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ABSTRACT 

 

Electricity Price Forecasting in Lithuania 

 

 As a result of worldwide deregulation of electricity markets, electricity can be bought and 

sold like any other commodity. Considering the increase of renewables, decarbonatization, 

upcoming deregulation of Lithuania, forecasting electricity price is an important topic in Lithuania, 

which needs to be analysed. So far, only a few researches about electricity price forecasting in 

Lithuania were done, meaning that further analysis is needed. The short-term electricity price 

forecasting model can be used by electricity generators, suppliers, traders, and end customers 

(mostly large customers). This work aims to build a statistical AR-type time series model for short-

term electricity price forecasting in Lithuania using external variables. Electricity price displays 

high volatility, spikes, and double seasonality, making it difficult to achieve high accuracy in 

forecasting. 

 

Keywords: short-term electricity price forecast; Lithuania’s power market; electricity price; Nord 

Pool market; ARIMA. 

 

 

SANTRAUKA 

 

Elektros kainos prognozavimas Lietuvoje 

 

 Dėl  visame pasaulyje vykdomo elektros rinkų liberalizavimo, elektrą galima pirkti ir 

parduoti kaip ir visas kitas prekes. Atsižvelgiant į atsinaujinančių energijos šaltinių augimą, 

šiltnamio efektą sukeliančių dujų kiekio mažinimą pasaulyje ir artėjantį Lietuvos elektros rinkos 

liberalizavimą, galime teikti, jog elektros energijos kainos prognozavimas yra svarbi tema 

Lietuvoje. Lietuvoje yra tik keli darbai susiję su elektros kainos prognozavimu, tai tik įrodo, jog 

ši tema yra svarbi ir turi būti detaliau analizuojama. Elektros kainų prognozavimo modelį gali 

naudoti elektros energijos gamintojai, tiekėjai, prekybininkai ir galutiniai vartotojai (didžiosios 

įmonės). Pagrindinis šio darbo tikslas yra sukurti statistinį AR-tipo laiko eilučių modelį 

trumpalaikėms elektros energijos kainų prognozėms Lietuvoje, naudojant išorinius kintamuosius. 

Elektros energijos kaina yra nepastovi, turi didelius kainų šuolius, dvigubą sezoniškumą, dėl to 

yra sunku pasiekti didelį prognozavimo tikslumą. 

 

Raktiniai žodžiai: trumpalaikė elektros kainos prognozė; Lietuvos energetikos sektorius; 

elektros kaina; Nord Pool prekybos birža; ARIMA. 
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1. INTRODUCTION 

 As a result of worldwide deregulation of electricity markets, electricity can be bought and 

sold like any other commodity. Nevertheless, electricity stands out from other commodities like 

grain, gold, oil, coal, or natural gas. Electricity is unique due to some distinctive attributes. The 

most distinct attribute is that electricity is non-storable in large quantities. Electricity generators 

must generate as much electricity as it is consumed at that exact moment, meaning that the 

electricity grid always must be balanced and well planned to prevent outages, bottlenecks in the 

transmission grid, or other issues. 

 Electricity price forecasting in Lithuania is essential at this time as a result of upcoming 

Lithuania’s deregulation. May 2020, the Law of electricity was amended, and the regulation of 

retail electricity prices for household consumers will be abandoned in stages by 2023, starting from 

1 January 2021 [1]. At the moment in Lithuania, just business clients can choose electricity 

supplier freely and choose at a fixed price and spot price from Nord Pool Power market, since 

Lithuania is a part of this Nordic country’s electricity market. Total consumption of business 

clients in Lithuania in Jan-Sep 2020 was app. 72.6%, leaving app. 27.4% [2, 3] to households, 

which will be free to choose their supplier and price determination model. 

 I decided to cope with this problem by forecasting short-term electricity prices. Not only 

due to deregulation of households in Lithuania, but as a result of growing renewables generation 

and Lithuania’s and its neighbouring market decarbonization, which influence short-term price 

fluctuations and increasing need for a dynamic and flexible market. But also due to the introduction 

of smart grids, smart metering, a common platform for data collection and exchange [4], which 

may impact electricity price. All of these up-coming changes in Lithuania are to implement 

Nacional energy independence strategy 2018 [5] and impact short-term electricity prices. 

Nevertheless, the Lithuanian electricity market is selected not only due to upcoming changes, but 

also, due to the lack of statistical research based on Lithuania’s electricity market prices. 

 The precise electricity price forecasting is important for all market participants because 

many market players depend on electricity price trends. Price is important to electricity generators 

for adopting strategic and tactical decisions on how much and when to generate and sell. Electricity 

suppliers, electricity traders, and end customers (vast industrial customers) seeking risk 

minimization and profit maximization. 

 My thesis aims to build a statistical AR-type time series model for short-term electricity 

price forecasting in Lithuania.  

 The main objectives that will help me to reach my aim are: 
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1. To analyse literature that focuses on electricity price forecasting in Lithuania; 

2. To analyse literature that focuses on electricity price forecasting at Nord Pool Power 

market; 

3. To collect data and to do a preliminary analysis; 

4. To detect a set of candidate explanatory variables that may influence electricity price in 

Lithuania; 

5. Select and build understandable and easily usable short-term electricity price forecasting 

model for electricity price buyers and sellers; 

6. Compare selected models with and without external variables using accuracy measures; 

7. Compare selected models with different outlier detection method using accuracy measures; 

8. Evaluate the most precise model adequacy. 

 For my thesis, statistical AR-type time series models were chosen due to quite high 

accuracy and model simplicity. Moreover, models can be further applied in selling or buying 

companies of the market because these models are easy to understand and implement in the short-

term, and it is easy to incorporate exogenous variables. No short-term electricity price forecasting 

in Lithuania was done using these types of models. To improve model forecasting, accuracy 

external variables will be applied, which is also new in Lithuania’s market perspective. Various 

statistical outlier detection methods will be used to deal with electricity price spikes and improve 

forecasting accuracy. Fourier series with daily, weekly, and yearly seasonality as the external 

variable will be included to deal with double seasonality. 

 This thesis is the first analysis of the Lithuanian electricity market that focuses on outlier 

detection methods. 

 Chapter 2 will introduce the specialties of electricity price and one of the biggest electricity 

market Nord Pool. In Chapter 3, papers and researches about Lithuania and the Nord Pool Power 

market will be analysed. Chapter 4 starts with an overview of the available methodologies to model 

electricity prices and explains the chosen statistical model. In Chapter 5, preliminary electricity 

price analysis will be done, important determinants for the electricity price will be worked out; 

this chapter also presents the development of the models and the results of the analysis. In Chapter 

6, final remarks will be given. 

 In this work, a simple, understandable, and reusable model for electricity sellers and buyers 

was built. To the author’s knowledge, this is the first work that used both outlier detection and 

double seasonality detection methods. To deal with price spikes, different outlier detection 

methods were introduced. To deal with the double seasonality, the model with the Fourier series 
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was implemented. Models were built using seven external regressors Calendar days, Coal price, 

Hydro power in Sweden, Actual load in Lithuania, Natural gas price, Temperature, Wind power 

in Lithuania. The best fitted ARIMA model was ARIMA(3,1,2) using percentage filter on price 

outlier detection and Fourier series included as an external variable, together with other seven 

external variables. This model RSME reached 4.82 and MEA 3.04, which was assumed to be quite 

accurate for statistical models. 

2. ELECTRICITY MARKET 

2.1. Electricity price 

 There are special features of electricity that sets it apart from other commodities.  As it was 

mentioned in an introduction, electricity cannot be stored in a huge quantity. So, the grid’s 

continuous electricity flow is required, and the balance between electricity demand and supply 

should always be secured. This specific of electricity leads to the requirement of reserve capacity 

in an electric power system [6, p. 25]. In Lithuania, a short-term reserve was always secured by 

Kruonis PSHP, but from 2021 this unit will be just one of the market’s players to provide balancing 

services. In contrast, the long-term shortages must be secured with Elektrenai Complex units – 7th 

and 8th blocks. So, in case of an emergency, these units must be ready to work. 

 Another distinct feature of electricity as a commodity is the need for the electric energy 

transmission infrastructure or so-called electric power network. From that point of view, electricity 

may be considered a network-based commodity [6, p. 25]. The high voltage grids are operated by 

the transmission system operator (TSO), in the Lithuania we have AB “Litgrid”. Despite 

deregulation and government control reduction, the transmission is kept under government control. 

 Electricity is one of the most volatile commodities. The daily average electricity spot price 

change in Lithuania can vary from negative to app. 200 Eur/MWh, while a yearly average price is 

app. 40 Eur/MWh. Price variations usually relate to an unexpected increase in demand, shortages, 

over-production from wind farms, or the failures and outages of the transmission infrastructure [3, 

pp. 1-2], so companies use bidding or hedging strategies to cope with price volatility.  

 Renewable energy and its volatility due to high dependence on temperature are one of the 

key variables for price spikes and are becoming more and more relevant due to increasing 

production from renewables. In Lithuania, net generation from renewables increased by 11.1% in 

Jan-Sep 2020, in comparison to the same period last year. Nevertheless, that total generation from 

renewables decreased from 80.1% in Jan-Sep 2019 to 63.9% in Jan-Sep 2020, influenced by the 

higher generation of gas-fired Elektrenai Complex [2]. Renewables growth is not only Lithuania’s 
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but also, and the world’s one of the main goals, and it is expected to grow exponentially, despite 

some delays in 2020, due to Covid-19 [7]. Another important goal in the world is decarbonization. 

As a result of CO2 decrease, more renewables will be needed to generate the same amount of 

electricity. 

 Electricity price has high volatility, outliers, non-constant mean and variance, seasonal and 

calendar effects that make electricity price forecasting quite a hard task. Despite electricity 

characteristics, various external indicators are expected to do an influence and improve electricity 

price forecasting. 

 Not only growing renewable energy but also and other drivers are affecting the prices on 

the market, such as temperature and wind power and its forecast, as well as power plant availability 

and transmission congestions. Also, it is seen that in the long run, electricity prices on the Nord 

Pool market are significantly influenced by the water level in the reservoirs of the Norwegian and 

Swedish hydro power plants [6, p. 18]. 

 Despite electricity volatility and inconsistency, its demand is relatively inelastic. This 

means that if the electricity price will suddenly spike over 200 Eur/MWh, the electricity demand 

will not change, and it will stay relatively the same. The demand is highly dependent on 

unforeseeable factors such as weather or climate. Also, electricity displays seasonal patterns due 

to economic activity and weather conditions. Seasonality can occur on various levels, including 

an hourly, daily, weekly, or yearly seasonality [8, p. 53]. 

 Another important event for electricity price in Lithuania is the up-coming deregulation. 

Deregulation of the electricity market is one of Lithuania’s EU commitments. Most countries in 

the EU and the Nordic region in which Lithuania participates in the electricity market have already 

deregulated the electricity market for household consumers. Estonia fulfilled these commitments 

in 2013, and Latvia followed in 2015 [4]. Around 27.4% of Lithuania consumer’s electricity prices 

are vertically integrated, which means that these electricity prices are regulated, and the consumers 

are offered predetermined tariffs. While in deregulated markets, market participants have more 

freedom, and they have the option of trading electricity, which leads to market production 

efficiency and competitiveness [6, p. 18]. Therefore, after Lithuania deregulation, consumers will 

have many options for choosing an electricity supplier (currently, there are eight possible 

candidates instead of one [9]). Lithuania is a part of the Nord Pool market, and most of the 

electricity is bought and sold there. 
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2.2. Nord Pool power market 

 The Nordic region has reasonable experience in deregulated electricity markets. In 1993 

the market was established in line with Norwegian parliaments to deregulate the market for 

electrical energy trading. The derivatives and energy markets were separated in 2002 to ascertain 

the Nord Pool Spot power exchange market. The Nordic power market was fully established in 

2000 once the regional electricity markets of Sweden, Norway, Finland, and Denmark merged. 

Nord Pool Spot currently operates in 13 countries Norway, Denmark, Finland, Estonia, Lithuania, 

Latvia, UK, Austria, France, the Netherlands, Sweden, Germany, and Belgium. Lithuania entered 

this market in 2012 [10]. Nord Pool is an initiative owned by different European TSOs 

participating in the market, including the Lithuanian TSO Litgrid. 

 Nord Pool Spot main objective is to balance the production with the electricity demand, 

precisely and at an optimal price, which is, by equilibrium point. The optimal price represents the 

cost of 1 kWh generation of electricity from the high-priced source requiring a balance of the 

system. Two different physical operation markets are organized in Nord Pool Spot: Elspot or day-

ahead and Elbas or intraday. Elbas market is where up to an hour before the distribution generators 

and suppliers can upgrade the quantity of electricity traded. This market is crucial if, for example, 

a nuclear power plant will suddenly stop operating, or strong winds may cause higher wind power 

generation than expected. The significance of the intraday market is growing as more wind power 

enters the grid. Wind power generation is incalculable by nature and differs concerning day-ahead 

contracts. Therefore, produced volume often needs to be offset. While the Elspot market where 

day-ahead before the delivery producers and suppliers must update the quantity and the price. This 

way of pricing is called a double auction because both the seller and buyer submit bids. In this 

market, forecasting and its accuracy are important to minimize the risk and maximize the profits. 

In this work, I will focus just on day-ahead prices. So, the Elspot market will be discussed and 

further used in this paper.  

 To clarify the difference between the day-ahead and intraday market, some more details 

will be concluded. The day-ahead price forecast for day X is required on day X-1 (official bidding: 

12:00 CET). As soon as the 12:00 CET deadline for electricity suppliers and electricity generators 

or traders to submit orders has passed, all purchase and sell orders are aggregated into two curves 

for each delivery hour of day X. The system price for each hour of day X is determined by the 

intersection of the aggregate supply and demand curves, representing all bids and offers for the 

entire Nordic region, and are published a bit later that day by the system operator day X-1. Hence, 

actual price data up to 24 hours of day X-1 are available on day X-2. Therefore, when bidding for 
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day X, price data up to hour 24 of day X-1 are considered known. As a result, the actual forecast 

of day-ahead prices for day X can take place between the clearing hour for day X-1 of day X-2 

and the bidding hour for day X of day X-1. A detailed description of how a day-ahead market in 

the Nordic region works can be found on the Nord Pool website [10]. 

 
Figure 1. Time framework for Nord Pool system price forecasting in the day-ahead energy 

market 

 Nord Pool operates as one market in which supply to a region is aggregated, and generators 

are transmitted to satisfy the demand with as low price as possible. When the exchange’s electricity 

prices are computed, the purchase tenders are aggregated to a demand curve. The sale offers are 

aggregated to a supply curve. The spot price is set at the point where the two curves intersect if 

there’s neither market coupling nor market splitting. After the market participants have submitted 

their orders, an equilibrium between the aggregated supply and demand curves is established for 

all bidding areas, and a system price is calculated based on the sale and purchase orders. Once the 

market prices have been announced, the market participants receive a notification of their bids and 

the following operating day’s hourly commitments. All producers are paid according to the 

calculated bidding area price, and similarly, all consumers pay the same price. 

 The Baltic and Nordic regions are divided into bidding areas by the relevant TSO to operate 

the electricity grid’s congestions. Bidding areas can have a deficit, surplus, or balance of power. 

If the transmission capacity between bidding areas is not enough to reach full price convergence 

across the areas, congestion will lead to bidding areas having different prices. Hydroelectric 

generation and nuclear producers have relatively high start-up costs and low marginal costs of 

generation. Gas turbines and oil-fired plants have a comparatively high marginal cost of 

generation, used typically for peak periods only as a reserve. Wind power or other renewable 

sources are less predictable than conventional ones, leading to price drops and unexpected 

variations in wind power generation that may increase the electrical grid’s operating costs. The 
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increased deployment of renewable energy sources has made the dynamics of the electricity spot 

prices even more complex, with more extreme prices that are very difficult to predict. 

3. LITERATURE REVIEW 

 In this Chapter literature review about price forecasting in Lithuania and the Nord Pool 

market will be made. A brief introduction of what was done, and the main findings of the research 

will be analysed and compared. 

3.1. Previous work review on electricity price forecasting in Lithuania 

 Focus on Lithuania electricity price forecasting is a rather new branch in the literature 

because the earliest work that I succeeded in finding was written in 2017. Only four works were 

found, which proves the lack of statistical electricity price forecasting in Lithuania. Meanwhile, in 

the world, the number of proceedings papers, articles, and citations on electricity price forecasting 

has increased significantly over the past 20 years [11]. The literature mainly focuses on spot price 

forecasting in Lithuania using Nord Pool data for one year. Methods used are various, starting 

from classical AR, and smoothing methods to deep learning recurrent neural networks method. 

Literature mainly focuses just on electricity price itself, and no external variables were introduced 

to the models. I will briefly introduce the findings starting from the oldest to the newest work about 

electricity price forecasting. 

 In their report, R. Beigaitė and T. Krilavičius [12] used short-term electricity  price forecast 

using average, seasonal naïve, and exponential smoothing methods were constructed. The data set 

consists of historical hourly electricity prices (Eur/MWh) from 1 January 2014 to 31 December 

2016 using electricity spot price data of Lithuania’s price zone in the Nord Pool power market, 

with no external variables included. Methods were used for short-term day-ahead prognosis of 24 

hours. Among the three smoothing methods exponential smoothing method was the most accurate, 

with minimum values equal to 1.76% MAPE, 0.66 MAE, and 0.83 of RMSE, while the mean 

values were 16.03%, 6.49, and 8.64, accordingly. Concluding that statistical models do not 

perform well when capturing electricity price spikes. 

 R. Beigaitė and T. Krilavičius [13] next year publish another report using more advanced 

methods. The authors again try to construct a short-term electricity price forecast of Lithuania’s 

price zone in the Nord Pool market by using recurrent neural networks: Elman and Jordan methods. 

The data set consists of historical hourly electricity prices (Eur/MWh) from 1 January 2016 to 31 

December 2017, with no external variables. Forecasting experiments were performed for each day 
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of the year 2017. Data of the year 2016 was used for training, and data of the year 2017 was used 

for testing to capture seasonality effects, and for the input, features lagged electricity prices were 

used. Methods were used for short-term day-ahead prognosis of 24 hours. The results showed that 

the highest average accuracy during forecasting experiments was achieved using Elman neural 

network with MAPE error equal to 3.55%, 1.12 MAE, and 1.34 RMSE, while mean values were 

18.12%, 6.85, and 8.54. From their research, it is visible that in the Lithuania simple statistical 

exponential smoothing model performs better than the Elman neural network. 

 A. N. Tat [14]  was forecasting Lithuania electricity price using Monte Carlo simulation. 

The Ornstein-Uhlenbeck process with and without catching price spikes to predict the next day’s 

prices was used. The data set consists of historical hourly electricity prices (Eur/MWh) from 1 

June 2017 to 30 November 2017. Data was collected and aggregated from the Nord Pool market 

data, using Lithuania system price. Results in this research showed that Ornstein-Uhlenbeck 

process while catching price spikes was better. No forecasting accuracy measures were introduced, 

and the author used a concise period, so it may be possible that data could not learn yearly 

seasonality. 

 In his research, M. Česnavičius [15] constructed the long-term electricity price forecasting 

model based on univariate ARIMA models using past time series values and error terms. His 

average monthly electricity price (Eur/MWh) range was from 1 July 2012 to 31 Decem­ber 2019, 

and a forecast was made for 2020. Data was collected from the Nord Pool market data, using 

Lithuania system price. Four different ARIMA models were selected during his research: AR (1), 

ARIMA (1,1,0), ARIMA (1,1,1) and SARIMA (1,1,1). After analysis, the additional fifth weighted 

SARIMA (1,1,1) model was introduced. The forecasting accuracy was compared using RMSE, 

MAE, MPE, and MAPE forecasting error statistics. The best long-term forecasting method was 

AR with 4.13 RMSE and 7.94% MAPE. Since prices for 2020 were forecasted, we can conclude 

that it was not accurate and prices differ almost by 30 Eur/MWh, because in 2020, extremely low 

prices in Lithuania were captured due to significant excess of water in hydro reservoirs in 

Scandinavia and especially in Norway, meaning that external variables should be included and 

that previous price forecasting using ARIMA models for a long period is not the best fitting model 

for a long-term forecasting. 

 To conclude the researches that are done about Lithuania electricity price forecast, it can 

be said that the best model was not found, and accuracy may be lower because all models used 

only historical electricity price as the main input. To achieve higher accuracy and to build a better 
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model, external variables must be amended. Also, most of the research included only from half of 

the year to one year and a half dataset, which is not enough to capture yearly seasonality. 

 One Lithuanian author master’s thesis about electricity price forecasting was found. The 

forecast was not for Lithuania electricity price, but for France. A. Bagdonov [16] wrote a master 

thesis about France’s electricity market Powernet and used SARIMA-TGARCH and SARFIMA-

TGARCH models. 

 Also, one interesting theoretical model for electricity market price forecasting was done by 

V. Bobinaite el. at. [17] they analysed structure, price features, main supply and demand indicators, 

and methods that could be used to forecast electricity price. 

 After analysing works related to electricity price forecasting in Lithuania, significant 

improvement can still be made since this theme is not widely analysed yet. The biggest 

contribution for electricity price forecasting in Lithuania is R. Beigaitė, T. Krilavičius works. They 

applied both statistical and neural network methods, concluding that the statistical one works better 

for short-term electricity price forecasting. External variables, a method to detect price spikes 

and/or seasonality, should be used and implemented. 

3.2. Previous work review on electricity price forecasting in Nord Pool Power market countries 

 Since works published in Lithuania are minimal, and further improvement needs to be 

done, I checked electricity price forecast articles, reports, and books from 2000 and further. I 

concentrated only in Nord Pool market countries and situations in this area. Numerous studies 

were done, so only a few were analysed. Many different models from statistical to advanced deep 

learning or hybrid models were used for electricity price forecasting. The Lithuanian market’s 

main difference is that almost all these researches used external variables to improve forecasting 

accuracy. It can be pointed out that numerous researches were done to detect price spikes, but none 

of the found research used any kind of outlier’s detection or elimination method combined with 

the forecasting model. 

 O.A. Karabiber et al. [18] analysed the Danish Nord Pool electricity market. They have 

presented Non-seasonal ARIMA, Trend and Seasonal Components (TBATS), and Artificial 

Neural Networks (ANN) methods, using seven exogenous variables: temperature, consumption 

prognosis, production prognosis, wind prognosis, oil price, natural gas price, and hydro reservoir. 

They applied models capturing double seasonality effects. Among the three individual models, the 

best performance in terms of mean error is provided by ARIMA with 7.95 RMSE. They reached 

significant improvement by 1.6 in RMSE with backward variable elimination when the 
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temperature was excluded from the external regressors, leaving only five external variables. This 

finding suggests that temperature is not a significant indicator of price forecasting, and double 

seasonality detection methods should be tried to improve further forecasts. T. Kristiansen [19] also 

build an autoregressive model based on R. Weron et. at. [20] work, but reduced terms of estimation 

parameters and modified to include Nordic demand and Danish wind power as exogenous 

variables with MAPE ranging from 8% to 11%. In this work, electricity spot prices were lagged 

by 168 hours, assuming that weekly seasonality has a higher impact than daily.  

 S. Duffner el. at. [21] analysed Germany electricity price using linear regression, 

ARIMA(X) and (M)GARCH models. They used various external variables the price for CO2-

certificates, Crude Oil, temperature, planned wind and solar feed-in, the planned and unplanned 

non-availabilities for the different kinds of power plants and the total planned power generation 

for all other power plants that are part of the EEX transparency system. They concluded ARIMAX 

method works best with 6.6 RMSE and that a model based on 24 individual time series works 

better than one-time series which includes all consecutive hours because computation time is far 

less for the former and because hours with high volatilities like the early morning hours do not 

interfere with other hours. 

 J. S. Roungkvist et al. [11] analysed high-resolution electricity spot price forecasting for 

the Danish power market. In the empirical study, hourly data of a one-year period was used to 

perform a linear regression model. External variables for accuracy improvement were included, 

such as generation, consumption, price data from the year before the month of interest, the 

exchange between the price area and the nearby price zones. The final model of the electricity spot 

price with electricity generation, consumption, and previous prices as explanatory variables 

provided an R-squared on average of 0.73 and an RMSE of 4.26. An interesting discovery was 

made that the transmission grid’s capacity is not as significant as the electricity generation and the 

electricity spot price the year before and that the consumption is only statistically significant in 

one of the four cases, due to strong electricity dependence on the demand. J. Peljo [22] in his 

master’s thesis also applied regression analysis. He concluded that above-average stored energy 

in water reservoirs and hydro plants harms spot prices and below-average values positively impact 

them. According to the thesis, rising coal prices and electricity demand also caused the spot price 

to rise. 

 B. Amor et al. [23]  proposed a new hybrid model k-factor GARMA-LLWNN model using 

the hourly log-returns of electricity spot price from the Nord Pool market, which was applied for 

various periods and results was similar to the real values, with MAPE < 1%. It is a great win for a 
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researcher because the model has not included any external variable, and such a high accuracy was 

achieved. Another more advanced research was done by K. Rahimimoghadam el. at. [24] in their 

article, neural networks and wavelet transformation were used. Few stages for this work were used. 

Their research concluded that forecast without temperature is better for weekend data, while during 

the working day’s temperature gives lower MAPE app. 1.22%-2.01%. 

 Table 1 shows that various models and various explanatory variables are analysed, and it 

really depends on the researcher. However, as can be seen, that all works use a statistical model as 

a base model. Also, explanatory variables were checked, concluding that electricity has a high 

impact on calendar days, hydro power, actual loads, and saying that temperature is not significant 

to the model. Even though statistical models are represented as a base, in most cases, the hybrid 

models, while forecasting Nord Pool power marker data, work better, especially new hybrid k-

factor GARMA-LLWNN model used by B. Amor et al. 

Table 1. Comparison of various models, inputs, and accuracies applied in electricity forecasting 

in Nord Pool market countries 

Reference Market Explanatory variables Models Accuracy 

Measures 

O.A. Karabiber et 

al. [18] 

Nord 

Pool 

Temperature, consumption 

prognosis, production 

prognosis, wind prognosis, 

oil price, natural gas price, 

and hydro reservoir 

Non-Seasonal 

ARIMA, Trend and 

Seasonal Components 

and Artificial Neural 

Networks  

RMSE, MAE 

J. S. Roungkvist 

et al. [11] 

Nord 

Pool 

Consumption, production 

(wind, solar and thermal 

power), price the year before, 

transmission line capacity, 

physical exchange on 

transmission lines 

Multivariable Linear 

Regression Analysis 

MAE, RMSE, 

and MAPE 

S. Voronin [6] Nord 

Pool 

System demand, hydro 

power, nuclear power 

Numerous models, 

starting from classical 

to hybrid 

MSE, MAE, and 

MAPE 

S. Duffner el at. 

[21]   

EEX

  

CO2-certificates, Crude Oil, 

temperature, wind and solar 

feed-in, planned and 

unplanned non-availabilities 

and power generation  

Linear regression, 

ARIMA(X) and 

(M)GARCH 

MAE, RMSE, 

and MAPE 

T. Kristiansen 

[19] 

Nord 

Pool 

Nordic demand and Danish 

wind power  

AR with exogenous 

variables 

MAPE and 

WMAE 

https://www.mdpi.com/1996-1073/12/5/928/htm
https://www.mdpi.com/1996-1073/12/5/928/htm
https://lutpub.lut.fi/bitstream/handle/10024/93793/isbn9789522654625.pdf?sequence=2
https://openaccess.nhh.no/nhh-xmlui/bitstream/handle/11250/169717/Duffner%202012.pdf?sequence=1&isAllowed=y
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E. Raviv et al. 

[25] 

Nord 

Pool 

Daily average price AR and Heterogeneous 

Autoregressive model 

(HAR), VAR, 

Bayesian VAR 

MAE, RMSE and 

MAPE 

H. Torró [26] 

 

Nord 

Pool 

Temperature, precipitation, 

reservoir levels, power load 

and basis 

ARIMAX 

 

MSE 

B. Amor et al. 

[23] 

Nord 

Pool 

- k-factor GARMA-

LLWNN model 

R2, MAPE and 

Logarithmic Loss 

function  

K. 

Rahimimoghadam 

el. at. [24] 

Nord 

Pool 

Temperature Wavelet Transform MAPE 

 Not only electricity price forecasting but also other problems in the Nord Pool energy 

system was analysed. O. Knapik [3] discovered principle price drivers in the Elbas market and 

build three models for electricity price spikes forecasting. P. Spodniak, et al. [27] investigated the 

Nordic day-ahead and intra-day trading behavior and price. P. Pinson el. at. [28] investigated 

predictive densities for determining the optimal structure of block bids. In his dissertation, S. 

Voronin [6], analysed models that could predict price spikes in the Finish Nord Pool Elspot market. 

One of his findings was that Box-Jenkins models could not to estimate high volatility and spike 

clustering presented in the original price series and he continues other methods analysis. E. Raviv 

et al. [25] paper illustrates that the disaggregated hourly electricity prices hold convenient 

predictive information for the daily average price. 

4. EMPIRICAL PART 

 Despite the diversity of existing models, it is impossible to select the most reliable one. 

Also, many models were already implemented and applied for electricity price forecasting. From 

previous analysis were clear that the highest accuracy has hybrid or computational intelligence 

models. However, they are more complicated than simple statistical models, which can be easily 

implemented in any market buying or selling company to check the upcoming forecast with quite 

low accuracy. 

 Based on Weron [29], V. Bobinaite al.et. [17] models, applied for electricity price 

forecasting, can be classified into five groups: 1) multi-agent (Nash-Cournot framework, supply 

function equilibrium, agent-based simulation models, strategic production-cost models); 2) 

fundamental (parameter-rich fundamental and parsimonious structural models,); 3) reduced-form 

(jump-diffusion and Markov regime-switching models); 4) statistical (exponential smoothing 

https://www.researchgate.net/publication/326490926_Forecasting_electricity_spot_price_for_Nord_Pool_market_with_a_hybrid_k-factor_GARMA-LLWNN_model
http://article.sapub.org/10.5923.j.eee.20180802.02.html#Sec6
http://article.sapub.org/10.5923.j.eee.20180802.02.html#Sec6
http://article.sapub.org/10.5923.j.eee.20180802.02.html#Sec6
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methods, regression models and AR-type or ARX-type time series models, and GARCH-type 

models);  5) artificial intelligence (feed-forward neural networks, recurrent neural networks, fuzzy 

neural networks, support vector machines). All these models aim to characterize the trajectory of 

the spot price or return across time. 

 For my thesis, statistical ARIMA time series models were chosen, due to quite high 

accuracy and model simplicity. Models can be further applied in selling or buying companies of 

the market because these models are easy to understand and implement in short-term and it is easy 

to implement and incorporate exogenous variables. No short-term electricity price forecasting in 

Lithuania was done using these types of models. To improve model forecasting accuracy, external 

variables will be applied, which is also new in Lithuania’s market perspective. Various statistical 

outlier detection methods will be used to deal with electricity price spikes and improve forecasting 

accuracy. 

4.1. Autoregressive integrated moving average 

 Box and Jenkins in 1976 introduced the Autoregressive integrated moving average 

(ARIMA) model, which has become one of the most frequently used and recognized forecasting 

models due to its simplicity [30]. To use data with the ARIMA model, first of all, data must be 

stationary. Stationarity proposes that the trend and the seasonality of the data should be eliminated 

before applying the ARIMA model [18], so they do not depend on the time at which the series is 

observed [31]. ARIMA models are combined from three main parts, which are seen in the name 

itself: autoregressive (AR), integral (I), and moving average (MA). The first part AR refers to 

using the lagged inputs to forecast future data. The integral (I) part refers to the number of 

differencing because after estimating of the models, the data need to be integrated to reverse the 

initial differencing. MA is like AR, except that instead of inputs, the past errors are forecasted 

[31]. It is often impossible to decide the ARIMA model, when the seasonal adjustment order is 

high, or its diagnostics cannot indicate that time series stationarity after seasonal adjustment. In 

these cases, the static parameters of ARIMA model are examined. Another constraint of ARIMA 

approach is that it needs many observations to acknowledge the best fit model [32]. ARIMA is 

usually seen as ARIMA(p,d,q), p is a representation of a number of autoregressive terms, in other 

words, a lagged imputation points. AR models assume that 𝑌𝑡  is a linear function of the preceding 

values, where each observation consists of random component 𝜀 and a linear combination of the 

previous observations, 𝜙1 is a self-regression coefficient, AR(1) can be noted [33]: 

 𝑌𝑡 = 𝜙1𝑌𝑡−1 + 𝜀𝑡 (1) 
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d is a number of differences used or the integrated process. The differencing order corresponds to 

the degree of series trend first-order differencing accounts for linear trends, second-order 

differencing accounts for quadratic trends, etc. Although short-term values may fluctuate with 

large contingencies around the mean, the level of the series over the long term will remain 

unchanged [32]. An integrated process is defined: 

 𝑌𝑡 = 𝑌𝑡−1 + 𝜀𝑡 (2) 

where 𝜀𝑡 is white noise. Finally, q represents MA order – it is a number of lagged errors. MA 

orders specify how deviations from the mean for previous values are used to predict current values. 

MA(1) process is defined as following [33]: 

 𝑌𝑡 = 𝜀𝑡 + 𝜃1𝜀𝑡−1 (3) 

Note that ARIMA(p, 0, q) is simply an ARMA(p, q) process [29]. It is common to denote 

ARMA(1,1), given by 

 𝑌𝑡 = 𝜙1𝑌𝑡−1 + 𝜀𝑡 + 𝜃1𝜀𝑡−1 (4) 

In the ARIMA model, input variables can be differenced as many times as needed to make the 

data stationary, and the model can be extended to improve forecast, using ARIMAX, where X here 

stands for and external variables.  

 The Box–Jenkins principle consists of five steps: data preparation, model identification, 

parameter estimation, and diagnostic checking and forecasting [34]. Data preparation will be 

discussed in further section of Practical implementation. To simplify model identification, which 

means to find p,d,q values, stationarity tests should be applied. The assumption of stationarity is 

needed for time series analysis. Otherwise, the relationship between two variables would change 

arbitrarily, and correlations between the two in a regression analysis could not be tracked. To 

identify the model, we should generate a stationary time series. Kwiatkowski-Phillips-Schmidt-

Shin [35] unit root test can be used to identify if the series is stationary and choose the correct d 

parameter. For p and q parameters, Autocorrelation Function (ACF) and Partial Autocorrelation 

Function (PACF) are used, where ACF is the order of AR(p) and PACF is the order of MA(q). To 

calculate an autocorrelation of lag 𝑘, the correlation between 𝑌𝑡 and 𝑌𝑡−𝑘 as follows [33]: 

 
𝐴𝐶𝐹 (𝑘) =

𝐶𝑜𝑣(𝑌𝑡 , 𝑌𝑡−𝑘)

√𝑉𝑎𝑟(𝑌𝑡)𝑉𝑎𝑟(𝑌𝑡−𝑘)  
 

(5) 

where 𝑌𝑡 is the input, 𝑌𝑡−𝑘 is a lagged version of input. While PACF measures the association 

between 𝑌𝑡 and 𝑌𝑡−𝑘 controlling possible effects of linear dependence among values at lags [33]: 

 𝑃𝐴𝐶𝐹 = 𝛽𝑘, where   𝑌𝑡 =  𝛼 + 𝛽1𝑌𝑡−1 + ⋯ + 𝐵𝑘𝑌𝑡−𝑘 + 𝜀𝑡 (6) 
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 After, we can continue with the further step of Box-Jenkins – parameter estimation. And 

finally, model diagnostics should be done. The model hypothesis regarding the errors must be 

fulfilled. The diagnostic statistics and plots of residuals can be used to check the model’s goodness 

of fit. Other plots that can be used are histogram, normal probability plot, and time sequence plot. 

If it does not look adequate after this, we must come back to the first step. When a model is 

computed, the second, third, and fourth Box-Jenkins development process steps are no longer 

repeated, and the selected model will be used for forecasting purposes [36]. 

4.2. Forecasting 

 Forecasting involves taking mathematical models to fit on sample data and using them to 

predict the future. In statistical handling of time series data making predictions is called 

extrapolation [37]. Electricity price forecasting can be split into 3 categories based on time 

horizons. Despite that in literature, there is consensus at what point the threshold should be. The 

categories are as follow [29] [38] [17]: 

1. Short-term forecasts. Forecasts from a few minutes up to a few days or a week. The market 

players mainly use them to maximize profits in the spot markets. 

2. Medium-term forecast. Forecasts from a few days to a few months ahead. They might be 

preferred for balance sheet calculations, risk management and allow the successful 

negotiations of bilateral contracts between suppliers and consumers. 

3. Long-term forecast. Forecasting period can vary from a few months up to a few years. Such 

forecasts might influence the decisions on transmission expansion and enhancement, 

generation augmentation, and distribution planning. 

 

 Forecasting time series is quite a difficult task, and it needs a lot of various assumptions 

since there are many different approaches, and aims for modelling [39]. To detect forecast 

accuracy and how well the model can forecast, various error measurements can be conducted. As 

it was analysed in the literature part, the most popular as widely used accuracy measures are root 

mean square error (RMSE), mean absolute error or mean absolute deviation (MAE), mean absolute 

percentage error (MAPE). They are calculated as following [40] [17] [6]: 

 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑(𝑦𝑡 − 𝑦̂𝑡)2

𝑛

𝑡=1

 

(7) 
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𝑀𝐴𝐸 = 𝑀𝐴𝐷 =  

1

𝑛
∑|𝐹𝑡 − 𝐴𝑡|

𝑛

𝑡=1

 
(8) 

 

𝑀𝐴𝑃𝐸 = ∑ |
𝑦𝑡 − 𝑦̂𝑡

𝑦𝑡
| 𝑥

𝑛

𝑡=1

100

𝑛
 

(9) 

 

where 𝑛 is the number of test data, 𝑦𝑡is the actual value, and 𝑦̂𝑡 is the predicted value. 

 The MAPE measure works well in load forecasting since load values are significantly 

higher than zero, but MAPE can be misleading when applied to electricity price accuracy 

measuring. It is so because when electricity prices are close to zero, MAPE values become very 

large, regardless of the actual absolute errors, so this particular forecasting error measure has to be 

treated with caution [29]. As a result of these findings, only RMSE and MAE forecasting accuracy 

measures will be used. 

 

5. PRACTICAL IMPLEMENTATION 
 

 The practical implementation part consists of three main parts: data collection, construction 

of different forecasting models and finally, forecasting evaluation and results. In the first part, 

reliable electricity price data and other variables are selected, and a primary statistical analysis is 

done with general observations about time series. The second part explores these Box-Jenkins 

steps: model identification, parameter estimation, and diagnostic checking. Finally, the third part 

is forecast evaluation using different accuracy measures for the best model identification and 

model adequacy interpretation. 

 All experiments were computed using statistical package R (https://www.r-project.org). 

5.1. Preliminary data analysis 

 After collecting the data, preliminary data analysis is required to understand the data and 

its patterns better. This will let to find good models that fit our data better.  In this work, 

Lithuania’s price zone in Nord Pool Elspot market is analysed. The dataset was collected from the 

official Nord Pool website [10]. Dataset consists of historical hourly electricity prices (Eur/MWh) 

from January 1, 2015, to October 2, 2020, in total of 50,448 rows.  
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Figure 2. Hourly electricity price in Lithuania from 1 January 2015 to 2 October 2020 

 From the graph we can see that electricity price in Lithuania in long-term period is quite 

stationary, yearly mean varies from 31.56 Eur/MWh in 2020 to 50.00 Eur/MWh in 2018, while 

during this whole period electricity price mean was 40.58 Eur/MWh. Yearly patterns are not 

visible in the long run, due to price fluctuations. But we can see an increase in extreme prices since 

2015, due to in growing renewables, various test runs, and breaks in electricity transmission grids. 

To see yearly patterns each year data was analysed. 

  Yearly data looks quite stationary (see Appendix 1), but we can see that electricity price 

during the winter tends to be higher than during the summer. It can be noted that from 2015 

electricity price spikes rose, the most price spikes are seen during the summer period due to test 

runs and more electricity generated from renewables. Some price spikes are indicated during the 

winter, most probably due to losses in the transmission grid. Maximum electricity price was 

detected in 2018 and 2020, reaching 255.03 Eur/MWh. Fist time from 2015, on the 6th of June 

2020 at 4 a.m., negative electricity price was detected, reaching -0.09 Eur/MWh. First, negative 

prices indicate an oversupply of electricity in the grid, which means that the first time during this 

period in Lithuania was generated more electricity than the market needed. Traditional financial 

models that only allow non-negative prices cannot take this feature into account [31]. Concerning 

this, we can assume that 2020 was a record year, and prices dropped due to of a significant excess 

of water in hydro reservoirs in Scandinavia and especially in Norway. The situation highlighted 

several aspects: on the one hand, the whole Nord Pool power market region could obtain cheaper 

electricity. On the other, record amounts of the same water were discharged from reservoirs due 

to insufficient electricity capacity to take full advantage of the opportunities. The SE4-LT 

connection also gives the Baltic region access to cheaper energy, but the bandwidth also limits the 

possibilities of how much cheaper energy we can get. It is likely that in the future, years like 2020 
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will only increase due to the warming climate, and Scandinavia will increasingly be able to offer 

cheaper stored hydropower. After the yearly seasonality check, weekly and daily patterns will be 

disclosed. 

 

Figure 3. Daily electricity price fluctuations 

 

Figure 4. Weekly electricity price fluctuations 

 In Figure 3, hourly patterns are seen. This time is visible that electricity price tends to be 

lower at night and higher and more volatile during the day as a cause of higher electricity 

consumption of any production company at their working hours. The highest price was at 12 a.m. 

255.03 Eur/MWh, the lowest negative price was at 4 a.m., reaching -0.09 Eur/MWh. While the 

highest mean was electricity price was 47.70 Eur/MWh at 8 a.m., which could be related to the 

production start, when all the machines need more power, while the lowest mean was detected at 

3 a.m. with 26.57 Eur/MWh. Similar patterns followed for the same reason are seen and during 

the week. 2020 data were split, and we can see that during the day, electricity price is more volatile 

than at the weekends. The highest price was on Thursday, and the lowest on Monday, while the 

highest mean price was on Wednesday at 41.94 Eur/MWh, and the lowest mean price was on 

Sunday at 32.61 Eur/MWh.  
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Table 2. Lithuania electricity price: negative price jumps, normal prices, and positive jumps 

(higher than 100) 

 Negative jumps Normal prices Positive jumps 

Number  1.0 50,113.0 334.0 

Frequency 0.0% 99.3% 0.7% 

 

 Explanatory variables (for graphical representation see Appendix 2), also referred to as 

external variables or regressors, are the additional effect data used in the regression models to get 

a lower forecasting accuracy error.  In Chapters 2 and 3, the most informative and widely used 

features were analysed, and according to their public availability were selected. In this paper, 

eleven explanatory are considered as external regressors. All variables are from January 1, 2015, 

to October 2, 2020. Explanatory variables fall into two categories [17]. The first set of explanatory 

factors is demand-side factors and indicators. Hourly electricity consumption shows people’s life 

patterns, mechanical systems interacting with weather, cloud cover, timing of sunrise and sunset, 

water temperatures, and other similar factors. As a result, the calendar days variable was generated 

from the calendar, where 1 represents working days, and 0 represents non-working days and 

holidays. The second set of explanatory factors is supply-side factors and indicators. These 

indicators include changes in fuel prices, production unit availability, temperature, wind speed and 

hydro flows in some markets. In periods of high demand, the load levels in surrounding areas can 

significantly impact Lithuanian prices, reflecting the high price of imported energy. As a result, 

the actual load in Sweden and Finland was included in the model. Due to the high electricity 

exchange with Sweden [10], Finland was selected as a Nordic countries representative that may 

have an impact. Data was collected from the Transparency platform [41]. From the Transparency 

platform, few more variables were selected: Hydro power in Sweden and Lithuania, actual load in 

Lithuania, and unavailability in the transmission grid. From Intercontinental Exchange [42], Dutch 

daily natural gas prices and coal prices were taken, assuming that the Netherlands are in the same 

Nord Pool market, and the fuel prices do not differ significantly. The hourly average temperatures 

in Lithuania were collected from Lithuania hydrometeorological service [43]. And finally, hourly 

wind power in Lithuania was included in the primary model. Some of the variables were not 

hourly, but they were aggregated accordingly to fit into the hourly data set.  After graphical 

representation, unavailability in the transmission grid was eliminated because in 2016, the data 

was missing, and it was assumed that it could affect forecasting results. It should be noted that 

when evaluating forecasting accuracy errors, errors that could be in the explanatory variables are 

omitted.  
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 It is important to highlight that the seasonality of hydro power reservoir levels is also an 

important factor explaining electricity prices and can be considered an important factor. If 

reservoir levels are not enough to satisfy demand, electricity prices will probably increase together 

with power imports [3, p. 16]. Also, a recent significant excess of water in hydro reservoirs in 

Scandinavia and especially in Norway showed that this indicator influences electricity price not 

only in Lithuania, but in the whole Nord Pool market region. 

5.2. Data preparation 

 Before applying data to the model, some data preparation steps were made. Since data is 

from the real world, much preparation needs to be done. Firstly, missing data analysis was done 

to see if this can impact the model and forecasting accuracy. For this step, different missing value 

imputation methods have been applied. In total, there was only 0.4% of missing data. Most missing 

data had coal prices, gas prices, and temperature. After the combinations of missing data in all the 

variables were done, and no clear dependency was detected. Also, the seasonal patterns of missing 

data were analysed. Yearly, monthly, weekly, and daily missing data patterns were compared, and 

some interesting results were found. Despite that, they are not significant to the model. First that 

most data are missing during the winter period, and early spring and secondly, also it was found 

out that electricity price and wind power variables have their missing values always at the same 

hour each year, meaning that there is an impact of time changing in different time zones and some 

systematic mistake in Nord Pool system due to this reason. Because electricity price was always 

missing in March when the summertime is introduced, and wind power data is missing in October 

when wintertime is introduced. A short-term forecasting study by missing values omitting may 

bias model estimates and is not an option when producing operational forecasts [44], so the 

different mean imputation methods were applied to all the variables. 

 After some recent energy sector studies were checked and various missing value 

imputation methods have been proposed for various indicators forecasting, starting from energy 

consumption to generation and others. The most used method that I found was a linear 

interpolation method (LI) K. Zor el. at., 2018 [45], T.Kim el. at., 2019 [46] and S. Jung el. at., 

2020 [47]. R.Tawn el. at., 2020 [45], in their research, used various models such as complete case, 

inverse probability weight, Mean Imputation (MI) and multiple imputation. K.Zor el. at., 2019 

[44] used LI, and MI. T.Kim el. at., 2019 [46] used LI, Mode imputation, Imputation Using KNN, 

Multivariate imputation by chain equation (MICE), and S. Jung el. at., 2020 used more advanced 

methods. Since electricity data is missing not random, care should be taken to use an appropriate 

missing data technique. As my goal is to build a simple, usable, and understandable model the LI, 
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MI, and MICE missing value imputation methods will be used. LI is an example of interpolation 

that exploits a straight line, connecting two data points outside the missing data interval. MI is a 

simple missing values replacement with the mean variable. This method is simple to implement 

and preserves all the available information. The last model that will be used in this work is MICE, 

a fully conditional specification method with classification and regression trees method. This 

implies that MICE minimizes the problem of finding a joint distribution for all missing data points 

simultaneously to finding separate conditional distribution for each incomplete data point, making 

it a very flexible approach [48]. After implementing different missing values techniques, the 

electricity price mean was checked.  

Table 3. Electricity price means using LI, MI, and MICE 

 With missing 

values 

LI MI MICE 

Electricity price mean 40.577 40.575 40.575 40.576 

 From the first sign, all missing data imputation techniques are quite similar, and final 

results do not vary significantly. Since the MICE method was closest to the real mean, this method 

was chosen, but after all model implication, it was detected that slightly better forecasting results 

were achieved using the MI method, so all further findings will be used with MI missing data 

imputation method. Missing value imputation in this context should not be significant because the 

total missing values are less than 1%, so the impact is negligible. Further, missing values rates 

between 1% and 5% correspond to manageable or flexible sample data. Missing data >5% of the 

total data require suitable solutions. While missing data of >15% significantly affects the 

prediction model [46]. 

 After missing value imputation, the correlation heatmap was constructed. From the 

correlation matrix, we detected that load factors in Sweden and Finland have significantly higher 

than 0.84. Firstly, the actual load of Finland was eliminated since Finland does not have a direct 

electricity transmission grid with Lithuania. After removing the actual Finland load factor, a 

correlation heatmap was generated again, and a -0.72 correlation between Sweden load factor and 

temperature were detected, so the actual load in Sweden was eliminated. Final table can be seen 

in Figure 5.  
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Figure 5. Correlation heatmap of all indicators 

 After the missing value imputation and correlation check, outlier detection was made. The 

thesis’s novelty and the main contribution to Lithuania price forecasting will be to apply some 

price spikes detection methods before using the model since none of the Lithuania authors drew 

attention to this important issue and did not apply this to their models. Other analysed authors also 

paid little attention and did not apply any outlier detection methods [29] to such an important issue 

as sharp short-term and hardly predictable extreme values of the electricity price. These outliers 

usually occur due to accidents at power plants, congestions of the energy transmission grid, 

climatic anomalies, and growing renewable capacity in Lithuania and the world. To keep the model 

simple and understandable simple outlier detection methods was proceeded. Four outlier detection 

methods were compared: Threshold filter on prices (TFP), Standard deviation filter (SFP) on 

prices, Recursive filters on prices (RFP), and Percentage filter on prices (PFP). Using the TFP 

method, the threshold of 100 Eur/MWh was set, and to avoid negative data, the prices that were 

lower than zero were detected. TFP can be formulated as: 

 𝑋𝑡
0 = {𝑋𝑡: |𝑋𝑡| ≥ 100} ∪ {𝑋𝑡: |𝑋𝑡| < 0} (10) 

 SFP method was calculated as lowing: 

 𝑋𝑡
0 = {𝑋𝑡: |𝑋𝑡 − 𝑋̅| ≥ 3 ⋅ 𝛿 ± 𝜇} (11) 

RFP method was calculated for every weekly and hourly seasonality. RFP method was calculated 

as lowing: 

 𝑋𝑡,𝑖
0 = {𝑋𝑡: |𝑋𝑡 − 𝑋̅𝑖

̅ | ≥ 3 ⋅ 𝛿𝑖 ± 𝜇𝑖} (12) 

As the total number of outliers using all the methods are not higher than 1.0%, this threshold was 

used for PFP calculation: 
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 𝑋𝑡
0 = {𝑋𝑡: 𝑋𝑡 ≤ 𝑋𝑡

1.0} ∪ {𝑋𝑡: 𝑋𝑡 ≤ 𝑋𝑡
99.0} (13) 

 

 Before applying methods, basic outlier detection methods using Box-plot were done. As 

you can see in Figure 6, various periods were checked. The highest number of price spikes are 

seen during the working hours, the weekdays, and the summer. While no clear outlier seasonality 

can be seen in yearly Lithuania electricity data, it just can be remarked that in 2015, 2017, and 

2019 electricity extreme points were not that high. 

 

Figure 6. Electricity price outliers during various periods 

 After outlier detection, outliers should be replaced. For this step, two outlier imputation 

methods were considered.  One was LI, and another moving average interpolation. Both methods 

were compared, and LI is relatively easy to use, but it demonstrates the limitation of inaccurate 

prediction when the missing data interval is long because it just draws a straight line between two 

data points, while moving average interpolation looked much better in this case. 

 When all these steps were applied, data was separated into the training data set and test 

data set. The training data set was hourly data from 1 January 2015 to 31 December 2019, 

containing 43,825 rows, while the test data set was hourly data from 1 January 2020 to 2 October 

2020, containing a total of 6,623 rows. It seems simple, but again an important part of electricity 

price forecasting [6]. 

5.3.Decomposition  

 Time series data can be divided into 3 components: trend, seasonality, cyclical 

decomposition, and noise. The trend is a long-term increase or decrease in data, and it does not 
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have to be linear. If the trend grows linearly, then the time series is linear, and if the trend grows 

exponentially, then the time series is exponential [31]. The seasonal component is the seasonal 

factor of time as a month in a year, a day in a week also some cyclical movements that occur 

outside of seasonality, and there is most likely random noise or unexpected variations that cannot 

be explained by the model [37]. Mathematically time series can be expressed as a sum or 

multiplication of these components. When applying additive decomposition, it is presumed that 

the data is the sum of its components. Multiplicative decomposition assumes that the data are a 

multiplication of its components, and it is mostly used when the variation in the data increases or 

decreases along with time.  The data used for forecasting in this work do not show a linear 

relationship in their variation with time because it is quite similar in a long-term period, so an 

additive decomposition model will be more suitable and will be applied to the data. In Chapters 

5.1. and 5.2. multiple seasonality effects were detected. The mathematical formula for additive 

decomposition can be expressed as the following, where 𝑆𝑡 is the seasonal component, 𝑇𝑡 is the 

trend, and cyclical component with noise are defined as reminder component 𝑅𝑡  [31]: 

 𝑦𝑡 = 𝑆𝑡 + 𝑇𝑡 + 𝑅𝑡 (14) 

 While multiple seasonality mathematical formula for additive decomposition can be 

expressed as given below, where 𝐷𝑡 is daily seasonality, 𝑊𝑡 is weekly seasonality, 𝑌𝑡 is yearly 

seasonality, all these multiple seasonality’s represents a seasonal component, further  𝑇𝑡 is the 

trend and cyclical component with noise are defined as reminder component 𝑅𝑡  [31]: 

 𝑦𝑡 = (𝐷𝑡 + 𝑊𝑡 + 𝑌𝑡) + 𝑇𝑡 + 𝑅𝑡 (15) 

 As a base model in decomposition, only results using TFP will be visualised, other outlier 

detection methods will be included in the appendix. In can be noted that all result is quite similar 

and do not change significantly using various methods. Figure 7 presents the application of 

multiple seasonality decomposition using R software, forecasting package msts() function in R, 

where seasonal24 represents daily seasonality 𝐷𝑡, seasonal168 represents weekly seasonality 𝑊𝑡, 

seasonal8760 represents yearly seasonality 𝑌𝑡.  

 In Figure 8, for clear visual seasonality detection, the first five weeks of the training period 

were used, where daily and weekly patterns are seen. As expected, daily and weekly seasonality 

are captured to a satisfactory degree, small decrease in daily seasonality due to lower electricity 

demand at night, decrease in weekly seasonality as seen previously in the weekly electricity price 

graphs, weekdays price is higher compared to weekends. To deal with seasonality, logarithm or 

differencing can be applied. In the next section, further steps are made. 
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Figure 7. Multiple seasonality electricity price decomposition using TFP 

 

Figure 8. Multiple seasonality electricity price decomposition using TFP for the first five weeks 

of the training period 

5.4. Stationarity testing 

 To further analysis and appropriate model implication, autocorrelation functions should be 

inspected to guarantee that time series are stationary, and there is no autocorrelation or structural 

breaks. For ARIMA(p,d,q) values identification KPSS test to identify differencing (d) number was 

applied. Autocorrelation Function (ACF) (q) and Partial ACF (p) were used to test if the 

forecasting model is a good fit or to see if there is more information left in the data that should be 

incorporated into the model. Autocorrelation is the correlation, the linear relationship, between the 

function and the delayed version of the function [32]. After ARIMA(p,d,q) values identification, 

the Augmented Dickey-Fuller Test to check stationarity was applied. 

 Stationarity tests were applied to both original values (after missing values imputation and 

outlier detection) and log values of electricity price, but original values with 164 lag were left for 

further analysis. Most of the studies found also did forecasting for original lagged data series, such 
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as S. Voronin [6], Karabiber el at. [18], R. Beigaitė, T. Krilavičius [12] [13], S. Duffner [21] used 

logarithmic electricity price form, while S. B. Amor el at. [23] used log-returns. 

 KPSS test to identify a number of differencing (d) was applied. The first test was 

implemented on original values, giving p equal to 0.01, with all outlier detection methods applied. 

The null hypothesis for the KPSS test is that the data are stationary, while the alternative hypothesis 

assumes that data is not stationarity. Since we got a value lower than 0.05 null hypothesis is 

rejected, and differencing should be applied. After first differencing with lagged values of daily 

and weekly data were applied, giving p-value equal to 0.1, so the null hypothesis is not rejected, 

and first-order differencing (d = 1) should be applied. 

 Further, ACF (q) will be inspected. As a base electricity price with TFP will be shown, 

other graphs can be seen in the appendix. Looking at Figure 9, the maximum values are seen at 

both lags 24 and 48, indicating a daily seasonality. Also, a weekly graph was generated. It is visible 

that the maximum at both at multiples of 24 and growing pattern at multiples of 168 (7 × 24). 

 

 

Figure 9. Hourly electricity price daily and weekly autocorrelation 

 For p indicator detection, Partial ACF graphs and analysis were done. The highest peaks 

were reached with lag = 0. Finally Augmented Dickey-Fuller (ADF) test was applied on first order 
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differenced data. The null hypothesis of the ADF test is that unit root is present in the time series 

sample, which means because difference stationary against the alternative hypothesis is that unit 

root is not present in the time series, which means that data is trend stationary [49]. After applying 

the test, the null hypothesis was rejected because the p-value is less than 0.05, indicating strong 

evidence against the null hypothesis. Therefore alternative hypothesis was accepted, meaning that 

data is trend stationarity. 

 After ARIMA(p,d,q), values identification and stationarity approval model can be built. 

5.5. Model building and forecasting 

 As mentioned, forecasting has various approaches, and a lot of testing and checking has to 

be made to find the best forecasting model. In this work, various ARIMA modelling approaches 

were tested. ARIMA with and without the remaining nine external variables will be analysed. 

Since most of the works about electricity price forecasting in the Lithuanian market were 

considering daily seasonality [14] [13], in my work a weekly seasonality with 168 lag, will be 

analysed. Models will be built by experimenting, and using results got in the previous chapters. 

 TFP, SFP, RFP, and PFP outlier detection methods will be compared, applying all selected 

models. The results will be explained by referring to the ARIMA and ARIMAX models with the 

lowest forecasting accuracy error. In this work, an error will be analysed in two different forms, 

RMSE and MAE, mentioned in Chapter 4.2.  

 All the variables in Table 4, after preliminary analysis will be used to build an electricity 

price forecasting model in Lithuania. After building the model, the backwords feature elimination 

to external variables will be applied (see Chapter 5.6) to see which variables are significant in this 

forecast. 

Table 4. Explanation of used variable names 

Variable Explanation 

working_days, Calendar days, 0 – non-working days, 1 – working days and holidays 

coal_price Coal price, Eur/t 

hydro_lt Hydro power in Lithuania, MWh 

hydro_swe Hydro power in Sweden 

load_lt_ac Actual load in Lithuania, MWh 

gas_price Natural gas price, Eur/MWh 

temperature Temperature, C 

wind_lt Wind power in Lithuania, MWh 
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fourier To incorporate the multiple seasonality, additional Fourier terms are added to the 

model (using “auto.arima”) 

 

 Four different types of AR-type models were constructed to define the best-fitting model 

and forecast, not including the experiments made while conducting these results. To several model 

selection criteria are calculated to statistically find the model with the best approximation and the 

smallest forecasting error. For forecasting and model adequacy RMSE with MAE errors will be 

considered. Their calculation is denoted in Chapter 4.2. 

 None of tried models had a lower RMSE error than 5, so additional ARIMA models was 

introduced. Since electricity price data has double seasonality and AR-type models cannot catch 

these patters, a fit for the seasonality with Fourier series will be used [52]. This data then will be 

analysed together with and without remaining variables, hoping that this method will improve 

electricity price forecast in Lithuania. To catch double seasonality “fourier()” function from 

forecast package will be used, “auto.arima()” function from the same package will be used to 

make the actual fit along with using additional command seasonal = FALSE [53]. This function is 

an automated algorithm used to choose the best coefficients in an ARIMA model and it is a 

variation of the Hyndman and Khandakar’s [54] algorithm. It uses unit root tests and minimization 

of AIC to get to the result. After the auto.arima implication the best model with Fourier series as 

an external regressor, to detect double seasonality, were found: ARIMA(3,1,2). After additional 

model implication in total 5 models were used to forecast electricity price in Lithuania. All models 

RMSE and MSE accuracy measures were compared in Table 5.  

Table 5. A summary of models forecasting accuracy measures 

Outlier 

detection 

method 

Models 

ARIMA (1,0,0) ARIMA(0,1,0) ARIMA(1,1,1) ARIMA (3,1,1) ARIMA (3,1,2) 

Uni Multi Uni Multi Uni Multi Uni Multi Uni* Multi* 

Accuracy measure - RMSE 

TFP  5.81 5.28 5.94 5.50 5.89 5.23 5.89 5.22 5.11 5.06 

SFP 5.67 5.14 5.79 5.35 5.74 5.09 5.47 5.08 4.97 4.93 

RFP 5.81 5.28 5.93 5.49 5.89 5.23 5.88 5.22 5.10 5.06 

PFP 5.61 5.09 5.73 5.31 5.70 5.03 5.70 5.03 4.86 4.82 

Accuracy measure - MAE 

TFP  3.36 3.27 3.13 3.11 3.07 3.26 3.07 3.24 3.12 3.10 

SFP 3.32 3.23 3.09 3.07 3.03 3.21 3.23 3.20 3.09 3.06 

RFP 3.36 3.27 3.13 3.11 3.07 3.25 3.07 3.24 3.12 3.10 

PFP 3.30 3.22 3.08 3.05 3.03 3.20 3.03 3.19 3.07 3.04 

 *With Fourier series an external regressor. 
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 In Table 5, the forecasting errors of both univariate and multivariate models were shown. 

MAE, which shows the average magnitude of the errors in a set of forecasts, without considering 

their direction, was lower in univariate series, but since the difference, it is not that significant, the 

results will be done accordingly to RMSE error. The smallest RMSE were detected in both 

ARIMA(3,1,1) and additional ARIMA (3,1,2) multivariate models. While All models (except the 

one using the Fourier series) share relatively similar forecasting errors varying from 5.03 to 5.89 

RMSE. We can see that RMSE error in all cases are lower when additional variables are used. To 

improve these results, additional ARIMA model with Fourier series, which can detect double 

seasonality, was introduced. ARIMA (3,1,2) with Fourier series as a regressor significantly 

improved forecast, with RSME reaching 4.82 and MEA 3.04. Meaning that double seasonality 

while forecasting electricity price is important and improves RMSE forecasting measure by 4.2%. 

The chosen model graphical representation can be visible in Figure 10. 

 

Figure 10. ARIMA (3,1,2) forecast using PFP outlier detection method 

5.6. Backwords feature elimination 

 

 In Chapter 5.1 more detailed external regressor analysis were made. In Chapter 5.2 for 

variables selection, linear correlation technique was used. Linear correlation analysis is widely 

used for feature selection; however, it is a linear technique and often cannot consider the original 

price's nonlinearities [6]. For significant feature selection, backward feature elimination method 

was used. This method is used to minimize the number of external variables, optimize the 

computation time, and minimize the error, for electricity price buyers and sellers, leaving just the 

most important variables. There are n=9 variables (excluding in “auto.arima” used Fourier series 

and dummies). In the previous chapter, it was concluded that ARIMA(3,1,2) using the PFP outlier 

detection method model has the lowest accuracy, but despite greater accuracy, due to time-
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consuming model building, the backward feature elimination was not applied using this model. 

So, ARIMA(3,1,1) with PFP outlier detection method model, as the second-best model, will be 

run as a benchmark model for backward feature elimination method. The ARIMA(3,1,1) with PFP 

outlier detection method forecast will be run with n − 1 = 8 variables and each time a different 

variable will be eliminated from the forecast and errors will be compared. This will allow us to see 

if any variables are unnecessary, disruptive, or tremendously important for superior forecasts [18].  

 The first backward feature elimination attempt (see Table 6) showed that few variables 

should be eliminated. Surprisingly, the biggest difference in forecasting accuracy measures was 

when hydro power volumes in Lithuania were excluded, after hydro power elimination, RMSE 

improved by 2.40% and MAE by 2.98%. There is a slight improvement in both RMSE and MAE 

maximum error, respectively by 3.48% and 4.02%. Improvement in standard deviation is a bit 

higher, reaching 6.14% in RMSE and 6.24% in MAE. The variable that has the greatest positive 

effect on forecasting accuracy is the actual load in Lithuania. 

Table 6. ARIMA with nine regressors 

Excluded 

Variable 

RMSE MAE 

Mean Min Max Std Dev Mean Min Max Std Dev 

Benchmark 

ARIMA 

8.254 5.028 11.481 4.56 6.137 3.190 9.083 4.17 

Calendar days 8.264 5.030 11.498 4.57 6.139 3.191 9.087 4.17 

Coal price 8.277 5.028 11.527 4.60 6.157 3.190 9.125 4.20 

Hydro power in 

Lithuania, 

8.056 5.029 11.082 4.28 5.954 3.190 8.718 3.91 

Hydro power in 

Sweden 

8.205 5.028 11.383 4.49 6.087 3.191 8.983 4.10

  

Actual load in 

Lithuania, 

10.494 5.393 15.595 7.21 7.995 3.261 12.728 6.69 

Natural gas price 8.398 5.028 11.768 4.77 6.265 3.190 9.340 4.35 

Temperature 8.175 5.042 11.309 4.43 6.084 3.192 8.975 4.09 

Wind power in 

Lithuania 

8.213 5.040 11.385 4.49 6.065 3.189 8.942 4.07 

 

 After hydro power in Lithuania variable elimination (see Appendix 5), errors were 

rechecked, and no significant improvement with any other variable elimination was recorded. It 

can be assumed that the remaining variables contribute to the model. Even after hydro power in 

Lithuania variable removal forecasting accuracy errors remained pretty much the same, meaning 

that also other factors play a role that is not captured in this dataset, like congestion, hydro power 

reservoir levels in Lithuania and its neighbouring countries, different bidding strategies by the 

market participants or countries policies and actions related to energy sectors and that may have 

an impact to electricity price. 
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5.7.Results and Evaluation 

 

 Considering that electricity price display features such as high volatility, spikes, double 

seasonality, and numerous methods that can be used in electricity price forecasting, make it 

difficult to achieve high accuracy in forecasting. 

 In this paper, various statistical ARIMA models were analysed. The efficiency and 

usefulness of statistical analysis in financial markets are often questioned. The methods stand a 

better chance in energy markets because of the seasonality prevailing in electricity price processes 

during normal, non-spiky periods. Even statistical models do not perform well with price spikes, 

price spikes should be captured using an adequate model. However, the literature does not agree, 

or outlier detection should, or should not be included in the models [29]. In this paperwork to deal 

with high electricity price spikes, four outlier detection methods were used: PFP, RFP, SFP, and 

TFP. To catch the double seasonality model with Fourier series was introduced. After numerous 

attempts, the best ARIMA model was ARIMA(3,1,2) using a percentage filter on price outlier 

detection with Fourier series included as an external variable, together with other variables. This 

model RSME reached 4.82 and MEA 3.04. This means that double seasonality while forecasting 

electricity price is important and improves forecasting accuracy measure RMSE by 4.2%, 

compared to the second-best model with 168 lag, ARIMA(3,1,1) with external variables, using 

PFP outlier detection method. Seven external regressors were included in the model: Calendar 

days, Coal price, Hydro power in Sweden, Actual load in Lithuania, Natural gas price, 

Temperature, Wind power in Lithuania. 

 Despite various external variables implemented and various models tested, forecasting 

accuracy remained quite high, and it did not outperform R. Beigaitė and T. Krilavičius [13] [12] 

researches. For hourly electricity price forecasting in the Lithuania, they used average, seasonal 

naïve, and exponential smoothing methods, where minimum forecasting errors was reached with 

exponential smoothing equal to 1.76% MAPE, 0.66 MAE and 0.83 of RMSE and for the next 

research, they used Elman and Jordan neural network methods, where minimum forecasting error 

was achieved using Elman neural network with MAPE error equal to 3.55%, 1.12 MAE and 1.34 

RMSE. But comparing to Nord Pool market researches, 4.82 RMSE is quite good accuracy. O.A. 

Karabiber et al. [18]  lowest forecasting error was conducted using ARIMA with 7.95 of RMSE. 

S. Duffner el. at. [21] the best working method was ARIMAX with 6.6. While the lowest accuracy 

was reached by B. Amor et al. [23]  proposed a new hybrid model k-factor GARMA-LLWNN 

model with MAPE < 1%. To sum up, 4.82 RMSE accuracy is quite good, and the model is adequate 

for further usage and it outperforms some of the works done with the same models, due to 
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seasonality and outlier detection methods. Electricity price can be forecasted for the next 168h and 

it can be used for electricity sellers and buyers in the Nord Pool power market. Nevertheless, 

despite these findings, there is still plenty of room for improvement in Lithuania's electricity price 

forecasting. 

 As I already pointed out, numerous variations for the modelling have been tried but did not 

yield significant improvements and error do not vary a lot, so most possibly also other factors play 

a role which is not captured in this dataset like congestion, hydro power reservoir levels in 

Lithuania and its neighbouring countries, different bidding strategies by the market participants or 

countries policies and actions related to energy sectors and that may have an impact to electricity 

price. For example, most resent Astravets Nuclear Power Plant commercial start and strict 

countries policies about them. From November 2020, the commercial flow of electricity from 

Belarus was cut off when the Astravets Nuclear Power Plant became operational. Market 

participants are currently still trying to assess the ultimate effect of that effect on prices in the 

region. We will probably see the ultimate Astravo effect in more time when conditions are 

available for relatively more historical data than in 2021 onwards. 

6. CONCLUSION 

 Eight objectives were determined and examined in this research, and they can be listed as 

below: 

1. To analyse literature that focuses on electricity price forecasting in Lithuania; 

2. To analyse literature that focuses on electricity price forecasting at Nord Pool Power 

market; 

3. To collect data and to do a preliminary analysis; 

4. To detect a set of candidate explanatory variables that may influence electricity price in 

Lithuania; 

5. Select and build understandable and easily usable short-term electricity price forecasting 

model for electricity price buyers and sellers; 

6. Compare selected models with and without external variables using accuracy measures; 

7. Compare selected models with different outlier detection method using accuracy measures; 

8. Evaluate the most precise model adequacy. 

 All objectives were successfully implemented. The literature on electricity price 

forecasting in Lithuania was reviewed, concluding that only a few pieces of research were done 

with a huge space for improvement. In this paper, various improvements for electricity price in 

Lithuania forecasting were selected, such as external variables imputation, outlier detection 
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methods implementation. The second objective was to analyse literature that focuses on the Nord 

Pool power market electricity price forecasting, concluding that various models and techniques 

can be used to deal with various problems, which impact electricity price forecasting.

 Another quite time-consuming goal was data collection. Data were collected, aggregated, 

analysed, and prepared for the model. Analysis of Lithuania’s price area showed that there are 

double seasonality patterns.  Furthermore, prices tend to be lower in winter-spring months, at night 

and on weekends. Based on Lithuania energy market characteristics reviewed in Chapter 2.1 and 

existing literature Chapter 3, important regressors for the electricity price have been worked out, 

leaving us with 11 variables: Calendar days, Coal price, Hydro power in Lithuania, Hydro power 

in Sweden, Actual load in Lithuania, Actual load in Sweden, Actual load in Finland,  Natural gas 

price, Temperature, Unavailability in transmission Grid, Wind power in Lithuania. After linear 

correlation and backward feature elimination, only seven variables are left, assuming that 

Unavailability in the transmission grid, Actual load in Sweden, Actual load in Finland, and Hydro 

power in Lithuania are not significant for the model. 

 For the fifth objective implementation, the statistical ARIMA model was chosen. This 

model was chosen due to a few reasons. First, there was no other work for short-term electricity 

price forecasting in Lithuania using ARIMA models, and in the author’s opinion, this type of 

model is fundamental to analyse, before implementing another type, hybrid or more advanced, 

models. Second, this model was chosen due to reusability for electricity price buyers and sellers 

in the Elspot Nord Pool power market because the model is easily understandable, and parameters 

can be selected or dropped according to its understanding and needs. And finally, because in 

various cases, statistical models outperform more advanced models [13] [50] and give better 

results, so the author wanted to focus and analyse statistical model performance. 

 In Chapter 5.5 and 5.6 selected models, univariate and multivariate, with different outlier 

detection methods were compared. The prices are forecasted for the Lithuania area in the Nord 

Pool power market. The best fitted ARIMA model was ARIMA(3,1,2) using percentage filter on 

price outlier detection and Fourier series included as an external variable, together with other seven 

external variables. This model RSME reached 4.82 and MEA 3.04. In comparison to similar 

researches in the Nord Pool market Karabiber et al. [18] and S. Duffner el. at. [21], my model 

performs a bit better, probably as a result of price spikes detection and double seasonality detection 

with Fourier series. To sum up, 4.82 RMSE accuracy is quite good and the model is adequate for 

further usage. Electricity price can be forecasted for the next 168h and it can be used for electricity 

sellers and buyers in the Nord Pool Power market.  
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 Nevertheless, despite these findings, there is still plenty of room for improvement in 

Lithuania's electricity price forecasting. In further researches, more significant variables should be 

tested, including congestion, hydro power reservoir levels in Lithuania and its neighbouring 

countries, also more neighbouring countries data should be included because the Lithuania market 

is small and dependent on other, bigger markets. More advanced or hybrid models, which can cope 

with double seasonality, should be used, assuming it could provide higher forecasting accuracy. 

In further works, political and environmental aspects should be considered, such as regulations 

toward Belarus, global warming, or decarbonization. 

 Considering the increase of renewables, decarbonatization, upcoming deregulation of the 

Lithuania market, and the merging of the different European markets (referring to recent 

Netherlands, Germany, France entrance to Nord Pool market), the forecasting of electricity price 

will remain an important topic in future and will experience much development. 
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Appendix 5. A summary of models forecasting accuracy measures after hydro volumes 

elimination 
Outlier 

detection 

method 

Models 

ARIMA (1,0,0) ARIMA(0,1,0) ARIMA(1,1,1) ARIMA (3,1,1) ARIMA (3,1,2) 

Uni Multi Uni Multi Uni Multi Uni Multi Uni Multi 

Accuracy measure - RMSE 

TFP  5.81 5.28 5.94 5.50 5.89 5.23 5.89 5.22 5.11 5.06 

SFP 5.67 5.15 5.79 5.35 5.74 5.09 5.47 5.08 4.97 4.93 

RFP 5.81 5.28 5.93 5.49 5.89 5.23 5.88 5.22 5.10 5.06 

PFP 5.61 5.10 5.73 5.31 5.70 5.03 5.70 5.03 4.86 4.82 

Accuracy measure - MAE 

TFP  3.36 3.27 3.13 3.11 3.07 3.26 3.07 3.24 3.12 3.10 

SFP 3.32 3.22 3.09 3.07 3.03 3.21 3.23 3.20 3.09 3.06 

RFP 3.36 3.27 3.13 3.11 3.07 3.25 3.07 3.24 3.12 3.10 

PFP 3.30 3.21 3.08 3.05 3.03 3.20 3.03 3.19 3.07 3.04 
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