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Outlier Detection in Contingency Tables

Abstract

In this work a new method for outlier detection in contingency tables is being examined, which
is proposed in one of the most recent works in this field. The advantage of this method is that it is
suitable not only for two-dimensional, but also for high-dimensional contingency tables. To our best
knowledge, this type of method has not been proposed so far.

The main goal of the thesis - by making use of Monte-Carlo modeling to investigate operational
characteristics of the suggested method and to evaluate how these characteristics vary depending on
table dimensions, the magnitude of deviation of outliers, the structural model used.

The work provides with a brief overview of the method, a description of the modeling plan and
the results obtained.

Key words : outliers, contingency tables, graphical models, sensitivity and specificity, Monte-Carlo
modeling

Išskirčių aptikimas dažnių lentelėse

Santrauka

Darbe nagrinėjamas naujas dažnių lentelėms skirtas išskirčių aptikimo metodas, pasiūlytas viename
naujausių šios srities darbų. Šio metodo privalumas yra tas, kad jis tinka ne tik dvimatėms, bet ir
daugiamatėms didelių matmenų dažnių lentelėms. Tokio tipo metodų mūsų žiniomis iki šiol pasiūlyta
nebuvo.

Pagrindinis darbo tikslas – pasitelkiant Monte-Karlo modeliavimą ištirti pasiūlyto metodo op-
eracines charakteristikas ir įvertinti kaip jos kinta priklausomai nuo lentelių matmenų, naudojamo
struktūrinio modelio, išskirčių nuokrypio didumo.

Darbe pateikiama trumpa metodo apžvalga, modeliavimo plano ir gautų rezultatų aprašymas.

Raktiniai žodžiai : išskirtys, dažnių lentelės, grafiniai modeliai, jautrumas ir specifiškumas, Monte-
Karlo modeliavimas
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1 Introduction

Outlyingness plays an important role in statistical inference since outliers may affect quanti-
tative analysis quite significantly, changing this way overall qualitative conclusions. Though
intuitively clear, the concept of outlying observation does not have general and broad enough
quantitative operational definition and, as a rule, is tied not only to the nature of the ob-
served data (discrete, continuous, univariate, multivariate, etc.) but also to the assumed data
generating model. This applies to the tables of frequencies as well.

There are plenty of works and articles devoted to the analysis of outliers’ detection in
contingency tables. Several articles, including the paper we mainly analyse in our thesis,
were used to get familiarized with the subject: Lindskou [1], Kuhnt [2], Rapallo [3], Yick [4].
Consequently, it is not surprising that in the literature devoted to categorical data analysis one
can find several definitions of contingency tables’ outliers and that none of these can handle all
situations encountered in practice.

Although the literature on outlier detection is vast, the problem of detecting outliers in
contingency tables has mainly been focused on two-way tables. No example was given for tables
with dimensions larger than three. In [1], authors suggest a novel outlier detection method
suitable for high-dimensional contingency tables. Since nowadays the amount of accumulated
data increases very quickly, such methods play an important role and deserve attention.

In our work we mainly concentrate on this new method suggested by the authors of [1], as
the goodness of its performance is curious to us. The novelty of the suggested method is that it
must be suitable not only for two-way contingency tables, but also for high-dimensional tables
as was indicated above. There are lots of methods for anomaly detection in low-dimensional
contingency tables, but the method we are going to investigate in this thesis is the only method
for now appropriate to detect outliers in high-dimensional contingency tables.

The main aim of the Thesis is to investigate the robustness of the newly suggested method
of [1] article. To this end, we seek to give an answer to the question "how dimensionality
of the table affects the performance of the suggested method assuming that data generating
mechanism and outlyingness definition fully complies with those presumed in the paper [1]?".
In order to answer this question, we conduct a simulational study where, by making use of
Monte-Carlo method and for varying table dimensions and structure, we estimate whether
dimensionality of the table affects such operational characteristics of the method as sensitivity
and specificity. To be more precise, does the method identify outliers equally well (or bad) for
tables having different dimensions or there are performance differences between low dimensional
and high dimensional tables? We are also investigating the relationship between operational
characteristics and table sparsity assuming, again, that all assumptions fully comply with those
stated in the paper.

Another question is related to method’s performance when some of the model assump-
tions under which it was developed are violated. Does the method perform well when not all
assumptions of the model are met?

The structure of the thesis is as follows:
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1. Literature review, description and explanation of the model and terms

2. Description of the simulation plan

3. Results

4. Discussion and main conclusions

2 Literature review and description of the model

In Kuhnt work "Outlier detection in contingency tables based on minimal patterns" [2] a new
algorithm was developed to identify outliers in contingency tables. This algorithm is based
on definition of minimal patterns, which are subsets of cell counts. The proposed algorithm,
however, is suitable only for two-way contingency tables.

Rapallo [3] in his article defines the notions of outliers and its patterns by making use of
log-linear models and goodness-of-fit tests. For making a definition more clear, author invokes
techniques from algebraic statistics.

Yick and other authors of [4] propose an iterative testing procedure coupled with perturba-
tion diagnostics for confirming multiple outliers in two-way contingency tables.

In [1], authors present a novel outlier detection method for high-dimensional contingency
tables. They use the class of decomposable graphical models to model the relationship among
the variables of interest, which can be depicted by an undirected graph called the interaction
graph. Having an interaction graph, authors derive a closed-form expression of the likelihood
ratio test statistic and an exact distribution for efficient simulation of the test statistic.

Authors of [1] paper focus mainly on high-dimensional tables and the application of the
method in forensic genetics. They demonstrate the use of the LRT outlier detection framework
on genetic data modeled by Chow–Liu trees. However, the method described in the article
is general and applies to any outlier detection problem in contingency tables including sparse
tables as well.

Since we mainly focus on the paper [1], we provide a detailed description of the model
presented in the article below.

2.1 Preliminaries on graphs

A graphical model is a statistical model for which an undirected graph represents the interaction
between the vertices in the model. The class of decomposable graphical models is used in [1] to
model the relationship among the variables of interest, which can be depicted by an undirected
graph called the interaction graph.

An undirected graph is a pair G = (∆, E) where ∆ is a set of vertices and E is a set of
edges connecting elements in ∆. An edge connecting two vertices indicates that these two are
dependend on each other and this is called a two-way interaction. A three-way interaction
occurs when three vertices are all mutually connected.
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Figure 1: G: An undirected decomposable graph

An undirected graph is decomposable if there are no cycles of length greater than four
without a chord, which is an edge between two non-adjacent vertices in the cycle.

The subgraph GA = (A,EA) consists of vertices A ⊆ ∆ from G and the corresponding edges
EA between these vertices.

A graph is complete if there is an edge between all pairs of vertices.
A complete subgraph is called a clique if it is not contained in any other complete subgraph.

A subset of vertices is complete if it induces a complete subgraph.
Two sets A,B ⊆ ∆ are separated by a third set C ⊆ ∆ if all paths between vertices in A

and B go through C. If C is the smallest set such that A and B are separated, we say that C
is a separator for A and B.

Consider the undirected graph G in the Figure 1. The set of vertices is ∆ = {a, b, c, d, e}
and the set of edges is E = {ab, bc, bd, cd, de}. The cliques are C1 = {a, b}, C2 = {b, c, d} and
C3 = {d, e}. The minimal separators are S2 = {b} and S3 = {d} where S2 separates C1 and
C2 and S3 separates C2 and C3. Since G has no cycles of length greater than three, the graph
is decomposable. A decomposable graph is one that can be successively decomposed into its
cliques.

Let C1, C2, . . . , CK be a sequence of the cliques in an undirected graph G and define the
history and separators, respectively, as

Hj = C1 ∪ C2 ∪ . . . ∪ Cj and Sj = Hj−1 ∩ Cj

for j = 2, . . . , K with H1 = C1. The sequence is said to obey the running intersection property
(RIP) if Si ⊆ Cj for some j < i for i = 2, 3, . . . , K. The cliques of a decomposable graph can
be numbered to have RIP ordering. The cliques C1, C2 and C3 obtained from the graph above,
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in that order, are a RIP ordering with separators S2 and S3.
Finally, a probability measure can be associated with an undirected graph with each vertex

being a random variable. For decomposable graphs, the probability density function can be
written in terms of the cliques and separators.

2.2 Contingency tables: notation and model

The outlier detection model described in the article can only be used on the data for which
all variables can only take on a finite set of values. Such variables are also called categorical
variables.

Discrete data set can be appropriately showed by a contingency table which summarizes
the counts of all combinations of the data set variables. Such way of showing the data is very
informative and is a convenient way of describing categorical data sets.

The dimension of the table is the number of variables.

Let ∆ denote a finite set of discrete variables, in which each variable, δ ∈ ∆, takes a value
in the level set Iδ. An outcome, i = (iδ)δ∈∆ is a cell from the set of all cells I = ×δ∈∆Iδ.

The entire contingency table of counts is the set n = {n(i)}i∈I , where n(i) is the number
of observations that falls in cell i and |n| =

∑
i∈I n(i) is the total number of observations. The

probability that an observation belongs to cell i is denoted as p(i).

For the DGM, probabilities can then be written as

p(i) = pC1(iC1)
K∏
k=2

pCk
(iCk

)

pSk
(iSk

)
(1)

where C1, C2, . . . , CK and S2, S3, . . . , SK are the RIP ordered cliques and separators in a
decomposable graph.

2.3 Statistical test for outlyingness

In order to test if a new observation is an outlier, it is assumed that this observation sampled
from a distribution different from the distributions of other observations.

A universal definition of an outlier is given by Hawkins (1980): “an observation which
deviates so much from the other observations in the data-set as to arouse suspicions that it was
generated by a different mechanism.” The outlier detection method of [1] directly adapts the
definition given by Hawkins by specifying a hypothesis of an outlier being distributed differently
than all other observations in a given database.
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The null hypothesis is

H0 : q = p

where p and q are specified through DGM formula; p is a vector of probabilities for the
TRUE distribution, and q is the probability vector of distribution of a new observation. If H0

is false, the observation is considered an outlier in the table.

Assume that the likelihood L0 expresses how likely it is that znew belongs to the database
D. An alternative likelihood L1 can also be specified, indicating how likely it is that znew does
not belong to D. Then the likelihood ratio is defined as

LR =
L0

L1

,

which can be shown to be completely specified through the counts of observations in cliques
and separators for the given interaction graph. It can be therefore tested if znew is an outlier in
D by calculating LR and determining if the value of LR is “too large” in which case it would
be rejected that znew comes from D.

For more details, see [1].

3 Description of the simulation plan

The choice of a modelling grid is a difficult one because it is necessary to keep in mind the
limited computational resources. Below we describe our simulation plan in terms of various
parameters. Its adoption was motivated by the goals of the study and, first of all, by a wish to
investigate method’s performance on sparse tables.

• Graphs. The graphs considered are depicted in figures 2-5. As mentioned previously, by
choosing different structures we aimed to investigate whether the table structure defined
on the level of DGM affects method’s performance.
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Figure 2: The simple graph of 2 vertexes and 1 clique

Figure 3: The graph of 9 vertexes and 5 cliques
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Figure 4: Linear graph of 5 vertexes and 4 cliques

Figure 5: The graph of 9 vertexes and 6 cliques
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• The grids.

– As was described previously, each vertex of a particular graph is a variable of a
contingency table which gains certain values. For clearer understanding, for more
complex graphs we will describe the size of a contingency table by a number of cells
in this table, which is a product of values of all variables in table.

∗ For the simplest graph, having only 2 vertexes, we considered 2x2, 5x6 and 9x9
contingency tables.

∗ For the second graph of 9 vertexes and 5 cliques contingency tables having 512,
4608, 28800 cells were taken.

∗ The linear graph has 5 vertexes and 4 cliques, and for this graph we considered
contingency tables of 32, 600 and 5040 cells.

∗ The last graph, which is the most complex graph in this work, has 9 vertexes
and 6 cliques. We took 512, 6912 and 17280 cells for different models of this
graph.

– Distributions. To produce sparse tables, for each DGM and vertex value combina-
tion, we considered the following conditional distributions on the cliques (the notions
are the same as in Section 2).

∗ One parameter s ∈ (0, 1) model used to generate data from tables having TRUE
distribution:

p(iC1) =

{
1− s, if iC1 is the first value of C1;

s
|C1|−1

for other iC1 ∈ C1.
(2)

p(iCk\Sk
| iSk

)
k>1
=

 1− s
min(5, max

j∈iSk

j)

, if iCk\Sk
is the first value of Ck;

s

min(5, max
j∈iSk

j)

|Ck|−1
, for other iCk\Sk

∈ Ck \ Sk.

∗ Distributions used generate outliers:

· the same as in (2) but with value of s′ = s/2;

· iC1 ∼ Bin(|C1|, 0.5) and iCk\Sk
| iSk

∼ Bin

(
|Ck \ Sk|, 0.5

min(5, max
j∈iSk

j)
)
;

· iC1 and iCk\Sk
uniform over their domains and independent of values of iSk

.

Note that, our variables (or vertexes in the DGM) attained only positive integer
values. Therefore, max

j∈iSk

j was meaningful in our setup. The indices of table values

denote the values of its subtables (for example, iC1 denotes the value of the first sub-
table; iC2\S2 denotes the value of the second subtable, from which values of the second
separator are excluded). Also, we fixed a lexicographical order on each subtable of
the table under consideration. Thus, "the first value" above refers to the table cell
having all coordinates equal to 1: (1, 1, . . .). Taking small s, one ends up with a
sparse TRUE table having "large" mass only at some small fraction of the cells.
Therefore, in our simulation, TRUE distribution put on the data generating table
was always sparse. Outliers’ distribution was sparse in the first case. Other choices
were for seeing whether higher deviation from the TRUE one improves specificity of
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the test. In all cases, in addition to the outliers, TRUE data was also generated in
order to investigate method’s sensitivity. Values of s ranged over {0.3, 0.2, 0.1} for
the TRUE distribution (and were taken equal to s/2 for the case when outliers were
generated by the formula given in (2)). Structural table models (in terms of DGM
and vertex specifications) for outliers in all cases were the same.

– The difference between the TRUE probability distribution and probability distri-
butions of outliers was measured by computing Kullback–Leibler divergence for
each combination of TRUE distribution and outlier distribution.

• Number of simulations used to estimate type I-II errors (or sensitivity-specificity) for
testing for outliers on one pattern (see Remark 3 below) was taken equal to 100 for the
DGM’s 2 and 3, and for other two - equal to 500.

• Number of observations in the TRUE table used to build model for subsequent testing for
outliers on one pattern was tied to the number of cells in the TRUE table and expressed
in terms of fractions of this number. By doing so, we aimed to escape the situation when
the number of observations is comparable to the number of parameters in the table.
Let r = ncells/nobs, where ncells, nobs stand for the number of cells and number of gen-
erated observations respectively. For each pattern, we considered the following fractions
expressed as ratios: 0.1, 0.05, 0.01.

In the above, by pattern we mean one model corresponding to the fixed:

1. DGM;

2. numbers of values attained by vertexes;

3. TRUE distribution;

4. outliers’ distribution.

4 Results

In this section, by making use of operational characteristics of the method, we describe the
results obtained, which allow us to draw conclusions about the performance of the method.
The investigated operational characteristics of the method are defined through conditional
probabilities. We use such definitions of sensitivity and specificity :

sensitivity = P(method classified observation as non-outlier | observation is really not outlier);

specificity = P(method classified observation as outlier | observation is indeed a real outlier).

Let’s move on to the description of the obtained results.
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4.1 When model assumptions are met

4.1.1 How characteristics of the test change when the distribution used to gener-
ate outliers become more and more different from the distribution used to
generate TRUE observations?

1. For the first 100 simulations we took the grids of a simplest graph (see description of
a simulation plan 3 above) and generated outliers and TRUE observations according to
the distributions described in plan (3). The ratio to calculate number of observations in
the TRUE table was always fixed in the case of analyzing the dependency on different
distributions for outliers, and was taken equal to 0.01.

Figure 6: Graphics of test accuracy for the simplest models: dependence on difference between
probability distributions

From the graphics above we can see that test sensitivities are high, while test specificity
grows as the distance between probability vectors become bigger. In the first case, when
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distribution of outlier is very similar to the TRUE distribution, test specificity is very
low. Overall accuracy is not so good because of the test specificity, it changes from 0.45
to 0.80.

2. Let’s take now the grids of a complex graph of 9 vertexes and 5 cliques (see Figure 3).
Here test sensitivity also remains good (around 80 and 90 percent), test specificity jumps
up when the distribution for generating outliers becomes not the same as for generating
TRUE observations. The general accuracy also improves when the distribution of outliers
changes. Overall, we can notice that test characteristics are better for the more complex
models.

Figure 7: Graphics of test accuracy for the models of a second DGM: dependence on difference
between probability distributions
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3. For linear graph patterns we used 500 simulations as was defined in previous section (see
3). The ratio to calculate number of observations in TRUE table was always fixed and
equal to 0.01.

Figure 8: Graphics of test accuracy for patterns of linear graph: dependence on difference
between probability distributions

In graphics above we see that sensitivity of the method is always quite high (80-85%), test
specificity is also high when distributions of outliers are more different from the TRUE
distribution. What is more, it is noticeable that test sensitivity slightly improves when
number of cells in contingency table becomes bigger, and specificity of the method rises
by 9-10% as well.
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4. For the last and the most complex graph patterns we used 500 simulations as well. The
ratio to calculate the number of observations in the TRUE table was fixed and equal to
0.1.

Figure 9: Graphics of test accuracy for patterns of the most complex graph: dependence on
difference between probability distributions

It is visible that sensitivity of the method becomes a little bit worse with the growth of
number of cells in table, but still remains higher than 80%. Test specificity is always higher
than 90% for the distributions of outliers that sharply differ from the TRUE distribution.
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4.1.2 How characteristics of the test change when number of observations in-
creases in TRUE table used to build the model for testing?

1. Here we start from the simplest graph again and take its grids (2). We fix only one distri-
bution used to generate outliers in this case - the most different from TRUE distribution.
The ratios to calculate number of observations in TRUE table were taken equal to 0.1,
0.05, 0.01 in this case of testing the dependency on number of observations in table. For
each pattern (see Remark 3) we take number of simulations equal to 100.

Figure 10: Graphics of test accuracy for the simplest models: dependence on number of obser-
vations in TRUE table

From the graphics it can be seen that test sensitivity grows with the number of obser-
vations or stay always high as in third graphic, but test specificity decreases when the
number of observations grows, which was not expected. The general accuracy varies
around 80%.
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2. Let’s take now the grids of a complex graph of 9 vertexes and 5 cliques (3). Here we
see that test specificity is perfect and almost always one hundred percent, test sensitivity
varies around 80-90%. General accuracy is also very high.

Figure 11: Graphics of test accuracy for the models of a second DGM: dependence on number
of observations in TRUE table

3. For linear graph models (5 vertexes and 4 cliques) test specificity is much higher for the
tables with bigger number of cells, test sensitivity looks very similar in all cases. There
is not seen any improvement in method’s performance with the growth of number of
observations in TRUE table.
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Figure 12: Graphics of test accuracy for the models of a linear graph: dependence on number
of observations in TRUE table

4. Unfortunately, as the last graph was the most complex graph with 9 vertexes and 6 cliques,
and the number of simulations was quite large - equal to 500, we ran out of computational
resources and therefore we were unable to test a table with a very large number of cells.
However, we still can draw conclusions from two graphics below:
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Figure 13: Graphics of test accuracy for the models of the most complex graph: dependence
on number of observations in TRUE table

We see that test specificity is very high; test sensitivity in the first case increases with
the larger number of observations in TRUE table, but in second case it decreases a little
bit. General accuracy holds higher than 90% all the time.

Overall, there is not seen a tendency of method’s performance improving with the higher
number of observations in table. However, test characteristics for the most cases, partic-
ularly for the cases of more complex graphs, are always good.

4.1.3 How characteristics of the test change when values of s range over {0.3, 0.2,
0.1} for the TRUE distribution?

Remark: parameter s is responsible for the sparsity of the table generated.

1. To begin with, let’s take models of the simplest graph of two vertexes and one clique. We
fix the binomial distribution for outliers (see description in section 3), as it is the most
different from the sparse TRUE distribution and gives the highest specificity. The ratio
for calculating number of observations in TRUE table is also fixed and equal to 0.01.
Number of simulations here is taken equal to 500.
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Figure 14: Graphics of test accuracy for models of the simplest graph: dependence on sparsity
of TRUE table
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From figures above we can clearly see that with the higher value of s of TRUE distri-
bution performance becomes worse. However, despite the fact that test specificity drops
dramatically, test sensitivity stays quite high, which means that method recognizes TRUE
observations quite well.

2. Taking models of second DGM we also fix binomial distribution for outliers, but ratio for
calculating number of observations in TRUE table is equal to 0.1 in this case. Number
of simulations is taken equal to 500.

Figure 15: Graphics of test accuracy for models of the second graph: dependence on sparsity
of TRUE table

The general performance is much better in the case of more complex graph comparing to
the models of the simplest graph. Test specificity is highest when distribution of TRUE
tables is the most sparse; then it starts to worsen. Test sensitivity varies around 80-90%.
Overall, we see that the highest results of test specificity are obtained when we have the
largest number of cells in contingency table.
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3. For linear graph models we take ratio for calculation of number of observations in TRUE
table equal to 0.01 again, as linear graph models are simpler than models of the second
graph and our computational resources allow us to take larger number of observations for
models of this graph. Number of simulations is taken equal to 500.

Figure 16: Graphics of test accuracy for models of the linear graph: dependence on sparsity of
TRUE table

Test specificity in the first case is not as high as it is in next two cases - probably because
of the small number of cells in contingency table; when value of parameter s increases,
test specificity becomes even worse. However, it stays quite high in next two cases. Test
sensitivity does not reach 90% in any case, but we see that in some cases it improves with
the larger value of s, whereas in other - worsens or stays the same.
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4. For the last and the most complex graph models we take the ratio for calculating the
number of observations in TRUE table equal to 0.1 and number of simulations equal to
500.

Figure 17: Graphics of test accuracy for models of the most complex graph: dependence on
sparsity of TRUE table

Specificity in general is much higher comparing to linear graph models, but it also worsens
when contingency table becomes less sparse; test sensitivity is higher as well. General
accuracy is the best for the most complex graph models.
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4.2 When model assumptions are not met

In this subsection we aimed to look what happens to method’s performance when some of the
model assumptions under which it was developed are violated. The model described in [1] needs
to be saturated. Cell probabilities of a saturated model are not restricted in any way, except for
the constraints of being positive and summing to one. We met these assumptions earlier in
our work, as well as other assumptions of the model described in [1], but in this subsection we
will violate the condition of saturated model. For TRUE table and outliers we created sparse
distributions, cell probabilities of which include zeros. Let’s take a look at the performance of
the method, when one condition of a saturated model is violated.

• – Consider the following conditional distributions on cliques for the sparse TRUE table
(s = 0.05):

p(iC1) =


1− s, if iC1 is the first value of C1;

s, if iC1 is the second value of C1;

0, for other iC1 ∈ C1.

(3)

p(iCk\Sk
| iSk

)
k>1
=


1− s

min(5, max
j∈iSk

j)

, if iCk\Sk
is the first value of Ck;

s
min(5, max

j∈iSk

j)

, if iCk\Sk
is the second value of Ck;

0, for other iCk\Sk
∈ Ck \ Sk.

– Distribution used to generate outliers:

p(iC1) =


s, if iC1 is the first value of C1;

0, for other values iC1 ∈ C1 except the last value of C1;

1− s, if iC1 is the last value of C1.

(4)

p(iCk\Sk
| iSk

)
k>1
=


s

min(5, max
j∈iSk

j)

, if iCk\Sk
is the first value of Ck;

0, for other values iCk\Sk
∈ Ck \ Sk except the last value of Ck;

1− s
min(5, max

j∈iSk

j)

, if iCk\Sk
is the last value of Ck.

Note that here our variables (or vertexes in the DGM) attained only positive integer
values. Therefore, max

j∈iSk

j is meaningful in our setup. Taking small s (s = 0.05), we have a

sparse TRUE table having "large" mass only at some small fraction of the cells. Outliers’
distribution is also sparse, but it differs significantly from the distribution of TRUE table
(the distance between probability vectors was measured by computingKullback–Leibler
divergence). Structural table models in terms of DGM and vertex specifications are the
same as described in simulation plan (3).

Three graph structures for this analysis were taken from section (3): the simplest graph,
linear graph and the most complex graph (figures 2, 4 and 5). For each DGM we con-
sidered only one vertex value combination, so we have 3 models here, each of which has
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different graph structure. Number of simulations used to estimate sensitivity and speci-
ficity for testing on one pattern was taken equal to 100. The ratios to calculate number
of observations in TRUE table were taken equal to 0.1, 0.05, 0.01, as we used previously
in our work.

Thus we obtain the following results:

Figure 18: When probability distributions of TRUE table and outliers include zeros

From the figures above we can notice, that test specificity is always very high for all models
of all graph structures. However, for the model of the simplest graph test sensitivity is
quite poor. Test sensitivities for more complex models (of more vertexes and cliques) are
high enough, as it was in cases described previously in our work (when all assumptions
of the model were met).
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• Let’s try to look at model’s performance, when distribution of outliers is binomial (see
plan description 3). The distribution of TRUE table will be as described in formula (3) of
this subsection. Number of simulations and ratios to calculate the number of observations
in TRUE table are the same.

Figure 19: When only the probability distribution of TRUE table include zeros

Results are very similar to previously obtained results. All characteristics for models
of more complex graphs are good, except sensitivity of the pattern of a simple graph,
which varies around 40-50%. We see that zero probabilities in TRUE table affect only
sensitivity of the test for pattern of simple graph (recall that test sensitivities where always
80-90% for all patterns of all graph structures, when model assumptions were fully met).
The difference between distribution of TRUE table and both sparse and binomial outlier
distributions is quite large, so this may be the reason for specificity staying always very
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high.

• In the last example we decided to assign binomial distribution to the TRUE table, and
sparse distribution with zero probabilities (formula (4)) - to distribution of outliers. We
were curious to look if the right distribution of TRUE table improves sensitivity of the
test of a simple graph model in spite of the fact that distribution of outliers includes zero
cell probabilities.

Figure 20: When only outliers’ probability distribution include zeros

Our expectations were met - sensitivity for the model of a simple graph improved dra-
matically. All characteristics now are very good for all models.
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Overall, the conclusion for this subsection would be the following: violation of one con-
dition of saturated model affects only patterns with the simplest graph structure, where
we have only one clique of the graph and two vertexes. It mainly affects sensitivity of the
test, because specificity mostly depends on difference between probability distributions
of TRUE observations and outliers, which is quite large in our examples.

5 Discussion
• Our main goal of the thesis was to estimate type I-II errors of the new method of [1] by

making a simulational study and evaluate how performance of the method depends on
configuration of different tables being tested. The data in the form of contingency tables
was generated according to the described model of the article. All assumptions of the
model under which it was developed were taken into account, as well as other conditions
and directions of the used method were met. The whole work done and results obtained
allow to make some insights:

– distribution of outlier observations is very important: seeking for better performance
of the method, outlier distribution needs to be as much different from the TRUE
distribution as possible;

– number of observations in TRUE table is not as significant as it was expected:
sometimes, the smallest number of observations of three taken showed the best per-
formance of sensitivity and specificity. However, it is not advisable to take smaller
number of observations than ratio of number of cells and number of observations
equal to 0.1;

– The sparsity of TRUE table used to build model for subsequent testing for outliers
quite strongly influences the performance of the method: the bigger the value of
parameter s, the more inferior the performance of the method, as the larger value of
s determines less sparse distribution in TRUE table, which makes TRUE distribution
become more similar to other distributions and worsens the goodness of the test.

Overall, as we analysed the performance dependency on different graph structures and
combinations of vertex values for different graphs, our investigation lets us state that
taking complex graph structures appear in better results of test characteristics. We were
analysing 4 graph structures, 3 of which were complex; however, we can not affirm that
models of a complex graph with a little bigger number of cliques and vertexes show appre-
ciably better performance than any one model of a complex graph with fewer cliques and
vertexes. The largest number of cells in contingency table did not improve significantly
performance of any pattern of particular graph structure as well; we saw improvements
only in some cases, mostly when analysing dependency on sparsity of a TRUE table.
However, there is a meaningful difference between the performance of models of simple
graph structure and models of complex graph structures. The reason for such distinc-
tion could be the fact that the method described and the model proposed in article were
mainly adapted to contingency tables of higher dimensions, which can be created only
through complex graph structures.

• Unfortunately, our study was limited by the lack of computational resources. All simula-
tions were done using programming language R, which has limited memory. The lack of
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memory hindered usage of larger number of observations in simulations, which could have
further improved performance of the method. What is more, computational resources did
not allow to choose larger number of configurations, as well as limited number of cores
in computer’s processor, which was followed by limited computational speed, prevented
from taking more than 500 simulations for one pattern.

Nevertheless, we are satisfied with our investigation and obtained results, as they provided
with more experience and knowledge, which will be beneficial in future researches.
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