
VILNIUS UNIVERSITY

FACULTY OF MATHEMATICS AND INFORMATICS

MODELLING AND DATA ANALYSIS MASTER’S STUDY PROGRAMME

Master’s thesis

A Study into Digital Denoising of NIR Spectroscopy

Measurements

Skaitmeninių triukšmo šalinimo metodų artimųjų infraraudonųjų spindulių

spektroskopiniuose matavimuose tyrimas

Laima Andrejevaitė

 Supervisor Viktor Skorniakov, Doc., Dr

Vilnius, 2021

2

ABSTRACT

Near infrared spectroscopy (NIRS) provides a non-invasive, cost effective and efficient tool for

monitoring compositions of various substances. Potential applications of NIRS in medicine could

simplify and improve the quality of treatment for diabetic or septic patients. The precision and

reliability of any tools used in medicine are of extremely high standard since the price for an error can

be immense, however, measurements of any kind inherently have errors attached and data

preprocessing algorithms play a crucial role in analysing the dataset. This thesis proposes an

autoencoder based approach to NIRS measurement denoising that is directly comparable to the

currently used filtering functions.

To achieve this goal a two-step approach was designed to test the denoising autoencoder (DAE) and

compare its results to the Butterworth “lowpass” filter (BLP) and the Savitzky-Golay filter (SVG). The

DEA was trained on simulated (artificial) data with concentrations in the same range as the

measurements. Filtering parameters of BLP and SVG were also optimized on the simulated dataset.

Then the measured dataset was filtered three different ways and the results were compared through

the mean absolute error (MAE) and the partial least squares regression (PLSR).

BLP and SVG exhibited better results when comparing the MAE, however, DAE outperformed both

filters when PLSR results were compared. This offers a conclusion that the DAE distorts some parts of

the dataset (spectra) in order to preserve the important features, that are later recongnised by the

PLSR.

SANTRAUKA

Artimųjų infraraudonųjų spindulių spektroskopija suteikia neinvazinį, pigų ir veiksmingą būdą matuoti

įvairių medžiagų sudėtį. Šio metodo taikymas medicinoje galėtų supaprastinti diabeto ir sepsio

požymių aptikimą ir pagerinti gydymo kokybę. Medicininiams įrankiams yra keliami labai aukšti

tikslumo ir patikimumo reikalavimai, nes klaida gali kainuoti žmogaus gyvybę, tačiau iš prigimties visi

matavimai turi paklaidas, todėl duomenų paruošimas yra neatsiejama duomenų analizės dalis. Šioje

tezėje aš siūlau autoenkoderiu paremtą filtravimo algoritmą, kuris prilygtų moderniems

skaitmeniniams duomenų filtrams.

Tikslui pasiekti atlikau dviejų dalių eksperimentą, kuriame lyginau autoencoderį (DAE) su Butterworth

(„žemadažniu“) filtru (BLP) ir Savitzky-Golay filtru (SVG). Apmokiau DAE ant simuliuotų (netikrų)

duomenų, kurių koncentracijos buvo labai panašios į matuotąsias. BLP ir SVG filtrų parametrai taip pat

buvo optimizuoti ant sintetinių duomenų. Tuomet matavimų duomenys buvo filtruojami trimis

skirtingais būdais ir jų rezultatai buvo palyginti naudojant vidutinę absoliutinę paklaidą (MAE) ir dalinių

mažiausių kvadratų regresiją (PLSR).

BLP ir SVG parodė geresnius rezultatus, jei vertintume tik paklaidą (MAE), tačiau autoenkoderis

pademonstravo geresnius rezultatus, nei abu skaitmeniniai filtrai, kai palyginau regresijos rezultatus.

Tai leidžia spręsti, jog DAE iškraipo tam tikras spektro dalis, kad išsaugotų reikalingiausius bruožus,

kurie vėliau yra atpažįstami regresijos.

3

TABLE OF CONTENTS

ABSTRACT ... 2

SANTRAUKA .. 2

NOTATIONS AND DEFINITIONS .. 5

1. INTRODUCTION .. 6

2. THEORETICAL BACKGROUND AND LITERATURE REVIEW ... 8

2.1. Theoretical Background for the Thesis .. 8

2.2. Noise reduction techniques in spectroscopy and signal processing 10

2.3. Autoencoders and other ANNs in NIRS ... 12

2.4. Analysis of the Literature ... 13

3. RESEARCH METHODOLOGY ... 14

3.1. Design of the Experiments ... 14

3.2. Data Simulation and Measurements ... 15

3.3. Models Tested .. 19

3.4. Evaluation of Outcomes ... 23

3.5. Evaluation of Alternative Methods ... 25

4. ANALYSIS AND RESULTS ... 26

4.1. PLSR on Measured Data without Filtering .. 26

4.2. Denoising data with a Butterworth “lowpass” and Savitzky-Golay filters 27

4.3. Denoising data with an autoencoder .. 29

4.4. Performance Comparison .. 30

4.5. Further Research Questions ... 33

5. CONCLUSIONS .. 34

BIBLIOGRAPHY .. 35

APPENDIX 1: SUMMARY OF MEASUREMENTS CARRIED OUT .. 38

APPENDIX 2: SAVITZKY-GOLAY FILTER .. 39

APPENDIX 3: CODE FOR THIS THESIS ... 40

4

Table of Figures

Figure 1: Absorption spectrum of liquid water (source) ... 6

Figure 2: Characteristic vibrations of a water molecule (source) ... 8

Figure 3: Schematic of spectroscopy measurement configuration in transmission and reflection

geometry. .. 9

Figure 4: Measurements in transmission geometry carried out in the same laboratory. 10

Figure 5: Basic structure of the autoencoder. .. 12

Figure 6: Flowchart of the experiment. .. 15

Figure 7: Pure water and ethanol spectra (2000 - 2400 nm) .. 16

Figure 8: Example of Simulated Noise Free Spectra (2000 - 2400 nm) .. 17

Figure 9: Comparison of measured and simulated spectra. ... 17

Figure 10: Measurement setup. .. 18

Figure 11: Buterworth "lowpass" filter's frequency response. ... 19

Figure 12: Optimisation of the Butterworth "lowpass" filter parameters. ... 20

Figure 13: Comparison of Filtering Functions ... 24

Figure 14: Comparison of the Chebyshev's. Butterworth and Elliptic filters' responses. 25

Figure 15: Measured data. .. 26

Figure 16: Regression results on unfiltered data. ... 26

Figure 17: A heatmap of predictions of concentration. .. 27

Figure 18: Examples of simulated spectra. ... 28

Figure 19: Reconstructions of the spectra by the DAE. .. 29

Figure 20: Comparison of the real and filtered spectra. ... 30

Figure 21: Mean absolute errors of the filtering models and DAE. .. 31

Figure 22: Comparison of model performance in PLSR. ... 32

Figure 23: Measured spectra. ... 38

file:///C:/Users/laima/Desktop/Thesis/magistro_git/LA_draft_thesis_v3.docx%23_Toc61121951
file:///C:/Users/laima/Desktop/Thesis/magistro_git/LA_draft_thesis_v3.docx%23_Toc61121958
file:///C:/Users/laima/Desktop/Thesis/magistro_git/LA_draft_thesis_v3.docx%23_Toc61121960
file:///C:/Users/laima/Desktop/Thesis/magistro_git/LA_draft_thesis_v3.docx%23_Toc61121967

5

NOTATIONS AND DEFINITIONS

Adam Adaptive Moment Estimation

ANN Artificial Neural Network

BLP Butterworth “lowpass” filter

BST Brolis Sensor Technology

DAE Denoising autoencoder

FDA Functional data analysis

FT-IR Fourier Transform

MAE Mean Absolute Error

MLR Multiple Linear Regression

MSC Multiplicative Scatter Correction

MSE Mean Squared Error

NIR Near-Infrared

NIRS Near-infrared spectroscopy

PCA Principal Component Analysis

PCR Principal Component Regression

PLS Partial least squares

PLSR Partial Least Squares Regression

ReLU Rectified Linear Units

RMSEP Root mean squared error of prediction

RMSProp Root Mean Square Propagation

SGD Stochastic Gradient Descent

SGD Stochastic Gradient Descent

SNR Signal to noise ratio

SNV Standard Normal Variate

SVG Savitzky-Golay filter

6

1. INTRODUCTION

Near infrared spectroscopy (NIRS) is the analysis of near-infrared light’s interaction with a molecule.

When the light hits the molecule, the bonds in the molecule absorb the energy and respond by

vibrating. Each molecule exhibits characteristic vibrations and as a result absorbs specific parts of the

electromagnetic spectrum creating a unique “fingerprint”. Figure below depicts the absorption

spectrum of liquid water. It also outlines the ranges for each part of the electromagnetic spectrum.

The term near-infrared light usually refers to the light with wavelengths from 800 to 2500 nm (marked

in red).

Figure 1: Absorption spectrum of liquid water (source1)

Applications of the electromagnetic spectrum are endless. Examples in medicine include but are not

limited to x-rays for imaging, gamma rays for battling cancer cells, and infrared radiation in thermal

imaging. BROLIS Sensor Technology (BST) is currently developing a sensor in the NIR part of the

electromagnetic spectrum that would be able to non-invasively monitor glucose for diabetic patients,

lactates for sepsis management, and ethanol for screening, safety, and prevention. This option is

especially attractive as NIR spectroscopy is a cost-effective, high-speed, and noninvasive material

content prediction tool.

Transdermal measurements in the medical field pose a very difficult task, as the signal that we are

looking for can be orders of magnitude lower than the signal that we receive. Errors in concentration

prediction can cause lives and thus the requirements for measurement devices are very strict. Having

1 Source: https://commons.wikimedia.org/wiki/File:Absorption_spectrum_of_liquid_water.png (accessed 28
Nov 2020).

https://commons.wikimedia.org/wiki/File:Absorption_spectrum_of_liquid_water.png

7

the ability to reliably filter out or just reduce the noise (whether it is a setup related noise or a

movement of a person) would greatly contribute to the current progress in the field.

The main issue encountered by researchers nowadays is the lack of filtering algorithms that reliably

work in real life situations. There are tools available that work well in theory but pose certain

limitations in real-life applications. These limitations include:

• preserving useful signal while filtering out the unwanted noise;

• being very dataset dependent and thus requiring heavy supervision; and

• being computationally expensive, thus not useful in live monitoring of analytes.

The aim of this thesis is to examine currently available noise filtering techniques in NIR spectroscopy

and signal processing and develop an autoencoder for noise reduction in NIR spectroscopic and

compare its performance against currently used methods.

This thesis is structured as follows:

• Part 2 of the thesis delves into the currently available literature on the topic.

• Part 3 proposes an experiment and outlines the methodology for it.

• Part 4 analyses and discusses the results achieve.

• Lastly, part 5 provides concluding remarks.

8

2. THEORETICAL BACKGROUND AND LITERATURE REVIEW

Part 2 discusses the theoretical background for the thesis and reviews literature on denoising

algorithms currently used for preprocessing NIRS measurements. Chapter 2.1 explains the theoretical

part of this thesis (“the physics behind the model”). Chapter 2.2 outlines the most popular digital

filtering techniques in spectroscopy. Chapter 2.3 concentrates on machine learning algorithms in

spectroscopy. Chapter 2.4 analyses the information found in the literature and provides some

thoughts and insights. The aim of this section is to give the reader a good understanding of the filtering

techniques in NIRS as well as other algorithms used in similar fields. This approach allows for a broader

understanding of the issue at hand and means that are currently used.

2.1. Theoretical Background for the Thesis

As mentioned before, when light hits a molecule, the bonds in the molecule absorb the energy and

respond by vibrating. Each molecule exhibits characteristic vibrations and as a result absorbs specific

parts of the electromagnetic spectrum creating a unique “fingerprint”. For illustration, a schematic

picture of characteristics vibrations of water is shown below. Ethanol exhibits similar vibrations which,

however, are much more complex due to the higher complexity of the molecule.

Figure 2: Characteristic vibrations of a water molecule (source2)

This unique “fingerprint” (absorption spectrum) allows to determine the composition of samples

examined to a high degree of accuracy. The complexity of determining concentrations of composites

increases with the complexity of the sample examined. Additionally, the complexity changes between

different measurement types. Measurement in transmission geometry is the preferred method if it is

plausible. However, sometimes to measure in transmission is geometrically not feasible, so a choice

to measure in reflection geometry is made. Figure 3 depicts schemes for the two measurement types.

Measurements in reflection geometry are significantly more complex due to variations in path lengths

that the light has traveled (the light can scatter after hitting the sample or return to the photodiode).

2 Source: https://seos-project.eu/laser-rs/laser-rs-c07-s03-p03.html (accessed 15 Oct 2020).

https://seos-project.eu/laser-rs/laser-rs-c07-s03-p03.html

9

For this thesis, I examine only measurements in transmission geometry (measurements of solutions

of ethanol in water). The results can be further extended to measurements in reflection geometry;

however, there is a significant challenge of accounting for non-linear dependencies between the

explanatory variables and dependent variable in the model.

Figure 3: Schematic of spectroscopy measurement configuration in transmission and reflection geometry.

Measurements in transmission geometry follow the Beer-Lambert law which states that “the

absorptive capacity of a dissolved substance is directly proportional to its concentration in a solution”3.

It can be expressed as:

𝑨 = 𝜺𝒍𝒄.

Where

• 𝜀 is the absorptivity of the analyte;

• 𝑙 is the optical path length; and

• 𝑐 is the concentration of the analyte in the solution.

I assumed that the optical path was equal to 1mm (which is the thickness of the cuvette that the

solutions were measured in). Measurements always have an error whether it is a solution mixing error,

measurement error (rounding), or some error within the setup, therefore, what we measure is

𝑨 = 𝒍∑𝜺𝒊𝒄𝒊 + 𝒆𝒓𝒓𝒐𝒓

𝑵

𝒊=𝟏

.

Here N is the number of different analytes within the sample.

While errors in some measurements can be negligible, measurements for medical applications must

be as precise as possible. This raises a need for a reliable noise filtering algorithm. There are a number

of factors that can potentially cause noise in NIRS – the setup, the surroundings, the movement of the

cuvette etc. It is not always possible to distinguish between the causes of noise in the measurement

and thus it is difficult to mitigate for it. Figure 4 shows 4 examples of measurement of a sample in

3 Source: https://www.britannica.com/science/Beers-law

10

reflection geometry. These measurements were carried out in the laboratory, by the same people and

on the same subject but the noise levels and thus the spectra significantly differ.

Figure 4: Measurements in transmission geometry carried out in the same laboratory.

In addition, there is also the measurement error that comes naturally with any experiment due to

rounding, inaccuracies in mixing the concentrations or any other factors. These issues are also

indistinguishable from the noise created by the afore mentioned sources. Therefore, for the purpose

of this thesis, I will refer to any differences between the ideal spectrum and the measurement as noise.

2.2. Noise reduction techniques in spectroscopy and signal processing

NIR spectroscopy is a non-invasive way of analysing materials. It can be applied in many disciplines

including but not limited to medicine, agriculture, and the food industry. Analysts and researchers in

these industries use a broad toolkit for data pre-processing. The methods vary depending on the

samples taken, precision required and additional information available. Rinnan et al [1] reviews the

most common pre-processing techniques for near-infrared spectra. The paper examines such

methods as Multiplicative Scatter Correction (MSC) and variations, de-trending, Standard Normal

11

Variate (SNV), and normalization as well as Norris-Williams (NW) derivatives and Savitzky-Golay (SVG)

polynomial derivative filters. Other filtering methods also include Butterworth filter and Chebyshev

filters (Type I and Type II). These techniques cover a few groups of methods that can be used in NIRS

measurement denoising and they are successfully being applied in the field.

For this thesis I picked two methods from separate groups for comparison of the results: Butterworth

“lowpass” filter (BLP) and the Savitzky-Golay filter (SVG) as they are widely used in NIRS and provide

reliable results in filtering the spectra. The workings and details of these two filters are examined in

part 3 of this thesis as well as the appendices. In turn, here I discuss the literature available and

research carried out on these filtering techniques.

Butterworth “lowpass” filter (BLP)

The Butterworth filter is a popular noise reduction tool in signal processing. It has a frequency

response and allows for several options from which “lowpass” and “highpass” filters are most

common. In essence, depending on the filter settings, the filter only allows variations of a certain

frequency to pass by and variations with other frequencies are flattened out. In a “lowpass”

Butterworth filter all high-frequency variations (high-frequency noise) are filtered out and all slow

changes remain in the dataset. Further discussion on the workings of the BLP is presented in part 3.

Pandey and Tiwari [2] used the Butterworth filter on an electrocardiogram4 (ECG) signal. They tested

lowpass, highpass, notch and combined filters. Under normal conditions, ECG graphs have a very

predictable pattern, therefore, the Butterworth filter is a good choice. However, medical applications

require extremely high precision, and the authors could not get an improved result from cascading

the filters when compared to using them separately. In addition, the cascading of these filters was

very labour intensive, as it is not automised.

Rodriguez et al [3] compared Butterworth filter to averaging techniques (an arithmetic mean and a

rolling mean) for determining the peaks of oxygen availability and utilization during repeated sprint

exercises. They found that the Butterworth filter is superior to the averaging techniques in NIRS

measurements as it maintained the integrity of the raw dataset.

De Marchi [4][5][6][7][8][9] heavily studied various methods of predicting meat quality and other

composites by means of NIRS. His usual tool for pre-processing the NIRS spectra was the Butterworth

filter. While he successfully used this method for improving the predictions of his model, definite

conclusions cannot be drawn for medical applications from this paper. Rather, it proves, that the filter

works well for NIRS measurements.

Savitzky-Golay filter

Similarly to the Butterworth filter, Savitzky-Golay (SVG) filter is used by many researchers to smooth

NIRS measurements. While it uses a different way of smoothing, it demonstrates similar performance

to the Butterworth filter. SVG uses polynomial smoothing – it fits a chosen order polynomial through

the dedicated window length of the spectrum. More information of the workings of the SVG filter is

provided in part 3 and the corresponding appendices.

4 An electrocardiogram (ECG) investigates the cardiac abnormalities by measuring electrical activity generated
by the heart.

12

A paper by Alrezj et al [10] compared the results of partial least squares regression (PLSR) and principal

component regression (PCR) after preprocessing the NIRS spectra with two different algorithms: SVG

filter with a fixed window size and optimizing the window size for the SVG filter coupled with a

Chebyshev’s filter. This paper is particularly interesting as it examines the example of predicting

glucose levels in a solution (one of the potential future applications of my algorithm in BST). The

authors received a better result using the combined approach which again lends to the idea that

current filtering in NIRS is extremely labour intensive and requires direct supervision.

Other researchers examined various combinations of SVG filter with either MSC or one of the filters

from another group. Chen et al [11] examined the performance of Savitzky-Golay (SVG) filter

combined with multiplicative scatter correction (MSC) and received improved results over a standard

SVG. Jahani et al [12] examined various smoothing techniques in NIRS and achieved an improved result

by using SVG together with a spline interpolation method. Sampaio et al [13] used Savitzky-Golay

together with MSC for pre-treatment of spectra when using PLS analysis. Xie et al [14] proposed a

stacked SVG approach for improvement of NIRS results and received favorable results.

Most of the current research in NIRS measurement denoising tends to concentrate on stacking or

combining already existing filtering methods to improve performance. The benefits and drawback of

these approaches are further discussed in chapter 2.5.

2.3. Autoencoders and other ANNs in NIRS

An autoencoder is a type of an artificial neural network (ANN), that aims to learn a representation

(encoding) of the training dataset provided in an unsupervised manner. Due to its design, an

autoencoder is not able to copy the dataset perfectly (as then it would not be useful). Instead, it is

forced to learn the most prominent features and reconstruct them. Goodfellow et al [15] provides a

great overview of the basics of autoencoders and it serves as the basis for this thesis. An autoencoder

has two parts: an encoder part and a decoder part, and, in its simplest form, can contain only three

layers: input, output, and a single hidden layer. A scheme of this simple ANN is presented below.

Figure 5: Basic structure of the autoencoder.

The idea of autoencoders has been part of the historical landscape of neural networks for decades

(LeCun [16]; Bourlard and Kamp [17]; Hinton and Zemel [18]). Traditionally, autoencoders were used

for dimensionality reduction or feature learning. Denoising autoencoders gained their popularity

through picture manipulations, the most popular of which is the denoising of handwritten digits which

is then used for improved classification. This is achieved by adding an additional classification layer to

the already existing denoising autoencoder.

13

Machine learning techniques in NIRS have been used for a few years now (Madden and Ryder [19],

O’connell et al [20], Zhao et al [21], Howley [22] etc). More recently researchers started applying

classification algorithms used in image classification and recognition for NIR spectroscopy data. Chen

et al [23] applied stacked autoencoder architectures for spectra classification. Houston et al [24] used

a locally connected neural network for binary classification of Raman spectroscopy data. Milali et al

[25] successfully used an autoencoder for dimensionality reduction in a mosquito parity detection

study. Chao et al [26] used a stacked autoencoder and support vector machine (SVM) regression for

predicting moisture content of Masson's pine seedling leaves.

These papers usually used autoencoders or other ANNs for classification after pre-processing the data

using traditional filtering models (BLP, SVG, MSC or even simple averaging). This approach lends itself

to inaccuracies and distortions due to filtering and it will be discussed in part 3 of this thesis.

2.4. Analysis of the Literature

Methods used in pre-processing NIRS measurements differ significantly among papers examined. This

is due to variations in data available and differences in precision required. Papers that needed only a

light filtering of noise to see general trends in data found Butterworth and Savitzky-Golay filters

sufficient for their purposes. Additionally, papers where signal has a very clear trend (frequency) that

differs from noise in the dataset used these two filters very successfully and did not have the need for

additional tools.

In contrast, NIRS measurements of skin or other more complex matrices tended to look for a more

advanced approach to filtering. All papers tried a combination of the currently available methods (such

as cascading Butterworth filters) but found that the increase in human labour and computational

power outweighs the improvement in filtering capability. This indicates the need for a better way of

denoising NIR spectra.

Some papers already tried to apply autoencoders or other ANNs to NIRS measurements, however,

they usually tried to classify their spectra rather than purely denoise them. While their models

successfully classified the spectra, it is not clear if there was any improvement in the denoising of the

dataset.

The literature analysis suggested a few topics for discussion and areas, where more attention should

be paid when working with NIRS measurements:

• Preserving the signal. Traditional filtering models do not recognize the signal required in the

general dataset. There are no safeguards against signal filtering. In addition, using a traditional

pre-treatment and then putting the spectra into a neural network lends itself to further

complications, where the ANN is trained on distorted datasets.

• Improving the performance. BLP, SVG, Chebyshev and other filters perform well, and it is

difficult to directly improve their performance by stacking filters or combining them. This

usually leads to significant interventions required and does not provide a viable alternative

for real-world applications.

• Unanimity of results. There is no superior filter that performs best in most cases. In essence,

filtering is very dataset specific, thus it is difficult to compare the filtered spectra without using

additional methods.

14

3. RESEARCH METHODOLOGY

Real-life measurements exhibit unknown noise levels and patterns as the causes of the noise are not

always clear. Therefore, a thorough approach to modelling and filtering noise has been taken. Firstly,

all models where checked on simulated data and their abilities were evaluated. Then, real-life

measurements of water and ethanol solutions in a cuvette were introduced and models’

performances were compared again. Lastly, a denoising autoencoder (DAE) was trained to denoise

NIR spectroscopic measurements. The code and detailed explanations for methods used can be found

further in this part and in the appendices.

Chapter 3.1 explains the design of the experiments and the goals for each of them, and all other parts

cover in detail various aspects of these plans. Chapter 3.2 explains in detail the datasets examined.

Chapter 3.3 discusses the models used and explains the reasoning behind choosing such models.

Chapter 3.4 explains how the results of all models are evaluated. Chapter 3.5 provides a short review

of other filtering methods and reasons why they were not chosen.

3.1. Design of the Experiments

An experiment was designed to train the DAE on simulated (artificial) data that would have similar

noise types to the ones usually encountered within real-life measurements. The reasoning behind such

development was as follows:

• Simulated datasets offer a good understanding and control of the noise levels present in the

training data. This is not always the case for NIRS measurements. Causes of noise can be

varied and unknown. In addition, noise frequencies can correlate with the signal frequencies,

that additionally complicates the filtering.

• If training on simulated data proves to be successful, it would create additional

opportunities for easily training the model before its use on real data no matter what noise

is present. This would allow for more flexibility in filtering algorithms in NIRS. Finding all noise

or accounting even for most of it is a difficult task and sometimes it is impossible. Therefore,

a trained autoencoder could solve issues that otherwise would be very time consuming and

computationally expensive.

• Training the autoencoder on measured data allows the autoencoder to learn features of the

real noise present. However, this method could not be universal as a large part of noise is

setup dependent (the autoencoder would need to be retained for every setup used) or comes

from a variety of factors happening around the measurement (such as changes in temperature

or humidity).

While BLP and SVG methods work well in theory and on specific examples, their validity in real-world

applications is limited. Therefore, to analyse the performance of the DAE in comparison to BLP and

SVG, I opted to approach it in a few steps.

Figure 6 presents a flowchart of the experiment conducted (data, filtering models, DAE, and result

evaluation is discussed later in more detail):

• Step 1. A simulated dataset was used for finding optimal fitting parameters for Butterworth

“lowpass” and Savitzky-Golay filters. This was achieved by cross-validating the results within

15

a reasonable set of parameters. In turn, for the denoising autoencoder, the simulated dataset

was split into train and test sets and the autoencoder was trained.

• Step 2. A measured dataset (previously unseen to any of the models) was filtered with the

three models. The filtered datasets were then used for evaluation.

• Step 3. The mean absolute errors (MAEs) for each spectrum were compared (as a first point

of evaluation).

• Step 4. Then the denoised spectra were put into the partial least squares regression (PLSR)

and their 𝑅2 and root mean squared errors of prediction (RMSEP) were compared (second

point of evaluation).

Figure 6: Flowchart of the experiment.

Part 4 provides some further insights effectiveness of each filtering algorithm. The performance

failures can be very dataset specific, therefore, it is impossible to mitigate them in advance.

3.2. Data Simulation and Measurements

For better evaluation of the models a few versions of noisy spectra were examined. The simulated

datasets allowed for controlled noise levels and distributions whereas the measured datasets just

confirmed the results. The discussion bellow aims to shed some light on the modelling techniques

used and the reasoning behind it.

Pure (Baseline) Spectra

It is difficult to obtain an exact NIRS measurement (or any real-life measurement for that matter), but

for simulations some baselines were needed from which pure or reference spectra could be simulated.

16

Therefore, water (only water) and

ethanol (a solution of 5% of ethanol and

95% of water) of various temperatures

were measured with and FTIR

Spectrometer5 in the BROLIS Sensor

Technology (BST) laboratory. The dataset

was analysed and the relationship

between the water spectrum and the

temperature was interpolated over a

measured temperature range (13 – 55

degrees Celsius). The same analysis was

performed on the ethanol solution, with

an additional step of subtracting water to

obtain an ethanol-only spectrum. Figure

7 depicts the water and ethanol spectra

that were later used for simulating

spectra in the datasets. The analysis of spectral dependance on temperature is beyond the scope of

this thesis; thus the two reference spectra are taken as the best representations available.

Normalisation

Data normalisation is an essential part of pre-processing in machine learning, thus all data was pre-

processed by the z-score method using the standard scaler function6 from the Scikit-learn library in

Python. This method transforms the dataset into a distribution with a mean (µ) equal to 0 and

standard deviation (σ) equal to 1. This transformation is accomplished in the following way:

𝒙𝒔𝒕𝒅 =
𝒙 − 𝝁

𝝈
.

This is also a standard practice in machine learning, therefore, not examined further.

Simulated Spectra

The simulated dataset was created based on the Beer-Lambert Law as discussed in part 2 of this thesis:

𝑨 = 𝒍∑𝜺𝒊𝒄𝒊 + 𝒆𝒓𝒓𝒐𝒓

𝑵

𝒊=𝟏

.

In our example N is equal to 2, thus, for better understanding the function can be re-written as:

𝒔𝒊𝒎𝒖𝒍𝒂𝒕𝒆𝒅 𝒔𝒑𝒆𝒄𝒕𝒓𝒖𝒎 = 𝒍 ∗ (𝒄𝒆𝒕𝒉𝒂𝒏𝒐𝒍 ∗ 𝒓𝒆𝒇𝒆𝒓𝒆𝒏𝒄𝒆 𝒆𝒕𝒉𝒂𝒏𝒐𝒍 + (𝟏 − 𝒄𝒆𝒕𝒉𝒂𝒏𝒐𝒍) ∗ 𝒓𝒆𝒇𝒆𝒓𝒆𝒏𝒄𝒆 𝒘𝒂𝒕𝒆𝒓),

where 𝒄𝒆𝒕𝒉𝒂𝒏𝒐𝒍 is the concentration of ethanol in the sample and reference ethanol and reference

water are the afore mentioned spectra measured with the FTIR spectrometer. We can write

(𝟏 − 𝒄𝒆𝒕𝒉𝒂𝒏𝒐𝒍) because we know that there are no other molecules in the solution and the sum of

5 FTIR spectrometer simultaneously collects spectral data from a very wide range. As a result, it has a significant
advantage over spectrometers that measure a narrow range (in other words, it is very precise).
6 Documentation: https://scikit-
learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html (last accessed 09 Jan 2021).

Figure 7: Pure water and ethanol spectra (2000 - 2400 nm)

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html

17

ethanol and water concentration is equal to 1. Concentrations of ethanol were chosen to be similar to

the measured samples, as otherwise there would be no way to check if the models are performing

correctly. They ranged from 0% to 5% of ethanol in water.

Figure 8: Example of Simulated Noise Free Spectra (2000 - 2400 nm)

Figure 8 shows a sample from the full simulated dataset. Samples with 5% ethanol concentrations

have clear peaks between 2250 nm and 2350 nm. These peaks are smaller, but still clear for

concentrations less than 5% as well.

We also want to ensure that the simulated spectra look like the measured ones. Figure 9 compares a

part of the simulated dataset to the part of the measured dataset (spectra of the same

concentrations). It is clear, that the simulated spectra have more prominent ethanol peaks than the

measured spectra (marked by the boxes).

Figure 9: Comparison of measured and simulated spectra.

When filtering these datasets, we want to ensure that the peaks are preserved as much as possible.

The size of the peaks is directly proportional to the concentration, therefore, the algorithm that filters

well, but also flattens these peaks is not suitable for pre-processing NIRS measurements. The criteria

for filters are discussed in later parts.

18

Noise Levels in Simulated Spectra

For a systematic evaluation of results, a few datasets with increasing and changing noise were created.

For the first test, only normally distributed random noise (with µ equal to 0 and varying σ) was added

onto the simulated dataset. Then the mean was varied along with the standard deviation. Various

distributions of noise were examined, however, due to the algorithms applied within the filters, the

distribution of noise carried no influence on the results.

Following the analysis of results from the random normally distributed noise filtering, some systematic

oscillations were added to the spectra. They mimic possible interferences created by the setup when

measuring. Not all setups produce this noise (and it is preferable that they do not) thus this step was

added only to check how the models would deal with this type of noise.

Noise present in the measured dataset was checked to ensure that any patterns are addressed and a

combination of all these noises was used for training the final model and optimizing the parameters

of the Butterworth and SVG filters.

Measured Spectra

Solutions of various concentrations from 0% to 2% of ethanol in water were measured in the BROLIS

Sensor Technology (BST) laboratory in October 2020 (the laser can be tuned over the wavelengths and

therefore can measure a range rather than at a single wavelength). The summary of the

concentrations measured is presented in appendix 1.

Figure 10: Measurement setup.

The scheme above provides a simple representation of how the spectra were measured. The light

source (laser) emits near-infrared light that travels through the cuvette and the solution of ethanol

and water in it. Some light gets absorbed by the solution and the cuvette, some light scatters, and the

remaining light is collected by the photodiode on the other side of the cuvette. The latter then gives

spectra that are examined in this thesis.

The measurement was set-up in the following way:

• Concentrations were prepared in advance for the whole day and put in special containers.

• Concentrations prepared included 0%, 0.1%, 0.5%, 1%, and 2%.

• The flow was alternated by switching pumps among the containers with different

concentrations.

19

• A few iterations of the same concentration in one day were usually measured.

• There was always a gap between two concentrations when only water was flowing to ensure

that no residue from higher concentrations is still present in the cuvette after switching.

This created a dataset of various concentrations measured in a continuous fashion for a full working

week. A few benefits of this experiment are the elimination of labeling errors and the ability to

measure 24/7 without supervision. The drawbacks include a possible inaccuracy of mixing the

solutions, since relatively large quantities had to be prepared; also, a possible evaporation of higher

concentrations by the end of the week (the 2% solution might be less). More information on the

measurement is provided in appendix 1.

3.3. Models Tested

The aim of this thesis is to train an autoencoder for noise reduction in NIR spectroscopic

measurements and get results that would be directly comparable to Butterworth filter and Savitzky-

Golay filter results. These filters were chosen as a best representation of techniques currently used

within the industry. In addition, they represent different groups of filters: Butterworth filter has a

frequency response, whereas SVG filter uses polynomial smoothing techniques. These filters coupled

with multiplicative scattering correction (MSC) form the base for data pre-processing in NIR

spectroscopy.

Frequency Response Model: Butterworth “lowpass” Filter (BLP)

Butterworth [27] proposed a filter that has a frequency response: in essence, the “lowpass” filter

allows all low frequency variations to pass but flattens out all high frequency variations7 (thus the

name of the filter). Butterworth filter is defined within the Scipy8 package in Python. The user can

choose the cut-off frequency (the lower the frequency chosen, the earlier the filter starts to cut the

signal) and order of the filter (the higher the order, the faster the cutoff). Figure 11 depicts various

parameter pairings of the Butterworth “lowpass” filter.

Figure 11: Buterworth "lowpass" filter's frequency response.

7 More information can be found: https://www.electronics-tutorials.ws/filter/filter_8.html (last accessed 14
Sep 2020).
8 Documentation: https://docs.scipy.org/doc/scipy/reference/ (accessed 09 Jan 2021).

Frequency

https://www.electronics-tutorials.ws/filter/filter_8.html
https://docs.scipy.org/doc/scipy/reference/

20

There are also other variations of the Butterworth filter – “highpass” (that cuts-off all slow trends),

“bandpass” (cascades high-pass and low-pass filters), and “bandstop” (paralell combination of the

high-pass and low-pass filters). None of the alternatives seem reasonable for filtering NIR

measurements, therefore, they are not examined.

BLP works well for NIR spectroscopic measurements as some noise within the measurements tends

to have a much higher frequency to the signal in question. As a result, it can be filtered out by choosing

correct order and cut-off parameters. To achieve the best result and make the model directly

comparable to the DAE developed, the optimisation of filtering parameters was determined on

simulated data. Then, with the new parameters, the measured dataset was filtered and the result was

compared to those of SVG and DAE.

Figure 12: Optimisation of the Butterworth "lowpass" filter parameters.

Choosing the correct filtering parameters is a laborious but necessary task. It can be done one of two

ways: either trying some combinations by hand or setting up a simulation through the acceptable

parameter ranges (similar to Monte Carlo simulation) and looking for the smallest error provided. For

best results of the model, I chose to go through a reasonable range of parameters and pick the lowest

mean absolute error (MAE) for each dataset. The criteria for selection of the best filtering parameter

was the mean absolute error (MAE) – the same as the loss function that was selected for the DAE, as

it creates a consistent background for filter comparison. Since the simulated dataset is very close to

the actual measurement, the parameters chosen will be close to the optimal ones for the measured

dataset as well. This approach avoids repetition of filtering and checking the result, when working with

real-world data.

Polynomial Smoothing: Savitzky–Golay Filter (SVG)

Similarly to the Butterworth filter, Savitzky-Golay filter (SVG) is defined in the Scipy library of Python

and also has two parameters that do not have default values: window length and order of the

polynomial fitted. This approach also has similarities to the smoothing algorithms used in functional

data analysis (FDA). Its appeal lies in a simple-to-understand algorithm and strong filtering capabilities.

However, it also exhibits same drawbacks as the Butterworth filter: slow trends tend to remain after

filtering, and it is very easy to filter the useful signal out.

Savitzky and Golay [28] proposed a simplified least squares procedure for smoothing of data which

became one of the staples of various signal processing toolkits. Wentzel and Brown [29] provide a very

elegant explanation of the underlying mathematics of this method, summary of which is presented in

21

appendix 2. Parameter optimisation (window length and polynomial order) was also conducted on the

simulated dataset. Later, the measured dataset was filtered with the chosen parameters.

Artificial Neural Networks: Denoising Autoencoder

As discussed in part 2 of this thesis, various ANNs have been used in NIRS measurements. Their validity

has been proven for very specific tasks and datasets, but mainly the efforts were concentrated around

classification. These approaches used preprocessing techniques that could potentially distort the

signals received. Instead, here we will try to use a neural network (an autoencoder) for data

preprocessing (not for classification) and then use traditional regression techniques for concentration

forecasting.

We can view the noise as the corrupting factor in our analysis. Instead of copying their inputs to their

output, denoising autoencoders are trained to undo a corruption that was placed on the dataset. In

most general terms, an autoencoder is a parametric model with two components: the encoder 𝑓𝑒𝑛𝑐,𝜃𝑒

and the decoder 𝑓𝑑𝑒𝑐,𝜃𝑑
. Mathematically, we can express its loss function as

𝐿 (𝒙, 𝑔(𝑓(�̃�))),

where �̃� is a corrupted version of 𝒙.

The architecture of the DAE is outlined in the table below and the choices behind this structure are

explained in the next section.

Model: "sequential"

Layer type Output Shape Param #
Activation
Function

Conv1D (None, 393, 256) 2560 ReLU

Conv1D (None, 385, 128) 295040 ReLU

Conv1D (None, 377, 32) 36896 ReLU

Conv1DTranspose (None, 385, 32) 9248 ReLU

Conv1DTranspose (None, 393, 128) 36992 ReLU

Conv1DTranspose (None, 401, 256) 295168 ReLU

Conv1D (None, 401, 1) 2305 Tanh

Total params: 678,209
Trainable params: 678,209
Non-trainable params: 0

Table 1: Autoencoder architecture

A significant number of variations was tested when training the autoencoder. The majority of

hyperparameters were varied to determine the best fit for this task. The summary of hyperparameters

that provided the best result is presented in table 1.

The input dataset was split using 80-20 split. For each epoch, the dataset was shuffled and batched

into groups of 128 elements. No other transformations were performed on input data.

I have experimented with different numbers of layers: 5, 7 and 9. The model with 5 layers seemed too

shallow to capture all the necessary features of the dataset. In turn, the model with 9 layers did not

22

perform any better than the model with 7 layers but took significantly longer to train due to the

increased number of training parameters. Therefore, model with 7 layers was chosen.

Kernel size was another important feature to consider. Since it defines the spatial context the

convolutional filter has oversight of. The kernel size had a significant impact on the model. The 7-

layerd model produced best results with the kernel size equal to 9 hence it was selected. In addition,

convolutional kernels were initialized using He uniform variance scaling initializer.

Filters were selected in a mirrored fashion as per usual in encoder and decoder architectures. The final

layer’s filter size was equal to one as it ensured that the input and the output dimensions matched.

All convolutional layers, but last, used the ReLU activation function as it exhibits a stable performance

across various domains. The last convolutional layer uses Than activation function as it bounds the

output in the range -1 to 1. As my standardised dataset ranged from -1 to more than 3, I had to multiply

the values by 4 to enable the model to output values in the correct range.

The model uses Adam optimizer with a default learning rate of 0.001. Stochastic gradient descent and

RMSProp were considered as well, however, they produced significantly worse results. MAE was

chosen as the optimiser’s loss function. Another popular option for loss function is mean squared error

(MSE) but it provided worse results than MAE. In the MSE function the model smoothed out the

ethanol peaks significantly more. This occurred due to the models’ averseness to outliers as a result

of the squared term in the loss function. Moreover, each version of the model was tested under a

varying number of training epochs, ranging from 25 to 300. The chosen model did not show any

improvement past 50 epochs on any of the tries, thus this number was chosen for the final model.

Summary of Hyperparameters

Number of epochs 50

Kernel size 9

Filter sizes 256, 128, 32, 32, 128, 256, 1

Number of layers 7

Optimiser Adam9

Learning rate 0.001

Loss function MAE

Activation functions ReLU and Tanh (last layer)

Batch size 128

Train validation split 80-20

Convolutional kernel initialisation He uniform variance scaling initializer10
Table 2: Hyperparameters used in the final model.

All the model code was written using Tensorflow11 library (version 2.4.0). Hardware was provided by

Google Colab12 where available GPU was utilised to speed up the training process.

9 More information: https://arxiv.org/abs/1412.6980 (accessed 05 Sep 2020).
10 More information: https://www.cv-
foundation.org/openaccess/content_iccv_2015/papers/He_Delving_Deep_into_ICCV_2015_paper.pdf
(accessed 09 Jan 2021).
11 Source: https://www.tensorflow.org/ (last accessed 09 Jan 2021).
12 Source: https://colab.research.google.com/ (last accessed 09 Jan 2021).

https://arxiv.org/abs/1412.6980
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/He_Delving_Deep_into_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/He_Delving_Deep_into_ICCV_2015_paper.pdf
https://www.tensorflow.org/
https://colab.research.google.com/

23

3.4. Evaluation of Outcomes

Since the filtering models aim to filter out the noise but at the same time preserve the signal, the

evaluation of outcomes becomes a complex task. There is no straightforward metric to ensure that

both conditions are met across the models. Therefore, a joint approach of using the mean absolute

error (MAE) and the partial least squares regression (PLSR) is used. Coincidentally, MAE is also the loss

function for the autoencoder.

Firstly, the MAE is calculated for each of the filtered spectra. Reference (“clean”) spectra are available

for any concentration: they are used as the baseline to calculate how different the filtered spectra are

from the ideal situation. The equation used is as follows:

𝑴𝑨𝑬 = |𝐶 − 𝐹|,̅̅ ̅̅ ̅̅ ̅̅ ̅̅

Where:

• C is the clean spectrum; and

• F is the filtered spectrum.

The filtered spectrum (vector) is subtracted from the clean spectrum (element-wise subtraction). Then

the absolute values are calculated and, finally, the mean of these values is extracted.

𝑴𝑨𝑬 = 𝒎𝒆𝒂𝒏(𝒂𝒃𝒔(𝒄𝒍𝒆𝒂𝒏 𝒔𝒑𝒆𝒄𝒕𝒓𝒖𝒎 − 𝒇𝒊𝒍𝒕𝒆𝒓𝒆𝒅 𝒔𝒑𝒆𝒄𝒕𝒓𝒖𝒎))

This results in a single digit evaluation of the goodness-of-filtering for each spectrum. While

individually, these numbers do not carry a considerable amount of information, it provides a stable

background for comparison across time and models. However, this evaluation method does not

ensure that the signal is preserved as well as possible.

To mitigate the removal of useful signal, filtered data was checked with the PLSR. Herman O. A. Wold

developed the PLSR together with his son Svante Wold (in essence it is a generalization of multiple

linear regression (MLR)) around 1975. While the original applications of PLSR were in social sciences,

it became a popular tool in chemometrics, bioinformatics and neuroscience. Its appeal stems from the

ability to deal with possibly correlated explanatory variables as it relates not only two data matrices,

X and Y, by a linear multivariate model, but also models the structures of X and Y (Wold et al [30]).

In our case, the explanatory variables are concentration, temperature, humidity, and the laser used

for measuring. Since the performance of the laser can slightly differ based on the temperature in the

room and the spectra are also temperature dependent, the explanatory variables are correlated,

making the PLSR a perfect choice for this thesis. The corresponding 𝑅2 and root mean squared error

of prediction (RMSEP) values from the regression were compared. As for any regression, we want the

𝑅2 to be as close to 1 as possible and RMSEP to be as low as possible. This result would ensure that

there is strong linear relationship between the filtered spectra and the concentrations within the

solutions measured. In addition, the results should be better than those of non-filtered spectra,

otherwise the filtering loses its purpose.

Comparison of the Models

While the three models have different approaches to filtering, they all work well on spectroscopic

data. Table 3 outlines the main benefits and drawbacks of each of the models.

Both, BLP and SVG, under default settings, do not deal well with low frequency noise (such as a slow

sinus). This can be fixed by increasing the window length for SVG filter and adding the “highpass”

24

condition for the Butterworth filter. However, then additional issues of filtering out the signal arise.

Figure 13 illustrates this issue with a simple example:

• The same spectrum was filtered in 4 different ways: SVG with a window length of 51, SVG

filter with window length of 101, Butterworth lowpass filter with critical frequency of 0.2, and

Butterworth lowpass filter with critical frequency of 0.05.

• The figure is a zoomed in part of the picture, where ethanol peaks are located. Therefore, we

want this part to be as smooth as possible, but it is important to preserve the slow trend of

ethanol peaks in this part of the spectrum.

• Butterworth lowpass filter with critical frequency of 0.2 (black line) seems to follow the data

very well, but the same filter with critical frequency of 0.05 significantly flattens the signal

(blue line).

• A similar situation arises with the SVG filter. When the window length is 51, the red line follows

the simulated data closely, however, when the window length is increased to 101, the green

line is almost flat.

In this example we can find optimal filtering parameters after a small number of trials and the

spectrum can be smoothed (filtered) to a high standard. However, this is not plausible in the real

world. Firstly, there are slow trends that exist in samples (they were not present in the simple example

above) and they need to be filtered out. Secondly, this is only a small part of the spectrum, there is

always a possibility, that other parts will be a lot worse or that by looking at a wider picture, we will

not be able to determine the best fit. Increasing complexity of the sample also plays a role – when do

we know that the higher peaks result from higher concentrations when are they just noise? Similar

questions always arise during analysis of samples and scientists have to find alternative ways of

confirming concentrations in the samples.

Figure 13: Comparison of Filtering Functions

25

Model Benefits Drawbacks

Butterworth
“lowpass” filter

• Easy to use;

• Performs very well, when the noise if
off different frequency than the signal
in question

• Does not filter out low frequency
noise in the sample.

• Easy to filter the signal out and it
would not be noticed until the
analysis is carried out.

Savitzky-Golay
filter

• Easy to use;

• Performs very well, when the noise if
off different frequency than the signal
in question

• Does not filter out low frequency
noise in the sample.

• Easy to filter the signal out and it
would not be noticed until the
analysis is carried out.

Denoising
Autoencoder for

NIR
Measurements

• Can learn important features of the
dataset (i.e., find the ethanol peaks in
the correct place of the etahnol
spectrum and preserve them).

• Is able to catch slow variations in the
spectra or filter out offsets.

• Takes long to reliably train.

• Is not as easily manipulated as the
others.

Table 3: Benefits and drawbacks of the models.

3.5. Evaluation of Alternative Methods

Various methods of denoising of datasets and evaluation of results

were considered. Main merits and drawbacks of alternative methods

are outlined below. The chosen methods of BLP, SVG, MAE, and PLSR

cover the majority of properties measured below or are proven to

perform better than the methods outlined in this chapter.

Averaging is a simple, powerful, and well-known tool to deal with

noise in signal processing. Given a large enough sample, one could

average the spectra and remove randomly distributed noise. This

process is shown in the pictures below. However, this method is not

able to deal with any systematic noise and requires large datasets to

be successful. These issues would hinder the method’s applicability (as a stand-alone method) in real

life measurements; therefore, it was not examined in this thesis.

B-spline smoothing is also one of the possible ways to filter (smooth) non-periodic data. Functional

data analysis (FDA) techniques provide an elegant solution to this issue. However, at the moment of

writing, the FDA functions are poorly defined within Python as the package was only started in March

202013. The need for switching between R and Python during the analysis would outweigh any benefits

received from FDA. To compensate for this, a polynomial smoothing algorithm was chosen (SVG).

Principal component analysis (PCA) is another vastly popular tool in data analysis. This powerful

dimensionality reduction tool is very useful when it can separate certain patterns in the data and

express them as principal components. During previous studies, I found that PCA does not separate

clearly between the components of interest and therefore is not considered in this thesis.

Chebyshev’s filters (Type I and Type II) also have a frequency response (similar to the Butterworth

filter). Chebyshev filters are sharper than the Butterworth filter and have unwanted ripples (see figure

1414).

13 Documentation: https://fda.readthedocs.io/en/latest/ (accessed 04 Nov 2020).
14 Source: https://en.wikipedia.org/wiki/Chebyshev_filter (accessed 23 Oct 2020).

Figure 14: Comparison of the Chebyshev's.
Butterworth and Elliptic filters' responses.

https://fda.readthedocs.io/en/latest/
https://en.wikipedia.org/wiki/Chebyshev_filter

26

4. ANALYSIS AND RESULTS

Part 4 analyses the results of the experiment, provides insights into the performance of the chosen

models, discusses shortcomings of the approaches, and provides ideas for further studies into this

topic. In chapter 4.1, PLSR results on unfiltered data are examined. Chapter 4.2 reviews Butterworth

and Savitzky-Golay filter results on the same dataset. Chapter 4.3 outlines autoencoder performance

under various conditions and points out the limitations discovered. Chapter 4.4 compares the results

of all afore mentioned models. Chapter 4.5 provides directions for future study on this topic.

4.1. PLSR on Measured Data without Filtering

From the first glance, the measured dataset does not look noisy (figure 15). The graph below shows

all spectra plotted together. Clear but small peaks of ethanol are visible between 2250 nm and 2350

nm. After a better examination, there are some differences among the spectra; the ends tend to

scatter or bend inconsistently across the dataset. This is a challenge for the predictive algorithm and

a potential need for filters.

Figure 15: Measured data.

Firstly, I ran the PLSR on the

measured dataset without

filtering to create a reference

point for the three filters. The

summary of the results is

presented in the table in chapter

4.4. The 𝑅2 value of 0.7918 is too

low for medical applications as it

signifies, that only around 79%

of the total variation is explained

by the explanatory variables in

our regression. In addition, the

RMSEP value of 0.3336 is too high

and shows that the error can be

more than 35%.

Figure 16: Regression results on unfiltered data.

27

The inquiry into the predictions of the model provides further insights. Figure 17 plots the predicted

concentrations of ethanol against the actual concentrations. Due to the large number of samples, it is

not entirely clear from the graph, but most of the points lie around points (0, 0), (0.1, 0.1), (0.5, 0.5),

(1, 1), and (2, 2). However, the 0 and 2% concentrations exhibit a significant number of outliers. This

can occur due to two reasons:

1. 0% concentration is sampled more often than others as it is used as a cleaning cycle between

two other concentrations.

2. There might be a slight time delay between the theoretical start of the concentration and

when it reaches the cuvette.

By taking these two reasons into account we can try and mitigate for at least a part of the inaccuracies.

Firstly, I checked the 2D histogram to determine, where most values lie.

Figure 17: A heatmap of predictions of concentration.

The significantly different yellow region suggests that there are too many low concentrations taken

and the sample is not balanced. I sampled 18000 spectra of each concentration from the measured

dataset (total of 90000 spectra). A detailed information on sampling is provided in appendix 1. All

further analysis was carried out on the balanced dataset and I will refer to it as the measurements

(unless explicitly stated otherwise).

4.2. Denoising data with a Butterworth “lowpass” and Savitzky-Golay filters

Butterworth 15and SVG 16filters are defined in the Scipy package within Python; therefore, their use is

relatively straightforward. The parameters were optimised based on the simulated dataset (as

discussed in part 3) and the models were prepared for fitting the measured dataset.

Optimisation of filter parameters on simulated data provided insights into the workings of the

Butterworth and SVG filters: they deal well with random noise with mean zero. Any offsets in spectra

or low frequency noise are not capture by these filters. They performed well in the simplest case but

exhibited weakest performance in all subsequent tests including the measured dataset.

15 Documentation: https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.butter.html (last
accessed 09 Jan 2021).
16 Documentation: https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.savgol_filter.html (last
accessed 09 Jan 2021).

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.butter.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.savgol_filter.html

28

In general, the measured datasets can exhibit a few types of noise. Figure 18 illustrates some of these

possibilities.

• Top left. Only random normally distributed noise with mean zero is added to the simulated

spectra. This is the simples form of noise and can be easily filtered out by any of the filters

used in this thesis.

• Top right. Here random normally distributed noise with varying means is added onto the

simulated spectra. Optimisation of filtering parameters revealed that BLP and SVG filters are

not able to deal with the offsets created by the varying mean in the noise.

• Bottom left. This graph shows the spectra after a systematic slow variation is added. This type

of noise is usually caused by the laser setup itself and sometimes can be fixed by hand.

• Bottom right. Random normally distributed noise with a varying mean was combined with the

systematic noise in this example. Here, the Butterworth and SVG filters struggled to denoise

the datasets correctly due to the offsets and the persistent slow trend in the spectra.

Figure 18: Examples of simulated spectra.

After optimising the parameters, the BLP and SVG filters used were as follows:

• Butterworth “lowpass”: scipy.signal.butter(2, 0.045, btype='low').

• Savitzky-Golay filter: scipy.signal.savgol_filter(window_length = 107, polyorder = 3)

These functions were then used for filtering the measured dataset. The results are discussed in part

4.4.

29

4.3. Denoising data with an autoencoder

As discussed in part 3, the autoencoder training process included several steps. Firstly, the

autoencoder was trained on a simulated dataset (train and validation sets) and then checked on the

real-life measurements (test set). Training the autoencoders on simulated data provided significant

insights into the workings and possibilities of denoising datasets with artificial neural networks. Under

the circumstances where only random noise is added onto the dataset, neural networks do not pose

any advantages over the traditional filtering techniques apart from being unsupervised thus requiring

less human intervention.

Training the autoencoder is computationally expensive especially when a differentiated sample of

spectra is need. The easy option of generating training spectra of required concentrations does not

always work as the researcher needs to clearly understand what noise is present in their samples.

However, this is not always possible. Additionally, training on a measured dataset provides good

results, but it means that the data provided to the autoencoder are set-up specific and to make a more

comprehensive model, one has to spend a significant amount of time in differentiating the

measurements (not only concentrations, but also set-ups, days and other conditions). This is a

significant drawback of this model but with a large library of spectra created a good precision model

can be developed.

With a large, simulated dataset I was able to train the autoencoder to denoise measured spectra.

Below graph shows examples of some of the reconstructions of the spectra. While these spectra are

not perfectly re-created, the autoencoder has preserved the most prominent features of the dataset

(the impact of which will be seen in part 4.4).

Figure 19: Reconstructions of the spectra by the DAE.

30

4.4. Performance Comparison

Reconstructions and filtered spectra

Graphical interpretations can be very informative when deciding on filters’ performance. Figure 20

shows an example of a spectrum and its filtered/reconstructed versions from different models. It is

difficult to draw conclusions from the left-hand graph as the signal does not seem to be strong. One

of the possible solutions is to find a different spectrum with a higher concentration, however, then we

could not directly confirm that the filters are working well for small concentrations as well. Instead, it

is possible to check only the most important part of the graph – the area where ethanol peaks should

be present (marked in red).

Figure 20: Comparison of the real and filtered spectra.

Graph on the right provides some insights into the differences between the models. There are small

peaks of ethanol in the pure spectrum, however, they are a lot smaller in the measured spectrum

(blue and orange lines respectively). As a result, the BLP and SVG filters keep the shape of the spectrum

as they are not able to strengthen the signal (if the peaks are not present). In turn, the denoising

autoencoder has significantly more variation in the region and additionally seems to distort the

dataset on the right side of the spectrum. This result is generalized by the mean absolute errors (MAE)

calculated for the full measured dataset (figure 21).

When we inputted a measured dataset into the Butterworth filter, it seemed to filter the noise

correctly, however, the results were not as good. This arises from the fact that the filter only takes

into account the frequency of variations within the sample and at a certain point flattens everything

out. In real world applications, this technique does not provide a desired result.

Each approach had its own merits and drawbacks. For real-life NIRS measurements the denoising

autoencoder worked as well or better than the Butterworth and SVG filters. The training procedure

for the autoencoder did take a significantly longer time than of other filters, but when denoising the

test dataset, it provided similarly good performance. The need to re-adjust the filtering parameters

for each dataset for BLP and SVG filters also proves that the autoencoder is a better choice. The

preservation of ethanol peaks is another advantage.

31

Figure 21: Mean absolute errors of the filtering models and DAE.

PLSR Results

Filtered and unfiltered datasets were tested by the PLSR. Sklearn modules cross decomposition17 and

model selection18 were used for the regression. A Python function train_test_split from the model

selection module randomly split the datasets and corresponding concentrations into train and test

subsets. A histogram of the number of test and train spectra for each of the concentrations is

presented in figure 22. The numbers of each concentration used in training and testing are very similar,

however, the histogram combined the 0% and 0.1% concentrations into a single bar, thus making it

seem that the issue of water-only spectra overflow persists (this is true for both test and train sets).

Then a partial least squares regression object with 10 components was created using the cross-

decomposition module. This object was the same for all datasets. In short, PLSR takes two centered

matrices 𝚾 ∈ ℝ𝑛×𝑑 and 𝐘 ∈ ℝ𝑛×𝑡, and a number of components K. The algorithm 19behind

PLSRegression in the cross-decomposition package is as follows:

Set 𝑿1 to 𝑿 and 𝒀1 to 𝒀 and, then, ∀ 𝑘 ∈ [1;𝑲]:

a) Compute the first left and right singular vectors of the cross-covariance matrix 𝐶 = 𝑋𝑘
𝑇𝑌𝑘.

These vectors are 𝑢𝑘 ∈ ℝ𝑑 and 𝑣𝑘 ∈ ℝ𝑡.They are chosen so to maximise the 𝐶𝑜𝑣(𝑋𝑘𝑢𝑘,

𝑌𝑘𝑣𝑘).

b) Then project 𝑋𝑘 and 𝑌𝑘 on the singular vectors and obtain scores: 𝜉𝑘 = 𝑋𝑘𝑢𝑘 and 𝜔𝑘 = 𝑌𝑘𝑣𝑘.

17 Documentation: https://scikit-learn.org/stable/modules/classes.html#module-sklearn.cross_decomposition
(last accessed 09 Jan 2021).
18 Documentation: https://scikit-learn.org/stable/model_selection.html (last accessed 09 Jan 2021).
19 Source: https://scikit-learn.org/stable/modules/cross_decomposition.html#cross-decomposition (last
accessed 09 Jan 2021).

https://scikit-learn.org/stable/modules/classes.html#module-sklearn.cross_decomposition
https://scikit-learn.org/stable/model_selection.html
https://scikit-learn.org/stable/modules/cross_decomposition.html#cross-decomposition

32

c) Regress:

1. 𝑋𝑘 on 𝜉𝑘 to find a vector 𝛾𝑘 ∈ ℝ𝑑 s.t. the rank-1 matrix 𝜉𝑘𝛾𝑘
𝑇 is as close as possible to

𝑋𝑘.

2. Instead of regressing 𝑌𝑘 on 𝜔𝑘, regress it on 𝜉𝑘 (a projection of 𝑋𝑘) and get 𝛿𝑘. This

gives a slightly different loadings computation than usual.

d) Lastly, subtract the rank-1 approximations:

𝑋𝑘+1 = 𝑋𝑘 − 𝜉𝑘𝛾𝑘
𝑇

𝑌𝑘+1 = 𝑌𝑘 − 𝜉𝑘𝛿𝑘
𝑇

Figure 22: Comparison of model performance in PLSR.

33

Figure 22 further examines the predictions of concentrations of the test set. Interestingly, 3 out of 4

regressions classified concentrations that were never used for training (negative concentrations). The

graph also shows that the regression tends to favor low concentrations which can be a result of

relatively close 0% and 0.1% samples. From this graph it would be difficult to chose a single best model

as all filters have areas, where they perform best.

Summary of the main PLSR metrics is provided in the table below. Since the measurements were

relatively stable, the unfiltered dataset reached an 𝑅2 score of 0.7918 and a RMSEP of 0.3336. In turn,

the BLP and SVG filters decreased these scores to 0.7799 and 0.7757 respectively for 𝑅2 and 0.3416

and 0.3466 respectively for RMSEP. However, the proposed denoising autoencoder slightly improved

the result of the PLSR when compared to the unfiltered dataset (𝑅2 = 0.7949 and RMSEP = 0.3294).

In summary, the results from the two examined performance metrics suggest that the denoising

autoencoder distorts certain parts of the spectra to preserve the most prominent features in a

consistent way. As discussed before, the BLP and SVG filters also distort the datasets that they filter,

however, the feature preservation is not always possible in these filters.

The improvement of the algorithm lies not only in the 𝑅2, RMSEP or MAE, it also includes the

possibility of filtering the data as it is measured, since a pretrained neural network does not require a

full dataset to perform the filtering in a consistent way and there is no need for human intervention.

This feature makes it more applicable in the real-world.

PLSR Results

 Unfiltered Butterworth SVG DAE

𝑹𝟐 0.7918 0.7799 0.7757 0.7949

RMSEP 0.3336 0.3416 0.3466 0.3294
Table 4: Summary of PLSR results.

4.5. Further Research Questions

DAE successfully reduced the noise of the measurements of simple ethanol in water solutions in a

cuvette. Currently used techniques in NIRS tend to have a similar effect (especially when combinations

of these techniques are used). The autoencoder provides a simple way of dealing with various types

of noise in this situation and requires little human intervention and therefore is superior to the

currently used filtering methods. However, its reconstructions cannot be directly comparable to the

reconstructions of other models as it seems to distort some features of the spectra to preserve the

others. Further research is needed to examine these distortions and possibly eliminate them.

Moreover, with linear activation functions, autoencoders have a strong relationship with the principal

component analysis (PCA). PCA is a well-established tool in analysing any dataset. It provides more

clarity to the user and therefore could be considered a superior technique in this case. However, the

strength of autoencoder learning lies in the non-linearities of samples (Goodfellow et al [15]). This

feature can prove to be very useful for further applications in transdermal sensing research as it

exhibits non-linear relationships.

34

5. CONCLUSIONS

Currently used NIRS measurement filtering algorithms do not provide a suitable option for filtering

the noise of real-life measurements under reasonable conditions. They tend to be noise dependent

and require significant human monitoring and intervention. An alternative of using a denoising

autoencoder for NIRS measurements was explored. A DAE for NIRS measurements of ethanol and

water solutions in a cuvette was developed and its results were compared to the performance of the

Butterworth “lowpass” filter and the Savizky-Golay filter.

The DAE seemed to distort some parts of the spectra to preserve the most prominent features. This

was confirmed by using PLSR that demonstrated an improved results from the ones shown by the

Butterwoth “lowpass” filter and the Savitzky-Golay filter. As a result of this thesis, we can conclude

that the denoising autoencoder should be tested on more complex datasets with potentially non-

linear relationships between independent and explanatory variables (for example skin spectra

measured in reflection geography).

35

BIBLIOGRAPHY

[1] Rinnan A, van den Berg F and Engelsen SB (2009) Review of the most common pre-processing

techniques for near-infrared spectra. TrAC Trends in Analytical Chemistry, Volume 28, Issue 10,

Pages 1201-1222

[2] Pandey H and Tiwari R (2014) An Innovative Design Approach of Butterworth Filter for Noise

Reduction in ECG Signal Processing based Applications. Progress in Science in Engineering

Research Journal. Available here (accessed 26 October 2020).

[3] Rodriguez RF, Townsend NE, Aughey RJ, and Billaut F (2018) Influence of averaging method

on muscle deoxygenation interpretation during repeated- sprint exercise. Scandinavian Journal

of Medicine & Science in Sports Published by John Wiley & Sons Ltd, 2263-2271.

[4] De Marchi M (2013) On-line prediction of beef quality traits using near infrared spectroscopy.

Meat Science, Volume 94, Issue 4, August 2013, 455-460.

[5] De Marchi M, Berzaghi P, Boukha A, Mirisola M, and Gallo L (2007) Use of near-infrared

spectroscopy for assessment of beef quality traits. Italian Journal of Animal Science, 6, 421–

423.

[6] De Marchi M, Penasa M, Battagin M, Zanetti E, Pulici C, and Cassandro M (2011) Feasibility of

the direct application of near-infrared reflectance spectroscopy on intact chicken breasts to

predict meat color and physical traits. Poultry Science, 90, 1594–1599.

[7] De Marchi M, Penasa M, Cecchinato A, and Bittante G (2013) The relevance of different

infrared technologies and sample treatments for predicting meat quality traits in commercial

cuts. Meat Science, 93, 329–335.

[8] De Marchi M, Penasa M, Cecchinato A, Mele M, Secchiari P, and Bittante G (2011)

Effectiveness of mid-infrared spectroscopy to predict fatty acid composition of Brown Swiss

bovine milk. Animal, 5, 1653–1658.

[9] De Marchi M, Riovanto R, Penasa M, and Cassandro M (2012) At-line prediction of fatty acid

profile in chicken breast using near infrared reflectance spectroscopy. Meat Science, 90, 653–

657.

[10] Alrezj OA, Patchava K, Benaissa M, and Alshebeili SA (2017) Pre-processing to Enhance the

Quantitative Analysis of Glucose from NIR and MIR Spectra. In: Eskola H., Väisänen O., Viik J.,

Hyttinen J. (eds) EMBEC & NBC 2017. EMBEC 2017, NBC 2017. IFMBE Proceedings, vol 65.

Springer, Singapore. https://doi.org/10.1007/978-981-10-5122-7_11 (accessed 04 November

2020).

[11] Chen H, Song Q, Tang G, Feng Q and Lin L (2012) The Combined Optimization of Savitzky-Golay

Smoothing and Multiplicative Scatter Correction for FT-NIR PLS Models. Volume 2013 |Article

ID 642190. Available at: https://doi.org/10.1155/2013/642190 (accessed on 16 Dec 2020)

[12] Jahani S, Setarehdan SK, Boas DA, and Yücel MA (2018) Motion artifact detection and

correction in functional near-infrared spectroscopy: a new hybrid method based on spline

interpolation method and Savitzky-Golay filtering. Neurophotonics, 5(1):015003.

https://www.researchgate.net/publication/322083494_An_Innovative_Design_Approach_of_Butterworth_Filter_for_Noise_Reduction_in_ECG_Signal_Processing_based_Applications
https://doi.org/10.1007/978-981-10-5122-7_11
https://doi.org/10.1155/2013/642190

36

[13] Sampaio P, Soares A, Castanho A, Almeida AS, Oliveira J, and Brites C (2017) Dataset of Near-

infrared spectroscopy measurement for amylose determination using PLS algorithms. Data in

Brief, 15, 389 – 396

[14] Xie S, Xiang B, Yu L, and Deng H (2009) Tailoring noise frequency spectrum to improve NIR

determinations. Talanta, Volume 80, Issue 2, 895-902

[15] Goodfellow I, Bengio Y, and Courville A (2016) Deep Learning. MIT Press. Available at:

http://www.deeplearningbook.org (accessed 09 Sept 2020)

[16] LeCun Y and Fogelman FS (1987) Modeles connexionnistes de l'apprentissage. Intellectica

Revue de l Association pour la Recherche Cognitive 2(1). Available here (accessed 24 Oct 2020).

[17] Bourlard H and Kamp Y (1988) Auto-association by multilayer perceptrons and singular value

decomposition. Biological Cybernetics, volume 59, 291–294.

[18] Hinton G and Zemel RS (1994) Autoencoders, minimum description length and Helmholtz free

energy. NIPS'93: Proceedings of the 6th International Conference on Neural Information

Processing Systems, Pages 3–10.

[19] Madden MG and Ryder AG (2002) Machine Learning Methods for Quantitative Analysis of

Raman Spectroscopy Data. Opto-Ireland 2002: Optics and Photonics Technologies and

Applications, 1130–1140.

[20] O’connell ML, Howley T, Ryder AG, Leger MN, and Madden MG (2005) Classification of a

Target Analyte in Solid Mixtures using Principal Component Analysis, Support Vector Machines,

and Raman Spectroscopy. Opto-Ireland2005: Optical Sensing and Spectroscopy, 340–351.

[21] Zhao J, Chen Q, Huang X, and Fang C (2006) Qualitative Identification of Tea Categories by Near

Infrared Spectroscopy and Support Vector Machine. J. Pharm.Biomed. Anal.2006, 41, 1198–

1204.

[22] Howley T (2007) Kernel Methods for Machine Learning with Application to the Analysis of

Raman Spectra. National University of Ireland Galway.

[23] Chen Y, Lin Z, Zhao X, Wang G, and Gu Y (2014) Deep Learning-based Classification of

Hyperspectral Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote

Sensing, 7, 2094–2107.

[24] Houston J, Glavin FG, and Madden MG (2020) Robust Classification of High-Dimensional

Spectroscopy Data Using Deep Learning and Data Synthesis. Journal of Chemical Information

and Modeling, Available here (accessed on 31 Aug 2020).

[25] Milali MP, Kiware SS, Govella NJ, Okumu F, Bansal N, Bozdag S, Charlwood JD, Maia M,

Ogoma SB, Dowell FE, Corliss GF, Sikulu-Lord MT, and Povinelli RJ (2020) An Autoencoder and

Artificial Neural Network-based Method to Estimate Parity Status of Wild Mosquitoes from

Near-infrared Spectra. PLoS One. 2020; 15(6): e0234557.

[26] Chao N, Zhang Y, and Wang D (2018) Moisture Content Quantization of Masson Pine Seedling

Leaf Based on Stacked Autoencoder with Near-Infrared Spectroscopy. Journal of Electrical and

Computer Engineering, Volume 2018, Article ID 8696202.

[27] Butterworth S (1930) On the Theory of Filter Amplifiers. Experimental Wireless and the

Wireless Engineer, Vol. 7, 536-541.

http://www.deeplearningbook.org/
https://www.researchgate.net/publication/216792893_Modeles_connexionnistes_de_l%27apprentissage
https://arxiv.org/abs/2003.11842

37

[28] Savitzky MJ and Golay E (1964) Smoothing and Differentiation of Data by Simplified Least

Square Procedures. Anal. Chem., 36, 1627–1639.

[29] Wentzel P and Brown C (2006) Signal Processing in Analytical Chemistry. In book: Encyclopedia

of Analytical Chemistry.

[30] Wold S, Sjostrom M and Eriksson L (2001) PLS-regression: A Basic Tool of Chemometrics.

Chemometrics and Intelligent Laboratory Systems 58(2):109-130.

38

APPENDIX 1: SUMMARY OF MEASUREMENTS CARRIED OUT

All measurements were carried out in the Brolis Sensor Technology (BST) laboratory in Vilnius by the

measurements team. Firstly, the water and ethanol spectra of different temperatures were measured

in the FT-IR spectrometer on 14 July 2020. This provided a base for the simulations of artificial spectra.

Then a series of various concentrations in a flow cuvette were measured over a span of a full week in

October 2020. Lower concentrations were chosen on purpose, as we want to develop an algorithm

for transdermal sensing of ethanol in humans (where 2.5 permille is already considered a high level of

alcohol in person’s blood). The summary of the number of spectra measurements and concentrations

is provided in the table below.

Table AX: Measurements of Ethanol Solutions in Water.

Date Concentrations measured (%) No of Spectra (raw) No of Spectra (avg)

2020-10-19 0.1, 0.5, 1 and 2 18,683 753

2020-10-20 0.1, 0.5, 1 and 2 31,166 1,234

2020-10-21 0.1, 0.5, 1 and 2 26,026 1,044

2020-10-22 0.1, 0.5, 1 and 2 36,396 1,440

2020-10-23 0.1, 0.5, 1 and 2 25,324 1,006

Total: 137,595 4,577

As discussed in the main text, the above measurement was not balanced as there were intervals of

water between any two concentrations to prevent the concentrations mixing, thus, the number of

water-only spectra exceeded any other concentration more than twice (see the table below). The

balancing was carried out by using the sample function20 from the Pandas package in Python.

Balancing the sample Total

Concentration (%) 0 0.1 0.5 1 2 5

Before (no of
measurements)

59532 19666 18938 18948 20502 137586

After (no of
measurements)

18000 18000 18000 18000 18000 90000

Figure 23 depicts all spectra that were

measured over the week. They seem

very homogeneous with slight

deviations on the edges and the areas

were ethanol peaks should be.

Unfortunately, not all measurements

carried out are as good as this one.

20 Documentation: https://pandas.pydata.org/pandas-
docs/stable/reference/api/pandas.DataFrame.sample.html (last accessed 09 Jan 2021).

Figure 23: Measured spectra.

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.sample.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.sample.html

39

APPENDIX 2: SAVITZKY-GOLAY FILTER

This appendix discusses the mathematical background for the Savitzky-Golay filter in detail. It also

explains the reasons why this filter is often used in NIRS. The information provided here comes from

Wentzel and Brown [29]. Savitzky-Golay (SVG) filter uses polynomial smoothing to denoise spectra. If

we consider a second order seven point polynomial smooth, then the model to be fit can be expressed

as

𝒚 = 𝒃𝟎 + 𝒃𝟏𝒙 + 𝒃𝟐𝒙
𝟐.

The equivalent matrix form of this is

[

𝑦1

𝑦2
𝑦3

𝑦4
𝑦5

𝑦6

𝑦17]

=

[

1 𝑥1 𝑥1

2

1 𝑥2 𝑥2
2

1
1
1
1
1

𝑥3

𝑥4
𝑥5
𝑥6

𝑥7

𝑥3
2

𝑥4
2

𝑥5
2

𝑥6
2

𝑥7
2]

[

𝑏0

𝑏1

𝑏2

]

We can express it as 𝒚 = 𝑿𝒃 where X is the matrix containing polynomial functions for the fit. The

least squares solution for b is well known from linear algebra:

𝒃 = (𝑿𝑻𝑿)−𝟏𝑿𝑻𝒚 = 𝑨𝒚

Then the intercept for the fit is

𝑏0 = 𝒂𝟏𝒚 = 𝑎11𝑦1 + 𝑎12𝑦2 + ⋯+ 𝑎21𝑦7

As x = 0 for the central point in a 7-point sequence (because of the way this problem is setup), the

following equation holds:

�̂�4 = 𝑏0 + 𝑏1(0) + 𝑏2(0)2 = 𝑏0 = 𝒂𝟏𝒚

To simplify, the filter coefficients are first row of the matrix (𝑿𝑻𝑿)−𝟏𝑿𝑻.

This approach holds for SVG filter of

any length and any order. The figure

on the right provides a graphical

explanation of the algorithm (source

Wentzel and Brown [29]).

40

APPENDIX 3: CODE FOR THIS THESIS

IMPORTS

All packages used later are imported here.

import random

import numpy as np

import pandas as pd

from scipy import signal

from google.colab import drive

import matplotlib.pyplot as plt

from sklearn.preprocessing import StandardScaler

from sklearn.model_selection import train_test_split

import keras

import tensorflow as tf

from keras.models import Sequential

from keras.layers import Conv1D, Conv1DTranspose

from keras.constraints import max_norm

FUNCTION DEFINITIONS

define a functions for future use.

def calculate_temp_dependent_spectrum(temperature, coefficients):

 return temperature * coefficients[:,0] ** 2 + temperature * coefficie

nts[:,1] + coefficients[:,2]

def use_butterworth_filter(noisy_spectra, clean_spectra, order, crit_fr

eq):

 b, a = signal.butter(order, crit_freq, 'lowpass')

 filtered = []

 error_lst = []

 for i in range(noisy_spectra.shape[1]):

 y = noisy_spectra[:,i]

 output = signal.filtfilt(b, a, y)

 filtered.append(output)

 error_lst.append(np.mean(abs(clean_spectra[:,i] - output)))

 filtered = np.stack(filtered, axis = 1)

 error_lst = np.stack(error_lst)

 return filtered, error_lst

41

def use_svg_filter(noisy_spectra, clean_spectra, window_length, poly_or

der):

 filtered = []

 error_lst = []

 for i in range(noisy_spectra.shape[1]):

 y = noisy_spectra[:,i]

 output = signal.savgol_filter(y, window_length, poly_order)

 filtered.append(output)

 error_lst.append(np.mean(abs(clean_spectra[:,i] - output)))

 filtered = np.stack(filtered, axis = 1)

 error_lst = np.stack(error_lst)

 return filtered, error_lst

OTHER PREPARATIONS

Normalisation

create a scaler object

std_scaler = StandardScaler()

Mount Google Drive for easy access to data.

drive.mount("/content/drive")

SIMULATING AND UPLOADING DATASETS

Pure data upload

df = pd.read_csv('normalised_water_and_ethanol.csv', index_col = None)

wavelengths = df.WL.values

water_normalised = df.Water.values

ethanol_normalised = df.Ethanol.values

Simulate clean spectra

conc_lst = [0, 0.01, 0.02, 0.03, 0.04, 0.05]

no_of_spectra = 100000

concentrations = []

clean_spectra = []

for i in range(no_of_spectra):

 conc = random.choice(conc_lst)

 concentrations.append(conc)

 sample = (1 - conc) * water_normalised + conc * ethanol_normalised

 clean_spectra.append(sample)

clean_spectra = np.stack(clean_spectra, axis = 1)

concentrations = np.asarray(concentrations)

42

Adding noise to clean spectra

mu = 0

sigma = 0.1

noisy_spectra_1 = []

for i in range(clean_spectra.shape[1]):

 noise = np.random.normal(mu, sigma, 401)

 noisy_spectra_1.append(clean_spectra[:,i] + noise)

noisy_spectra_1 = np.stack(noisy_spectra_1, axis = 1)

noisy_spectra_2 = []

for i in range(clean_spectra.shape[1]):

 mu = np.random.uniform(low = -1, high = 1)

 sigma = np.random.uniform(low = 0, high = 0.1)

 noise = np.random.normal(mu, sigma, 401)

 noisy_spectra_2.append(clean_spectra[:,i] + noise)

noisy_spectra_2 = np.stack(noisy_spectra_2, axis = 1)

'''

Generate slow systematic noise.

'''

Fs = 401

f = 10

sample_syst = 401

x_syst = np.arange(sample_syst)

y_syst = (np.sin(2 * np.pi * f * x_syst / Fs))/50

noisy_spectra_3 = []

for i in range(clean_spectra.shape[1]):

 noise = np.random.random(401)

 noisy_spectra_3.append(clean_spectra[:,i] + noise)

noisy_spectra_3 = np.stack(noisy_spectra_3, axis = 1)

noisy_spectra_4 = []

for i in range(clean_spectra.shape[1]):

 mu = np.random.uniform(low = -1, high = 1)

 sigma = np.random.uniform(low = 0, high = 0.1)

 noise = np.random.normal(mu, sigma, 401)

 noisy_spectra_4.append(clean_spectra[:,i] + noise + y_syst)

noisy_spectra_4 = np.stack(noisy_spectra_4, axis = 1)

OPTIMISATION

'''

Butterworth filter

'''

43

cut_off_freq_ranges = np.linspace(0.0001, 0.4, 100)

orders = range(1,6)

overall_errs = []

for i in orders:

 interim_errs = []

 for j in cut_off_freq_ranges:

 ds1_butter, err1_butter = use_butterworth_filter(noisy_spectra_

1, clean_spectra, i, j)

 interim_errs.append(np.mean(err1_butter))

 interim_errs = np.stack(interim_errs)

 overall_errs.append(interim_errs)

overall_errs = np.stack(overall_errs)

overall_errs_2 = []

for i in orders:

 interim_errs = []

 for j in cut_off_freq_ranges:

 ds2_butter, err2_butter = use_butterworth_filter(noisy_spectra_

2, clean_spectra, i, j)

 interim_errs.append(np.mean(err2_butter))

 interim_errs = np.stack(interim_errs)

 overall_errs_2.append(interim_errs)

overall_errs_2 = np.stack(overall_errs_2)

overall_errs_3 = []

for i in orders:

 interim_errs = []

 for j in cut_off_freq_ranges:

 ds3_butter, err3_butter = use_butterworth_filter(noisy_spectra_

3, clean_spectra, i, j)

 interim_errs.append(np.mean(err3_butter))

 interim_errs = np.stack(interim_errs)

 overall_errs_3.append(interim_errs)

overall_errs_3 = np.stack(overall_errs_3)

overall_errs_4 = []

for i in orders:

 interim_errs = []

 for j in cut_off_freq_ranges:

 ds4_butter, err4_butter = use_butterworth_filter(noisy_spectra_

4, clean_spectra, i, j)

 interim_errs.append(np.mean(err4_butter))

 interim_errs = np.stack(interim_errs)

 overall_errs_4.append(interim_errs)

overall_errs_4 = np.stack(overall_errs_4)

print(np.where(overall_errs == np.min(overall_errs)))

print(np.where(overall_errs_2 == np.min(overall_errs_2)))

print(np.where(overall_errs_3 == np.min(overall_errs_3)))

print(np.where(overall_errs_4 == np.min(overall_errs_4)))

44

''' Savitzky-Golay filter'''

window_length_ranges = [11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55,

 59, 63, 67, 71, 75, 79, 83, 87, 91, 95, 99, 103

, 107]

orders = range(1,6)

overall_errs_svg = []

for i in orders:

 interim_errs = []

 for j in window_length_ranges:

 ds_svg, err_svg = use_svg_filter(noisy_spectra_1, clean_spectra

, j, i)

 interim_errs.append(np.mean(err_svg))

 interim_errs = np.stack(interim_errs)

 overall_errs_svg.append(interim_errs)

overall_errs_svg = np.stack(overall_errs_svg)

overall_errs_2_svg = []

for i in orders:

 interim_errs = []

 for j in window_length_ranges:

 ds_svg, err_svg = use_svg_filter(noisy_spectra_2, clean_spectra

, j, i)

 interim_errs.append(np.mean(err_svg))

 interim_errs = np.stack(interim_errs)

 overall_errs_2_svg.append(interim_errs)

overall_errs_2_svg = np.stack(overall_errs_2_svg)

overall_errs_3_svg = []

for i in orders:

 interim_errs = []

 for j in window_length_ranges:

 ds_svg, err_svg = use_svg_filter(noisy_spectra_3, clean_spectra

, j, i)

 interim_errs.append(np.mean(err_svg))

 interim_errs = np.stack(interim_errs)

 overall_errs_3_svg.append(interim_errs)

overall_errs_3_svg = np.stack(overall_errs_3_svg)

overall_errs_4_svg = []

for i in orders:

 interim_errs = []

 for j in window_length_ranges:

 ds_svg, err_svg = use_svg_filter(noisy_spectra_4, clean_spectra

, j, i)

 interim_errs.append(np.mean(err_svg))

 interim_errs = np.stack(interim_errs)

 overall_errs_4_svg.append(interim_errs)

overall_errs_4_svg = np.stack(overall_errs_4_svg)

print(np.where(overall_errs_svg == np.min(overall_errs_svg)))

print(np.where(overall_errs_2_svg == np.min(overall_errs_2_svg)))

print(np.where(overall_errs_3_svg == np.min(overall_errs_3_svg)))

print(np.where(overall_errs_4_svg == np.min(overall_errs_4_svg)))

45

DATA PREPARATION FOR THE AUTOENCODER

noisy_simulated_spectra_array = np.concatenate((noisy_spectra_1, noisy_

spectra_2, noisy_spectra_3), axis = 1)

simulated_spectra = np.concatenate((clean_spectra, clean_spectra, noisy

_spectra_3), axis = 1)

concentrations = np.concatenate((concentrations, concentrations, concen

trations))

Check shapes of all datasets

print('Simulated spectra shape is: ' + str(simulated_spectra.shape))

print('Simulated noisy spectra shape is: ' + str(noisy_simulated_spectr

a_array.shape))

Reshape the arrays to fit the models

simulated_spectra = simulated_spectra.reshape([1, 401, -

1]).transpose(2, 1, 0)

noisy_simulated_sp = noisy_simulated_spectra_array.reshape([1, 401, -

1]).transpose(2, 1, 0)

Check shapes of all datasets again

print('Simulated spectra shape is: ' + str(simulated_spectra.shape))

print('Simulated noisy spectra shape is: ' + str(noisy_simulated_sp.sha

pe))

AUTOENCODER

Model configuration

width, height = 401, 1

input_shape = (width, height)

batch_size = 128

no_epochs = 50

max_norm_value = 2.0

X_train, X_test, y_train, y_test = train_test_split(noisy_simulated_sp,

 simulated_spectra/4, test_size=0.1)

ds_train = tf.data.Dataset.from_tensor_slices((X_train, y_train))

ds_train = ds_train.shuffle(buffer_size=len(X_train)).batch(128)

ds_validation= tf.data.Dataset.from_tensor_slices((X_test, y_test)).bat

ch(128)

46

Create the model

k_size = 9

model = Sequential()

model.add(Conv1D(256, kernel_size=(k_size), kernel_constraint=max_norm(

max_norm_value), activation='relu', kernel_initializer='he_uniform', in

put_shape=input_shape))

model.add(Conv1D(128, kernel_size=(k_size), kernel_constraint=max_norm(

max_norm_value), activation='relu', kernel_initializer='he_uniform', in

put_shape=input_shape))

model.add(Conv1D(32, kernel_size=(k_size), kernel_constraint=max_norm(m

ax_norm_value), activation='relu', kernel_initializer='he_uniform'))

model.add(Conv1DTranspose(32, kernel_size=(k_size), kernel_constraint=m

ax_norm(max_norm_value), activation='relu', kernel_initializer='he_unif

orm'))

model.add(Conv1DTranspose(128, kernel_size=(k_size), kernel_constraint=

max_norm(max_norm_value), activation='relu', kernel_initializer='he_uni

form'))

model.add(Conv1DTranspose(256, kernel_size=(k_size), kernel_constraint=

max_norm(max_norm_value), activation='relu', kernel_initializer='he_uni

form'))

model.add(Conv1D(1, kernel_size=(k_size), kernel_constraint=max_norm(ma

x_norm_value), activation='tanh', padding='same'))

model.summary()

Compile and fit data

model.compile(optimizer='adam', loss='mae')

model.fit(ds_train,

 epochs=no_epochs,

 callbacks=[keras.callbacks.TensorBoard(log_dir='logs')]

,

 validation_data = ds_validation)

Save the weights

model.save_weights('./checkpoint')

47

Upload measured data

This dataset is already balanced

measured_spectra = pd.read_csv('/content/drive/My Drive/Data/measuremen

ts_for_masters.csv')

clean_sp = pd.read_csv('/content/drive/My Drive/Data/clean_sp_for_maste

rs.csv')

concentrations_measured = measured_spectra.conc.values

measurements = pd.DataFrame(std_scaler.fit_transform(measured_spectra.v

alues[:,:-1].T)).values

clean_for_measurements = pd.DataFrame(std_scaler.fit_transform(clean_sp

.values[:,1:-1].T)).values

Reshape the arrays to fit the models

measured_spectra = measurements.reshape([1, 401, -

1]).transpose(2, 1, 0)

clean_for_measured = clean_for_measurements.reshape([1, 401, -

1]).transpose(2, 1, 0)

Check shapes of all datasets again

print('Measured spectra shape is: ' + str(measured_spectra.shape))

print('Clean measured spectra shape is: ' + str(clean_for_measured.shap

e))

Assign variables

noisy_input_test = measured_spectra

pure_input_test = clean_for_measured

Generate reconstructions

num_reconstructions = noisy_input_test.shape[0]

samples = noisy_input_test[:num_reconstructions]

reconstructions = model.predict(samples)

FILTERING

Filter the dataset with Butterworth and Savitzky-Golay filters

ds1_butter, err1_butter = use_butterworth_filter(samples.squeeze().T, p

ure_input_test[:samples.shape[0],:].squeeze().T, 2, 0.045)

ds1_svg, err1_svg = use_svg_filter(samples.squeeze().T, pure_input_test

[:samples.shape[0],:].squeeze().T, 107, 3)

Plot reconstructions of the DAE

At the same time calculate the mean absolute errors

48

err_lst = []

plt.figure()

for i in np.arange(0, num_reconstructions):

 # Prediction index

 prediction_index = i

 # Get the sample and the reconstruction

 original = noisy_input_test[prediction_index]

 pure = pure_input_test[prediction_index]

 reconstruction = np.array(reconstructions[i]).reshape((width,))

 abs_err = np.mean(np.abs(pure.squeeze() - (reconstruction.squeeze()

* 4)))

 err_lst.append(abs_err)

 plt.plot(pure.squeeze(), label = 'Pure', lw = 0.75)

 plt.plot(reconstruction.squeeze() * 4, label = 'De-noised', lw = 2)

err_lst = np.asarray(err_lst)

plt.grid(True)

plt.xlabel('Wavelengths (nm', fontsize = 15)

plt.show()

Graph for comparing the MAEs of the three models

plt.figure(figsize = (9,7))

plt.title('MAEs of the filtering models', fontsize = 15)

plt.plot(err_lst, 'b', label = 'DAE')

plt.plot(err1_butter, 'r', label = 'Butterworth')

plt.plot(err1_svg, 'g', label = 'Savitzky-Golay')

plt.ylabel('Mean absolute error (MAE)', fontsize = 12)

plt.xlabel('Spectrum number', fontsize = 12)

plt.legend(fontsize = 12)

plt.grid(True)

plt.show()

PARTIAL LEAST SQUARES REGRESSION (PLSR)

Denoising Autoencoder

X_dae_1 = reconstructions.squeeze()

Y = concentrations_measured

X_train_dae_1, X_test_dae_1, Y_train_dae_1, Y_test_dae_1 = train_test_s

plit(X_dae_1, Y, test_size = 0.2)

no_of_components = 10

pls = PLSRegression(no_of_components)

pls.fit_transform(X_train_dae_1, Y_train_dae_1)

Y_pred_test_1 = pls.predict(X_test_dae_1)

r2_test_1 = r2_score(Y_test_dae_1, Y_pred_test_1)

RMSEP_test_1 = np.sqrt(mean_squared_error(Y_test_dae_1, Y_pred_test_1))

49

Butterworth Filter

X_butter = ds1_butter.squeeze().T

X_train_butter, X_test_butter, Y_train_butter, Y_test_butter = train_te

st_split(X_butter, Y, test_size = 0.2)

pls.fit_transform(X_train_butter, Y_train_butter)

Y_pred_test_butter = pls.predict(X_test_butter)

r2_test_butter = r2_score(Y_test_butter, Y_pred_test_butter)

RMSEP_test_butter = np.sqrt(mean_squared_error(Y_test_butter, Y_pred_te

st_butter))

Savitzky-Golay Filter

X_svg = ds1_svg.squeeze().T

X_train_svg, X_test_svg, Y_train_svg, Y_test_svg = train_test_split(X_s

vg, Y, test_size = 0.2)

pls.fit_transform(X_train_svg, Y_train_svg)

Y_pred_test_svg = pls.predict(X_test_svg)

r2_test_svg = r2_score(Y_test_svg, Y_pred_test_svg)

RMSEP_test_svg = np.sqrt(mean_squared_error(Y_test_svg, Y_pred_test_svg

))

Print the results of the PLSR

print('Raw r-squared ', round(r2_test, 4))

print('Raw RMSEP ', round(RMSEP_test, 4))

print('Butterworth r-squared ', round(r2_test_butter, 4))

print('Butterworth RMSEP ', round(RMSEP_test_butter, 4))

print('Savizky-Golay r-squared ', round(r2_test_svg, 4))

print('Savizky-Golay RMSEP ', round(RMSEP_test_svg, 4))

print('DAE r-squared ', round(r2_test_1, 4))

print('DAE RMSEP ', round(RMSEP_test_1, 4))

