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ABSTRACT 
 

Near infrared spectroscopy (NIRS) provides a non-invasive, cost effective and efficient tool for 

monitoring compositions of various substances. Potential applications of NIRS in medicine could 

simplify and improve the quality of treatment for diabetic or septic patients. The precision and 

reliability of any tools used in medicine are of extremely high standard since the price for an error can 

be immense, however, measurements of any kind inherently have errors attached and data 

preprocessing algorithms play a crucial role in analysing the dataset. This thesis proposes an 

autoencoder based approach to NIRS measurement denoising that is directly comparable to the  

currently used filtering functions. 

To achieve this goal a two-step approach was designed to test the denoising autoencoder (DAE) and 

compare its results to the Butterworth “lowpass” filter (BLP) and the Savitzky-Golay filter (SVG). The 

DEA was trained on simulated (artificial) data with concentrations in the same range as the 

measurements. Filtering parameters of BLP and SVG were also optimized on the simulated dataset. 

Then the measured dataset was filtered three different ways and the results were compared through 

the mean absolute error (MAE) and the partial least squares regression (PLSR). 

BLP and SVG exhibited better results when comparing the MAE, however, DAE outperformed both 

filters when PLSR results were compared. This offers a conclusion that the DAE distorts some parts of 

the dataset (spectra) in order to preserve the important features, that are later recongnised by the 

PLSR. 

SANTRAUKA 
 

Artimųjų infraraudonųjų spindulių spektroskopija suteikia neinvazinį, pigų ir veiksmingą būdą matuoti 

įvairių medžiagų sudėtį. Šio metodo taikymas medicinoje galėtų supaprastinti diabeto ir sepsio 

požymių aptikimą ir pagerinti gydymo kokybę. Medicininiams įrankiams yra keliami labai aukšti 

tikslumo ir patikimumo reikalavimai, nes klaida gali kainuoti žmogaus gyvybę, tačiau iš prigimties visi 

matavimai turi paklaidas, todėl duomenų paruošimas yra neatsiejama duomenų analizės dalis. Šioje 

tezėje aš siūlau autoenkoderiu paremtą filtravimo algoritmą, kuris prilygtų moderniems 

skaitmeniniams duomenų filtrams. 

Tikslui pasiekti atlikau dviejų dalių eksperimentą, kuriame lyginau autoencoderį (DAE) su Butterworth 

(„žemadažniu“) filtru (BLP) ir Savitzky-Golay filtru (SVG). Apmokiau DAE ant simuliuotų (netikrų) 

duomenų, kurių koncentracijos buvo labai panašios į matuotąsias. BLP ir SVG filtrų parametrai taip pat 

buvo optimizuoti ant sintetinių duomenų. Tuomet matavimų duomenys buvo filtruojami trimis 

skirtingais būdais ir jų rezultatai buvo palyginti naudojant vidutinę absoliutinę paklaidą (MAE) ir dalinių 

mažiausių kvadratų regresiją (PLSR). 

BLP ir SVG parodė geresnius rezultatus, jei vertintume tik paklaidą (MAE), tačiau autoenkoderis 

pademonstravo geresnius rezultatus, nei abu skaitmeniniai filtrai, kai palyginau regresijos rezultatus. 

Tai leidžia spręsti, jog DAE iškraipo tam tikras spektro dalis, kad išsaugotų reikalingiausius bruožus, 

kurie vėliau yra atpažįstami regresijos. 
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NOTATIONS AND DEFINITIONS 
 

 

 

Adam  Adaptive Moment Estimation 

ANN  Artificial Neural Network 

BLP  Butterworth “lowpass” filter 

BST  Brolis Sensor Technology 

DAE  Denoising autoencoder 

FDA  Functional data analysis 

FT-IR  Fourier Transform 

MAE  Mean Absolute Error 

MLR  Multiple Linear Regression 

MSC   Multiplicative Scatter Correction 

MSE  Mean Squared Error 

NIR  Near-Infrared 

NIRS  Near-infrared spectroscopy 

PCA  Principal Component Analysis 

PCR  Principal Component Regression 

PLS  Partial least squares 

PLSR  Partial Least Squares Regression 

ReLU  Rectified Linear Units 

RMSEP  Root mean squared error of prediction 

RMSProp  Root Mean Square Propagation  

SGD  Stochastic Gradient Descent 

SGD  Stochastic Gradient Descent 

SNR  Signal to noise ratio 

SNV  Standard Normal Variate 

SVG  Savitzky-Golay filter 

 



6 
 

1. INTRODUCTION 
 

Near infrared spectroscopy (NIRS) is the analysis of near-infrared light’s interaction with a molecule. 

When the light hits the molecule, the bonds in the molecule absorb the energy and respond by 

vibrating. Each molecule exhibits characteristic vibrations and as a result absorbs specific parts of the 

electromagnetic spectrum creating a unique “fingerprint”. Figure below depicts the absorption 

spectrum of liquid water. It also outlines the ranges for each part of the electromagnetic spectrum. 

The term near-infrared light usually refers to the light with wavelengths from 800 to 2500 nm (marked 

in red). 

 

Figure 1: Absorption spectrum of liquid water (source1) 

Applications of the electromagnetic spectrum are endless. Examples in medicine include but are not 

limited to x-rays for imaging, gamma rays for battling cancer cells, and infrared radiation in thermal 

imaging. BROLIS Sensor Technology (BST) is currently developing a sensor in the NIR part of the 

electromagnetic spectrum that would be able to non-invasively monitor glucose for diabetic patients, 

lactates for sepsis management, and ethanol for screening, safety, and prevention. This option is 

especially attractive as NIR spectroscopy is a cost-effective, high-speed, and noninvasive material 

content prediction tool. 

Transdermal measurements in the medical field pose a very difficult task, as the signal that we are 

looking for can be orders of magnitude lower than the signal that we receive. Errors in concentration 

prediction can cause lives and thus the requirements for measurement devices are very strict. Having 

 
1 Source: https://commons.wikimedia.org/wiki/File:Absorption_spectrum_of_liquid_water.png (accessed 28 
Nov 2020). 

https://commons.wikimedia.org/wiki/File:Absorption_spectrum_of_liquid_water.png
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the ability to reliably filter out or just reduce the noise (whether it is a setup related noise or a 

movement of a person) would greatly contribute to the current progress in the field. 

The main issue encountered by researchers nowadays is the lack of filtering algorithms that reliably 

work in real life situations. There are tools available that work well in theory but pose certain 

limitations in real-life applications. These limitations include: 

• preserving useful signal while filtering out the unwanted noise; 

• being very dataset dependent and thus requiring heavy supervision; and 

• being computationally expensive, thus not useful in live monitoring of analytes. 

The aim of this thesis is to examine currently available noise filtering techniques in NIR spectroscopy 

and signal processing and develop an autoencoder for noise reduction in NIR spectroscopic and 

compare its performance against currently used methods. 

This thesis is structured as follows: 

• Part 2 of the thesis delves into the currently available literature on the topic. 

• Part 3 proposes an experiment and outlines the methodology for it. 

• Part 4 analyses and discusses the results achieve. 

• Lastly, part 5 provides concluding remarks.  
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2. THEORETICAL BACKGROUND AND LITERATURE REVIEW 

 

 

Part 2 discusses the theoretical background for the thesis and reviews literature on denoising 

algorithms currently used for preprocessing NIRS measurements. Chapter 2.1 explains the theoretical 

part of this thesis (“the physics behind the model”). Chapter 2.2 outlines the most popular digital 

filtering techniques in spectroscopy. Chapter 2.3 concentrates on machine learning algorithms in 

spectroscopy. Chapter 2.4 analyses the information found in the literature and provides some 

thoughts and insights. The aim of this section is to give the reader a good understanding of the filtering 

techniques in NIRS as well as other algorithms used in similar fields. This approach allows for a broader 

understanding of the issue at hand and means that are currently used. 

 

2.1. Theoretical Background for the Thesis 

As mentioned before, when light hits a molecule, the bonds in the molecule absorb the energy and 

respond by vibrating. Each molecule exhibits characteristic vibrations and as a result absorbs specific 

parts of the electromagnetic spectrum creating a unique “fingerprint”. For illustration, a schematic 

picture of characteristics vibrations of water is shown below. Ethanol exhibits similar vibrations which, 

however, are much more complex due to the higher complexity of the molecule.  

 

 

Figure 2: Characteristic vibrations of a water molecule (source2) 

 

This unique “fingerprint” (absorption spectrum) allows to determine the composition of samples 

examined to a high degree of accuracy. The complexity of determining concentrations of composites 

increases with the complexity of the sample examined. Additionally, the complexity changes between 

different measurement types. Measurement in transmission geometry is the preferred method if it is 

plausible. However, sometimes to measure in transmission is geometrically not feasible, so a choice 

to measure in reflection geometry is made. Figure 3 depicts schemes for the two measurement types. 

Measurements in reflection geometry are significantly more complex due to variations in path lengths 

that the light has traveled (the light can scatter after hitting the sample or return to the photodiode). 

 
2 Source: https://seos-project.eu/laser-rs/laser-rs-c07-s03-p03.html (accessed 15 Oct 2020). 

https://seos-project.eu/laser-rs/laser-rs-c07-s03-p03.html
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For this thesis, I examine only measurements in transmission geometry (measurements of solutions 

of ethanol in water). The results can be further extended to measurements in reflection geometry; 

however, there is a significant challenge of accounting for non-linear dependencies between the 

explanatory variables and dependent variable in the model. 

 

 

Figure 3: Schematic of spectroscopy measurement configuration in transmission and reflection geometry. 

 

Measurements in transmission geometry follow the Beer-Lambert law which states that “the 

absorptive capacity of a dissolved substance is directly proportional to its concentration in a solution”3. 

It can be expressed as: 

𝑨 =  𝜺𝒍𝒄. 

Where 

• 𝜀 is the absorptivity of the analyte; 

• 𝑙 is the optical path length; and  

• 𝑐 is the concentration of the analyte in the solution. 

I assumed that the optical path was equal to 1mm (which is the thickness of the cuvette that the 

solutions were measured in). Measurements always have an error whether it is a solution mixing error, 

measurement error (rounding), or some error within the setup, therefore, what we measure is  

𝑨 = 𝒍∑𝜺𝒊𝒄𝒊 + 𝒆𝒓𝒓𝒐𝒓

𝑵

𝒊=𝟏

. 

Here N is the number of different analytes within the sample. 

While errors in some measurements can be negligible, measurements for medical applications must 

be as precise as possible. This raises a need for a reliable noise filtering algorithm. There are a number 

of factors that can potentially cause noise in NIRS – the setup, the surroundings, the movement of the 

cuvette etc. It is not always possible to distinguish between the causes of noise in the measurement 

and thus it is difficult to mitigate for it. Figure 4 shows 4 examples of measurement of a sample in 

 
3 Source: https://www.britannica.com/science/Beers-law 
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reflection geometry. These measurements were carried out in the laboratory, by the same people and 

on the same subject but the noise levels and thus the spectra significantly differ. 

 

 
 

 

  
Figure 4: Measurements in transmission geometry carried out in the same laboratory. 

 

In addition, there is also the measurement error that comes naturally with any experiment due to 

rounding, inaccuracies in mixing the concentrations or any other factors. These issues are also 

indistinguishable from the noise created by the afore mentioned sources. Therefore, for the purpose 

of this thesis, I will refer to any differences between the ideal spectrum and the measurement as noise. 

 

2.2. Noise reduction techniques in spectroscopy and signal processing 

NIR spectroscopy is a non-invasive way of analysing materials. It can be applied in many disciplines 

including but not limited to medicine, agriculture, and the food industry. Analysts and researchers in 

these industries use a broad toolkit for data pre-processing. The methods vary depending on the 

samples taken, precision required and additional information available. Rinnan et al [1] reviews the 

most common pre-processing techniques for near-infrared spectra. The paper examines such 

methods as Multiplicative Scatter Correction (MSC) and variations, de-trending, Standard Normal 
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Variate (SNV), and normalization as well as Norris-Williams (NW) derivatives and Savitzky-Golay (SVG) 

polynomial derivative filters. Other filtering methods also include Butterworth filter and Chebyshev 

filters (Type I and Type II). These techniques cover a few groups of methods that can be used in NIRS 

measurement denoising and they are successfully being applied in the field. 

For this thesis I picked two methods from separate groups for comparison of the results: Butterworth 

“lowpass” filter (BLP) and the Savitzky-Golay filter (SVG) as they are widely used in NIRS and provide 

reliable results in filtering the spectra. The workings and details of these two filters are examined in 

part 3 of this thesis as well as the appendices. In turn, here I discuss the literature available and 

research carried out on these filtering techniques. 

 

Butterworth “lowpass” filter (BLP) 

The Butterworth filter is a popular noise reduction tool in signal processing. It has a frequency 

response and allows for several options from which “lowpass” and “highpass” filters are most 

common. In essence, depending on the filter settings, the filter only allows variations of a certain 

frequency to pass by and variations with other frequencies are flattened out. In a “lowpass” 

Butterworth filter all high-frequency variations (high-frequency noise) are filtered out and all slow 

changes remain in the dataset. Further discussion on the workings of the BLP is presented in part 3. 

 

Pandey and Tiwari [2] used the Butterworth filter on an electrocardiogram4 (ECG) signal. They tested 

lowpass, highpass, notch and combined filters. Under normal conditions, ECG graphs have a very 

predictable pattern, therefore, the Butterworth filter is a good choice. However, medical applications 

require extremely high precision, and the authors could not get an improved result from cascading 

the filters when compared to using them separately. In addition, the cascading of these filters was 

very labour intensive, as it is not automised. 

Rodriguez et al [3] compared Butterworth filter to averaging techniques (an arithmetic mean and a 

rolling mean) for determining the peaks of oxygen availability and utilization during repeated sprint 

exercises. They found that the Butterworth filter is superior to the averaging techniques in NIRS 

measurements as it maintained the integrity of the raw dataset. 

De Marchi [4][5][6][7][8][9] heavily studied various methods of predicting meat quality and other 

composites by means of NIRS. His usual tool for pre-processing the NIRS spectra was the Butterworth 

filter. While he successfully used this method for improving the predictions of his model, definite 

conclusions cannot be drawn for medical applications from this paper. Rather, it proves, that the filter 

works well for NIRS measurements. 

 

Savitzky-Golay filter 

Similarly to the Butterworth filter, Savitzky-Golay (SVG) filter is used by many researchers to smooth 

NIRS measurements. While it uses a different way of smoothing, it demonstrates similar performance 

to the Butterworth filter. SVG uses polynomial smoothing – it fits a chosen order polynomial through 

the dedicated window length of the spectrum. More information of the workings of the SVG filter is 

provided in part 3 and the corresponding appendices. 

 
4 An electrocardiogram (ECG) investigates the cardiac abnormalities by measuring electrical activity generated 
by the heart. 
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A paper by Alrezj et al [10] compared the results of partial least squares regression (PLSR) and principal 

component regression (PCR) after preprocessing the NIRS spectra with two different algorithms: SVG 

filter with a fixed window size and optimizing the window size for the SVG filter coupled with a 

Chebyshev’s filter. This paper is particularly interesting as it examines the example of predicting 

glucose levels in a solution (one of the potential future applications of my algorithm in BST). The 

authors received a better result using the combined approach which again lends to the idea that 

current filtering in NIRS is extremely labour intensive and requires direct supervision. 

Other researchers examined various combinations of SVG filter with either MSC or one of the filters 

from another group. Chen et al [11] examined the performance of Savitzky-Golay (SVG) filter 

combined with multiplicative scatter correction (MSC) and received improved results over a standard 

SVG. Jahani et al [12] examined various smoothing techniques in NIRS and achieved an improved result 

by using SVG together with a spline interpolation method. Sampaio et al [13] used Savitzky-Golay 

together with MSC for pre-treatment of spectra when using PLS analysis. Xie et al [14] proposed a 

stacked SVG approach for improvement of NIRS results and received favorable results. 

Most of the current research in NIRS measurement denoising tends to concentrate on stacking or 

combining already existing filtering methods to improve performance. The benefits and drawback of 

these approaches are further discussed in chapter 2.5. 

 

2.3. Autoencoders and other ANNs in NIRS 

An autoencoder is a type of an artificial neural network (ANN), that aims to learn a representation 

(encoding) of the training dataset provided in an unsupervised manner. Due to its design, an 

autoencoder is not able to copy the dataset perfectly (as then it would not be useful). Instead, it is 

forced to learn the most prominent features and reconstruct them. Goodfellow et al [15] provides a 

great overview of the basics of autoencoders and it serves as the basis for this thesis. An autoencoder 

has two parts: an encoder part and a decoder part, and, in its simplest form, can contain only three 

layers: input, output, and a single hidden layer. A scheme of this simple ANN is presented below. 

 

Figure 5: Basic structure of the autoencoder. 

The idea of autoencoders has been part of the historical landscape of neural networks for decades 

(LeCun [16]; Bourlard and Kamp [17]; Hinton and Zemel [18]). Traditionally, autoencoders were used 

for dimensionality reduction or feature learning. Denoising autoencoders gained their popularity 

through picture manipulations, the most popular of which is the denoising of handwritten digits which 

is then used for improved classification. This is achieved by adding an additional classification layer to 

the already existing denoising autoencoder. 
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Machine learning techniques in NIRS have been used for a few years now (Madden and Ryder [19], 

O’connell et al [20], Zhao et al [21], Howley [22] etc). More recently researchers started applying 

classification algorithms used in image classification and recognition for NIR spectroscopy data. Chen 

et al [23] applied stacked autoencoder architectures for spectra classification. Houston et al [24] used 

a locally connected neural network for binary classification of Raman spectroscopy data. Milali et al 

[25] successfully used an autoencoder for dimensionality reduction in a mosquito parity detection 

study. Chao et al [26] used a stacked autoencoder and support vector machine (SVM) regression for 

predicting moisture content of Masson's pine seedling leaves. 

These papers usually used autoencoders or other ANNs for classification after pre-processing the data 

using traditional filtering models (BLP, SVG, MSC or even simple averaging). This approach lends itself 

to inaccuracies and distortions due to filtering and it will be discussed in part 3 of this thesis. 

 

2.4. Analysis of the Literature 

Methods used in pre-processing NIRS measurements differ significantly among papers examined. This 

is due to variations in data available and differences in precision required. Papers that needed only a 

light filtering of noise to see general trends in data found Butterworth and Savitzky-Golay filters 

sufficient for their purposes. Additionally, papers where signal has a very clear trend (frequency) that 

differs from noise in the dataset used these two filters very successfully and did not have the need for 

additional tools. 

In contrast, NIRS measurements of skin or other more complex matrices tended to look for a more 

advanced approach to filtering. All papers tried a combination of the currently available methods (such 

as cascading Butterworth filters) but found that the increase in human labour and computational 

power outweighs the improvement in filtering capability. This indicates the need for a better way of 

denoising NIR spectra. 

Some papers already tried to apply autoencoders or other ANNs to NIRS measurements, however, 

they usually tried to classify their spectra rather than purely denoise them. While their models 

successfully classified the spectra, it is not clear if there was any improvement in the denoising of the 

dataset. 

The literature analysis suggested a few topics for discussion and areas, where more attention should 

be paid when working with NIRS measurements: 

• Preserving the signal. Traditional filtering models do not recognize the signal required in the 

general dataset. There are no safeguards against signal filtering. In addition, using a traditional 

pre-treatment and then putting the spectra into a neural network lends itself to further 

complications, where the ANN is trained on distorted datasets. 

• Improving the performance. BLP, SVG, Chebyshev and other filters perform well, and it is 

difficult to directly improve their performance by stacking filters or combining them. This 

usually leads to significant interventions required and does not provide a viable alternative 

for real-world applications. 

• Unanimity of results. There is no superior filter that performs best in most cases. In essence, 

filtering is very dataset specific, thus it is difficult to compare the filtered spectra without using 

additional methods.   
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3. RESEARCH METHODOLOGY 

 

Real-life measurements exhibit unknown noise levels and patterns as the causes of the noise are not 

always clear. Therefore, a thorough approach to modelling and filtering noise has been taken. Firstly, 

all models where checked on simulated data and their abilities were evaluated. Then, real-life 

measurements of water and ethanol solutions in a cuvette were introduced and models’ 

performances were compared again. Lastly, a denoising autoencoder (DAE) was trained to denoise 

NIR spectroscopic measurements. The code and detailed explanations for methods used can be found 

further in this part and in the appendices. 

Chapter 3.1 explains the design of the experiments and the goals for each of them, and all other parts 

cover in detail various aspects of these plans. Chapter 3.2 explains in detail the datasets examined. 

Chapter 3.3 discusses the models used and explains the reasoning behind choosing such models. 

Chapter 3.4 explains how the results of all models are evaluated. Chapter 3.5 provides a short review 

of other filtering methods and reasons why they were not chosen. 

 

3.1. Design of the Experiments 

An experiment was designed to train the DAE on simulated (artificial) data that would have similar 

noise types to the ones usually encountered within real-life measurements. The reasoning behind such 

development was as follows: 

• Simulated datasets offer a good understanding and control of the noise levels present in the 

training data. This is not always the case for NIRS measurements. Causes of noise can be 

varied and unknown. In addition, noise frequencies can correlate with the signal frequencies, 

that additionally complicates the filtering. 

• If training on simulated data proves to be successful, it would create additional 

opportunities for easily training the model before its use on real data no matter what noise 

is present. This would allow for more flexibility in filtering algorithms in NIRS. Finding all noise 

or accounting even for most of it is a difficult task and sometimes it is impossible. Therefore, 

a trained autoencoder could solve issues that otherwise would be very time consuming and 

computationally expensive. 

• Training the autoencoder on measured data allows the autoencoder to learn features of the 

real noise present. However, this method could not be universal as a large part of noise is 

setup dependent (the autoencoder would need to be retained for every setup used) or comes 

from a variety of factors happening around the measurement (such as changes in temperature 

or humidity).  

While BLP and SVG methods work well in theory and on specific examples, their validity in real-world 

applications is limited. Therefore, to analyse the performance of the DAE in comparison to BLP and 

SVG, I opted to approach it in a few steps. 

Figure 6 presents a flowchart of the experiment conducted (data, filtering models, DAE, and result 

evaluation is discussed later in more detail): 

• Step 1. A simulated dataset was used for finding optimal fitting parameters for Butterworth 

“lowpass” and Savitzky-Golay filters. This was achieved by cross-validating the results within 
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a reasonable set of parameters. In turn, for the denoising autoencoder, the simulated dataset 

was split into train and test sets and the autoencoder was trained. 

• Step 2. A measured dataset (previously unseen to any of the models) was filtered with the 

three models. The filtered datasets were then used for evaluation. 

• Step 3. The mean absolute errors (MAEs) for each spectrum were compared (as a first point 

of evaluation).  

• Step 4. Then the denoised spectra were put into the partial least squares regression (PLSR) 

and their 𝑅2 and root mean squared errors of prediction (RMSEP) were compared (second 

point of evaluation). 

 

 

Figure 6: Flowchart of the experiment. 

  

Part 4 provides some further insights effectiveness of each filtering algorithm. The performance 

failures can be very dataset specific, therefore, it is impossible to mitigate them in advance.  

 

3.2. Data Simulation and Measurements 

For better evaluation of the models a few versions of noisy spectra were examined. The simulated 

datasets allowed for controlled noise levels and distributions whereas the measured datasets just 

confirmed the results. The discussion bellow aims to shed some light on the modelling techniques 

used and the reasoning behind it. 

 

Pure (Baseline) Spectra 

It is difficult to obtain an exact NIRS measurement (or any real-life measurement for that matter), but 

for simulations some baselines were needed from which pure or reference spectra could be simulated. 
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Therefore, water (only water) and 

ethanol (a solution of 5% of ethanol and 

95% of water) of various temperatures 

were measured with and FTIR 

Spectrometer5 in the BROLIS Sensor 

Technology (BST) laboratory. The dataset 

was analysed and the relationship 

between the water spectrum and the 

temperature was interpolated over a 

measured temperature range (13 – 55 

degrees Celsius). The same analysis was 

performed on the ethanol solution, with 

an additional step of subtracting water to 

obtain an ethanol-only spectrum. Figure 

7 depicts the water and ethanol spectra 

that were later used for simulating 

spectra in the datasets. The analysis of spectral dependance on temperature is beyond the scope of 

this thesis; thus the two reference spectra are taken as the best representations available. 

 

Normalisation 

Data normalisation is an essential part of pre-processing in machine learning, thus all data was pre-

processed by the z-score method using the standard scaler function6 from the Scikit-learn library in 

Python. This method transforms the dataset into a distribution with a mean (µ) equal to 0 and 

standard deviation (σ) equal to 1. This transformation is accomplished in the following way: 

𝒙𝒔𝒕𝒅 = 
𝒙 −  𝝁

𝝈
. 

This is also a standard practice in machine learning, therefore, not examined further. 

 

Simulated Spectra 

The simulated dataset was created based on the Beer-Lambert Law as discussed in part 2 of this thesis: 

𝑨 = 𝒍∑𝜺𝒊𝒄𝒊 + 𝒆𝒓𝒓𝒐𝒓

𝑵

𝒊=𝟏

. 

In our example N is equal to 2, thus, for better understanding the function can be re-written as: 

𝒔𝒊𝒎𝒖𝒍𝒂𝒕𝒆𝒅 𝒔𝒑𝒆𝒄𝒕𝒓𝒖𝒎 = 𝒍 ∗ (𝒄𝒆𝒕𝒉𝒂𝒏𝒐𝒍 ∗ 𝒓𝒆𝒇𝒆𝒓𝒆𝒏𝒄𝒆 𝒆𝒕𝒉𝒂𝒏𝒐𝒍 + (𝟏 − 𝒄𝒆𝒕𝒉𝒂𝒏𝒐𝒍) ∗ 𝒓𝒆𝒇𝒆𝒓𝒆𝒏𝒄𝒆 𝒘𝒂𝒕𝒆𝒓), 

where 𝒄𝒆𝒕𝒉𝒂𝒏𝒐𝒍 is the concentration of ethanol in the sample and reference ethanol and reference 

water are the afore mentioned spectra measured with the FTIR spectrometer. We can write 

(𝟏 − 𝒄𝒆𝒕𝒉𝒂𝒏𝒐𝒍) because we know that there are no other molecules in the solution and the sum of 

 
5 FTIR spectrometer simultaneously collects spectral data from a very wide range. As a result, it has a significant 
advantage over spectrometers that measure a narrow range (in other words, it is very precise). 
6 Documentation: https://scikit-
learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html (last accessed 09 Jan 2021). 

Figure 7: Pure water and ethanol spectra (2000 - 2400 nm) 

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
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ethanol and water concentration is equal to 1. Concentrations of ethanol were chosen to be similar to 

the measured samples, as otherwise there would be no way to check if the models are performing 

correctly. They ranged from 0% to 5% of ethanol in water. 

 

Figure 8: Example of Simulated Noise Free Spectra (2000 - 2400 nm) 

Figure 8 shows a sample from the full simulated dataset. Samples with 5% ethanol concentrations 

have clear peaks between 2250 nm and 2350 nm. These peaks are smaller, but still clear for 

concentrations less than 5% as well. 

We also want to ensure that the simulated spectra look like the measured ones. Figure 9 compares a 

part of the simulated dataset to the part of the measured dataset (spectra of the same 

concentrations). It is clear, that the simulated spectra have more prominent ethanol peaks than the 

measured spectra (marked by the boxes). 

 

Figure 9: Comparison of measured and simulated spectra. 

When filtering these datasets, we want to ensure that the peaks are preserved as much as possible. 

The size of the peaks is directly proportional to the concentration, therefore, the algorithm that filters 

well, but also flattens these peaks is not suitable for pre-processing NIRS measurements. The criteria 

for filters are discussed in later parts. 
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Noise Levels in Simulated Spectra 

For a systematic evaluation of results, a few datasets with increasing and changing noise were created. 

For the first test, only normally distributed random noise (with µ equal to 0 and varying σ) was added 

onto the simulated dataset. Then the mean was varied along with the standard deviation. Various 

distributions of noise were examined, however, due to the algorithms applied within the filters, the 

distribution of noise carried no influence on the results. 

Following the analysis of results from the random normally distributed noise filtering, some systematic 

oscillations were added to the spectra. They mimic possible interferences created by the setup when 

measuring. Not all setups produce this noise (and it is preferable that they do not) thus this step was 

added only to check how the models would deal with this type of noise. 

Noise present in the measured dataset was checked to ensure that any patterns are addressed and a 

combination of all these noises was used for training the final model and optimizing the parameters 

of the Butterworth and SVG filters. 

 

Measured Spectra 

Solutions of various concentrations from 0% to 2% of ethanol in water were measured in the BROLIS 

Sensor Technology (BST) laboratory in October 2020 (the laser can be tuned over the wavelengths and 

therefore can measure a range rather than at a single wavelength). The summary of the 

concentrations measured is presented in appendix 1. 

 

 

Figure 10: Measurement setup. 

 

The scheme above provides a simple representation of how the spectra were measured. The light 

source (laser) emits near-infrared light that travels through the cuvette and the solution of ethanol 

and water in it. Some light gets absorbed by the solution and the cuvette, some light scatters, and the 

remaining light is collected by the photodiode on the other side of the cuvette. The latter then gives 

spectra that are examined in this thesis. 

The measurement was set-up in the following way: 

• Concentrations were prepared in advance for the whole day and put in special containers. 

• Concentrations prepared included 0%, 0.1%, 0.5%, 1%, and 2%. 

• The flow was alternated by switching pumps among the containers with different 

concentrations. 
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• A few iterations of the same concentration in one day were usually measured. 

• There was always a gap between two concentrations when only water was flowing to ensure 

that no residue from higher concentrations is still present in the cuvette after switching. 

This created a dataset of various concentrations measured in a continuous fashion for a full working 

week. A few benefits of this experiment are the elimination of labeling errors and the ability to 

measure 24/7 without supervision. The drawbacks include a possible inaccuracy of mixing the 

solutions, since relatively large quantities had to be prepared; also, a possible evaporation of higher 

concentrations by the end of the week (the 2% solution might be less). More information on the 

measurement is provided in appendix 1. 

  

3.3. Models Tested 

The aim of this thesis is to train an autoencoder for noise reduction in NIR spectroscopic 

measurements and get results that would be directly comparable to Butterworth filter and Savitzky-

Golay filter results. These filters were chosen as a best representation of techniques currently used 

within the industry. In addition, they represent different groups of filters: Butterworth filter has a 

frequency response, whereas SVG filter uses polynomial smoothing techniques. These filters coupled 

with multiplicative scattering correction (MSC) form the base for data pre-processing in NIR 

spectroscopy. 

Frequency Response Model: Butterworth “lowpass” Filter (BLP) 

Butterworth [27] proposed a filter that has a frequency response: in essence, the “lowpass” filter 

allows all low frequency variations to pass but flattens out all high frequency variations7 (thus the 

name of the filter). Butterworth filter is defined within the Scipy8 package in Python. The user can 

choose the cut-off frequency (the lower the frequency chosen, the earlier the filter starts to cut the 

signal) and order of the filter (the higher the order, the faster the cutoff). Figure 11 depicts various 

parameter pairings of the Butterworth “lowpass” filter.  

 

Figure 11: Buterworth "lowpass" filter's frequency response. 

 
7 More information can be found: https://www.electronics-tutorials.ws/filter/filter_8.html (last accessed 14 
Sep 2020). 
8 Documentation: https://docs.scipy.org/doc/scipy/reference/ (accessed 09 Jan 2021). 

Frequency 

https://www.electronics-tutorials.ws/filter/filter_8.html
https://docs.scipy.org/doc/scipy/reference/
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There are also other variations of the Butterworth filter – “highpass” (that cuts-off all slow trends), 

“bandpass” (cascades high-pass and low-pass filters), and “bandstop” (paralell combination of the 

high-pass and low-pass filters). None of the alternatives seem reasonable for filtering NIR 

measurements, therefore, they are not examined. 

BLP works well for NIR spectroscopic measurements as some noise within the measurements tends 

to have a much higher frequency to the signal in question. As a result, it can be filtered out by choosing 

correct order and cut-off parameters. To achieve the best result and make the model directly 

comparable to the DAE developed, the optimisation of filtering parameters was determined on 

simulated data. Then, with the new parameters, the measured dataset was filtered and the result was 

compared to those of SVG and DAE. 

 

Figure 12: Optimisation of the Butterworth "lowpass" filter parameters. 

Choosing the correct filtering parameters is a laborious but necessary task. It can be done one of two 

ways: either trying some combinations by hand or setting up a simulation through the acceptable 

parameter ranges (similar to Monte Carlo simulation) and looking for the smallest error provided. For 

best results of the model, I chose to go through a reasonable range of parameters and pick the lowest 

mean absolute error (MAE) for each dataset. The criteria for selection of the best filtering parameter 

was the mean absolute error (MAE) – the same as the loss function that was selected for the DAE, as 

it creates a consistent background for filter comparison. Since the simulated dataset is very close to 

the actual measurement, the parameters chosen will be close to the optimal ones for the measured 

dataset as well. This approach avoids repetition of filtering and checking the result, when working with 

real-world data.  

 

Polynomial Smoothing: Savitzky–Golay Filter (SVG) 

Similarly to the Butterworth filter, Savitzky-Golay filter (SVG) is defined in the Scipy library of Python 

and also has two parameters that do not have default values: window length and order of the 

polynomial fitted. This approach also has similarities to the smoothing algorithms used in functional 

data analysis (FDA). Its appeal lies in a simple-to-understand algorithm and strong filtering capabilities. 

However, it also exhibits same drawbacks as the Butterworth filter: slow trends tend to remain after 

filtering, and it is very easy to filter the useful signal out. 

Savitzky and Golay [28] proposed a simplified least squares procedure for smoothing of data which 

became one of the staples of various signal processing toolkits. Wentzel and Brown [29] provide a very 

elegant explanation of the underlying mathematics of this method, summary of which is presented in 



21 
 

appendix 2. Parameter optimisation (window length and polynomial order) was also conducted on the 

simulated dataset. Later, the measured dataset was filtered with the chosen parameters. 

 

Artificial Neural Networks: Denoising Autoencoder 

As discussed in part 2 of this thesis, various ANNs have been used in NIRS measurements. Their validity 

has been proven for very specific tasks and datasets, but mainly the efforts were concentrated around 

classification. These approaches used preprocessing techniques that could potentially distort the 

signals received. Instead, here we will try to use a neural network (an autoencoder) for data 

preprocessing (not for classification) and then use traditional regression techniques for concentration 

forecasting. 

We can view the noise as the corrupting factor in our analysis. Instead of copying their inputs to their 

output, denoising autoencoders are trained to undo a corruption that was placed on the dataset. In 

most general terms, an autoencoder is a parametric model with two components: the encoder 𝑓𝑒𝑛𝑐,𝜃𝑒
 

and the decoder 𝑓𝑑𝑒𝑐,𝜃𝑑
. Mathematically, we can express its loss function as  

𝐿 (𝒙, 𝑔(𝑓(�̃�))), 

where �̃� is a corrupted version of 𝒙. 

The architecture of the DAE is outlined in the table below and the choices behind this structure are 

explained in the next section.  

 

Model: "sequential" 

Layer type Output Shape Param # 
Activation 
Function 

Conv1D (None, 393, 256) 2560 ReLU 

Conv1D (None, 385, 128) 295040 ReLU 

Conv1D (None, 377, 32)     36896 ReLU 

Conv1DTranspose (None, 385, 32) 9248 ReLU 

Conv1DTranspose (None, 393, 128) 36992 ReLU 

Conv1DTranspose (None, 401, 256) 295168 ReLU 

Conv1D (None, 401, 1) 2305 Tanh 

Total params: 678,209 
Trainable params: 678,209 
Non-trainable params: 0 

Table 1: Autoencoder architecture 

 

A significant number of variations was tested when training the autoencoder. The majority of 

hyperparameters were varied to determine the best fit for this task. The summary of hyperparameters 

that provided the best result is presented in table 1.  

The input dataset was split using 80-20 split. For each epoch, the dataset was shuffled and batched 

into groups of 128 elements. No other transformations were performed on input data. 

I have experimented with different numbers of layers: 5, 7 and 9. The model with 5 layers seemed too 

shallow to capture all the necessary features of the dataset. In turn, the model with 9 layers did not 
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perform any better than the model with 7 layers but took significantly longer to train due to the 

increased number of training parameters. Therefore, model with 7 layers was chosen. 

Kernel size was another important feature to consider. Since it defines the spatial context the 

convolutional filter has oversight of. The kernel size had a significant impact on the model. The 7-

layerd model produced best results with the kernel size equal to 9 hence it was selected. In addition, 

convolutional kernels were initialized using He uniform variance scaling initializer. 

Filters were selected in a mirrored fashion as per usual in encoder and decoder architectures. The final 

layer’s filter size was equal to one as it ensured that the input and the output dimensions matched. 

All convolutional layers, but last, used the ReLU activation function as it exhibits a stable performance 

across various domains. The last convolutional layer uses Than activation function as it bounds the 

output in the range -1 to 1. As my standardised dataset ranged from -1 to more than 3, I had to multiply 

the values by 4 to enable the model to output values in the correct range. 

The model uses Adam optimizer with a default learning rate of 0.001. Stochastic gradient descent and 

RMSProp were considered as well, however, they produced significantly worse results. MAE was 

chosen as the optimiser’s loss function. Another popular option for loss function is mean squared error 

(MSE) but it provided worse results than MAE. In the MSE function the model smoothed out the 

ethanol peaks significantly more. This occurred due to the models’ averseness to outliers as a result 

of the squared term in the loss function. Moreover, each version of the model was tested under a 

varying number of training epochs, ranging from 25 to 300. The chosen model did not show any 

improvement past 50 epochs on any of the tries, thus this number was chosen for the final model.  

 

Summary of Hyperparameters 

Number of epochs 50 

Kernel size 9 

Filter sizes 256, 128, 32, 32, 128, 256, 1 

Number of layers 7 

Optimiser Adam9 

Learning rate 0.001 

Loss function MAE 

Activation functions ReLU and Tanh (last layer) 

Batch size 128 

Train validation split 80-20 

Convolutional kernel initialisation He uniform variance scaling initializer10 
Table 2: Hyperparameters used in the final model. 

 

All the model code was written using Tensorflow11 library (version 2.4.0). Hardware was provided by 

Google Colab12 where available GPU was utilised to speed up the training process. 

  

 
9 More information: https://arxiv.org/abs/1412.6980 (accessed 05 Sep 2020). 
10 More information: https://www.cv-
foundation.org/openaccess/content_iccv_2015/papers/He_Delving_Deep_into_ICCV_2015_paper.pdf 
(accessed 09 Jan 2021). 
11 Source: https://www.tensorflow.org/ (last accessed 09 Jan 2021). 
12 Source: https://colab.research.google.com/ (last accessed 09 Jan 2021). 

https://arxiv.org/abs/1412.6980
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/He_Delving_Deep_into_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/He_Delving_Deep_into_ICCV_2015_paper.pdf
https://www.tensorflow.org/
https://colab.research.google.com/
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3.4. Evaluation of Outcomes 

Since the filtering models aim to filter out the noise but at the same time preserve the signal, the 

evaluation of outcomes becomes a complex task. There is no straightforward metric to ensure that 

both conditions are met across the models. Therefore, a joint approach of using the mean absolute 

error (MAE) and the partial least squares regression (PLSR) is used. Coincidentally, MAE is also the loss 

function for the autoencoder. 

Firstly, the MAE is calculated for each of the filtered spectra. Reference (“clean”) spectra are available 

for any concentration: they are used as the baseline to calculate how different the filtered spectra are 

from the ideal situation. The equation used is as follows: 

𝑴𝑨𝑬 = |𝐶 − 𝐹|,̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

Where: 

• C is the clean spectrum; and  

• F is the filtered spectrum. 

The filtered spectrum (vector) is subtracted from the clean spectrum (element-wise subtraction). Then 

the absolute values are calculated and, finally, the mean of these values is extracted.  

𝑴𝑨𝑬 = 𝒎𝒆𝒂𝒏(𝒂𝒃𝒔(𝒄𝒍𝒆𝒂𝒏 𝒔𝒑𝒆𝒄𝒕𝒓𝒖𝒎 − 𝒇𝒊𝒍𝒕𝒆𝒓𝒆𝒅 𝒔𝒑𝒆𝒄𝒕𝒓𝒖𝒎)) 

This results in a single digit evaluation of the goodness-of-filtering for each spectrum. While 

individually, these numbers do not carry a considerable amount of information, it provides a stable 

background for comparison across time and models. However, this evaluation method does not 

ensure that the signal is preserved as well as possible. 

To mitigate the removal of useful signal, filtered data was checked with the PLSR. Herman O. A. Wold 

developed the PLSR together with his son Svante Wold (in essence it is a generalization of multiple 

linear regression (MLR)) around 1975. While the original applications of PLSR were in social sciences, 

it became a popular tool in chemometrics, bioinformatics and neuroscience. Its appeal stems from the 

ability to deal with possibly correlated explanatory variables as it relates not only two data matrices, 

X and Y, by a linear multivariate model, but also models the structures of X and Y (Wold et al [30]). 

In our case, the explanatory variables are concentration, temperature, humidity, and the laser used 

for measuring. Since the performance of the laser can slightly differ based on the temperature in the 

room and the spectra are also temperature dependent, the explanatory variables are correlated, 

making the PLSR a perfect choice for this thesis. The corresponding 𝑅2 and root mean squared error 

of prediction (RMSEP) values from the regression were compared. As for any regression, we want the 

𝑅2 to be as close to 1 as possible and RMSEP to be as low as possible. This result would ensure that 

there is strong linear relationship between the filtered spectra and the concentrations within the 

solutions measured. In addition, the results should be better than those of non-filtered spectra, 

otherwise the filtering loses its purpose. 

 

Comparison of the Models 

While the three models have different approaches to filtering, they all work well on spectroscopic 

data. Table 3 outlines the main benefits and drawbacks of each of the models. 

Both, BLP and SVG, under default settings, do not deal well with low frequency noise (such as a slow 

sinus). This can be fixed by increasing the window length for SVG filter and adding the “highpass” 
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condition for the Butterworth filter. However, then additional issues of filtering out the signal arise. 

Figure 13 illustrates this issue with a simple example: 

• The same spectrum was filtered in 4 different ways: SVG with a window length of 51, SVG 

filter with window length of 101, Butterworth lowpass filter with critical frequency of 0.2, and 

Butterworth lowpass filter with critical frequency of 0.05. 

• The figure is a zoomed in part of the picture, where ethanol peaks are located. Therefore, we 

want this part to be as smooth as possible, but it is important to preserve the slow trend of 

ethanol peaks in this part of the spectrum. 

• Butterworth lowpass filter with critical frequency of 0.2 (black line) seems to follow the data 

very well, but the same filter with critical frequency of 0.05 significantly flattens the signal 

(blue line). 

• A similar situation arises with the SVG filter. When the window length is 51, the red line follows 

the simulated data closely, however, when the window length is increased to 101, the green 

line is almost flat.  

In this example we can find optimal filtering parameters after a small number of trials and the 

spectrum can be smoothed (filtered) to a high standard. However, this is not plausible in the real 

world. Firstly, there are slow trends that exist in samples (they were not present in the simple example 

above) and they need to be filtered out. Secondly, this is only a small part of the spectrum, there is 

always a possibility, that other parts will be a lot worse or that by looking at a wider picture, we will 

not be able to determine the best fit. Increasing complexity of the sample also plays a role – when do 

we know that the higher peaks result from higher concentrations when are they just noise? Similar 

questions always arise during analysis of samples and scientists have to find alternative ways of 

confirming concentrations in the samples. 

 

 

Figure 13: Comparison of Filtering Functions 
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Model Benefits Drawbacks 

Butterworth 
“lowpass” filter 

• Easy to use; 

• Performs very well, when the noise if 
off different frequency than the signal 
in question 

• Does not filter out low frequency 
noise in the sample. 

• Easy to filter the signal out and it 
would not be noticed until the 
analysis is carried out. 

Savitzky-Golay 
filter 

• Easy to use; 

• Performs very well, when the noise if 
off different frequency than the signal 
in question 

• Does not filter out low frequency 
noise in the sample. 

• Easy to filter the signal out and it 
would not be noticed until the 
analysis is carried out. 

Denoising 
Autoencoder for 

NIR 
Measurements 

• Can learn important features of the 
dataset (i.e., find the ethanol peaks in 
the correct place of the etahnol 
spectrum and preserve them). 

• Is able to catch slow variations in the 
spectra or filter out offsets. 

• Takes long to reliably train. 

• Is not as easily manipulated as the 
others. 

 

Table 3: Benefits and drawbacks of the models. 

3.5. Evaluation of Alternative Methods 

Various methods of denoising of datasets and evaluation of results 

were considered. Main merits and drawbacks of alternative methods 

are outlined below. The chosen methods of BLP, SVG, MAE, and PLSR 

cover the majority of properties measured below or are proven to 

perform better than the methods outlined in this chapter. 

Averaging is a simple, powerful, and well-known tool to deal with 

noise in signal processing. Given a large enough sample, one could 

average the spectra and remove randomly distributed noise. This 

process is shown in the pictures below. However, this method is not 

able to deal with any systematic noise and requires large datasets to 

be successful. These issues would hinder the method’s applicability (as a stand-alone method) in real 

life measurements; therefore, it was not examined in this thesis. 

B-spline smoothing is also one of the possible ways to filter (smooth) non-periodic data. Functional 

data analysis (FDA) techniques provide an elegant solution to this issue. However, at the moment of 

writing, the FDA functions are poorly defined within Python as the package was only started in March 

202013. The need for switching between R and Python during the analysis would outweigh any benefits 

received from FDA. To compensate for this, a polynomial smoothing algorithm was chosen (SVG). 

Principal component analysis (PCA) is another vastly popular tool in data analysis. This powerful 

dimensionality reduction tool is very useful when it can separate certain patterns in the data and 

express them as principal components. During previous studies, I found that PCA does not separate 

clearly between the components of interest and therefore is not considered in this thesis. 

Chebyshev’s filters (Type I and Type II) also have a frequency response (similar to the Butterworth 

filter). Chebyshev filters are sharper than the Butterworth filter and have unwanted ripples (see figure 

1414). 

 
13 Documentation: https://fda.readthedocs.io/en/latest/ (accessed 04 Nov 2020). 
14 Source: https://en.wikipedia.org/wiki/Chebyshev_filter (accessed 23 Oct 2020). 

Figure 14: Comparison of the Chebyshev's. 
Butterworth and Elliptic filters' responses. 

https://fda.readthedocs.io/en/latest/
https://en.wikipedia.org/wiki/Chebyshev_filter
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4. ANALYSIS AND RESULTS 
 

 

Part 4 analyses the results of the experiment, provides insights into the performance of the chosen 

models, discusses shortcomings of the approaches, and provides ideas for further studies into this 

topic. In chapter 4.1, PLSR results on unfiltered data are examined. Chapter 4.2 reviews Butterworth 

and Savitzky-Golay filter results on the same dataset. Chapter 4.3 outlines autoencoder performance 

under various conditions and points out the limitations discovered. Chapter 4.4 compares the results 

of all afore mentioned models. Chapter 4.5 provides directions for future study on this topic. 

 

4.1. PLSR on Measured Data without Filtering 

 

From the first glance, the measured dataset does not look noisy (figure 15). The graph below shows 

all spectra plotted together. Clear but small peaks of ethanol are visible between 2250 nm and 2350 

nm. After a better examination, there are some differences among the spectra; the ends tend to 

scatter or bend inconsistently across the dataset. This is a challenge for the predictive algorithm and 

a potential need for filters. 

 

 

Figure 15: Measured data. 

Firstly, I ran the PLSR on the 

measured dataset without 

filtering to create a reference 

point for the three filters. The 

summary of the results is 

presented in the table in chapter 

4.4. The 𝑅2 value of 0.7918 is too 

low for medical applications as it 

signifies, that only around 79% 

of the total variation is explained 

by the explanatory variables in 

our regression. In addition, the 

RMSEP value of 0.3336 is too high 

and shows that the error can be 

more than 35%. 

Figure 16: Regression results on unfiltered data. 
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The inquiry into the predictions of the model provides further insights. Figure 17 plots the predicted 

concentrations of ethanol against the actual concentrations. Due to the large number of samples, it is 

not entirely clear from the graph, but most of the points lie around points (0, 0), (0.1, 0.1), (0.5, 0.5), 

(1, 1), and (2, 2). However, the 0 and 2% concentrations exhibit a significant number of outliers. This 

can occur due to two reasons: 

1. 0% concentration is sampled more often than others as it is used as a cleaning cycle between 

two other concentrations. 

2. There might be a slight time delay between the theoretical start of the concentration and 

when it reaches the cuvette. 

By taking these two reasons into account we can try and mitigate for at least a part of the inaccuracies. 

Firstly, I checked the 2D histogram to determine, where most values lie. 

 

Figure 17: A heatmap of predictions of concentration. 

The significantly different yellow region suggests that there are too many low concentrations taken 

and the sample is not balanced. I sampled 18000 spectra of each concentration from the measured 

dataset (total of 90000 spectra). A detailed information on sampling is provided in appendix 1. All 

further analysis was carried out on the balanced dataset and I will refer to it as the measurements 

(unless explicitly stated otherwise). 

 

4.2. Denoising data with a Butterworth “lowpass” and Savitzky-Golay filters 

Butterworth 15and SVG 16filters are defined in the Scipy package within Python; therefore, their use is 

relatively straightforward. The parameters were optimised based on the simulated dataset (as 

discussed in part 3) and the models were prepared for fitting the measured dataset. 

Optimisation of filter parameters on simulated data provided insights into the workings of the 

Butterworth and SVG filters: they deal well with random noise with mean zero. Any offsets in spectra 

or low frequency noise are not capture by these filters. They performed well in the simplest case but 

exhibited weakest performance in all subsequent tests including the measured dataset.  

 
15 Documentation: https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.butter.html (last 
accessed 09 Jan 2021). 
16 Documentation: https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.savgol_filter.html (last 
accessed 09 Jan 2021). 

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.butter.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.savgol_filter.html
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In general, the measured datasets can exhibit a few types of noise. Figure 18 illustrates some of these 

possibilities.  

• Top left. Only random normally distributed noise with mean zero is added to the simulated 

spectra. This is the simples form of noise and can be easily filtered out by any of the filters 

used in this thesis. 

• Top right. Here random normally distributed noise with varying means is added onto the 

simulated spectra. Optimisation of filtering parameters revealed that BLP and SVG filters are 

not able to deal with the offsets created by the varying mean in the noise. 

• Bottom left. This graph shows the spectra after a systematic slow variation is added. This type 

of noise is usually caused by the laser setup itself and sometimes can be fixed by hand. 

• Bottom right. Random normally distributed noise with a varying mean was combined with the 

systematic noise in this example. Here, the Butterworth and SVG filters struggled to denoise 

the datasets correctly due to the offsets and the persistent slow trend in the spectra. 

 

 

Figure 18: Examples of simulated spectra. 

 

After optimising the parameters, the BLP and SVG filters used were as follows: 

• Butterworth “lowpass”: scipy.signal.butter(2, 0.045, btype='low'). 

• Savitzky-Golay filter: scipy.signal.savgol_filter(window_length = 107, polyorder = 3) 

These functions were then used for filtering the measured dataset. The results are discussed in part 

4.4. 
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4.3. Denoising data with an autoencoder 

 

As discussed in part 3, the autoencoder training process included several steps. Firstly, the 

autoencoder was trained on a simulated dataset (train and validation sets) and then checked on the 

real-life measurements (test set). Training the autoencoders on simulated data provided significant 

insights into the workings and possibilities of denoising datasets with artificial neural networks. Under 

the circumstances where only random noise is added onto the dataset, neural networks do not pose 

any advantages over the traditional filtering techniques apart from being unsupervised thus requiring 

less human intervention.  

Training the autoencoder is computationally expensive especially when a differentiated sample of 

spectra is need. The easy option of generating training spectra of required concentrations does not 

always work as the researcher needs to clearly understand what noise is present in their samples. 

However, this is not always possible. Additionally, training on a measured dataset provides good 

results, but it means that the data provided to the autoencoder are set-up specific and to make a more 

comprehensive model, one has to spend a significant amount of time in differentiating the 

measurements (not only concentrations, but also set-ups, days and other conditions). This is a 

significant drawback of this model but with a large library of spectra created a good precision model 

can be developed. 

With a large, simulated dataset I was able to train the autoencoder to denoise measured spectra. 

Below graph shows examples of some of the reconstructions of the spectra. While these spectra are 

not perfectly re-created, the autoencoder has preserved the most prominent features of the dataset 

(the impact of which will be seen in part 4.4). 

 

 

Figure 19: Reconstructions of the spectra by the DAE. 
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4.4. Performance Comparison 

Reconstructions and filtered spectra 

Graphical interpretations can be very informative when deciding on filters’ performance. Figure 20 

shows an example of a spectrum and its filtered/reconstructed versions from different models. It is 

difficult to draw conclusions from the left-hand graph as the signal does not seem to be strong. One 

of the possible solutions is to find a different spectrum with a higher concentration, however, then we 

could not directly confirm that the filters are working well for small concentrations as well. Instead, it 

is possible to check only the most important part of the graph – the area where ethanol peaks should 

be present (marked in red).  

 

 

Figure 20: Comparison of the real and filtered spectra. 

 

Graph on the right provides some insights into the differences between the models. There are small 

peaks of ethanol in the pure spectrum, however, they are a lot smaller in the measured spectrum 

(blue and orange lines respectively). As a result, the BLP and SVG filters keep the shape of the spectrum 

as they are not able to strengthen the signal (if the peaks are not present). In turn, the denoising 

autoencoder has significantly more variation in the region and additionally seems to distort the 

dataset on the right side of the spectrum. This result is generalized by the mean absolute errors (MAE) 

calculated for the full measured dataset (figure 21). 

When we inputted a measured dataset into the Butterworth filter, it seemed to filter the noise 

correctly, however, the results were not as good. This arises from the fact that the filter only takes 

into account the frequency of variations within the sample and at a certain point flattens everything 

out. In real world applications, this technique does not provide a desired result. 

Each approach had its own merits and drawbacks. For real-life NIRS measurements the denoising 

autoencoder worked as well or better than the Butterworth and SVG filters. The training procedure 

for the autoencoder did take a significantly longer time than of other filters, but when denoising the 

test dataset, it provided similarly good performance. The need to re-adjust the filtering parameters 

for each dataset for BLP and SVG filters also proves that the autoencoder is a better choice. The 

preservation of ethanol peaks is another advantage.  
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Figure 21: Mean absolute errors of the filtering models and DAE. 

 

PLSR Results 

Filtered and unfiltered datasets were tested by the PLSR. Sklearn modules cross decomposition17 and 

model selection18 were used for the regression. A Python function train_test_split from the model 

selection module randomly split the datasets and corresponding concentrations into train and test 

subsets. A histogram of the number of test and train spectra for each of the concentrations is 

presented in figure 22. The numbers of each concentration used in training and testing are very similar, 

however, the histogram combined the 0% and 0.1% concentrations into a single bar, thus making it 

seem that the issue of water-only spectra overflow persists (this is true for both test and train sets). 

Then a partial least squares regression object with 10 components was created using the cross-

decomposition module. This object was the same for all datasets. In short, PLSR takes two centered 

matrices 𝚾 ∈ ℝ𝑛×𝑑 and 𝐘 ∈ ℝ𝑛×𝑡, and a number of components K. The algorithm 19behind 

PLSRegression in the cross-decomposition package is as follows: 

Set 𝑿1 to 𝑿 and 𝒀1 to 𝒀 and, then, ∀ 𝑘 ∈ [1;𝑲]:  

a) Compute the first left and right singular vectors of the cross-covariance matrix 𝐶 =  𝑋𝑘
𝑇𝑌𝑘. 

These vectors are 𝑢𝑘 ∈ ℝ𝑑 and 𝑣𝑘 ∈ ℝ𝑡.They are chosen so to maximise the 𝐶𝑜𝑣(𝑋𝑘𝑢𝑘,

𝑌𝑘𝑣𝑘). 

b) Then project 𝑋𝑘 and 𝑌𝑘 on the singular vectors and obtain scores: 𝜉𝑘 = 𝑋𝑘𝑢𝑘 and 𝜔𝑘 = 𝑌𝑘𝑣𝑘. 

 
17 Documentation: https://scikit-learn.org/stable/modules/classes.html#module-sklearn.cross_decomposition 
(last accessed 09 Jan 2021). 
18 Documentation: https://scikit-learn.org/stable/model_selection.html (last accessed 09 Jan 2021). 
19 Source: https://scikit-learn.org/stable/modules/cross_decomposition.html#cross-decomposition (last 
accessed 09 Jan 2021). 

https://scikit-learn.org/stable/modules/classes.html#module-sklearn.cross_decomposition
https://scikit-learn.org/stable/model_selection.html
https://scikit-learn.org/stable/modules/cross_decomposition.html#cross-decomposition
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c) Regress: 

1. 𝑋𝑘 on 𝜉𝑘 to find a vector 𝛾𝑘 ∈ ℝ𝑑 s.t. the rank-1 matrix 𝜉𝑘𝛾𝑘
𝑇 is as close as possible to 

𝑋𝑘. 

2. Instead of regressing 𝑌𝑘 on 𝜔𝑘, regress it on 𝜉𝑘 (a projection of 𝑋𝑘) and get 𝛿𝑘. This 

gives a slightly different loadings computation than usual. 

d) Lastly, subtract the rank-1 approximations: 

𝑋𝑘+1 = 𝑋𝑘 − 𝜉𝑘𝛾𝑘
𝑇 

𝑌𝑘+1 = 𝑌𝑘 − 𝜉𝑘𝛿𝑘
𝑇 

 

Figure 22: Comparison of model performance in PLSR. 
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Figure 22 further examines the predictions of concentrations of the test set. Interestingly, 3 out of 4 

regressions classified concentrations that were never used for training (negative concentrations). The 

graph also shows that the regression tends to favor low concentrations which can be a result of 

relatively close 0% and 0.1% samples. From this graph it would be difficult to chose a single best model 

as all filters have areas, where they perform best. 

Summary of the main PLSR metrics is provided in the table below. Since the measurements were 

relatively stable, the unfiltered dataset reached an 𝑅2 score of 0.7918 and a RMSEP of 0.3336. In turn, 

the BLP and SVG filters decreased these scores to 0.7799 and 0.7757 respectively for 𝑅2 and 0.3416 

and 0.3466 respectively for RMSEP. However, the proposed denoising autoencoder slightly improved 

the result of the PLSR when compared to the unfiltered dataset ( 𝑅2 = 0.7949 and RMSEP = 0.3294). 

In summary, the results from the two examined performance metrics suggest that the denoising 

autoencoder distorts certain parts of the spectra to preserve the most prominent features in a 

consistent way. As discussed before, the BLP and SVG filters also distort the datasets that they filter, 

however, the feature preservation is not always possible in these filters. 

The improvement of the algorithm lies not only in the 𝑅2, RMSEP or MAE, it also includes the 

possibility of filtering the data as it is measured, since a pretrained neural network does not require a 

full dataset to perform the filtering in a consistent way and there is no need for human intervention. 

This feature makes it more applicable in the real-world. 

 

PLSR Results 

 Unfiltered Butterworth SVG DAE 

𝑹𝟐 0.7918 0.7799 0.7757 0.7949 

RMSEP 0.3336 0.3416 0.3466 0.3294 
Table 4: Summary of PLSR results. 

 

4.5. Further Research Questions 

DAE successfully reduced the noise of the measurements of simple ethanol in water solutions in a 

cuvette. Currently used techniques in NIRS tend to have a similar effect (especially when combinations 

of these techniques are used). The autoencoder provides a simple way of dealing with various types 

of noise in this situation and requires little human intervention and therefore is superior to the 

currently used filtering methods. However, its reconstructions cannot be directly comparable to the 

reconstructions of other models as it seems to distort some features of the spectra to preserve the 

others. Further research is needed to examine these distortions and possibly eliminate them. 

Moreover, with linear activation functions, autoencoders have a strong relationship with the principal 

component analysis (PCA). PCA is a well-established tool in analysing any dataset. It provides more 

clarity to the user and therefore could be considered a superior technique in this case. However, the 

strength of autoencoder learning lies in the non-linearities of samples (Goodfellow et al [15]). This 

feature can prove to be very useful for further applications in transdermal sensing research as it 

exhibits non-linear relationships.  
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5. CONCLUSIONS 
 

Currently used NIRS measurement filtering algorithms do not provide a suitable option for filtering 

the noise of real-life measurements under reasonable conditions. They tend to be noise dependent 

and require significant human monitoring and intervention. An alternative of using a denoising 

autoencoder for NIRS measurements was explored. A DAE for NIRS measurements of ethanol and 

water solutions in a cuvette was developed and its results were compared to the performance of the 

Butterworth “lowpass” filter and the Savizky-Golay filter. 

The DAE seemed to distort some parts of the spectra to preserve the most prominent features. This 

was confirmed by using PLSR that demonstrated an improved results from the ones shown by the 

Butterwoth “lowpass” filter and the Savitzky-Golay filter. As a result of this thesis, we can conclude 

that the denoising autoencoder should be tested on more complex datasets with potentially non-

linear relationships between independent and explanatory variables (for example skin spectra 

measured in reflection geography). 
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APPENDIX 1: SUMMARY OF MEASUREMENTS CARRIED OUT 
 

All measurements were carried out in the Brolis Sensor Technology (BST) laboratory in Vilnius by the 

measurements team. Firstly, the water and ethanol spectra of different temperatures were measured 

in the FT-IR spectrometer on 14 July 2020. This provided a base for the simulations of artificial spectra. 

Then a series of various concentrations in a flow cuvette were measured over a span of a full week in 

October 2020. Lower concentrations were chosen on purpose, as we want to develop an algorithm 

for transdermal sensing of ethanol in humans (where 2.5 permille is already considered a high level of 

alcohol in person’s blood). The summary of the number of spectra measurements and concentrations 

is provided in the table below.  

Table AX: Measurements of Ethanol Solutions in Water. 

Date Concentrations measured (%) No of Spectra (raw) No of Spectra (avg) 

2020-10-19 0.1, 0.5, 1 and 2 18,683 753 

2020-10-20 0.1, 0.5, 1 and 2 31,166 1,234 

2020-10-21 0.1, 0.5, 1 and 2 26,026 1,044 

2020-10-22 0.1, 0.5, 1 and 2 36,396 1,440 

2020-10-23 0.1, 0.5, 1 and 2 25,324 1,006 

Total: 137,595 4,577 

 

As discussed in the main text, the above measurement was not balanced as there were intervals of 

water between any two concentrations to prevent the concentrations mixing, thus, the number of 

water-only spectra exceeded any other concentration more than twice (see the table below). The 

balancing was carried out by using the sample function20 from the Pandas package in Python. 

Balancing the sample Total 

Concentration (%) 0 0.1 0.5 1 2 5 

Before (no of 
measurements) 

59532 19666 18938 18948 20502 137586 

After (no of 
measurements) 

18000 18000 18000 18000 18000 90000 

 

Figure 23 depicts all spectra that were 

measured over the week. They seem 

very homogeneous with slight 

deviations on the edges and the areas 

were ethanol peaks should be. 

Unfortunately, not all measurements 

carried out are as good as this one. 

 

 
20 Documentation: https://pandas.pydata.org/pandas-
docs/stable/reference/api/pandas.DataFrame.sample.html (last accessed 09 Jan 2021). 

Figure 23: Measured spectra. 

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.sample.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.sample.html
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APPENDIX 2: SAVITZKY-GOLAY FILTER 
 

This appendix discusses the mathematical background for the Savitzky-Golay filter in detail. It also 

explains the reasons why this filter is often used in NIRS. The information provided here comes from 

Wentzel and Brown [29]. Savitzky-Golay (SVG) filter uses polynomial smoothing to denoise spectra. If 

we consider a second order seven point polynomial smooth, then the model to be fit can be expressed 

as  

𝒚 = 𝒃𝟎 + 𝒃𝟏𝒙 + 𝒃𝟐𝒙
𝟐. 

The equivalent matrix form of this is 

[
 
 
 
 
 
 
𝑦1

𝑦2
𝑦3

𝑦4
𝑦5

𝑦6

𝑦17]
 
 
 
 
 
 

=  

[
 
 
 
 
 
 
 
1 𝑥1 𝑥1

2

1 𝑥2 𝑥2
2

1
1
1
1
1
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𝑥7

𝑥3
2

𝑥4
2

𝑥5
2

𝑥6
2

𝑥7
2]
 
 
 
 
 
 
 

[

𝑏0

𝑏1

𝑏2

] 

We can express it as 𝒚 = 𝑿𝒃 where X is the matrix containing polynomial functions for the fit. The 

least squares solution for b is well known from linear algebra: 

𝒃 = (𝑿𝑻𝑿)−𝟏𝑿𝑻𝒚 = 𝑨𝒚 

Then the intercept for the fit is 

𝑏0 = 𝒂𝟏𝒚 = 𝑎11𝑦1 + 𝑎12𝑦2 + ⋯+ 𝑎21𝑦7 

As x = 0 for the central point in a 7-point sequence (because of the way this problem is setup), the 

following equation holds: 

�̂�4 = 𝑏0 + 𝑏1(0) + 𝑏2(0)2 = 𝑏0 = 𝒂𝟏𝒚  

To simplify, the filter coefficients are first row of the matrix (𝑿𝑻𝑿)−𝟏𝑿𝑻.  

 

This approach holds for SVG filter of 

any length and any order. The figure 

on the right provides a graphical 

explanation of the algorithm (source 

Wentzel and Brown [29]).
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APPENDIX 3: CODE FOR THIS THESIS 
 

# IMPORTS 

# All packages used later are imported here. 

 

import random 

import numpy as np 

import pandas as pd 

from scipy import signal 

from google.colab import drive 

import matplotlib.pyplot as plt 

from sklearn.preprocessing import StandardScaler 

from sklearn.model_selection import train_test_split 

 

import keras 

import tensorflow as tf 

from keras.models import Sequential 

from keras.layers import Conv1D, Conv1DTranspose 

from keras.constraints import max_norm 

 

# FUNCTION DEFINITIONS 

# define a functions for future use. 

 

def calculate_temp_dependent_spectrum(temperature, coefficients): 

  return temperature * coefficients[:,0] ** 2 + temperature * coefficie

nts[:,1] + coefficients[:,2] 

 

def use_butterworth_filter(noisy_spectra, clean_spectra, order, crit_fr

eq): 

 

    b, a = signal.butter(order, crit_freq, 'lowpass') 

     

    filtered = [] 

    error_lst = [] 

    for i in range(noisy_spectra.shape[1]): 

        y = noisy_spectra[:,i] 

        output = signal.filtfilt(b, a, y) 

        filtered.append(output) 

        error_lst.append(np.mean(abs(clean_spectra[:,i] - output))) 

    filtered = np.stack(filtered, axis = 1) 

    error_lst = np.stack(error_lst) 

     

    return filtered, error_lst  
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def use_svg_filter(noisy_spectra, clean_spectra, window_length, poly_or

der): 

     

    filtered = [] 

    error_lst = [] 

    for i in range(noisy_spectra.shape[1]): 

        y = noisy_spectra[:,i] 

        output = signal.savgol_filter(y, window_length, poly_order) 

        filtered.append(output) 

        error_lst.append(np.mean(abs(clean_spectra[:,i] - output))) 

    filtered = np.stack(filtered, axis = 1) 

    error_lst = np.stack(error_lst) 

     

    return filtered, error_lst 

 

# OTHER PREPARATIONS 

# Normalisation 

# create a scaler object 

std_scaler = StandardScaler() 

 

# Mount Google Drive for easy access to data. 

drive.mount("/content/drive") 

 

# SIMULATING AND UPLOADING DATASETS 

 

# Pure data upload 

df = pd.read_csv('normalised_water_and_ethanol.csv', index_col = None) 

wavelengths = df.WL.values 

water_normalised = df.Water.values 

ethanol_normalised = df.Ethanol.values 

 

# Simulate clean spectra 

conc_lst = [0, 0.01, 0.02, 0.03, 0.04, 0.05] 

no_of_spectra = 100000 

 

concentrations = [] 

clean_spectra = [] 

for i in range(no_of_spectra): 

    conc = random.choice(conc_lst) 

    concentrations.append(conc) 

    sample = (1 - conc) * water_normalised + conc * ethanol_normalised 

    clean_spectra.append(sample) 

clean_spectra = np.stack(clean_spectra, axis = 1) 

concentrations = np.asarray(concentrations) 
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# Adding noise to clean spectra 

mu = 0 

sigma = 0.1 

 

noisy_spectra_1 = [] 

for i in range(clean_spectra.shape[1]): 

    noise = np.random.normal(mu, sigma, 401) 

    noisy_spectra_1.append(clean_spectra[:,i] + noise) 

noisy_spectra_1 = np.stack(noisy_spectra_1, axis = 1) 

 

noisy_spectra_2 = [] 

for i in range(clean_spectra.shape[1]): 

    mu = np.random.uniform(low = -1, high = 1) 

    sigma = np.random.uniform(low = 0, high = 0.1) 

    noise = np.random.normal(mu, sigma, 401) 

    noisy_spectra_2.append(clean_spectra[:,i] + noise) 

noisy_spectra_2 = np.stack(noisy_spectra_2, axis = 1) 

 

''' 

Generate slow systematic noise. 

''' 

Fs = 401 

f = 10 

sample_syst = 401 

x_syst = np.arange(sample_syst) 

y_syst = (np.sin(2 * np.pi * f * x_syst / Fs))/50 

 

noisy_spectra_3 = [] 

for i in range(clean_spectra.shape[1]): 

    noise = np.random.random(401) 

    noisy_spectra_3.append(clean_spectra[:,i] + noise) 

noisy_spectra_3 = np.stack(noisy_spectra_3, axis = 1) 

 

noisy_spectra_4 = [] 

for i in range(clean_spectra.shape[1]): 

    mu = np.random.uniform(low = -1, high = 1) 

    sigma = np.random.uniform(low = 0, high = 0.1) 

    noise = np.random.normal(mu, sigma, 401) 

    noisy_spectra_4.append(clean_spectra[:,i] + noise + y_syst) 

noisy_spectra_4 = np.stack(noisy_spectra_4, axis = 1) 

 

# OPTIMISATION 

''' 

Butterworth filter 

''' 
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cut_off_freq_ranges = np.linspace(0.0001, 0.4, 100) 

orders = range(1,6) 

overall_errs = [] 

for i in orders: 

    interim_errs = [] 

    for j in cut_off_freq_ranges: 

        ds1_butter, err1_butter = use_butterworth_filter(noisy_spectra_

1, clean_spectra, i, j) 

        interim_errs.append(np.mean(err1_butter)) 

    interim_errs = np.stack(interim_errs) 

    overall_errs.append(interim_errs) 

overall_errs = np.stack(overall_errs) 

overall_errs_2 = [] 

for i in orders: 

    interim_errs = [] 

    for j in cut_off_freq_ranges: 

        ds2_butter, err2_butter = use_butterworth_filter(noisy_spectra_

2, clean_spectra, i, j) 

        interim_errs.append(np.mean(err2_butter)) 

    interim_errs = np.stack(interim_errs) 

    overall_errs_2.append(interim_errs) 

overall_errs_2 = np.stack(overall_errs_2) 

overall_errs_3 = [] 

for i in orders: 

    interim_errs = [] 

    for j in cut_off_freq_ranges: 

        ds3_butter, err3_butter = use_butterworth_filter(noisy_spectra_

3, clean_spectra, i, j) 

        interim_errs.append(np.mean(err3_butter)) 

    interim_errs = np.stack(interim_errs) 

    overall_errs_3.append(interim_errs) 

overall_errs_3 = np.stack(overall_errs_3) 

overall_errs_4 = [] 

for i in orders: 

    interim_errs = [] 

    for j in cut_off_freq_ranges: 

        ds4_butter, err4_butter = use_butterworth_filter(noisy_spectra_

4, clean_spectra, i, j) 

        interim_errs.append(np.mean(err4_butter)) 

    interim_errs = np.stack(interim_errs) 

    overall_errs_4.append(interim_errs) 

overall_errs_4 = np.stack(overall_errs_4) 

 

print(np.where(overall_errs == np.min(overall_errs))) 

print(np.where(overall_errs_2 == np.min(overall_errs_2))) 

print(np.where(overall_errs_3 == np.min(overall_errs_3))) 

print(np.where(overall_errs_4 == np.min(overall_errs_4))) 
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''' Savitzky-Golay filter''' 

window_length_ranges = [11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 

                        59, 63, 67, 71, 75, 79, 83, 87, 91, 95, 99, 103

, 107] 

orders = range(1,6) 

overall_errs_svg = [] 

for i in orders: 

    interim_errs = [] 

    for j in window_length_ranges: 

        ds_svg, err_svg = use_svg_filter(noisy_spectra_1, clean_spectra

, j, i) 

        interim_errs.append(np.mean(err_svg)) 

    interim_errs = np.stack(interim_errs) 

    overall_errs_svg.append(interim_errs) 

overall_errs_svg = np.stack(overall_errs_svg) 

overall_errs_2_svg = [] 

for i in orders: 

    interim_errs = [] 

    for j in window_length_ranges: 

        ds_svg, err_svg = use_svg_filter(noisy_spectra_2, clean_spectra

, j, i) 

        interim_errs.append(np.mean(err_svg)) 

    interim_errs = np.stack(interim_errs) 

    overall_errs_2_svg.append(interim_errs) 

overall_errs_2_svg = np.stack(overall_errs_2_svg) 

overall_errs_3_svg = [] 

for i in orders: 

    interim_errs = [] 

    for j in window_length_ranges: 

        ds_svg, err_svg = use_svg_filter(noisy_spectra_3, clean_spectra

, j, i) 

        interim_errs.append(np.mean(err_svg)) 

    interim_errs = np.stack(interim_errs) 

    overall_errs_3_svg.append(interim_errs) 

overall_errs_3_svg = np.stack(overall_errs_3_svg) 

overall_errs_4_svg = [] 

for i in orders: 

    interim_errs = [] 

    for j in window_length_ranges: 

        ds_svg, err_svg = use_svg_filter(noisy_spectra_4, clean_spectra

, j, i) 

        interim_errs.append(np.mean(err_svg)) 

    interim_errs = np.stack(interim_errs) 

    overall_errs_4_svg.append(interim_errs) 

overall_errs_4_svg = np.stack(overall_errs_4_svg) 

print(np.where(overall_errs_svg == np.min(overall_errs_svg))) 

print(np.where(overall_errs_2_svg == np.min(overall_errs_2_svg))) 

print(np.where(overall_errs_3_svg == np.min(overall_errs_3_svg))) 

print(np.where(overall_errs_4_svg == np.min(overall_errs_4_svg)))  
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# DATA PREPARATION FOR THE AUTOENCODER 

 

noisy_simulated_spectra_array = np.concatenate((noisy_spectra_1, noisy_

spectra_2, noisy_spectra_3), axis = 1) 

simulated_spectra = np.concatenate((clean_spectra, clean_spectra, noisy

_spectra_3), axis = 1) 

concentrations = np.concatenate((concentrations, concentrations, concen

trations)) 

 

# Check shapes of all datasets 

print('Simulated spectra shape is: ' + str(simulated_spectra.shape)) 

print('Simulated noisy spectra shape is: ' + str(noisy_simulated_spectr

a_array.shape)) 

 

# Reshape the arrays to fit the models 

simulated_spectra = simulated_spectra.reshape([1, 401, -

1]).transpose(2, 1, 0) 

noisy_simulated_sp = noisy_simulated_spectra_array.reshape([1, 401, -

1]).transpose(2, 1, 0) 

 

# Check shapes of all datasets again 

print('Simulated spectra shape is: ' + str(simulated_spectra.shape)) 

print('Simulated noisy spectra shape is: ' + str(noisy_simulated_sp.sha

pe)) 

 

# AUTOENCODER 

# Model configuration 

width, height = 401, 1  

input_shape = (width, height) 

batch_size = 128 

no_epochs = 50 

max_norm_value = 2.0 

 

X_train, X_test, y_train, y_test = train_test_split(noisy_simulated_sp,

 simulated_spectra/4, test_size=0.1) 

 

ds_train = tf.data.Dataset.from_tensor_slices((X_train, y_train)) 

ds_train = ds_train.shuffle(buffer_size=len(X_train)).batch(128) 

 

ds_validation= tf.data.Dataset.from_tensor_slices((X_test, y_test)).bat

ch(128) 
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# Create the model 

k_size = 9 

model = Sequential() 

 

model.add(Conv1D(256, kernel_size=(k_size), kernel_constraint=max_norm(

max_norm_value), activation='relu', kernel_initializer='he_uniform', in

put_shape=input_shape)) 

 

model.add(Conv1D(128, kernel_size=(k_size), kernel_constraint=max_norm(

max_norm_value), activation='relu', kernel_initializer='he_uniform', in

put_shape=input_shape)) 

 

model.add(Conv1D(32, kernel_size=(k_size), kernel_constraint=max_norm(m

ax_norm_value), activation='relu', kernel_initializer='he_uniform')) 

 

model.add(Conv1DTranspose(32, kernel_size=(k_size), kernel_constraint=m

ax_norm(max_norm_value), activation='relu', kernel_initializer='he_unif

orm')) 

 

model.add(Conv1DTranspose(128, kernel_size=(k_size), kernel_constraint=

max_norm(max_norm_value), activation='relu', kernel_initializer='he_uni

form')) 

 

model.add(Conv1DTranspose(256, kernel_size=(k_size), kernel_constraint=

max_norm(max_norm_value), activation='relu', kernel_initializer='he_uni

form')) 

 

model.add(Conv1D(1, kernel_size=(k_size), kernel_constraint=max_norm(ma

x_norm_value), activation='tanh', padding='same')) 

 

model.summary() 

 

# Compile and fit data 

model.compile(optimizer='adam', loss='mae') 

model.fit(ds_train, 

                epochs=no_epochs, 

                callbacks=[keras.callbacks.TensorBoard(log_dir='logs')]

, 

                validation_data = ds_validation) 

 

# Save the weights 

model.save_weights('./checkpoint') 
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# Upload measured data 

# This dataset is already balanced 

measured_spectra = pd.read_csv('/content/drive/My Drive/Data/measuremen

ts_for_masters.csv') 

clean_sp = pd.read_csv('/content/drive/My Drive/Data/clean_sp_for_maste

rs.csv') 

 

concentrations_measured = measured_spectra.conc.values 

measurements = pd.DataFrame(std_scaler.fit_transform(measured_spectra.v

alues[:,:-1].T)).values 

clean_for_measurements = pd.DataFrame(std_scaler.fit_transform(clean_sp

.values[:,1:-1].T)).values 

 

# Reshape the arrays to fit the models 

measured_spectra = measurements.reshape([1, 401, -

1]).transpose(2, 1, 0) 

clean_for_measured = clean_for_measurements.reshape([1, 401, -

1]).transpose(2, 1, 0) 

 

# Check shapes of all datasets again 

print('Measured spectra shape is: ' + str(measured_spectra.shape)) 

print('Clean measured spectra shape is: ' + str(clean_for_measured.shap

e)) 

 

# Assign variables 

noisy_input_test = measured_spectra 

pure_input_test = clean_for_measured 

 

# Generate reconstructions 

num_reconstructions = noisy_input_test.shape[0] 

samples = noisy_input_test[:num_reconstructions] 

reconstructions = model.predict(samples) 

 

# FILTERING 

# Filter the dataset with Butterworth and Savitzky-Golay filters 

ds1_butter, err1_butter = use_butterworth_filter(samples.squeeze().T, p

ure_input_test[:samples.shape[0],:].squeeze().T, 2, 0.045) 

ds1_svg, err1_svg = use_svg_filter(samples.squeeze().T, pure_input_test

[:samples.shape[0],:].squeeze().T, 107, 3) 

 

# Plot reconstructions of the DAE 

# At the same time calculate the mean absolute errors 

 
 

  



48 
 

err_lst = [] 

plt.figure() 

for i in np.arange(0, num_reconstructions): 

  # Prediction index 

  prediction_index = i 

  # Get the sample and the reconstruction 

  original = noisy_input_test[prediction_index] 

  pure = pure_input_test[prediction_index] 

  reconstruction = np.array(reconstructions[i]).reshape((width,)) 

 

  abs_err = np.mean(np.abs(pure.squeeze() -  (reconstruction.squeeze() 

* 4))) 

  err_lst.append(abs_err) 

  plt.plot(pure.squeeze(), label = 'Pure', lw = 0.75)  

  plt.plot(reconstruction.squeeze() * 4, label = 'De-noised', lw = 2) 

err_lst = np.asarray(err_lst) 

plt.grid(True) 

plt.xlabel('Wavelengths (nm', fontsize = 15) 

plt.show() 

 

# Graph for comparing the MAEs of the three models 

plt.figure(figsize = (9,7)) 

plt.title('MAEs of the filtering models', fontsize = 15) 

plt.plot(err_lst, 'b', label = 'DAE') 

plt.plot(err1_butter, 'r', label = 'Butterworth') 

plt.plot(err1_svg, 'g', label = 'Savitzky-Golay') 

plt.ylabel('Mean absolute error (MAE)', fontsize = 12) 

plt.xlabel('Spectrum number', fontsize = 12) 

plt.legend(fontsize = 12) 

plt.grid(True) 

plt.show() 

 

# PARTIAL LEAST SQUARES REGRESSION (PLSR) 

# Denoising Autoencoder 

X_dae_1 = reconstructions.squeeze() 

Y = concentrations_measured 

X_train_dae_1, X_test_dae_1, Y_train_dae_1, Y_test_dae_1 = train_test_s

plit(X_dae_1, Y, test_size = 0.2) 

no_of_components = 10 

pls = PLSRegression(no_of_components) 

pls.fit_transform(X_train_dae_1, Y_train_dae_1) 

Y_pred_test_1 = pls.predict(X_test_dae_1) 

r2_test_1 = r2_score(Y_test_dae_1, Y_pred_test_1) 

RMSEP_test_1 = np.sqrt(mean_squared_error(Y_test_dae_1, Y_pred_test_1)) 
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# Butterworth Filter 

X_butter = ds1_butter.squeeze().T 

X_train_butter, X_test_butter, Y_train_butter, Y_test_butter = train_te

st_split(X_butter, Y, test_size = 0.2) 

pls.fit_transform(X_train_butter, Y_train_butter) 

Y_pred_test_butter = pls.predict(X_test_butter) 

r2_test_butter = r2_score(Y_test_butter, Y_pred_test_butter) 

RMSEP_test_butter = np.sqrt(mean_squared_error(Y_test_butter, Y_pred_te

st_butter)) 

 

# Savitzky-Golay Filter 

X_svg = ds1_svg.squeeze().T 

X_train_svg, X_test_svg, Y_train_svg, Y_test_svg = train_test_split(X_s

vg, Y, test_size = 0.2) 

pls.fit_transform(X_train_svg, Y_train_svg) 

Y_pred_test_svg = pls.predict(X_test_svg) 

r2_test_svg = r2_score(Y_test_svg, Y_pred_test_svg) 

RMSEP_test_svg = np.sqrt(mean_squared_error(Y_test_svg, Y_pred_test_svg

)) 

 

# Print the results of the PLSR 

print('Raw r-squared ', round(r2_test, 4)) 

print('Raw RMSEP ', round(RMSEP_test, 4)) 

print('Butterworth r-squared ', round(r2_test_butter, 4)) 

print('Butterworth RMSEP ', round(RMSEP_test_butter, 4)) 

print('Savizky-Golay r-squared ', round(r2_test_svg, 4)) 

print('Savizky-Golay RMSEP ', round(RMSEP_test_svg, 4)) 

print('DAE r-squared ', round(r2_test_1, 4)) 

print('DAE RMSEP ', round(RMSEP_test_1, 4)) 

 
 


