup 1999 dataset.
From the 2nd graph we see that increasing neighbours count significantly increases recall
but precision gradually shrinks (3rd graph).

To generalize, to achieve best result parameter k needs to be adjusted to each dataset
separately according to the dataset specifics, outlier rate and chosen outlier detection al-
gorithm parameters. Common behaviour when we vary neighbour count k is that once we
increase k we can increase recall but then precision goes down and vice versa. Speaking
about the processing time, change of k does not significantly influence CPU time. From
this experiment we saw that accuracy received with algorithms Exact-Storm, Approx-
Storm and MCOD is quite similar while for Approx-Storm little differs. Talking about
processing time MCOD algorithm stands out with low CPU time for 3 out of 4 datasets.

43

2.2.2. Varying parameter R

Parameter R defines the distance in which we look for k neighbours for specific data
point so we could call it an inlier or outlier. Choice of R mostly affects outlier detection
accuracy. It works in an opposite way compared to varying another parameter k. More
data points are reported as outliers if we decrease R and less data points are reported as
outliers if we increase R. Usually when recall increase precision decrease and vice versa,
so to detect outliers accurately we need to find optimal R which gives high recall with
high precision.

Further we will discuss results for each dataset separately when varying parameter
values R. In this experiment k, W and S values are fixed.

Influence of varyingR for Shuttle dataset is illustrated in Figure 11. When we increase
the distance R we observe a continually declining recall (2nd graph) and increasing preci-
sion (3rd graph). This happens because increased R means that we search for neighbours
within wider radius from the data point and as a result less data points are reported as out-
liers. Talking about CPU time, since less data points are considered as outliers in MCOD
algorithm more data points are kept in micro-clusters so CPU time consumption decre-
ase. For other algorithms it works in opposite way - more data points have neighbourship
information and working with it increases CPU time.

Figure 11: Shuttle dataset: how changes time and accuracy when varying distance R

After applying distance-based outlier detection algorithms on KDD Cup 1999 dataset
with varying R we can see some similar trends. The graphs for this dataset are presented
in Figure 12. Processing time in this case is noticeably affected by change ofR (1st graph)
but overall tendencies remain similar as with Shuttle dataset. Again MCOD is relatively
faster and other algorithms perform some increase in CPU time with incremented R. In
2nd and 3rd graphs we can check how change of R influences outlier detection accura-
cy. From the graphs we see that increased R causes recall decline and precision grow.
Accuracy among all 4 algorithms with KDD Cup 1999 is very similar.

44

Figure 12: KDD Cup 1999 dataset: how changes time and accuracy with different R

Pendigits dataset also behaves very similarly as two already described datasets. Cor-
responding graphs are presented in Figure 13. As talked before varying parameter R has
a little impact on CPU time. To be precise MCOD algorithm has a slight decrease in
processing time while Exact-Storm and Abstract-C a little increase (1st graph). Speaking
about accuracy with Pendigits dataset remains the same tendency: increased R provokes
decline in recall and increase in precision. However, while recall shows acceptable results
precision is comparably low.

Figure 13: Pendigits dataset: how changes time and accuracy when varying distance R

Influence of varying R for Forest Cover dataset is shown in Figure 14. When we inc-
rease the distance R we observe a continuous decrease in recall (2nd graph) and slight
increase in precision (3rd graph). Talking about CPU time for algorithm Exact-Storm it
stays quite stable when changing R. MCOD in contrast with higher R shows a significant
drop in CPU time caused by situation that more data points are in micro-clusters. Approx-
Storm as well as Abstract-C show some fluctuations caused by changing distance R.

45

Figure 14: Forest Cover dataset: how changes time and accuracy when varying distance R

To generalize, parameter R needs to be adjusted to each dataset separately according
to the dataset specifics, outlier rate and other chosen parameters. Common behaviour
when we vary distance R is that once we increase R the recall decreases but then the
precision goes up and vice versa. The goal working with a specific dataset is to find
best case where recall is highest with high precision. Talking about CPU time from this
experiment we can state that when increasing R processing time for MCOD algorithm
tends to decrease and for other algorithms slightly increase or stay stable.

2.2.3. Varying parameter W

In this subsection influence of varying window size W is presented. We will discuss
how changes time consumption, recall and precision of distance-based outlier detection
algorithms when we are increasing window size from 500 to 1000 data points a window.

The parameters S and R are fixed for all the cases while parameter k is adjusted
according to window size W . In previous experiments 3 out of 4 parameters were fixed
but this time we decided to adjust 3rd parameter k when changing window size.

Let’s discuss Figure 15 which illustrates case where MCOD was applied to KDD
Cup 1999 dataset by fixing all 3 parameters and varying only window size. If we increase
window sizeW and fix the neighbour count k then we get constantly decreasing recall and
precision. It might be explained by the fact that with increasing number of data points in
a window the number of neighbours for each data point also will increase. What follows
next is that less data points will be considered as outliers and we will have declining
algorithm accuracy.

Keeping in mind highlighted trend it is more interesting to investigate what happens if
we increase window sizeW and respectively increase k and check the hypothesis that once
we find appropriate neighbour count threshold k, window size does not play significant
role on the accuracy of the outlier detection algorithms. For further experiment when

46

Figure 15: KDD Cup 1999: accuracy when varying window size W

W = 500 we choose default parameter k (described in the Table 4), for W = 750 and
W = 1000 default parameter k is increased by 1.5 or 2 times respectively.

Figure 16 illustrates what happens once we increase parameter W (with increasing
parameter k respectively) for dataset Shuttle. From the 1st graph we see how CPU time
increases with W . The main reason of incrementing CPU time is that for bigger win-
dow we need more distance computations between data points than in a smaller window.
What stands out in this graph is that CPU time for MCOD algorithm unexpectedly incre-
ases when W = 750. The possible explanation is the specifics of the dataset. Since we
increased parameter k more data points were assigned to PD list and more distance com-
putations were needed. If we look at the graphs of accuracy there are some fluctuations
but no significant difference with varying windows size W .

Figure 16: Shuttle dataset: how changes time and accuracy when varying window size W

Influence of varying W for KDD Cup 1999 dataset is shown in Figure 17. When we
increase the window size W we observe an increase in CPU time (1st graph). Once again
MCOD algorithm proves to be faster when we have W = 500 and increases rapidly wi-
th increased window size. Talking about recall and precision it behaves differently with

47

separate algorithms. For example, Abstract-C and Exact-Storm with KDD Cup 1999 data-
set show better results with bigger window than with smaller. In contrast other algorithms
show some fluctuations. However, it seems that these fluctuations are mostly related to
the specifics of the dataset because they are only observed with this dataset.

Figure 17: KDD Cup 1999 dataset: change of time and accuracy with different W

Pendigits and Forest Cover datasets are illustrated in Figure 18 and Figure 19. These
datasets behave similarly when we change W so we will generalize them together. CPU
time is increasing continuously together with increased window size and does not show
any significant differences among algorithms. From the accuracy graphs we can state
that increased W has no noticeable impact for algorithms MCOD, Abstract-C and Exact-
Storm if we increase k respectively to the window size. On the other hand Approx-Storm
has declining recall and slightly increasing precision when changing W .

Figure 18: Pendigits dataset: how changes time and accuracy when varying window size W

To generalize, if we adjust parameter k respectively, changing parameter W does not
have significant impact on overall outlier detection accuracy. What changes when we
increase W is that CPU time increases constantly together with increased W .

48

Figure 19: Forest Cover dataset: how changes time and accuracy with different W

Another thing that we observed with this experiment is that MCOD strongly reacts to
the change of W and k because micro-clusters consider area with radius R/2. It means
that for MCOD if we want to increase W we should reconsider parameters k and R and
find ones which uses the advantage of MCOD algorithm. Also it is worth to mention that
Approx-Storm because of used approximations noticeably reacts to varying W .

2.2.4. Varying parameter S

Parameter S defines the step by which sliding window is processed. By choosing S
we can control the speed of outlier detection algorithm and the number of windows in
which one data point will be processed.

Basic rule is that reducing slide size S increases processing time because this way we
need to work with more windows. However the main question is how does it influence
outlier detection accuracy because the goal is to find optimal situation when we have high
accuracy with the shorter algorithm processing time. This is what we seek to answer in
this subsection.

For this experiment we have fixed parameters k, R and W , and varying slide size S.
Let’s see what observations can be done after investigating 4 datasets.

Shuttle dataset for which distance-based outlier detection algorithms work best is pre-
sented in Figure 20. As expected if we take smaller slide size S CPU time increases no
matter which algorithm is considered (1st graph). MCOD algorithm stands out if we con-
sider CPU time because of micro-clusters eliminations and creations. In some cases after
deleting expired objects we may need to eliminate the cluster and after new data points ar-
rive create a micro cluster. This process might have an impact to increasing MCOD CPU
time when we take smaller S. If we talk about the accuracy slide size has little influence
on recall and precision for a Shuttle dataset.

49

Figure 20: Shuttle dataset: how changes time and accuracy when varying slide size S

Varying slide size S for another dataset KDD Cup 1999 is presented in Figure 21.
CPU time (1st graph) shows same tendencies that smaller S increases outlier detection
algorithms processing time. Looking into the accuracy (2nd and 3rd graphs) there is
some fluctuation in recall and precision but no major impact. However from the graphs
we can state that for KDD Cup 1999 dataset the case where S = 250 which means that
each data point is considered in two windows works best.

Figure 21: KDD Cup 1999 dataset: change of time and accuracy when varying slide size S

The datasets Pendigits and Forest Cover and their reaction to varying S is illustrated
in Figure 22 and Figure 23. As expected CPU time is bigger with smaller slide size S
and MCOD again have significantly higher processing time with S = 125. Accuracy on
the other hand stays quite stable with different slide size. Approx-Storm algorithm has
relatively lower recall and higher precision if we compare to other algorithms because of
implemented approximations in outlier detection process.

To generalize, slide size S defines the speed of the outlier detection algorithm and
the number of windows in which one data point will be included. The experiment justify

50

Figure 22: Pendigits dataset: how changes time and accuracy when varying slide size S

Figure 23: Forest Cover dataset: how changes time and accuracy when varying slide size S

that smaller S increases CPU time. Moreover we found that choice of S does not show
significant impact on outlier detection accuracy. Speaking about algorithm performance
Approx-Storm stands out in a way that approximations cause slightly lower recall no mat-
ter S and MCOD has significantly higher processing time with smaller S.

Summing up, the Section 2.2 consists of analysing choice of distance-based outlier
detection algorithm parameters and its influence to the algorithm performance. Overall
we investigated 4 parameters: k, R, W and S. These experiments let us come to some
basic conclusions about the choice of parameters.

Parameter k defines the threshold of number of neighbours in a window needed to
declare if data point is an inlier or outlier. We came up to the conclusion that for different
datasets k needs to be adjusted individually because of the different dataset characteristics.
Also we identified a common behaviour that increasing k value let us increase the outlier
detection recall but then the precision decreases. Speaking about algorithm processing
time choice of k has no significant influence to the CPU time.

51

Another parameter R defines the distance which determine the area around the data
point in which we look for its neighbours. What we found out is that if we increase distance
R the recall tends to decrease while the precision increase. This might be explained by
the fact that with bigger R more data points have more than k neighbours and number of
reported outliers declines.

Afterwards we investigated few different window sizes and how the choice of W
impacts the result if we fix parameters R and S, and adjust k according to the window
size. The experiment showed that if we adjust k, different window sizes have very small
or no impact on outlier detection accuracy. What changes when we increase W is that
algorithm processing time continuously geos up.

Lastly we considered the change of parameter S - slide size by which we move the
sliding window after one is processed. We found out that it mostly influences algorithm
processing time but has little impact on outlier detection accuracy.

Table 5: Results of distance-based outlier detection algorithms application on 4 datasets

Algorithm Peak Memory, KB CPU Time, s Recall Precision Outlier rate*

Shuttle dataset (W = 500, S = 500, k = 55, R = 0.25)
Exact-Storm 87744 123854 95.0% 96.5% 7.03%
Approx-Storm 98008 119643 94.9% 96.6% 7.02%
Abstract-C 87528 115414 95.0% 96.5% 7.03%
MCOD 90596 17043 95.1% 94.2% 7.22%

KDD Cup 1999 dataset (W = 500, S = 500, k = 5, R = 0.35)
Exact-Storm 11175 98724 92.2% 38.5% 0.80%
Approx-Storm 98840 99277 92.2% 39.2% 0.79%
Abstract-C 97972 99292 92.2% 38.5% 0.80%
MCOD 124640 387 92.2% 38.5% 0.80%

Pendigits dataset (W = 500, S = 500, k = 15, R = 1.1)
Exact-Storm 79056 4486 78.2% 24.3% 7.32%
Approx-Storm 89132 4198 66.7% 25.7% 5.90%
Abstract-C 78548 4354 78.2% 24.3% 7.32%
MCOD 78084 2819 80.8% 24.6% 7.45%

Forest Cover dataset (W = 500, S = 500, k = 10, R = 0.4)
Exact-Storm 688508 96952 60.2% 6.8% 8.64%
Approx-Storm 668472 67491 59.3% 6.8% 8.48%
Abstract-C 750152 104417 60.0% 6.8% 8.64%
MCOD 991120 93924 60.4% 6.8% 8.66%

* Detected outlier rate shows what percentage of the dataset is reported as outliers

All experiments performed in Section 2.2 showed how important is choosing the right
parameters in distance-based outlier detection algorithms when working with stream data.
When choosing the parameters main goal is to find optimal solution which would bring
highest accuracy with considerably low processing time. In Table 5 we give the results of

52

algorithms Exact-Storm, Approx-Storm, Abstract-C and MCOD applied to the 4 selected
datasets with optimal parameters (the cases where W = 500 and S=500 are considered).

In Table 5 there is an additional column of detected outlier rate which indicates what
part of the dataset is predicted to be outliers. Mostly we see that if precision and recall is
high, the predicted outlier rate is very close to the real one which was given in Table 3 in
Section 2.1. If we have low precision which means that many false outliers are predicted
then naturally we have higher than the real outlier rate.

Speaking about algorithms performance, in respect to outlier detection accuracy all of
them are very similar and this is because the same distance-based approach is used. What
needs to be highlighted according to the accuracy is Approx-Storm algorithm. Its recall
and precision deviates from other algorithms the most and this is because of approxima-
tions usage. Speaking about algorithms processing time, mostly stands out MCOD: in
cases where outliers can be separated more easily MCOD is significantly faster but on op-
posite situations or with wrongly chosen parameters its processing time can vastly exceed
a usual CPU time. Also I want to mention algorithm Abstract-C. It does not show much
better accuracy than others or does not significantly stands out with respect to CPU time
but it is most stable among analysed algorithms.

In the next subsection we will have another part of experiments which help to investi-
gate if suggested distance-based outlier detection algorithms improvements contribute to
the better outlier detection accuracy and overall algorithm work. Results received using
modified algorithms will be compared to those presented in Table 5.

53

2.3. Using SVM for algorithms improvement

In this section we will discuss the results of using SVM for improving distance-based
outlier detection algorithms. In Section 1.3 modifications related to SVM were presented:
usage of linear SVM coefficients for weighted distance and applying SVM for verify if
outliers do not behave as an inliers when their behaviour is learnt from training subset.
For latter modification two cases: linear and non-linear SVM was considered. These
modifications will be applied separately and results for each dataset presented in tables.

Let’s discuss how SVM was trained. SVM for datasets Shuttle and Pendigits were
trained on 1000 data points while for KDD Cup 1999 and Forest Cover on 3000 data
points (more points were used because of small outlier rate in these datasets).

One of the modifications is using linear SVM coefficients as weights to define weigh-
ted distance which will be used in distance-based algorithms. Let’s talk about one example
and see what coefficients are assigned to the features.

Figure 24: Shuttle: Dataset visualization (10000 points). Red lines are data points that
are labeled as outliers.

If we compare Shuttle dataset visualization (Figure 24) to assigned linear SVM coefficients
(Figure 25) we can see some common tendencies. Let’s consider features x0 and x1. In
Figure 24 we can see that labeled outliers (red lines) tend to have higher values of feature
x0 than other data points (blue lines). This indicates that feature x0 is rather important
for identifying outliers and this is why the first coefficient of linear SVM has a high value
of |w0| = 3.517. Opposite situation is with feature x1. From Figure 24 we see that both
classes (outliers and not outliers) have quite similar values for attribute x1 and also the
coefficient of linear SVM is rather small with a value |w1| = 0.004.

These discussed graphs show that labeled outliers in Shuttle dataset tend to differ with

54

Figure 25: Shuttle: coefficients of linear SVM

respect to features x0, x4, x6, x7 and x8. This is valuable information and it will be used
in distance-based outlier detection algorithms.

To see what information from training samples about the feature importance was le-
arnt for other datasets, you can find the visualizations of datasets as well as linear SVM
coefficients in Appendix.

Figure 26: Shuttle: trained SVM Figure 27: KDD Cup: trained SVM

Figure 28: Pendigits: trained SVM Figure 29: Forest Cover: trained SVM

The idea of another modification is that there exist some visible outlier patterns but
distance-based outlier detection does not catch them because all they rely on is distances

55

between the data points. So what we decided to do is retrieve useful information from the
training sample with labeled outliers and use together with distance-based outlier detec-
tion algorithms.

As we said before, SVM for datasets Shuttle and Pendigits were trained on 1000 data
points while for KDD Cup 1999 and Forest Cover 3000 data points were used. Figures 26-
29 show how linear and non-linear (using RBF function) SVM was trained on subsets of
our datasets. From these graphs we can see the behaviour of labeled outliers (red colour)
and how SVM learnt to separate inliers and outliers. We can see that Shuttle dataset is
the one where outlier class separates easily and for Pendigits and Forest Cover datasets
outliers and inliers form one cloud which makes distance-based outlier detection very
complex. Fortunately we see that SVM is able to generalize outliers’ behaviour. Let’s see
if this information helps improving outlier detection accuracy.

To separate modifications we will mark them with * respectively, e.g. MCOD al-
gorithm which will use linear SVM weights for weighted distance will be marked as
MCOD*, algorithm where linear SVM will be used as additional filtering will be mar-
ked as MCOD** and algorithm where non-linear SVM will be used as additional filtering
will be marked as MCOD***.

The experimental results of proposed modified algorithms are presented in Tables 6-9
for each dataset separately.

Table 6: Shuttle dataset: Results of algorithms modifications

Algorithm Peak Memory, KB CPU Time, s Recall Precision
Exact-Storm 87744 123854 95.0% 96.5%
Exact-Storm* 124916 99334 95.0% 98.6%
Exact-Storm** 107740 121056 94.2% 99.9%
Exact-Storm*** 108604 117810 94.0% 100.0%
Approx-Storm 98008 119643 94.9% 96.6%
Approx-Storm* 125684 100356 95.0% 98.7%
Approx-Storm** 121000 116467 94.2% 99.9%
Approx-Storm*** 109828 110507 94.0% 100.0%
Abstract-C 87528 115414 95.0% 96.5%
Abstract-C* 124916 97278 95.0% 98.6%
Abstract-C** 117704 118398 94.2% 99.9%
Abstract-C*** 119428 114816 94.0% 100.0%
MCOD 90596 17043 95.1% 94.2%
MCOD* 127524 9678 95.0% 96.5%
MCOD** 123788 13284 94.2% 99.9%
MCOD*** 123852 10425 94.0% 100.0%
* implementing weighted distance
** modification of using linear SVM to double check outlierness
*** modification of using non-linear SVM to double check outlierness

56

With Shuttle dataset (Table 6) classical distance-based outlier detection algorithms
show quite good results - recall and precision varies around 94-97%. From the exper-
iments we can state that introducing weighted distance where weights are taken from
trained linear SVM slightly increases precision while recall stays very similar. On the
other hand using linear and non-linear SVM as an additional step for outlier verification
increases precision to 99.9-100.0%, however this modification causes a small decrease in
a recall.

Surprisingly almost all introduced modifications with Shuttle dataset caused an al-
gorithm processing time reduction. What happened is that introduced weighted distance
gathers even closer similar data points and inliers are detected easier which fastens outlier
detection. On the contrary this requires more memory since more data points have neigh-
bours which are stored in memory. Talking about 2nd SVM implementation it does not
differ significantly but slightly reduced CPU time appears from lower number of reported
outliers because it skips extra appends to the outlier list.

Table 7: KDD Cup 1999 dataset: Results of algorithms modifications

Algorithm Peak Memory, KB CPU Time, s Recall Precision
Exact-Storm 11175 98724 92.2% 38.5%
Exact-Storm* 169180 97964 92.8% 82.4%
Exact-Storm** 156592 91281 91.6% 100.0%
Exact-Storm*** 163420 96893 91.0% 100.0%
Approx-Storm 98840 99277 92.2% 39.2%
Approx-Storm* 158668 94234 92.8% 82.4%
Approx-Storm** 156076 87200 91.6% 100.0%
Approx-Storm*** 153040 111381 91.0% 100.0%
Abstract-C 97972 99292 92.2% 38.5%
Abstract-C* 156080 105032 92.8% 82.4%
Abstract-C** 152872 106792 91.6% 100.0%
Abstract-C*** 153228 112317 91.0% 100.0%
MCOD 124640 387 92.2% 38.5%
MCOD* 172204 152 92.2% 82.8%
MCOD** 169896 414 91.6% 100.0%
MCOD*** 169828 403 91.0% 100.0%
* implementing weighted distance
** modification of using linear SVM to double check outlierness
*** modification of using non-linear SVM to double check outlierness

KDD Cup 1999 dataset (Table 7) with classical distance-based outlier detection algo-
rithms reached quite good recall which is around 92%, however the precision was not very
high (less than 40%). Experimenting with modified algorithms showed that introducing
weighted distance increased precision twice compared to classical distance-based outlier
detection algorithms. Other modifications - using linear or non-linear SVM as an additio-

57

nal step for outlier verification increases precision to 100.0% but these modifications as in
previous case causes little decrease in a recall.

In this case some of the modifications also caused reduction in CPU time. The main
reason behind that is relatively smaller number of outliers reported.

Table 8: Pendigits dataset: Results of algorithms modifications

Algorithm Peak Memory, KB CPU Time, s Recall Precision
Exact-Storm 79056 4486 78.2% 24.3%
Exact-Storm* 112808 4849 82.1% 35.0%
Exact-Storm** 110552 4521 71.8% 94.1%
Exact-Storm*** 110540 4464 76.3% 99.2%
Approx-Storm 89132 4198 66.7% 25.7%
Approx-Storm* 104264 5341 63.5% 33.3%
Approx-Storm** 100664 4329 60.9% 93.1%
Approx-Storm*** 110508 4285 64.7% 99.0%
Abstract-C 78548 4354 78.2% 24.3%
Abstract-C* 104320 5501 82.1% 35.0%
Abstract-C** 100608 4716 71.8% 94.1%
Abstract-C*** 100960 4691 76.3% 99.2%
MCOD 78084 2819 80.8% 24.6%
MCOD* 114512 2680 82.1% 34.2%
MCOD** 110672 3387 73.1% 91.2%
MCOD*** 100468 2912 78.8% 99.2%
* implementing weighted distance
** modification of using linear SVM to double check outlierness
*** modification of using non-linear SVM to double check outlierness

Pendigits dataset (Table 8) with distance-based outlier detection algorithms reach a
recall around 66-80% (depending on the algorithm) while the precision is quite small,
varies around 25%. Introducing weighted distance had a slight impact on recall and pre-
cision. With algorithms Exact-Storm, Abstract-C and MCOD there is a small increase in
recall while for Approx-Storm small decrease caused by usage of approximations. Preci-
sion on the other hand have a little increase despite what distance-based outlier detection
algorithm was used. However this is not appropriate result for precision if so many data
points are reported as outliers when in fact they are not. In contrast using linear and non-
linear SVM as an additional step for outlier verification increased precision significantly
from 25% to 91% and more. However these modifications caused a decrease in recall by
1-7%.

Talking about Pendigits dataset CPU time does not show reduction with applied mo-
difications. This is because of the high dimensionality of the dataset and because outliers
are mixed within majority of the data and is difficult to separate.

58

Table 9: Forest Cover dataset: Results of algorithms modifications

Algorithm Peak Memory, KB CPU Time, s Recall Precision
Exact-Storm 688508 96952 60.2% 6.8%
Exact-Storm* 655660 655660 98.8% 44.6%
Exact-Storm** 741720 78275 49.3% 98.8%
Exact-Storm*** 726648 104817 50.5% 100.0%
Approx-Storm 668472 67491 59.3% 6.8%
Approx-Storm* 671624 117203 98.8% 45.1%
Approx-Storm** 745788 109848 48.5% 98.7%
Approx-Storm*** 738500 105253 49.7% 100.0%
Abstract-C 676020 88897 60.0% 6.8%
Abstract-C* 320036 115810 98.8% 44.6%
Abstract-C** 749216 109022 49.3% 98.8%
Abstract-C*** 750152 104417 50.5% 100.0%
MCOD 991120 93924 60.4% 6.8%
MCOD* 940240 55287 98.8% 43.4%
MCOD** 940240 99197 49.3% 98.8%
MCOD*** 1028692 94773 50.7% 100.0%
* implementing weighted distance
** modification of using linear SVM to double check outlierness
*** modification of using non-linear SVM to double check outlierness

Forest Cover dataset (Table 9) with classical distance-based outlier detection algori-
thms do not show good results - recall is around 60% while precision is very low, only
6.8%. It means that using distance-based outlier detection algorithms is not very sui-
table for this king of dataset. But let’s see if algorithm modifications can improve outlier
detection accuracy. Introducing weighted distance significantly increased recall and preci-
sion (recall reached 98.8% and precision 43-45%). Additional step for outlier verification
by using linear and non-linear SVM significantly increases precision which reaches even
98-100%. However, such implementation causes recall reduction approximately by 10%.
This happens because outliers in the dataset are not clearly separable when we take into
consideration all features.

In this case CPU time does not show unambiguous reduction with applied modifica-
tions. This is because of the high dimensionality of the dataset and because outliers are
mixed within inliers and is difficult to separate.

In general, implementing SVM in distance-based outlier detection algorithms bring
some positive effect to the outlier detection accuracy and in some cases even in CPU
time reduction. With chosen datasets distance-based outlier detection performs quite
differently. Let’s discuss in detail all type of situations.

There are datasets to which distance-based outlier detection performs quite well (in

59

our case - Shuttle dataset). Recall and precision in this case is more than 94%. What
happens when we implement SVM - we increase precision while recall stays high.

There are datasets to which distance-based outlier detection gives good recall which
means that outliers are identified well but also many other data points are reported as
outliers which gives poor precision (in our case - KDD Cup 1999 dataset). Once we train
SVM, algorithm learns what usual behaviour of dataset is and this information helps on
eliminating incorrectly identified outliers from outlier list. This way precision can be
increased.

There are datasets to which distance-based outlier detection gives average recall and
very small precision (in our case - Pendigits and Forest Cover datasets). One of the reasons
is specifics of the datasets. However, we found out that accuracy still can be improved.
Main observations are that introducing weighted-distance improves recall and can increase
precision while introducing SVM for double checking the outlierness have a significant
increase in the precision but unfortunately recall may drop.

So these are the conclusions presented for different types of datasets. Generalizing the
overall results, implementing SVM mostly helps on improving outlier detection accuracy.
Introducing weighted distance to distance-based outlier detection algorithms highlights
the patterns of labeled outliers in training subset and what feature changes cause data
point to be an outlier. Another implementation introduces additional step which performs
filtering of data points that have less than k neighbours within distance R in a window.
With classical algorithms these data points would be reported as outliers but with this
modification we additionally use SVM to check if data point does not fall into the inliers
area (these areas are illustrated in Figure 26-29). Main advantage of this implementation
is that selected data points are filtered twice and second filtering reduces the number of
reported outliers which adds to increasing precision.

60

2.4. Outliers clustering

Most of the outlier detection algorithms focus on detecting outliers but do not in-
vestigate them. In some situations it might happen that outliers repeat and have some
frequency which is not easily noticeable especially if we use sliding window approach.
By investigating what kind of outlier patterns form during the time we can discover that
some outliers repeat and this information can stimulate useful observations. To achieve
this, distance-based outlier detection algorithms were supplemented by predicted outliers
clustering.

In the algorithms additional parameter ncl appeared which states how often clustering
is trained. In our experiments ncl = 10. It means that first time K-Means clustering will
be trained after first 10 windows are processed. After clusters are formed all new predicted
outliers will be assigned to the closest cluster untill the retrain of the clustering is done.
In our case retrain will be done every 10 windows.

To find optimal number of clusters k′ we will implement Silhouette method which
will be recalculated every time we retrain K-Means. It means that number of clusters can
change during the time depending on identified outliers.

All the time when outliers are clustered we receive information about the clusters:

• the number of data points belonging to each cluster;

• the average distance between cluster data points and a cluster centroid;

• the mean feature values of data points within a cluster.

Further we will discuss particular examples of clustered outliers and what additional
information is received from clustering. In this section for each dataset we chose to show
one example of outliers clustering. For predicting outliers we used one of the modified
MCOD algorithms which give rather high precision and recall. For discussing the results
for each dataset final clustering are presented.

In the following graphs clusters are presented visually. You can find two types of data
points: marked as ’x’ or ’o’. This specific tagging refers to the real label of visualized data
point (in initial dataset the real outliers are labeled). Most of the data points are marked
as ’x’ as for clustering I chose algorithms which give highest possible precision.

Shuttle dataset has an outlier rate of 7%. By using MCOD with modification of non-
linear SVM our detected outlier rate is 6.7%. After clustering detected outliers we receive
2 clusters, they are illustrated in Figure 30. Let’s see what additional information about the
clusters are received in Figure 31. Cluster ’0’ (green colour) is a bigger cluster composed
of 2379 data points with average distance within the cluster 0.0569. Cluster ’1’ (red
colour) is composed of 926 data points with average distance within the cluster 0.0348.
From the variable means by clusters we see that mostly clusters differ by x0, x2, x4, x7 and

61

x8 features. This information indicates what kind of feature differences impact clustering
and by comparing it to the rest of the data we can find out what kind of outliers fall into
such clusters.

Figure 30: Shuttle: Plotting predicted outliers

Figure 31: Shuttle: Describing clusters

KDD Cup 1999 dataset has an outlier rate of 0.4%. By using MCOD with modifi-
cation of non-linear SVM our detected outlier rate is 0.36%. After clustering detected
outliers we receive 2 clusters, they are illustrated in Figure 32. From the picture we see
that cluster ’0’ is much denser comparing to cluster ’1’. Let’s see if we can prove this
with additional information from Figure 33. Cluster ’0’ (green colour) is a bigger cluster
composed of 2013 data points with average distance within the cluster 0.00067. Cluster
’1’ (red colour) is composed of 25 data points with average distance within the cluster
0.06729. If we compare these clusters to each other we can state that cluster ’0’ is much
more compacted than cluster ’1’ and most probably refer to some kind of anomaly which
can be named after investigating the feature means.

62

Figure 32: KDD Cup 1999: Plotting predicted outliers

Figure 33: KDD Cup 1999: Describing clusters

Pendigits dataset has an outlier rate of 2.27%. By using MCOD with modification of
non-linear SVM our detected outlier rate is 1.64%. After clustering detected outliers we
receive 2 clusters, they are illustrated in Figure 34. This example shows that clustering wi-
th this dataset is not very useful since all the outliers behave quite similarly and form one
cloud. Of course during the time with incoming new data points formed clusters might
move and highlight new patterns. Let’s see what additional information about the clusters
is received in Figure 35. Cluster ’0’ (green colour) is a bigger cluster composed of 68 data
points with average distance within the cluster 0.4175. Cluster ’1’ (red colour) is com-
posed of 45 data points with average distance within the cluster 0.4312. Variable means
by clusters presented in the Figure 35 indicate what are the main differences between the
clusters.

63

Figure 34: Pendigits: Plotting predicted outliers

Figure 35: Pendigits: Describing clusters

Forest Cover dataset has an outlier rate of 0.4%. For outlier clustering we used subset
of 50000 data points, in which outlier rate reaches 0.97%. By using MCOD with modi-
fication of non-linear SVM our detected outlier rate is 0.67%. After clustering detected
outliers we receive 2 clusters, they are illustrated in Figure 36. It is visible that clusters be-
have a differently, so let’s see what additional information about the clusters are received
in Figure 37. Cluster ’0’ (green colour) is a bigger cluster composed of 286 data points
with average distance within the cluster 0.27380. Cluster ’1’ (red colour) is composed
of 52 data points with average distance within the cluster 0.23849. Variable means by
clusters indicate what are the main differences between clusters. By comparing it to the
feature means of all dataset we can define what kind of outliers is in the specified clusters.

64

Figure 36: Forest Cover: Plotting predicted outliers

Figure 37: Forest Cover: Describing clusters

To summarize, discussed datasets show how clustering can generalize detected out-
liers. In some cases, e.g. Pendigits dataset, clustering does not seem to be very useful
because all the outliers are very similar. On the contrary with other datasets detected
outliers tend to group and that is clearly visible when we visualize the detected outliers.

One of the best examples was received using detected outliers of KDD Cup 1999
dataset which is shown in Figure 32. From the figure we see that one group share were
similar characteristics (cluster ’0’). Once this trend is spotted using summary of the cluster
we can identify the origin of such outliers and use this information in further analysis.

Even though in all of these examples optimal number of clusters was k′ = 2, in
real-world more clusters are expected to appear. Introducing outliers clustering helps
generalizing outlier tendencies and can ease understanding newly predicted outliers.

65

2.5. Conclusions of experimental results

To generalize, Section 2 was dedicated to discussing the results when described distance-
based algorithms and suggested modifications were used for outlier detection with stream
data.

We used 4 datasets and presented the results for each of them separately. Datasets
are quite different and that makes analysis more interesting since we could discuss how
specific dataset reacts to distance-based outlier detection approach.

In one of the sections we ran distance-based outlier detection algorithms with all the
datasets while varying algorithm parameters: neighbours count k, distance R, window
size W and slide size S. Let’s discuss if choice of these parameters have influence on
outlier detection algorithms performance.

Parameter k in distance-based outlier detection defines the neighbour threshold that
is required for data point so it would be assigned to the inliers. Results for all of datasets
with varying parameter k were discussed separately and some common conclusions were
made. If we fix other parameters (R, W and S) and increase the value k we see that
outlier detection accuracy is affected in a way that bigger k increases recall but decreases
precision.

Parameter R defines the distance threshold which is used to define the area around
data point in which neighbours search is performed. Parameter R was chosen for each
dataset separately according to the specifics of the dataset. If we fix other parameters
(k, W and S) and vary R we observe that choice of R mostly affects outlier detection
accuracy. Common observations are that once we increase the distanceR outlier detection
recall is decreasing and precision increasing meaning that smaller number of data points
are reported as outliers.

Parameter W defines how many data points are included into a window in which out-
lier detection is processed. If we fix all other parameters (k, R and S) and vary window
size we get constantly decreasing recall and precision. To make it more interesting we
decided to fix two parameters (R and S) and with increasing W respectively increment
neighbour count threshold k. The hypothesis were raised that changedW have little impa-
ct on the outlier detection accuracy if we adjust neighbour count threshold k respectively.
After performing the experiments we have proven the hypothesis and added that the only
effect that increased W have is the constantly increasing processing time.

Parameter S defines the step by how many data points the window is slided on each
iteration. For all the datasets we chose the same S values to investigate while the rest
of the parameters (k, R and W) were fixed. What we observed is that chosen S mostly
affects algorithm processing time and has no significant impact on accuracy. Smaller S
means that more iterations for outlier detection are done with including newest data by
smaller portions.

66

After these experiments were done we were able to identify best possible parameters
which help to achieve best results by using distance-based outlier detection algorithms
for stream data. Since all of the applied algorithms are from the same distance-based
algorithms class observed outlier detection accuracy results were quite similar. More
interesting was seeing that different datasets also differently reacted to distance-based
approach. Table 10 shows the summary of the observations where for each dataset average
results obtained by using different algorithms are presented.

Table 10: Results of applying distance-based outlier detection algorithms on 4 datasets

Dataset k R Peak Memory, KB CPU Time, s Recall Precision Outlier rate*

Shuttle 55 0.25 90969 93989 95.0% 96.0% 7.08% / 7.00%
KDD Cup 1999 5 0.35 83157 74420 92.2% 38.7% 0.80% / 0.40%
Pendigits 15 1.1 81205 3964 76.0% 24.7% 7.00% / 2.27%
Forest Cover 10 0.4 774563 90696 60.0% 6.8% 8.61% / 0.90%

* In this column outlier rate of predicted outliers versus real dataset outlier rate are presented

As seen from the table distance-based outlier detection works very good with Shuttle
dataset having recall of 95% and precision 96%. Another dataset called KDD Cup 1999
using distance-based algorithms get relatively good recall while precision does not reach
40%. Two more datasets considered in the experimental part are Pendigits and Forest
Cover. These datasets are the examples where distance-based outlier detection algorithms
are not working very well. Obtained recall in this case is around 76% and 60% while
precision is very low having the values of 24.7% and 6.8% respectively.

Speaking about algorithms performance, in respect to outlier detection accuracy all
of them performed very similar and this is because the same distance-based approach is
used. Thinking about algorithms processing time, mostly stands out MCOD: in cases
where outliers can be separated more easily MCOD is significantly faster but on opposite
situations or with wrongly chosen parameters its processing time can vastly exceed a usual
CPU time. In contrary Abstract-C shows most stable results among analysed algorithms.
It does not show better accuracy than others or does not significantly stands out with
respect to CPU time but it is most stable among analysed algorithms.

After applying distance-based outlier detection algorithms we saw that in some cases
these algorithms are not giving good accuracy. Once we investigated the datasets we
observed that the reason behind this is that all of the dataset features are treated equally
and because of that it becomes hard to separate the outliers within multidimensional data.
So we considered a training subset and ran SVM that learnt the behaviour of the labeled
outliers in given subset. This information was implemented and used with distance-based
outlier detection algorithms.

Changing the classical distance to weighted distance where weights are assigned using
trained linear SVM can improve outlier detection accuracy. After comparing the results

67

of modified algorithms with classical distance-based outlier detection algorithms we saw
that introduced weights suggest what features are most relevant for deciding data point
outlierness. This modification helps increasing both: outlier detection recall and preci-
sion.

Another implementation that was suggested is using trained SVM to filter outliers
reported by classical distance-based outlier detection algorithms. The implementation
mostly helps dealing with low precision.

Table 11: Results of classical and modified distance-based outlier detection algorithms

Dataset Peak Memory, KB CPU Time, s Recall Precision Outlier rate*

Introducing weighted distance
Shuttle 125760 76662 95.0% 98.0% 6.89% / 7.00%
KDD Cup 164033 74346 92.7% 82.5% 0.38% / 0.40%
Pendigits 108976 4593 77.5% 34.4% 5.44% / 2.27%
Forest Cover 646890 235990 98.8% 44.4% 2.22% / 0.90%

Introducing additional step of outlier verification (linear SVM)
Shuttle 117558 92301 94.2% 99.9% 6.74% / 7.00%
KDD Cup 158859 71422 91.6% 100.0% 0.31% / 0.40%
Pendigits 105624 4238 69.4% 93.1% 1.76% / 2.27%
Forest Cover 794241 99086 49.0% 98.8% 0.49% / 0.90%

Introducing additional step of outlier verification (non-linear SVM)
Shuttle 115428 88390 94.0% 100.0% 6.73% / 7.00%
KDD Cup 159879 80249 91.0% 100.0% 0.31% / 0.40%
Pendigits 105619 4088 74.0% 99.2% 1.80% / 2.27%
Forest Cover 810998 102315 50.4% 100.0% 0.49% / 0.90%

* Outlier rate of predicted outliers versus real dataset outlier rate is presented

Table 11 above summarizes the average results obtained by using distance-based out-
lier detection algorithms with suggested implementations. First improvement which con-
sists of using weighted-distance improved both: recall and precision. The greatest results
were achieved for KDD Cup 1999 dataset where precision was increased from 38.7% to
82.5% and for Forest Cover dataset where recall was increased from 60.0% to 98.8%.
Second implementation of SVM that consists of additional filtering of outliers mostly
helps improving precision. By implementing linear SVM with all datasets we achieved
precision higher than 93.0%. By using non-linear SVM we achieve even higher preci-
sion which reaches 99.0% or more. However disadvantage of this improvement is that
additional filtering can reduce recall up to 10.0%

Other area we focused on was outliers clustering which promotes additional informa-
tion about predicted outliers. We introduced additional clustering parameter which defines
how often clustering is retrained. In between the training, new outliers are assigned to one
of the existing clusters. By looking into characteristics of the clusters we can tell what
kind of anomaly patterns form and what causes these outliers to appear.

68

Conclusions

Outlier detection is well known problem in mathematics which seeks to identify obser-
vations that significantly deviates from the common behaviour in the dataset. Nowadays
when real-time decisions become more and more valuable one of the interesting areas
where outlier detection can be applied is outlier detection in stream data.

There are many different outlier detection algorithms proposed which work with stre-
am data. Usually they are divided into groups based on the specifics of the algorithm. In
this paper we focused on distance-based outlier detection algorithms. They are proven to
be effective, widely applicable, highly scalable, it is easy to understand why certain deci-
sion about data point outlierness is made and no information about the data distribution
is required which is very difficult to define for multidimensional data. In theoretical part
of the paper we presented 4 distance-based outlier detection algorithms: Exact-Storm,
Approx-Storm, Abstract-C and MCOD. Later on they were used in experimental part.

One of the tasks in the experimental part was to apply mentioned algorithms to the
chosen real-world examples, investigate how outlier detection works with different data-
sets and analyse the effect of parameters to the overall outlier detection result.

These are the main observations how change of parameters influence outlier detection
algorithms:

• With increasing neighbour count k the recall increase but precision decrease.

• With increasing distance R the recall decrease but precision increase.

• Increased window size W constantly increase algorithm processing time.

• Decreased slide size S increases algorithm processing time.

If we talk about algorithms performance, in respect to outlier detection accuracy all
the algorithms performed very similar. Thinking about algorithms processing time, most-
ly stands out MCOD: with well selected parameters MCOD is significantly faster but on
opposite situations its processing time can vastly increase. In contrary Abstract-C shows
most stable results among analysed algorithms.

Despite the fact that these algorithms are defined as effective for outlier detection it
does not consider any additional information about the dataset which can help to improve
identification of outliers. By investigating the specifics of the datasets we saw that in some
cases labeled outliers are recognized by the change of specific features while the rest of
the features behave same as common inliers features.

One of the suggested implementations for improving performance of distance-based
outlier detection algorithms is related to usage of SVM. Using training sample SVM learns
the behaviour of the data and labeled outliers. Afterwards we use SVM with distance-
based outlier detection by applying one of the modifications: using linear SVM and trained

69

hyperplane to learn the importance of the features, using trained linear SVM for reported
outliers filtering or using trained non-linear SVM for reported outliers filtering.

First suggested improvement is using linear SVM coefficients for weighted distance.
Fortunately this modification did not have any negative effect on outlier detection accuracy
- for all investigated datasets recall and precision increased or at least stayed the same. Best
achieved results were: increased recall from 60.0% to 98.8% and increased precision from
38.7% to 82.5% (for different datasets).

Another improvement which consists of adding additional step in the stage of outliers
reporting considered two SVM training cases: using linear and non-linear SVM. In gene-
ral this modification helps dealing with low precision. For a dataset which with classical
distance-based algorithms had very low precision (6.8%) we managed to increase it to
98.8% by using linear SVM and to 100.0% by using non-linear SVM.

One more add-on to the distance-based outlier detection algorithms is predicted out-
liers clustering. Usually outlier detection algorithms simply return the list of outliers
which says little about the reported data points. However, in some cases especially when
we are working with stream data similar outliers may repeat with some frequency. This
is why outliers clustering were introduced. What we received from the clusters is that
similar outliers gathers together and we can monitor if some significant anomaly patterns
forms. In one of the investigated datasets (KDD Cup 1999) two clusters were formed one
of which was very dense. This observation indicates that those outliers are very similar.
By investigating the cluster we can find out the origin of these outliers.

Generalizing the work done in the thesis, we investigated that distance-based outlier
detection algorithms work well with the datasets where outliers are clearly separable. Ho-
wever, in the multidimensional datasets where outlierness is observed by deviation of few
specific features, distance-based outlier detection algorithms do not catch such outliers.
We tested suggested modification of implementing SVM which helps learning the beha-
viour of outliers and inliers, and after comparing the results we found out that suggested
modifications can add a value to outlier detection accuracy.

Since in the experimental section we used only the basic SVM functions (linear SVM
and non-linear SVM based on RBF function) further work could focus on investigating
which SVM finds best separation for outlier detection and combined with distance-based
algorithms performs best accuracy. Another possible area to develop in the future is re-
lated to outliers clustering. Once some anomaly patters are recognized which are defined
as possible rare events, our SVM can be retrained by initializing that this kind of data
points actually are not outliers but observations that occurs rarely. This way retrained
SVM would learn some additional information about the dataset and in long run outlier
detection hopefully would be improved.

70

References

[1] Ramesh Kumar and Aljinu Khadar. A survey on outlier detection techniques in
dynamic data stream. International Journal of Latest Engineering and Management

Research (IJLEMR), 2(8):23–30, 2017.

[2] Cheong Hee Park. Outlier and anomaly pattern detection on data streams. The

Journal of Supercomputing, 75:6118–6128, 2019.

[3] Manish Gupta, Jing Gao, Charu C. Aggarwal, and Jiawei Han. Outlier detection for
temporal data: A survey. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA

ENGINEERING, 26(9):2250–2267, 2014.

[4] Luan Tran, Liyue Fan, and Cyrus Shahabi. Distance-based outlier detection in data
streams. Proceedings of the VLDB Endowment, 9(12):1089–1100, 2016.

[5] Susik Yoon, Jae-Gil Lee, and Byung Suk Lee. Nets: Extremely fast outlier detection
from a data stream via set-based processing. Proceedings of the VLDB Endowment,
12(11):1303–1315, 2019.

[6] Maria Kontaki, Anastasios Gounaris, Apostolos N. Papadopoulos, Kostas Tsichlas,
and Yannis Manolopoulos. Continuous monitoring of distance-based outliers over
data streams. Proceedings of the 27th IEEE International Conference on Data Engi-

neering (ICDE), Hannover, Germany, 2011.

[7] Fabrizio Angiulli and Fabio Fassetti. Detecting distance-based outliers in streams of
data. CIKM’07, Lisboa, Portugal, 2007.

[8] Di Yang, Elke A. Rundensteiner, and Matthew O. Ward. Neighbor-based pattern
detection for windows over streaming data. EDBT ’09: Proceedings of the 12th In-

ternational Conference on Extending Database Technology: Advances in Database

Technology, pages 529–540, 2009.

[9] Dragoljub Pokrajac, Aleksandar Lazarevic, and Longin Jan Latecki. Incremental
local outlier detection for data streams. IEEE Symposium on Computational Intelli-

gence and Data Mining (CIDM), 2007.

[10] Mahsa Saleh, Christopher Leckie, James C. Bezdek, Tharshan Vaithianathan,
and Xuyun Zhang. Fast memory efficient local outlier detection in data stre-
ams. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,
28(12):3246–3260, 2016.

[11] Swee Chuan Tan, Kai Ming Ting, and Tony Fei Liu. Mining streaming and tem-
poral data: from representation to knowledge. Proceedings of the Twenty-Seventh

International Joint Conference on Artificial Intelligence.
71

[12] Aaron Tuor, Samuel Kaplan, Brian Hutchinson, Nicole Nichols, and Sean Robinson.
Deep learning for unsupervised insider threat detection in structured cybersecurity
data streams. Proceedings of AI for Cyber Security Workshop at AAAI, 2017.

[13] Mr. Kiran V. Markad, Mr. Kiran M. Moholkar, and Mr. Sopan N. Abdal. Unsupervi-
sed distance based detection of outliers by using anti-hubs. International Research

Journal of Engineering and Technology (IRJET), 04(01):1350–1355, 2017.

[14] Korn Poonsirivong and Chanintorn Jittawiriyanukoon. A rapid anomaly detection
technique for big data curation. 2017 14th International Joint Conference on Com-

puter Science and Software Engineering (JCSSE), pages 1–6, 2017.

[15] Himani Bhavsar and Mahesh H. Panchal. A review on support vector machine for
data classification. International Journal of Advanced Research in Computer Engi-

neering and Technology (IJARCET), 1(10):185–189, 2012.

[16] Yin-Wen Chang and Chih-Jen Lin. Feature ranking using linear svm. JMLR: Works-

hop and Conference Proceedings, (3):53–64, 2008.

[17] Taegong Kim and Cheong Hee Park. Anomaly pattern detection for streaming data.
Expert Systems With Applications, 149:113252, 2020.

[18] Trupti M. Kodinariya and Dr. Prashant R. Makwana. Review on determining num-
ber of cluster in k-means clustering. International Journal of Advance Research in

Computer Science and Management Studies, 1(6):90–95, 2013.

[19] Jesse Davis and Mark Goadrich. The relationship between precision-recall and roc
curves. Appearing in Proceedings of the 23rd International Conference on Machine

Learning, Pittsburgh, PA, 2006.

[20] UCI KDD Archive. http://kdd.ics.uci.edu.

[21] Outlier Detection DataSets (ODDS) library. http://odds.cs.stonybrook.edu/.

72

Appendix Nr. 1.

Additional tables and graphs for describing datasets

Figure 38: KDD Cup 1999: Descri-
bing data labeled as not outliers

Figure 39: KDD Cup 1999: Descri-
bing data labeled as outliers

Figure 40: KDD Cup 1999: Dataset visualization (visualized first 10000 data points).
Red lines are data points that are labeled as outliers.

73

Figure 41: Shuttle: Describing data labeled as not outliers

Figure 42: Shuttle: Describing data labeled as outliers

Figure 43: Shuttle: Dataset visualization (visualized first 10000 data points). Red
lines are data points that are labeled as outliers.

74

Figure 44: Pendigits: Describing data labeled as not outliers

Figure 45: Pendigits: Describing data labeled as outliers

Figure 46: Pendigits: Dataset visualization (visualized first 5000 data points). Red
lines are data points that are labeled as outliers.

75

Figure 47: Forest Cover: Describing data labeled as not outliers

Figure 48: Forest Cover: Describing data labeled as outliers

Figure 49: Forest Cover: Dataset visualization (visualized first 10000 data points).
Red lines are data points that are labeled as outliers.

76

Appendix Nr. 2.

Additional graphs from Section 2.3

Figure 50: KDD Cup 1999: coefficients of linear SVM

Figure 51: Pendigits: coefficients of linear SVM

77

Figure 52: Forest Cover: coefficients of linear SVM

78

Appendix Nr. 3.

Code used for algorithms

Exact-Storm

import t i m e i t

import s y s

import p s u t i l

import pandas as pd

import math

import numpy as np

import m a t p l o t l i b . p y p l o t a s p l t

from s c i p y . s p a t i a l import d i s t a n c e

from s k l e a r n . svm import SVC

from s k l e a r n . c l u s t e r import KMeans

from s k l e a r n . m e t r i c s import s i l h o u e t t e _ s c o r e

from c o l l e c t i o n s import Counter , d e f a u l t d i c t

import m a t p l o t l i b . l i n e s a s m l i n e s

D e f i n i n g a l g o r i t h m f u n c t i o n s

def i s S a m e S l i d e (o1 , o2) :

re turn math . f l o o r (o1 . a r r i v a l T i m e / s l i d e)== math . f l o o r (

o2 . a r r i v a l T i m e / s l i d e)

def d e t e c t O u t l i e r (da t a , c u r r e n t T i m e ,W, s l i d e) :

g l o b a l t imeForProcess ingWindow

g l o b a l d a t a L i s t

g l o b a l o u t l i e r s

s t a r t T i m e = t i m e i t . d e f a u l t _ t i m e r ()

remove e x p i r e d da ta from d a t a L i s t

i f (s l i d e != W) :

i f l e n (d a t a L i s t) != 0 :

d_l im = −1

f o r i in range (0 , l e n (d a t a L i s t) , 1) :

d = d a t a L i s t [i]

i f (d <= c u r r e n t T i m e − W) :

d_l im = i

f o r j in range (d_lim , − 1 , − 1) :

d a t a L i s t . pop (j)

e l s e :

79

d a t a L i s t = []

p r o c e s s new s l i d e

f o r dac in d a t a . a r r i v a l T i m e : # a l l window

do range query f o r ob

que ry = pd . DataFrame (columns = [’ c o l 1 ’ , ’ c o l 2 ’])

f o r n e i in d a t a . a r r i v a l T i m e :

i f dac != n e i :

i f (d _ i n t (dac , n e i) <= R) :

que ry = que ry . append ({ ’ c o l 1 ’ : dac , ’ c o l 2 ’ : n e i } ,

i g n o r e _ i n d e x = True)

q u e r y R e s u l t = []

f o r r i in range (0 , l e n (que ry) , 1) :

q u e r y R e s u l t . append (que ry . i l o c [r i] . c o l 2)

q u e r y R e s u l t = s o r t e d (q u e r y R e s u l t)

f o r dod in q u e r y R e s u l t :

dod = i n t (dod)

i f (dod > c u r r e n t T i m e − W) :

i f i s S a m e S l i d e (d a t a _ a l l . i l o c [dod] , d a t a _ a l l . i l o c [dac]) :

d a t a _ a l l . a t [dac , ’ c o u n t _ a f t e r ’] += 1

e l s e :

i f l e n (d a t a _ a l l . a t [dac , ’ n n _ b e f o r e ’]) < k :

d a t a _ a l l . i l o c [dac] . n n _ b e f o r e . i n s e r t (0 , dod)

s t o r e o b j e c t i n t o d a t a L i s t

i f dac not in d a t a L i s t : d a t a L i s t . append (dac)

(!) f u r t h e r two c a s e s are p r e s e n t e d . Only one s h o u l d be uncommented

(c1) add r e s u l t t o o u t l i e r s (f o r c l a s s i c a l a l g and 1 s t m o d i f i c a t i o n)

f o r d in d a t a L i s t :

Count p r e c e e d i n g n e i g h b o u r s

p r e = 0

f o r n n _ b e f o r e in (d a t a _ a l l . a t [d , ’ n n _ b e f o r e ’]) :

i f (n n _ b e f o r e > c u r r e n t T i m e − W) :

p r e = p r e + 1

i f (p r e + d a t a _ a l l . a t [d , ’ c o u n t _ a f t e r ’] < k) and (d not in o u t l i e r s) :

o u t l i e r s . append (d)

d a t a _ e v . a t [d , ’ Y_pred ’] = 1

(c2) add r e s u l t t o o u t l i e r s (f o r 2−3 m o d i f i c a t i o n s)

f o r d i n d a t a L i s t :

Count p r e c e e d i n g n e i g h b o u r s

pre = 0

80

f o r n n _ b e f o r e i n (d a t a _ a l l . a t [d , ’ n n _ b e f o r e ’]) :

i f (n n _ b e f o r e > c u r r e n t T i m e − W) :

pre = pre + 1

i f (pre+d a t a _ a l l . a t [d , ’ c o u n t _ a f t e r ’] < k) and (d n o t i n o u t l i e r s) :

a = d a t a _ a l l . i l o c [x , : l e]

a = a . v a l u e s . r e s h a p e (1 , −1)

svm_pred = c l a s s i f i e r . p r e d i c t (a)

i f (svm_pred [0] != 0) :

o u t l i e r s . append (d)

d a t a _ e v . a t [d , ’ Y_pred ’] = 1

t imeForProcess ingWindow += t i m e i t . d e f a u l t _ t i m e r () − s t a r t T i m e

re turn o u t l i e r s

For m o d i f i c a t i o n s

(!) F u r t h e r e x t r a s t e p f o r 3 m o d i f i c a t i o n s . Only one s h o u l d be uncommented

d a t a _ a l l = d a t a _ a l l [: 1 0 0 0]

l e = l e n (d a t a _ a l l . columns) − 1

Y = d a t a _ a l l [l e]

Y = Y. v a l u e s

d a t a _ a l l = d a t a _ a l l . d rop ([l e] , a x i s = 1)

1 . L e a rn i n g w e i g h t s f o r w e i g h t e d d i s t a n c e

c l a s s i f i e r = SVC(C= 1 . 0 , k e r n e l = ’ l i n e a r ’ , r a n d o m _ s t a t e =241)

c l a s s i f i e r . f i t (d a t a _ a l l , Y)

c o e f = c l a s s i f i e r . c o e f _

c o e f = pd . DataFrame (d a t a = c o e f)

c o e f = abs (c o e f)

def d _ i n t (x , y) :

re turn d i s t a n c e . e u c l i d e a n (c o e f . i l o c [0 , :] * d a t a _ a l l . i l o c [x] ,

c o e f . i l o c [0 , :] * d a t a _ a l l . i l o c [y])

2 . T r a i n i n g l i n e a r SVM

c l a s s i f i e r = SVC (C=1.0 , k e r n e l =’ l i n e a r ’ , r a n d o m _ s t a t e =241)

c l a s s i f i e r . f i t (d a t a _ a l l , Y)

d e f d _ i n t (x , y) :

r e t u r n d i s t a n c e . e u c l i d e a n (d a t a _ a l l . i l o c [x] , d a t a _ a l l . i l o c [y])

3 . T r a i n i n g non− l i n e a r SVM

c l a s s i f i e r = SVC (C=1.0 , k e r n e l =’ r b f ’ , r a n d o m _ s t a t e =241)

c l a s s i f i e r . f i t (d a t a _ a l l , Y)

d e f d _ i n t (x , y) :

r e t u r n d i s t a n c e . e u c l i d e a n (d a t a _ a l l . i l o c [x] , d a t a _ a l l . i l o c [y])

81

A p p l i c a t i o n

d a t a _ a l l [’ a r r i v a l T i m e ’] = range (0 , l e n (d a t a _ a l l))

d a t a _ a l l [’ exps ’] = [[] f o r _ in range (d a t a _ a l l . shape [0])]

d a t a _ a l l [’Rmc ’] = [[] f o r _ in range (d a t a _ a l l . shape [0])]

d a t a _ a l l [’ i s C e n t e r ’] = F a l s e

d a t a _ a l l [’ i s I n C l u s t e r ’] = F a l s e

d a t a _ a l l [’ c e n t e r ’] = −1

d a t a _ a l l [’ ev ’] = 0

d a t a _ a l l [’ numberOfSucceeding ’] = 0

m i c r o _ c l u s t e r s = {}

PD = []

d a t a L i s t = []

o u t l i e r L i s t = []

o u t l i e r s = []

t imeForProcess ingWindow = 0

c u r r e n t T i m e = 0

W = 500

s l i d e = 500

k = 55

R = 0 . 2 5

d a t a _ e v = pd . DataFrame (d a t a = d a t a _ a l l [l e])

d a t a _ e v [’ Y_pred ’] = 0

s l i d e _ c n t = i n t (math . f l o o r (l e n (d a t a _ a l l) / s l i d e − W/ s l i d e))

(!) F u r t h e r 2 e x e c u t i o n s are p r e s e n t e d . Only one s h o u l d be uncommented

(e1) r e s u l t − l i s t o f o u t l i e r s

f o r i in range (0 , s l i d e _ c n t + 1 , 1) :

w i n d o w _ s t a r t = i * s l i d e

window_end = i * s l i d e +W

data_W = d a t a _ a l l [w i n d o w _ s t a r t : window_end]

d e t e c t O u t l i e r (data_W , window_end −1 , W, s l i d e)

p r i n t (’Window [’ , w i nd ow _s t a r t , ’ : ’ , window_end , ’] ’)

p r i n t (’Memory ’ , p s u t i l . P r o c e s s () . memory_info () . peak_wse t)

p r i n t (’ Time ’ , t imeForProcess ingWindow)

p r i n t (’ o u t l i e r s ’ , o u t l i e r s)

(e2) r e s u l t − l i s t o f o u t l i e r s w i t h a s s i g n e d c l u s t e r s

n _ c l = 10

f o r i i n range (0 , s l i d e _ c n t + 1 , 1) :

w i n d o w _ s t a r t = i * s l i d e

window_end = i * s l i d e +W

data_W = d a t a _ a l l [w i n d o w _ s t a r t : window_end]

82

p r i n t (’ Window [’ , w ind ow_s ta r t , ’ : ’ , window_end , ’] ’)

d e t e c t O u t l i e r (data_W , window_end −1 , W, s l i d e)

i f i >= n _ c l :

i f (i % n _ c l == 0) :

p r i n t (’−−−−− T r a i n e d K−Means−−−−−’)

t r a i n i n g K−Means

pred_1 = d a t a _ a l l [d a t a _ e v . Y_pred == 1]

pred_1 = pred_1 . i l o c [: , : l e]

s i l = []

i f l e n (pred_1) < 10:

kmax = l e n (pred_1)−1

e l s e :

kmax = 10

ran = range (2 , kmax)

f o r n_c i n ran :

kmeans = KMeans (n _ c l u s t e r s = n_c) . f i t (pred_1)

l a b e l s = kmeans . l a b e l s _

s i l . append (s i l h o u e t t e _ s c o r e (pred_1 , l a b e l s ,

m e t r i c = ’ e u c l i d e a n ’))

c l = ran [np . argmax (s i l)]

km = KMeans (n _ c l u s t e r s =c l)

km . f i t (pred_1)

km . f i t _ p r e d i c t (pred_1)

c e n t e r s = km . c l u s t e r _ c e n t e r s _

l a b e l s = km . l a b e l s _

K−Means s t a t i s t i c

p r i n t (’ \ 0 3 3 [1m’+ ’ Number o f d a t a p o i n t s i n c l u s t e r : ’

+ ’ \033[0m’+ s t r (Counter (km . l a b e l s _)))

p r i n t (’ \ 0 3 3 [1m’+ ’Mean d i s t a n c e s : ’ + ’ \ 0 3 3 [0m ’)

a l l d i s t a n c e s = km . f i t _ t r a n s f o r m (pred_1)

t o t a l D i s t a n c e = np . min (a l l d i s t a n c e s , a x i s =1)

f o r p i n np . un i qu e (l a b e l s) :

s u b s e t = t o t a l D i s t a n c e [(l a b e l s == p)]

p r i n t (p , ’ ’ , s u b s e t . mean ())

c l u s _ s t a t = pred_1

c l u s _ s t a t [’ c l u s t e r ’] = km . l a b e l s _

c l u s t e r g r p = c l u s _ s t a t . groupby (’ c l u s t e r ’) . mean ()

p r i n t (’ \ 0 3 3 [1m’+ ’ C l u s t e r i n g v a r i a b l e means by c l u s t e r : ’

+ ’ \033[0m ’)

p r i n t (c l u s t e r g r p)

p r i n t (’ ’)

83

e l s e :

f o r i i n o u t l i e r s :

i f i >= w i n d o w _ s t a r t and i <= window_end :

u=km . p r e d i c t (d a t a _ a l l . i l o c [i , : l e] .

v a l u e s . r e s h a p e (1 , − 1))

p r i n t (’ * P r e d i c t i o n : o u t ’ , i , ’ p r e d i c t e d c l u s t e r ’ , u)

p r i n t (’ ’)

p r i n t (’−−−−−−−−−−END−−−−−−−−−−’)

p r i n t (’ Memory ’ , p s u t i l . P r o c e s s () . memory_in fo () . peak_wse t)

p r i n t (’ Time ’ , t imeForProcess ingWindow)

p r i n t (’ o u t l i e r s ’ , o u t l i e r s)

Approx-Storm

import t i m e i t

import s y s

import p s u t i l

import pandas as pd

import math

import numpy as np

import m a t p l o t l i b . p y p l o t a s p l t

from s c i p y . s p a t i a l import d i s t a n c e

from s k l e a r n . svm import SVC

from s k l e a r n . c l u s t e r import KMeans

from s k l e a r n . m e t r i c s import s i l h o u e t t e _ s c o r e

from c o l l e c t i o n s import Counter , d e f a u l t d i c t

import m a t p l o t l i b . l i n e s a s m l i n e s

D e f i n i n g a l g o r i t h m f u n c t i o n s

def d e t e c t O u t l i e r (da t a , c u r r e n t T i m e ,W, s l i d e) :

g l o b a l t imeForProcess ingWindow

g l o b a l d a t a L i s t

g l o b a l o u t l i e r s

s t a r t T i m e = t i m e i t . d e f a u l t _ t i m e r ()

remove e x p i r e d da ta from d a t a L i s t

i f (s l i d e != W) :

i f l e n (d a t a L i s t) != 0 :

d_l im = −1

f o r i in range (0 , l e n (d a t a L i s t) , 1) :

d = d a t a L i s t [i]

i f (d <= c u r r e n t T i m e − W) :

d_l im = i

84

f o r j in range (d_lim , − 1 , − 1) :

d a t a L i s t . pop (j)

e l s e :

d a t a L i s t = []

f o r dac in d a t a . a r r i v a l T i m e : # a l l window

do range query f o r ob

que ry = pd . DataFrame (columns = [’ c o l 1 ’ , ’ c o l 2 ’])

f o r n e i in d a t a . a r r i v a l T i m e :

i f dac != n e i :

i f (d _ i n t (dac , n e i) <= R) :

que ry = que ry . append ({ ’ c o l 1 ’ : dac , ’ c o l 2 ’ : n e i } ,

i g n o r e _ i n d e x = True)

q u e r y R e s u l t = []

f o r r i in range (0 , l e n (que ry) , 1) :

q u e r y R e s u l t . append (que ry . i l o c [r i] . c o l 2)

c o u n t _ b e f o r e = 0

f o r i in range (0 , l e n (q u e r y R e s u l t) , 1) :

u pd a t e n e i g h b o u r f o r new ob and i t s n e i g h b o u r ’ s

dod = i n t (q u e r y R e s u l t [i])

i f (c u r r e n t T i m e <= W) :

i f (l e n (d a t a _ a l l . a t [dac , ’ n n _ b e f o r e ’]) < k) :

d a t a _ a l l . i l o c [dac] . n n _ b e f o r e . append (dod)

e l s e :

c o u n t _ b e f o r e += 1

d a t a _ a l l . a t [dod , ’ c o u n t _ a f t e r ’] += 1

check dod i s s a f e i n l i e r s

i f (c u r r e n t T i m e > W) and (d a t a _ a l l . a t [dod , ’ c o u n t _ a f t e r ’] >= k) :

i f (l e n (s a f e I n l i e r L i s t) >= W*p) :

remove randomly a s a f e i n l i e r s

r _ i n d e x = random . r a n d i n t (0 , l e n (s a f e I n l i e r L i s t) −1)

remove = s a f e I n l i e r L i s t [r _ i n d e x]

i f r _ i n d e x in s a f e I n l i e r L i s t :

s a f e I n l i e r L i s t . remove (r _ i n d e x)

i f remove in d a t a L i s t : d a t a L i s t . remove (remove)

d e l remove

i f dod not in s a f e I n l i e r L i s t : s a f e I n l i e r L i s t . append (dod)

i f (c u r r e n t T i m e > W) :

d a t a _ a l l . a t [dac , ’ f r a c _ b e f o r e ’]= c o u n t _ b e f o r e / l e n (s a f e I n l i e r L i s t)

s t o r e o b j e c t i n t o d a t a L i s t

i f dac not in d a t a L i s t : d a t a L i s t . append (dac)

85

Compute number o f s a f e i n l i e r s f o r t h e f i r s t window

i f (c u r r e n t T i m e <= W) :

f o r d in d a t a L i s t :

i f (d a t a _ a l l . a t [d , ’ c o u n t _ a f t e r ’] >= k) :

s a f e I n l i e r L i s t . append (d)

u pd a t e f r a c _ b e f o r e f o r a l l o b j e c t i n window

f o r d in d a t a L i s t :

i f l e n (s a f e I n l i e r L i s t) != 0 :

d a t a _ a l l . a t [d , ’ f r a c _ b e f o r e ’] =

l e n (d a t a _ a l l . i l o c [d] . n n _ b e f o r e) / l e n (s a f e I n l i e r L i s t)

(!) f u r t h e r two c a s e s are p r e s e n t e d . Only one s h o u l d be uncommented

(c1) add r e s u l t t o o u t l i e r s (f o r c l a s s i c a l a l g and 1 s t m o d i f i c a t i o n)

f o r d in d a t a L i s t :

Count p r e c e e d i n g n e i g h b o u r s

p r e = (d a t a _ a l l . a t [d , ’ f r a c _ b e f o r e ’] * (W − c u r r e n t T i m e + d))

i f (p r e + d a t a _ a l l . a t [d , ’ c o u n t _ a f t e r ’] < k) and (d not in o u t l i e r s) :

o u t l i e r s . append (d)

d a t a _ e v . a t [d , ’ Y_pred ’] = 1

(c2) add r e s u l t t o o u t l i e r s (f o r 2−3 m o d i f i c a t i o n s)

f o r d i n d a t a L i s t :

pre = (d a t a _ a l l . a t [d , ’ f r a c _ b e f o r e ’] * (W − c u r r e n t T i m e + d))

i f (pre+d a t a _ a l l . a t [d , ’ c o u n t _ a f t e r ’] < k) and (d n o t i n o u t l i e r s) :

a = d a t a _ a l l . i l o c [x , : 9]

a = a . v a l u e s . r e s h a p e (1 , −1)

svm_pred = c l a s s i f i e r . p r e d i c t (a)

i f (svm_pred [0] != 0) :

o u t l i e r s . append (d)

d a t a _ e v . a t [d , ’ Y_pred ’] = 1

t imeForProcess ingWindow += t i m e i t . d e f a u l t _ t i m e r () − s t a r t T i m e

re turn o u t l i e r s

For m o d i f i c a t i o n s

(!) F u r t h e r e x t r a s t e p f o r 3 m o d i f i c a t i o n s . Only one s h o u l d be uncommented

d a t a _ a l l = d a t a _ a l l [: 1 0 0 0]

l e = l e n (d a t a _ a l l . columns) − 1

Y = d a t a _ a l l [l e]

Y = Y. v a l u e s

d a t a _ a l l = d a t a _ a l l . d rop ([l e] , a x i s = 1)

1 . L e a rn i n g w e i g h t s f o r w e i g h t e d d i s t a n c e

86

c l a s s i f i e r = SVC(C= 1 . 0 , k e r n e l = ’ l i n e a r ’ , r a n d o m _ s t a t e =241)

c l a s s i f i e r . f i t (d a t a _ a l l , Y)

c o e f = c l a s s i f i e r . c o e f _

c o e f = pd . DataFrame (d a t a = c o e f)

c o e f = abs (c o e f)

def d _ i n t (x , y) :

re turn d i s t a n c e . e u c l i d e a n (c o e f . i l o c [0 , :] * d a t a _ a l l . i l o c [x] ,

c o e f . i l o c [0 , :] * d a t a _ a l l . i l o c [y])

2 . T r a i n i n g l i n e a r SVM

c l a s s i f i e r = SVC (C=1.0 , k e r n e l =’ l i n e a r ’ , r a n d o m _ s t a t e =241)

c l a s s i f i e r . f i t (d a t a _ a l l , Y)

d e f d _ i n t (x , y) :

r e t u r n d i s t a n c e . e u c l i d e a n (d a t a _ a l l . i l o c [x] , d a t a _ a l l . i l o c [y])

3 . T r a i n i n g non− l i n e a r SVM

c l a s s i f i e r = SVC (C=1.0 , k e r n e l =’ r b f ’ , r a n d o m _ s t a t e =241)

c l a s s i f i e r . f i t (d a t a _ a l l , Y)

d e f d _ i n t (x , y) :

r e t u r n d i s t a n c e . e u c l i d e a n (d a t a _ a l l . i l o c [x] , d a t a _ a l l . i l o c [y])

A p p l i c a t i o n

d a t a _ a l l [’ a r r i v a l T i m e ’] = range (0 , l e n (d a t a _ a l l))

d a t a _ a l l [’ exps ’] = [[] f o r _ in range (d a t a _ a l l . shape [0])]

d a t a _ a l l [’Rmc ’] = [[] f o r _ in range (d a t a _ a l l . shape [0])]

d a t a _ a l l [’ i s C e n t e r ’] = F a l s e

d a t a _ a l l [’ i s I n C l u s t e r ’] = F a l s e

d a t a _ a l l [’ c e n t e r ’] = −1

d a t a _ a l l [’ ev ’] = 0

d a t a _ a l l [’ numberOfSucceeding ’] = 0

m i c r o _ c l u s t e r s = {}

PD = []

d a t a L i s t = []

o u t l i e r L i s t = []

o u t l i e r s = []

t imeForProcess ingWindow = 0

c u r r e n t T i m e = 0

W = 500

s l i d e = 500

p = 0 . 9 7

k = 55

R = 0 . 2 5

d a t a _ e v = pd . DataFrame (d a t a = d a t a _ a l l [l e])

87

d a t a _ e v [’ Y_pred ’] = 0

s l i d e _ c n t = i n t (math . f l o o r (l e n (d a t a _ a l l) / s l i d e − W/ s l i d e))

(!) F u r t h e r 2 e x e c u t i o n s are p r e s e n t e d . Only one s h o u l d be uncommented

(e1) r e s u l t − l i s t o f o u t l i e r s

f o r i in range (0 , s l i d e _ c n t + 1 , 1) :

w i n d o w _ s t a r t = i * s l i d e

window_end = i * s l i d e +W

data_W = d a t a _ a l l [w i n d o w _ s t a r t : window_end]

d e t e c t O u t l i e r (data_W , window_end −1 , W, s l i d e)

p r i n t (’Window [’ , w i nd ow _s t a r t , ’ : ’ , window_end , ’] ’)

p r i n t (’Memory ’ , p s u t i l . P r o c e s s () . memory_info () . peak_wse t)

p r i n t (’ Time ’ , t imeForProcess ingWindow)

p r i n t (’ o u t l i e r s ’ , o u t l i e r s)

(e2) r e s u l t − l i s t o f o u t l i e r s w i t h a s s i g n e d c l u s t e r s

n _ c l = 10

f o r i i n range (0 , s l i d e _ c n t + 1 , 1) :

w i n d o w _ s t a r t = i * s l i d e

window_end = i * s l i d e +W

data_W = d a t a _ a l l [w i n d o w _ s t a r t : window_end]

p r i n t (’ \ 0 3 3 [1m’ + ’ Window [’ , w ind ow_s ta r t , ’ : ’ , window_end , ’] ’

+ ’ \ 0 3 3 [0m ’)

d e t e c t O u t l i e r (data_W , window_end −1 , W, s l i d e)

i f i >= n _ c l :

i f (i % n _ c l == 0) :

p r i n t (’−−−−− T r a i n e d K−Means−−−−−’)

t r a i n i n g K−Means

pred_1 = d a t a _ a l l [d a t a _ e v . Y_pred == 1]

pred_1 = pred_1 . i l o c [: , : l e]

s i l = []

i f l e n (pred_1) < 10:

kmax = l e n (pred_1)−1

e l s e :

kmax = 10

ran = range (2 , kmax)

f o r n_c i n ran :

kmeans = KMeans (n _ c l u s t e r s = n_c) . f i t (pred_1)

l a b e l s = kmeans . l a b e l s _

s i l . append (s i l h o u e t t e _ s c o r e (pred_1 , l a b e l s ,

m e t r i c = ’ e u c l i d e a n ’))

c l = ran [np . argmax (s i l)]

88

km = KMeans (n _ c l u s t e r s =c l)

km . f i t (pred_1)

km . f i t _ p r e d i c t (pred_1)

c e n t e r s = km . c l u s t e r _ c e n t e r s _

l a b e l s = km . l a b e l s _

K−Means s t a t i s t i c

p r i n t (’ \ 0 3 3 [1m’+ ’ Number o f d a t a p o i n t s i n c l u s t e r : ’

+ ’ \033[0m’+ s t r (Counter (km . l a b e l s _)))

p r i n t (’ \ 0 3 3 [1m’+ ’Mean d i s t a n c e s : ’ + ’ \ 0 3 3 [0m ’)

a l l d i s t a n c e s = km . f i t _ t r a n s f o r m (pred_1)

t o t a l D i s t a n c e = np . min (a l l d i s t a n c e s , a x i s =1)

f o r p i n np . un i qu e (l a b e l s) :

s u b s e t = t o t a l D i s t a n c e [(l a b e l s == p)]

p r i n t (p , ’ ’ , s u b s e t . mean ())

c l u s _ s t a t = pred_1

c l u s _ s t a t [’ c l u s t e r ’] = km . l a b e l s _

c l u s t e r g r p = c l u s _ s t a t . groupby (’ c l u s t e r ’) . mean ()

p r i n t (’ \ 0 3 3 [1m’+ ’ C l u s t e r i n g v a r i a b l e means by c l u s t e r : ’

+ ’ \033[0m ’)

p r i n t (c l u s t e r g r p)

p r i n t (’ ’)

e l s e :

f o r i i n o u t l i e r s :

i f i >= w i n d o w _ s t a r t and i <= window_end :

u = km . p r e d i c t (d a t a _ a l l . i l o c [i , : 9] .

v a l u e s . r e s h a p e (1 , − 1))

p r i n t (’ * P r e d i c t i o n : o u t l ’ , i , ’ p r e d i c t e d c l u s t e r ’ , u)

p r i n t (’ ’)

p r i n t (’−−−−−−−−−−END−−−−−−−−−−’)

p r i n t (’ Memory ’ , p s u t i l . P r o c e s s () . memory_in fo () . peak_wse t)

p r i n t (’ Time ’ , t imeForProcess ingWindow)

p r i n t (’ o u t l i e r s ’ , o u t l i e r s)

Abstract-C

import t i m e i t

import s y s

import p s u t i l

import pandas as pd

import math

import numpy as np

import m a t p l o t l i b . p y p l o t a s p l t

89

from s c i p y . s p a t i a l import d i s t a n c e

from s k l e a r n . svm import SVC

from s k l e a r n . c l u s t e r import KMeans

from s k l e a r n . m e t r i c s import s i l h o u e t t e _ s c o r e

from c o l l e c t i o n s import Counter , d e f a u l t d i c t

import m a t p l o t l i b . l i n e s a s m l i n e s

D e f i n i n g a l g o r i t h m f u n c t i o n s

def d e t e c t O u t l i e r (da t a , c u r r e n t T i m e ,W, s l i d e) :

g l o b a l t imeForProcess ingWindow

g l o b a l d a t a L i s t

g l o b a l o u t l i e r s

s t a r t T i m e = t i m e i t . d e f a u l t _ t i m e r ()

remove e x p i r e d da ta from d a t a L i s t

i f (s l i d e != W) :

i f l e n (d a t a L i s t) != 0 :

d_l im = −1

f o r i in range (0 , l e n (d a t a L i s t) , 1) :

d = d a t a L i s t [i]

i f (d <= c u r r e n t T i m e − W) :

d_l im = i

f o r j in range (d_lim , − 1 , − 1) :

d a t a L i s t . pop (j)

e l s e :

d a t a L i s t = []

p r o c e s s new s l i d e

s t a r t T i m e = t i m e i t . d e f a u l t _ t i m e r ()

f o r dac in d a t a . a r r i v a l T i m e : # a l l window

do range query f o r ob

s t a r t T i m e 2 = t i m e i t . d e f a u l t _ t i m e r ()

i n t e r v a l = c u r r e n t T i m e +1 − W

i = 1

c r e a t i n g empty l t _ c n t f o r a l l upcoming windows

whi le dac >= i n t e r v a l :

i f (l e n (d a t a _ a l l . a t [dac , ’ l t _ c n t ’]) == 0) or (

l e n (d a t a _ a l l . a t [dac , ’ l t _ c n t ’]) < i) :

d a t a _ a l l . i l o c [dac] . l t _ c n t . append (0)

i += 1

i n t e r v a l = i n t e r v a l + s l i d e

que ry = pd . DataFrame (columns = [’ c o l 1 ’ , ’ c o l 2 ’])

90

f o r n e i in d a t a . a r r i v a l T i m e :

i f dac != n e i :

i f (d _ i n t (dac , n e i) <= R) :

que ry = que ry . append ({ ’ c o l 1 ’ : dac , ’ c o l 2 ’ : n e i } ,

i g n o r e _ i n d e x = True)

i f (c u r r e n t T i m e +1 == W) :

f o r r i in range (0 , l e n (que ry) , 1) :

i nd1 = i n t (que ry . a t [r i , ’ c o l 1 ’])

i nd2 = i n t (que ry . a t [r i , ’ c o l 2 ’])

f o r n in range (0 , l e n (d a t a _ a l l . a t [ind1 , ’ l t _ c n t ’]) , 1) :

i f (i nd2 >= c u r r e n t T i m e +1−W+n* s l i d e) :

d a t a _ a l l . i l o c [i nd1] . l t _ c n t [n] += + 1

e l i f (c u r r e n t T i m e > W) :

f o r r i in range (0 , l e n (que ry) , 1) :

i nd1 = i n t (que ry . a t [r i , ’ c o l 1 ’])

i nd2 = i n t (que ry . a t [r i , ’ c o l 2 ’])

f o r n in range (0 , l e n (d a t a _ a l l . a t [ind1 , ’ l t _ c n t ’]) , 1) :

i f (i nd2 >= c u r r e n t T i m e −W) and (

i nd2 >= c u r r e n t T i m e +1−W+n* s l i d e) :

d a t a _ a l l . i l o c [i nd1] . l t _ c n t [n] += + 1

s t a r t T i m e 3 = t i m e i t . d e f a u l t _ t i m e r ()

i f dac not in d a t a L i s t : d a t a L i s t . append (dac)

p s u t i l . v i r t u a l _ m e m o r y () . p e r c e n t

(!) f u r t h e r two c a s e s are p r e s e n t e d . Only one s h o u l d be uncommented

(c1) add r e s u l t t o o u t l i e r s (f o r c l a s s i c a l a l g and 1 s t m o d i f i c a t i o n)

f o r d in d a t a L i s t :

p = d a t a _ a l l . i l o c [d]

i f l e n (p . l t _ c n t) != 0 :

i f (p . l t _ c n t [0] < k) and (d not in o u t l i e r s) :

o u t l i e r s . append (d)

d a t a _ e v . a t [d , ’ Y_pred ’] = 1

d a t a _ a l l . i l o c [d] . l t _ c n t . pop (0)

(c2) add r e s u l t t o o u t l i e r s (f o r 2−3 m o d i f i c a t i o n s)

f o r d i n d a t a L i s t :

p = d a t a _ a l l . i l o c [d]

i f l e n (p . l t _ c n t) != 0:

i f (p . l t _ c n t [0] < k) and (d n o t i n o u t l i e r s) :

a = d a t a _ a l l . i l o c [x , : l e]

a = a . v a l u e s . r e s h a p e (1 , −1)

svm_pred = c l a s s i f i e r . p r e d i c t (a)

91

i f (svm_pred [0] != 0) :

o u t l i e r s . append (d)

d a t a _ e v . a t [d , ’ Y_pred ’] = 1

d a t a _ a l l . i l o c [d] . l t _ c n t . pop (0)

t imeForProcess ingWindow += t i m e i t . d e f a u l t _ t i m e r () − s t a r t T i m e

re turn o u t l i e r s

For m o d i f i c a t i o n s

(!) F u r t h e r e x t r a s t e p f o r 3 m o d i f i c a t i o n s . Only one s h o u l d be uncommented

d a t a _ a l l = d a t a _ a l l [: 1 0 0 0]

l e = l e n (d a t a _ a l l . columns) − 1

Y = d a t a _ a l l [l e]

Y = Y. v a l u e s

d a t a _ a l l = d a t a _ a l l . d rop ([l e] , a x i s = 1)

1 . L e a rn i n g w e i g h t s f o r w e i g h t e d d i s t a n c e

c l a s s i f i e r = SVC(C= 1 . 0 , k e r n e l = ’ l i n e a r ’ , r a n d o m _ s t a t e =241)

c l a s s i f i e r . f i t (d a t a _ a l l , Y)

c o e f = c l a s s i f i e r . c o e f _

c o e f = pd . DataFrame (d a t a = c o e f)

c o e f = abs (c o e f)

def d _ i n t (x , y) :

re turn d i s t a n c e . e u c l i d e a n (c o e f . i l o c [0 , :] * d a t a _ a l l . i l o c [x] ,

c o e f . i l o c [0 , :] * d a t a _ a l l . i l o c [y])

2 . T r a i n i n g l i n e a r SVM

c l a s s i f i e r = SVC (C=1.0 , k e r n e l =’ l i n e a r ’ , r a n d o m _ s t a t e =241)

c l a s s i f i e r . f i t (d a t a _ a l l , Y)

d e f d _ i n t (x , y) :

r e t u r n d i s t a n c e . e u c l i d e a n (d a t a _ a l l . i l o c [x] , d a t a _ a l l . i l o c [y])

3 . T r a i n i n g non− l i n e a r SVM

c l a s s i f i e r = SVC (C=1.0 , k e r n e l =’ r b f ’ , r a n d o m _ s t a t e =241)

c l a s s i f i e r . f i t (d a t a _ a l l , Y)

d e f d _ i n t (x , y) :

r e t u r n d i s t a n c e . e u c l i d e a n (d a t a _ a l l . i l o c [x] , d a t a _ a l l . i l o c [y])

A p p l i c a t i o n

d a t a _ a l l [’ a r r i v a l T i m e ’] = range (0 , l e n (d a t a _ a l l))

d a t a _ a l l [’ exps ’] = [[] f o r _ in range (d a t a _ a l l . shape [0])]

d a t a _ a l l [’Rmc ’] = [[] f o r _ in range (d a t a _ a l l . shape [0])]

d a t a _ a l l [’ i s C e n t e r ’] = F a l s e

d a t a _ a l l [’ i s I n C l u s t e r ’] = F a l s e

92

d a t a _ a l l [’ c e n t e r ’] = −1

d a t a _ a l l [’ ev ’] = 0

d a t a _ a l l [’ numberOfSucceeding ’] = 0

m i c r o _ c l u s t e r s = {}

PD = []

d a t a L i s t = []

o u t l i e r L i s t = []

o u t l i e r s = []

t imeForProcess ingWindow = 0

c u r r e n t T i m e = 0

W = 500

s l i d e = 500

k = 55

R = 0 . 2 5

d a t a _ e v = pd . DataFrame (d a t a = d a t a _ a l l [l e])

d a t a _ e v [’ Y_pred ’] = 0

s l i d e _ c n t = i n t (math . f l o o r (l e n (d a t a _ a l l) / s l i d e − W/ s l i d e))

(!) F u r t h e r 2 e x e c u t i o n s are p r e s e n t e d . Only one s h o u l d be uncommented

(e1) r e s u l t − l i s t o f o u t l i e r s

f o r i in range (0 , s l i d e _ c n t + 1 , 1) :

w i n d o w _ s t a r t = i * s l i d e

window_end = i * s l i d e +W

data_W = d a t a _ a l l [w i n d o w _ s t a r t : window_end]

d e t e c t O u t l i e r (data_W , window_end −1 , W, s l i d e)

p r i n t (’Window [’ , w i nd ow _s t a r t , ’ : ’ , window_end , ’] ’)

p r i n t (’Memory ’ , p s u t i l . P r o c e s s () . memory_info () . peak_wse t)

p r i n t (’ Time ’ , t imeForProcess ingWindow)

p r i n t (’ o u t l i e r s ’ , o u t l i e r s)

(e2) r e s u l t − l i s t o f o u t l i e r s w i t h a s s i g n e d c l u s t e r s

n _ c l = 10

f o r i i n range (0 , s l i d e _ c n t + 1 , 1) :

w i n d o w _ s t a r t = i * s l i d e

window_end = i * s l i d e +W

data_W = d a t a _ a l l [w i n d o w _ s t a r t : window_end]

p r i n t (’ \ 0 3 3 [1m’ + ’ Window [’ , w ind ow_s ta r t , ’ : ’ , window_end , ’] ’

+ ’ \ 0 3 3 [0m ’)

d e t e c t O u t l i e r (data_W , window_end −1 , W, s l i d e)

i f i >= n _ c l :

i f (i % n _ c l == 0) :

p r i n t (’−−−−− T r a i n e d K−Means−−−−−’)

93

t r a i n i n g K−Means

pred_1 = d a t a _ a l l [d a t a _ e v . Y_pred == 1]

pred_1 = pred_1 . i l o c [: , : l e]

s i l = []

i f l e n (pred_1) < 10:

kmax = l e n (pred_1)−1

e l s e :

kmax = 10

ran = range (2 , kmax)

f o r n_c i n ran :

kmeans = KMeans (n _ c l u s t e r s = n_c) . f i t (pred_1)

l a b e l s = kmeans . l a b e l s _

s i l . append (s i l h o u e t t e _ s c o r e (pred_1 , l a b e l s ,

m e t r i c = ’ e u c l i d e a n ’))

c l = ran [np . argmax (s i l)]

km = KMeans (n _ c l u s t e r s =c l)

km . f i t (pred_1)

km . f i t _ p r e d i c t (pred_1)

c e n t e r s = km . c l u s t e r _ c e n t e r s _

l a b e l s = km . l a b e l s _

K−Means s t a t i s t i c

p r i n t (’ \ 0 3 3 [1m’+ ’ Number o f d a t a p o i n t s i n c l u s t e r : ’

+ ’ \033[0m’+ s t r (Counter (km . l a b e l s _)))

p r i n t (’ \ 0 3 3 [1m’+ ’Mean d i s t a n c e s : ’ + ’ \ 0 3 3 [0m ’)

a l l d i s t a n c e s = km . f i t _ t r a n s f o r m (pred_1)

t o t a l D i s t a n c e = np . min (a l l d i s t a n c e s , a x i s =1)

f o r p i n np . un i qu e (l a b e l s) :

s u b s e t = t o t a l D i s t a n c e [(l a b e l s == p)]

p r i n t (p , ’ ’ , s u b s e t . mean ())

c l u s _ s t a t = pred_1

c l u s _ s t a t [’ c l u s t e r ’] = km . l a b e l s _

c l u s t e r g r p = c l u s _ s t a t . groupby (’ c l u s t e r ’) . mean ()

p r i n t (’ \ 0 3 3 [1m’+ ’ C l u s t e r i n g v a r i a b l e means by c l u s t e r : ’

+ ’ \033[0m ’)

p r i n t (c l u s t e r g r p)

p r i n t (’ ’)

e l s e :

f o r i i n o u t l i e r s :

i f i >= w i n d o w _ s t a r t and i <= window_end :

u = km . p r e d i c t (d a t a _ a l l . i l o c [i , : l e] .

v a l u e s . r e s h a p e (1 , − 1))

94

p r i n t (’ * P r e d i c t i o n : o u t l ’ , i , ’ p r e d i c t e d c l u s t e r ’ , u)

p r i n t (’ ’)

p r i n t (’−−−−−−−−−−END−−−−−−−−−−’)

p r i n t (’ Memory ’ , p s u t i l . P r o c e s s () . memory_in fo () . peak_wse t)

p r i n t (’ Time ’ , t imeForProcess ingWindow)

p r i n t (’ o u t l i e r s ’ , o u t l i e r s)

MCOD

import t i m e i t

import s y s

import p s u t i l

import pandas as pd

import math

import numpy as np

import m a t p l o t l i b . p y p l o t a s p l t

from s c i p y . s p a t i a l import d i s t a n c e

from s k l e a r n . svm import SVC

from s k l e a r n . c l u s t e r import KMeans

from s k l e a r n . m e t r i c s import s i l h o u e t t e _ s c o r e

from c o l l e c t i o n s import Counter , d e f a u l t d i c t

import m a t p l o t l i b . l i n e s a s m l i n e s

D e f i n i n g a l g o r i t h m f u n c t i o n s

A d d i t i o n a l f u n c t i o n s

def r e s e t O b j e c t (o) :

a r r = o . a r r i v a l T i m e

d a t a _ a l l . a t [a r r , ’ exps ’] = []

d a t a _ a l l . a t [a r r , ’Rmc ’] = []

d a t a _ a l l . a t [a r r , ’ i s C e n t e r ’] = F a l s e

d a t a _ a l l . a t [a r r , ’ i s I n C l u s t e r ’] = F a l s e

d a t a _ a l l . a t [a r r , ’ ev ’] = 0

d a t a _ a l l . a t [a r r , ’ c e n t e r ’] = −1

d a t a _ a l l . a t [a r r , ’ numberOfSucceeding ’] = 0

def i s S a m e S l i d e (o1 , o2) :

i f math . f l o o r (o1 . a r r i v a l T i m e / s l i d e)== math . f l o o r (o2 . a r r i v a l T i m e / s l i d e) :

re turn 0 #same s l i d e

e l i f math . f l o o r (o1 . a r r i v a l T i m e / s l i d e) < math . f l o o r (o2 . a r r i v a l T i m e / s l i d e) :

re turn −1 #o1 b e f o r e o2

e l s e :

re turn 1 #o1 a f t e r o2

95

def c h e c k I n l i e r (p) :

a r r = p . a r r i v a l T i m e

d a t a _ a l l . a t [a r r , ’ exps ’] = s o r t e d (d a t a _ a l l . a t [a r r , ’ exps ’])

whi le (l e n (d a t a _ a l l . a t [a r r , ’ exps ’]) > k

− d a t a _ a l l . a t [a r r , ’ numberOfSucceeding ’]) and (

l e n (d a t a _ a l l . a t [a r r , ’ exps ’]) > 0) :

d e l d a t a _ a l l . i l o c [a r r] . exps [0]

i f (l e n (d a t a _ a l l . a t [a r r , ’ exps ’]) > 0) :

d a t a _ a l l . a t [a r r , ’ ev ’] = d a t a _ a l l . i l o c [a r r] . exps [0]

e l s e :

d a t a _ a l l . a t [a r r , ’ ev ’] = 0

i f (l e n (d a t a _ a l l . a t [a r r , ’ exps ’])

+ d a t a _ a l l . a t [a r r , ’ numberOfSucceeding ’] >= k) :

i f a r r in o u t l i e r L i s t : o u t l i e r L i s t . remove (a r r)

e l s e :

i f a r r not in o u t l i e r L i s t : o u t l i e r L i s t . append (a r r)

def i s O u t l i e r (d) :

a r r = d . a r r i v a l T i m e

r e s u l t = F a l s e

i f d a t a _ a l l . a t [a r r , ’ numberOfSucceeding ’]

+ l e n (d a t a _ a l l . a t [a r r , ’ exps ’]) < k :

r e s u l t = True

re turn r e s u l t

def i s N e i g h b o u r (p , o) :

r e s u l t = F a l s e

d i s t a n c e = d _ i n t (p . a r r i v a l T i m e , o . a r r i v a l T i m e)

i f d i s t a n c e <= R :

r e s u l t = True

re turn r e s u l t

F u n c t i o n s f o r s e a r c h

def f i n d C l u s t e r I n 3 _ 2 R a n g e (d) :

r e s u l t = []

i f m i c r o _ c l u s t e r s :

f o r c e n t e r _ i d in m i c r o _ c l u s t e r s . keys () :

compute t h e d i s t a n c e

d i s t a n c e = d _ i n t (c e n t e r _ i d , d . a r r i v a l T i m e)

i f (d i s t a n c e <= R * 3 . 0 / 2) :

96

r e s u l t . append (c e n t e r _ i d)

re turn r e s u l t

def f i n d N e a r e s t C e n t e r (d) :

m i n _ d i s t a n c e = s y s . f l o a t _ i n f o . max
m i n _ c e n t e r _ i d = −1

f o r c e n t e r _ i d in m i c r o _ c l u s t e r s . keys () :

compute t h e d i s t a n c e

d i s t a n c e = d _ i n t (c e n t e r _ i d , d . a r r i v a l T i m e)

i f (d i s t a n c e < m i n _ d i s t a n c e) :

m i n _ d i s t a n c e = d i s t a n c e

m i n _ c e n t e r _ i d = c e n t e r _ i d

re turn m i n _ c e n t e r _ i d

def f indNeighbourR2InPD (d) :

r e s u l t = []

f o r p in PD :

i f p != d . a r r i v a l T i m e :

d i s t a n c e = d _ i n t (p , d . a r r i v a l T i m e)

i f (d i s t a n c e <= R * 1 . 0 / 2) :

r e s u l t . append (p)

re turn r e s u l t

def f indNeighbour InR3_2InPD (d) :

r e s u l t = []

f o r p in PD :

i f p != d . a r r i v a l T i m e :

d i s t a n c e = d _ i n t (p , d . a r r i v a l T i m e)

i f (d i s t a n c e <= R * 3 . 0 / 2) :

r e s u l t . append (p)

re turn r e s u l t

Adding o b j e c t s

def formNewClus te r (d , n e i g h b o u r s I n R 2 D i s t a n c e) :

a r r _ d = d . a r r i v a l T i m e

d a t a _ a l l . a t [a r r _ d , ’ i s C e n t e r ’] = True

d a t a _ a l l . a t [a r r _ d , ’ i s I n C l u s t e r ’] = True

d a t a _ a l l . a t [a r r _ d , ’ c e n t e r ’] = a r r _ d

f o r p in n e i g h b o u r s I n R 2 D i s t a n c e :

i f p in PD : PD . remove (p)

i f (i s O u t l i e r (d a t a _ a l l . i l o c [p])) :

97

o u t l i e r L i s t . remove (p)

r e s e t O b j e c t (d a t a _ a l l . i l o c [p])

d a t a _ a l l . a t [p , ’ i s I n C l u s t e r ’] = True

d a t a _ a l l . a t [p , ’ c e n t e r ’] = a r r _ d

d a t a _ a l l . a t [p , ’ i s C e n t e r ’] = F a l s e

add c e n t e r t o n e i g h b o u r l i s t

s o r t e d (n e i g h b o u r s I n R 2 D i s t a n c e)

m i c r o _ c l u s t e r s [a r r _ d] = n e i g h b o u r s I n R 2 D i s t a n c e

l i s t _ r m c = f indNeighbour InR3_2InPD (d)

f o r o in l i s t _ r m c :

i f (i s N e i g h b o u r (d a t a _ a l l . i l o c [o] , d)) :

i f (i s S a m e S l i d e (d a t a _ a l l . i l o c [o] , d) <= 0) :

d a t a _ a l l . a t [o , ’ numberOfSucceeding ’] += 1

e l s e :

d a t a _ a l l . i l o c [o] . exps . append (a r r _ d + W)

c h e c k I n l i e r (d a t a _ a l l . i l o c [o])

d a t a _ a l l . i l o c [o] . Rmc . append (a r r _ d)

def a d d T o C l u s t e r (n e a r e s t _ c e n t e r _ i d , d) :

a r r _ d = d . a r r i v a l T i m e

u pd a t e f o r p o i n t s i n c l u s t e r

d a t a _ a l l . a t [a r r _ d , ’ i s C e n t e r ’] = F a l s e

d a t a _ a l l . a t [a r r _ d , ’ i s I n C l u s t e r ’] = True

d a t a _ a l l . a t [a r r _ d , ’ c e n t e r ’] = n e a r e s t _ c e n t e r _ i d

c l u s t e r = m i c r o _ c l u s t e r s [n e a r e s t _ c e n t e r _ i d]

c l u s t e r . append (a r r _ d)

m i c r o _ c l u s t e r s . u p d a t e ({ n e a r e s t _ c e n t e r _ i d : c l u s t e r })

u pd a t e f o r p o i n t s i n PD which Rmc l i s t c o n t a i n s c e n t e r

f o r p in PD :

check i f inPD i s n e i g h b o u r o f d

i f n e a r e s t _ c e n t e r _ i d in d a t a _ a l l . a t [p , ’Rmc ’] :

d i s t a n c e = d _ i n t (a r r _ d , p)

i f (d i s t a n c e <= R) :

i f (i s S a m e S l i d e (d , d a t a _ a l l . i l o c [p]) <= 0) :

d a t a _ a l l . a t [a r r _ d , ’ numberOfSucceeding ’] += 1

e l s e :

d a t a _ a l l . i l o c [a r r _ d] . exps . append (d . a r r i v a l T i m e + W)

c h e c k I n l i e r (d a t a _ a l l . i l o c [p])

def addToPD (o , f r o m C l u s t e r) :

a r r _ o = o . a r r i v a l T i m e

98

f o r p in PD :

compute d i s t a n c e

d i s t a n c e = d _ i n t (a r r _ o , p)

i f (d i s t a n c e <= R) :

check inPD i s s u c c e e d i n g or p r e c e d i n g n e i g h b o u r

i f (i s S a m e S l i d e (d a t a _ a l l . i l o c [p] , o) == −1) :

d a t a _ a l l . i l o c [a r r _ o] . exps . append (d a t a _ a l l .

a t [p , ’ a r r i v a l T i m e ’] + W)

i f (not f r o m C l u s t e r) :

d a t a _ a l l . a t [p , ’ numberOfSucceeding ’] += 1

e l i f (i s S a m e S l i d e (d a t a _ a l l . i l o c [p] , o) == 0) :

d a t a _ a l l . a t [a r r _ o , ’ numberOfSucceeding ’] += 1

i f (not f r o m C l u s t e r) :

d a t a _ a l l . a t [p , ’ numberOfSucceeding ’] += 1

e l s e :

d a t a _ a l l . a t [a r r _ o , ’ numberOfSucceeding ’] += 1

i f (not f r o m C l u s t e r) :

d a t a _ a l l . i l o c [p] . exps . append (a r r _ o + W)

i f (not f r o m C l u s t e r) :

c h e c k I n l i e r (d a t a _ a l l . i l o c [p])

f i n d n e i g h b o u r s i n c l u s t e r s (3R / 2)

c l u s t e r s = f i n d C l u s t e r I n 3 _ 2 R a n g e (o)

f o r i in c l u s t e r s :

c l u s t = m i c r o _ c l u s t e r s [i]

f o r p in c l u s t :

i f i s N e i g h b o u r (d a t a _ a l l . i l o c [p] , o) :

i f (i s S a m e S l i d e (o , d a t a _ a l l . i l o c [p]) <= 0) :

o i s p r e c e e d i n g n e i g h b o u r

d a t a _ a l l . a t [a r r _ o , ’ numberOfSucceeding ’] += 1

e l s e :

p i s p r e c e e d i n g n e i g h b o u r

d a t a _ a l l . i l o c [a r r _ o] . exps . append (

d a t a _ a l l . i l o c [p] . a r r i v a l T i m e + W)

c h e c k I n l i e r (o)

i f a r r _ o not in PD :

PD . append (a r r _ o)

Removing o b j e c t s

def r emoveFromClus te r (d) :

g e t t h e c l u s t e r

c l u s t e r = m i c r o _ c l u s t e r s [d . c e n t e r]

99

i f l e n (c l u s t e r) != 0 :

i f (d . c e n t e r != d . a r r i v a l T i m e) :

c l u s t e r . remove (d . a r r i v a l T i m e)

m i c r o _ c l u s t e r s [d . c e n t e r] = c l u s t e r

i f (l e n (c l u s t e r) < k) or (d . c e n t e r == d . a r r i v a l T i m e) :

remove t h i s c l u s t e r from micro c l u s t e r l i s t

d e l m i c r o _ c l u s t e r s [d . c e n t e r]

c l u s t e r = s o r t e d (c l u s t e r)

p r o c e s s t h e c e n t e r o f c l u s t e r

r e s e t O b j e c t (d a t a _ a l l . i l o c [d . c e n t e r])

d a t a _ a l l . a t [d . c e n t e r , ’ numberOfSucceeding ’] += l e n (c l u s t e r) −1

addToPD (d a t a _ a l l . i l o c [d . c e n t e r] , True)

p r o c e s s t h e o b j e c t s i n c l u s t e r s

f o r i in range (0 , l e n (c l u s t e r) , 1) :

o = c l u s t e r [i]

r e s e t a l l o b j e c t s

r e s e t O b j e c t (d a t a _ a l l . i l o c [o])

p u t i n t o PD

d a t a _ a l l . a t [o , ’ numberOfSucceeding ’] += l e n (c l u s t e r) −1 − i

addToPD (d a t a _ a l l . i l o c [o] , True)

def removeFromPD (d) :

remove from PD

i f d . a r r i v a l T i m e in PD :

PD . remove (d . a r r i v a l T i m e)

i f (d . numberOfSucceeding + l e n (d . exps) < k) :

i f d . a r r i v a l T i m e in o u t l i e r L i s t :

o u t l i e r L i s t . remove (d . a r r i v a l T i m e)

f o r p in o u t l i e r L i s t :

whi le (l e n (d a t a _ a l l . a t [p , ’ exps ’]) > 0) and (

d a t a _ a l l . i l o c [p] . exps [0] <= d . a r r i v a l T i m e + W) :

d a t a _ a l l . a t [p , ’ exps ’] . pop (0)

i f l e n (d a t a _ a l l . a t [p , ’ exps ’]) == 0 :

d a t a _ a l l . a t [p , ’ ev ’] = 0

e l s e :

d a t a _ a l l . a t [p , ’ ev ’] = d a t a _ a l l . i l o c [p] . exps [0]

O u t l i e r d e t e c t i o n

def processNewData (d) :

add da ta p o i n t t o d a t a l i s t

g l o b a l d a t a L i s t

100

i f d . a r r i v a l T i m e not in d a t a L i s t :

d a t a L i s t . append (d . a r r i v a l T i m e)

n e a r e s t _ c e n t e r _ i d = f i n d N e a r e s t C e n t e r (d)

i f d . a r r i v a l T i m e != n e a r e s t _ c e n t e r _ i d :

m i n _ d i s t a n c e = s y s . f l o a t _ i n f o . max
i f (n e a r e s t _ c e n t e r _ i d > −1) :

found n e a r e a s t c l u s t e r

m i n _ d i s t a n c e = d _ i n t (n e a r e s t _ c e n t e r _ i d , d . a r r i v a l T i m e)

a s s i g n t o c l u s t e r i f min d i s t a n c e <= R / 2

i f (m i n _ d i s t a n c e <= R / 2) and (

d . a r r i v a l T i m e not in m i c r o _ c l u s t e r s [n e a r e s t _ c e n t e r _ i d]) :

a d d T o C l u s t e r (n e a r e s t _ c e n t e r _ i d , d)

e l s e :

f i n d a l l n e i g h b o u r s f o r d i n PD t h a t can form a c l u s t e r

n e i g h b o u r s I n R 2 D i s t a n c e = f indNeighbourR2InPD (d)

i f (l e n (n e i g h b o u r s I n R 2 D i s t a n c e) >= k) :

form new c l u s t e r

formNewClus te r (d , n e i g h b o u r s I n R 2 D i s t a n c e)

e l s e :

c an no t form a new c l u s t e r

addToPD (d , F a l s e)

def d e t e c t O u t l i e r (da t a , c u r r e n t T i m e ,W, s l i d e) :

g l o b a l o u t l i e r s

g l o b a l d a t a L i s t

g l o b a l o u t l i e r L i s t

g l o b a l PD

g l o b a l m i c r o _ c l u s t e r s

g l o b a l t imeForProcess ingWindow

s t a r t T i m e = t i m e i t . d e f a u l t _ t i m e r ()

i f s l i d e != W:

purge e x p i r e d o b j e c t

i f l e n (d a t a L i s t) != 0 :

d = d a t a L i s t [0]

whi le d a t a _ a l l . a t [d , ’ a r r i v a l T i m e ’] <= c u r r e n t T i m e − W:

remove d from da ta L i s t

d a t a L i s t . pop (0)

i f p o i n t i n c l u s t e r

i f (d a t a _ a l l . a t [d , ’ i s I n C l u s t e r ’]) :

r emoveFromClus te r (d a t a _ a l l . i l o c [d])

i f p o i n t i n PD

101

i f d in PD :

removeFromPD (d a t a _ a l l . i l o c [d])

r e s e t O b j e c t (d a t a _ a l l . i l o c [d])

d = d a t a L i s t [0]

e l s e :

m i c r o _ c l u s t e r s = {}

d a t a L i s t = []

PD = []

o u t l i e r L i s t = []

p r o c e s s new da ta

f o r i in range (0 , l e n (d a t a) , 1) :

processNewData (d a t a . i l o c [i])

(!) f u r t h e r two c a s e s are p r e s e n t e d . Only one s h o u l d be uncommented

(c1) add r e s u l t t o o u t l i e r s (f o r c l a s s i c a l a l g and 1 s t m o d i f i c a t i o n)

f o r x in o u t l i e r L i s t :

i f (x not in o u t l i e r s) :

o u t l i e r s . append (x)

d a t a _ e v . a t [x , ’ Y_pred ’] = 1

(c2) add r e s u l t t o o u t l i e r s (f o r 2−3 m o d i f i c a t i o n s)

f o r x i n o u t l i e r L i s t :

i f (x n o t i n o u t l i e r s) :

a = d a t a _ a l l . i l o c [x , : 9]

a = a . v a l u e s . r e s h a p e (1 , −1)

svm_pred = c l a s s i f i e r . p r e d i c t (a)

i f (svm_pred [0] != 0) :

o u t l i e r s . append (x)

d a t a _ e v . a t [x , ’ Y_pred ’] = 1

t imeForProcess ingWindow += t i m e i t . d e f a u l t _ t i m e r () − s t a r t T i m e

re turn o u t l i e r s

For m o d i f i c a t i o n s

(!) F u r t h e r e x t r a s t e p f o r 3 m o d i f i c a t i o n s . Only one s h o u l d be uncommented

d a t a _ a l l = d a t a _ a l l [: 1 0 0 0]

l e = l e n (d a t a _ a l l . columns) − 1

Y = d a t a _ a l l [l e]

Y = Y. v a l u e s

d a t a _ a l l = d a t a _ a l l . d rop ([l e] , a x i s = 1)

1 . L e a rn i n g w e i g h t s f o r w e i g h t e d d i s t a n c e

102

c l a s s i f i e r = SVC(C= 1 . 0 , k e r n e l = ’ l i n e a r ’ , r a n d o m _ s t a t e =241)

c l a s s i f i e r . f i t (d a t a _ a l l , Y)

c o e f = c l a s s i f i e r . c o e f _

c o e f = pd . DataFrame (d a t a = c o e f)

c o e f = abs (c o e f)

def d _ i n t (x , y) :

re turn d i s t a n c e . e u c l i d e a n (c o e f . i l o c [0 , :] * d a t a _ a l l . i l o c [x] ,

c o e f . i l o c [0 , :] * d a t a _ a l l . i l o c [y])

2 . T r a i n i n g l i n e a r SVM

c l a s s i f i e r = SVC (C=1.0 , k e r n e l =’ l i n e a r ’ , r a n d o m _ s t a t e =241)

c l a s s i f i e r . f i t (d a t a _ a l l , Y)

d e f d _ i n t (x , y) :

r e t u r n d i s t a n c e . e u c l i d e a n (d a t a _ a l l . i l o c [x] , d a t a _ a l l . i l o c [y])

3 . T r a i n i n g non− l i n e a r SVM

c l a s s i f i e r = SVC (C=1.0 , k e r n e l =’ r b f ’ , r a n d o m _ s t a t e =241)

c l a s s i f i e r . f i t (d a t a _ a l l , Y)

d e f d _ i n t (x , y) :

r e t u r n d i s t a n c e . e u c l i d e a n (d a t a _ a l l . i l o c [x] , d a t a _ a l l . i l o c [y])

A p p l i c a t i o n

d a t a _ a l l [’ a r r i v a l T i m e ’] = range (0 , l e n (d a t a _ a l l))

d a t a _ a l l [’ exps ’] = [[] f o r _ in range (d a t a _ a l l . shape [0])]

d a t a _ a l l [’Rmc ’] = [[] f o r _ in range (d a t a _ a l l . shape [0])]

d a t a _ a l l [’ i s C e n t e r ’] = F a l s e

d a t a _ a l l [’ i s I n C l u s t e r ’] = F a l s e

d a t a _ a l l [’ c e n t e r ’] = −1

d a t a _ a l l [’ ev ’] = 0

d a t a _ a l l [’ numberOfSucceeding ’] = 0

m i c r o _ c l u s t e r s = {}

PD = []

d a t a L i s t = []

o u t l i e r L i s t = []

o u t l i e r s = []

t imeForProcess ingWindow = 0

c u r r e n t T i m e = 0

W = 500

s l i d e = 500

k = 55

R = 0 . 2 5

d a t a _ e v = pd . DataFrame (d a t a = d a t a _ a l l [l e])

103

d a t a _ e v [’ Y_pred ’] = 0

s l i d e _ c n t = i n t (math . f l o o r (l e n (d a t a _ a l l) / s l i d e − W/ s l i d e))

(!) F u r t h e r 2 e x e c u t i o n s are p r e s e n t e d . Only one s h o u l d be uncommented

(e1) r e s u l t − l i s t o f o u t l i e r s

f o r i in range (0 , s l i d e _ c n t + 1 , 1) :

w i n d o w _ s t a r t = i * s l i d e

window_end = i * s l i d e +W

data_W = d a t a _ a l l [w i n d o w _ s t a r t : window_end]

d e t e c t O u t l i e r (data_W , window_end −1 , W, s l i d e)

p r i n t (’Window [’ , w i nd ow _s t a r t , ’ : ’ , window_end , ’] ’)

(e2) r e s u l t − l i s t o f o u t l i e r s w i t h a s s i g n e d c l u s t e r s

n _ c l = 10

f o r i i n range (0 , s l i d e _ c n t + 1 , 1) :

w i n d o w _ s t a r t = i * s l i d e

window_end = i * s l i d e +W

data_W = d a t a _ a l l [w i n d o w _ s t a r t : window_end]

p r i n t (’ \ 0 3 3 [1m’ + ’ Window [’ , w ind ow_s ta r t , ’ : ’ , window_end , ’] ’

+ ’ \ 0 3 3 [0m ’)

d e t e c t O u t l i e r (data_W , window_end −1 , W, s l i d e)

i f i >= n _ c l :

i f (i % n _ c l == 0) :

p r i n t (’−−−−− T r a i n e d K−Means−−−−−’)

t r a i n i n g K−Means

pred_1 = d a t a _ a l l [d a t a _ e v . Y_pred == 1]

pred_1 = pred_1 . i l o c [: , : 9]

s i l = []

i f l e n (pred_1) < 10:

kmax = l e n (pred_1)−1

e l s e :

kmax = 10

ran = range (2 , kmax)

f o r n_c i n ran :

kmeans = KMeans (n _ c l u s t e r s = n_c) . f i t (pred_1)

l a b e l s = kmeans . l a b e l s _

s i l . append (s i l h o u e t t e _ s c o r e (pred_1 , l a b e l s ,

m e t r i c = ’ e u c l i d e a n ’))

c l = ran [np . argmax (s i l)]

km = KMeans (n _ c l u s t e r s =c l)

km . f i t (pred_1)

km . f i t _ p r e d i c t (pred_1)

104

c e n t e r s = km . c l u s t e r _ c e n t e r s _

l a b e l s = km . l a b e l s _

K−Means s t a t i s t i c

p r i n t (’ \ 0 3 3 [1m’+ ’ Number o f d a t a p o i n t s i n c l u s t e r : ’

+ ’ \033[0m’+ s t r (Counter (km . l a b e l s _)))

p r i n t (’ \ 0 3 3 [1m’+ ’Mean d i s t a n c e s : ’ + ’ \ 0 3 3 [0m ’)

a l l d i s t a n c e s = km . f i t _ t r a n s f o r m (pred_1)

t o t a l D i s t a n c e = np . min (a l l d i s t a n c e s , a x i s =1)

f o r p i n np . un i qu e (l a b e l s) :

s u b s e t = t o t a l D i s t a n c e [(l a b e l s == p)]

p r i n t (p , ’ ’ , s u b s e t . mean ())

c l u s _ s t a t = pred_1

c l u s _ s t a t [’ c l u s t e r ’] = km . l a b e l s _

c l u s t e r g r p = c l u s _ s t a t . groupby (’ c l u s t e r ’) . mean ()

p r i n t (’ \ 0 3 3 [1m’+ ’ C l u s t e r i n g v a r i a b l e means by c l u s t e r : ’

+ ’ \033[0m ’)

p r i n t (c l u s t e r g r p)

p r i n t (’ ’)

e l s e :

f o r i i n o u t l i e r s :

i f i >= w i n d o w _ s t a r t and i <= window_end :

u = km . p r e d i c t (d a t a _ a l l . i l o c [i , : l e] .

v a l u e s . r e s h a p e (1 , − 1))

p r i n t (’ * P r e d i c t i o n : o u t l ’ , i , ’ p r e d i c t e d c l u s t e r ’ , u)

p r i n t (’ ’)

p r i n t (’−−−−−−−−−−END−−−−−−−−−− ’)

p r i n t (’Memory ’ , p s u t i l . P r o c e s s () . memory_info () . peak_wse t)

p r i n t (’ Time ’ , t imeForProcess ingWindow)

p r i n t (’ o u t l i e r s ’ , o u t l i e r s)

105

