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Abstract

Proof of Work (PoW) is a system that’s used by Bitcoin to keep it’s state update intervals at
around 10 minutes. PoW uses hashing techniques to produce validation of state which are required
by PoW mechanism. This hash-based mechanism has it’s pros, cons and inefficiencies. One of
the inefficiencies would be that hashes are not reusable anywhere else. This thesis presents an
alternative to a hash-based validation that’s based on asymmetric cryptography. Several difficulty
calculation and block validation methods are explored to send messages into the future by encrypt-
ing them with temporary keys. Public key pool is maintained by the system in such a way that it
can be done publically and without trust and without knowing any private keys. Later private keys
are found and revealed and only then time-lock message’s decryption becomes available.



Santrauka
Anoniminis Zinu¢iy iSaldymas laike naudojant Proof of Work

Atsiradus Proof of Work (PoW) technologijai, kuria naudoja Bitcoin sistema 10 minuciy laiko
intervalams iSlaikyti, tapo prieinama konstruoti panaSias sistemas. PoW naudoja Hash validaci-
jos schema, kuri turi savy privalumy, trikumy ir neefektyvumy. Vienas i§ neefektyvumy yra
menka galimybé panaudoti Hash validacija kitiems tikslams, pvz.: prieinamam duomeny Sifrav-
imui. Siame darbe nagrinéjami keli metodai leidZiantys pakeisti PoW veikima i§ Hash algoritmo i
asimetring kriptosistema. Tai leidZia sukurti trumpalaikius atvirus raktus ir juos panaudoti Zinuciy
siuntimui i netolimg ateiti. Raktai yra generuojami fiksuotais laiko intervalais ir tokiu biidu, kad
neprivaloma slépti sistemos komponenty. Galiausiai tinklas atranda raktus ir juos gali atskleisti.
Tik tada yra prieinamas duomeny atSifravimas.



Introduction

The goal of time-release cryptography is to send a message into the future so that it could be
decrypted after a certain time. Strategies for this range from secure escrow for holding the key to
processor-intensive tasks that give an answer after a specified amount of time. The usecases range
from short-term time escrow such as blind no-authority auctions or elections to long-term storage
like wealth preservation for cryogenically cooled people [26].

This kind of escrow system could be constructed in several ways, ranging from trusted storage
to private key brute-force. It’s possible to design a trust-based service to reveal the key but then
trust would be an important factor because key would be known in advance.

Alternatively an a priori unknown private key would allow for more public components in
the system. Publically computing the key would require costly computations and various security
assumptions (see chapter 9), but in return it would reduce trusted authorities to the minimum.

With recent development in Proof of Work (PoW) that’s used by Bitcoin and similar networks
time-release cryptography may get another push forward. As Bitcoin manages to keep block in-
tervals around 10 minutes and adjusts it’s difficulty every 2016 blocks (which is about two weeks)
it looks promising that it may be used for a system such as a short-term time-release network.
The system uses exhaustive amounts of computing power in it’s progress validation which allows
coordination of a large amount of interconnected parties without a trusted authority[1].

This thesis extends the computing-based approach of PoW and explores an alternative to hash-
based validation that’s based on asymmetric cryptography. Weak asymmetric cryptosystems are
not immune against a sufficient amount of computing power. This may mean that block validation
and difficulty calculation mechanisms could be refactored to use asymmetric cryptography.

This thesis proposes several core changes to PoW mechanism. Block validation on Bitcoin
network uses SHA256 hashing for block validation and the proposal of this thesis is to use asym-
metric keys instead of cryptographic hashes. It’s not enough to blindly change validation into
asymmetric puzzles (defined in chapter 2) as it wouldn’t give any benefits in this primitive form.
Difficulty adjustment freeze interval (which lasts for 2016 blocks in case of Bitcoin[1]) can be used
to provide a constantly refillable pool of uncracked public keys (see chapters 4, 5 and a minimal
implementation on chapter 7). This key pool can then be used to encrypt secret sharing schemes
which would then become the actual time-locks (more in chapter 6).

The mechanism would yield a side benefit of time-release messaging that wouldn’t have any
time-lock creation frequency constraints. The messages would become decryptable only after
network computes and publishes the corresponding keys. Additionally each time-lock would be
completely anonymous because time-lock encryption users would not use this network for message
hosting or exchange.

This kind of timestamping scheme could be used to implement a fork of Bitcoin or a com-
pletely new system. As it’s an extension to PoW it could also be used to create privacy oriented
blockchains' or even smart contract platforms?.

ISimilar to ZCash, Monero or Dash.
2Ethereum is a PoW-based smart contract platform.



1 Related work

1.1 Proof of work

Proof of work is a specific type of brute force coordination. It uses a network (i.e. botnet) of
connected devices to parallelize brute-force computations. The algorithm tries to guess the next
difficulty of the problem using previous executions as a benchmark. This allows dynamic addition
and removal of nodes from the network by adjusting the difficulty of brute-force problems over
time. The difficulty always lags behind and is only changed by adding or removing the amount of
computation [1].

1.2 Public-key cryptography

Public key cryptography is a cryptographic protocol that allows two parties exchange information
without negotiating anything in advance. It uses a mathematical problem to hide the transferred
information. The receiver party has an ability to decipher the transferred data.

1.3 El Gamal encryption scheme
El Gamal encryption scheme is based on a difficulty of discrete logarithm computation problem
over finite fields [5].
1.3.1 Key generation
Each participating entity should do the following [18]:
* Choose a group GG and a generator g for that group.

* Generate a key pair.

1.3.2 Choosing a group and a generator

Group G : {¢’};7 € {0, ...,p — 1} can be chosen by choosing a large integer prime p with order
n = p — 1. Prime p choice depends on the application. Badly chosen group prime p can increase
weaknesses such as easier computation of discrete logarithms using Pohlig-Hellman algorithm
[18].

This algorithm is general for cyclic group cryptosystems [18]:

Algorithm 1. Finding generator of a cyclic group [18].

Require: A cyclic group G of order n, and the prime factorization n = p$'ps2...p¢~.
Ensure: : A generator of G.

1: Choose a random element g in G.

2: for i from 1 to k do

3:  Compute b < ¢g"/P:,

4:  If b =1 then go to step 1.

5: end for

6: return g.

The algorithm 1 filters out elements of a group that generate the whole group Z,.



Example: Let’s choose p = 11 as our definition of a cyclic group. p is prime and n = 10 so it
has only two factors: 2 and 5.

Let’s choose a random group entry g = 3. To check if it’s a valid generator we have to perform
line 3 of algorithm 1:

32 =9 (mod 11)

1.1
3% =243 =1 (mod 11) (D

Equation 1.1 shows order factor check using algorithm 1. One of the results evaluated to 1 so 3 is
not a group generator.
Let’s choose g = 2.

22 = 4 (mod 11)

1.2
25 =32 =10 (mod 11) (12)

Equation 1.2 didn’t produce any results of 1 so 2 is a valid generator.

Example with a non-generator: Let’s choose p = 11 and a non whole-group generator g = 3
and list all possible elements of a group for this generator. After moving through first five powers
of g the values start to repeat. As 3 is not an efficient generator only 5 out of all possible elements
of group G are generated:

Gus:{¢9"};ne{0,...,p—1}
Gll’g : {1,3,9,5,4, 1,3, 9, } (13)
Gll,g : {1,3,9,5,4}

Example with a valid generator: Let’s choose p = 11 with a generator ¢ = 2 and list all
possible elements of a group for this generator. After moving through the powers of g the values
start to repeat only after all of the values of GG are exhausted:

G2 {1,2,4,8,5,10,9,7,3,6,1, ...}
G2 {1,2,4,8,5,10,9,7,3,6} (1.4)
sorted(Gr12) : {1,2,3,4,5,6,7,8,9,10}

We’ve just generated all possible public keys using generator 2 (except 0 and p = 11). Le. if any

of these group elements would be chosen as public keys (with generator g = 2) then it would be
possible to eventually find out the private key.

1.3.3 Key pair generation

Derivation of a public-private key pair is performed using algorithm 2.

Algorithm 2. El Gamal public key generation [18].

1: Choose a description of a cyclic group G of prime order p with generator g € Z; : {0,....,p—
1}.

2: Choose an integer = € {1,....,p — 1}.

3: Compute h := g°*.

4: return (p,g,h) and z.

The public key consists of the values (p, g, h) and x is the private key. Note: Algorithm 1
doesn’t have parameter p and uses n = p — 1 for El Gamal’s case.
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Example: Let’s choose p = 11 and a generator g = 3. To create a key pair we have to choose a
private key x:

T =95
h=g"=3"=243 =1 (mod 11) (1.5)
(h=1;2 =5) (mod 11)

1.3.4 Encryption

ElGamal encryption is performed by executing algorithm 3.

Algorithm 3. B encrypts a message m for A (algorithm 8.26 from [18]):

Obtain A’s authentic public key (g; g*).

Represent the message as an element m of the group G.
Select a random integer k, 1 < k <n — 1.

Compute v = g* and § = m - (g*)".

Send ¢ = (v,0) to A.

A

1.3.5 Decryption

ElGamal decryption is performed by executing algorithm 4.

Algorithm 4. A recovers plaintext m from c (algorithm 8.26 from [18]):

1: Use the private key = to compute 7* and then compute y~*.
2: Recover m by computing (7~ %) - 4.

1.4 Elliptic curve cryptography

Elliptic curve cryptography is based on Elliptic curve discrete logarithm problem. Currently it’s
the standard choice for secure communication [9]. Elliptic curves offer many well-understood and
widely used cryptographic concepts.

1.5 Lattice-based cryptography

Lattice-based cryptography uses hard problems in lattices for security. This mathematical concept
is different from discrete logarithm problem that is used in El Gamal and Elliptic curve cryptosys-
tems. One could imagine a lattice as a way to define multiple linearly independent vectors or
different multivariate polynomials and their relations in multidimensional space. These relations
can be interpreted as points of a space. This is where the name "Lattice" comes from.

Lattices have several hard problems that are used in modern cryptography that include:

* Shortest vector problem (SVP) — Find shortest vector of ~y times shortest non-zero lattice
vector [19]

* Closest vector problem (CVP) — Find a lattice point near given non-lattice point [19]

* Learning with errors (LWE) problem which is derived from SVP [25]

11



and others.
Multiple lattice-based asymmetric encryption algorithms are proposed to NIST’s Post-Quantum
Cryptography project which include:

* CRYSTALS-KYBER (LWE)

FrodoKEM (LWE)

LAC.CPA (LWE)

NTRUEncrypt (SVP [10])

Saber (module-LWR [13])

Three Bears (LWE).

1.6 LAC CPA public-key encryption scheme

LAC suite offers multiple cryptographic primitives including key exchange and public key cryp-
tosystem. LAC.CPA [17] is a lattice-based public key cryptosystem based on LAC key exchange
mechanism. It’s based on a hard lattice problem known as Learning With Errors (LWE or Ring-
LWE).

LAC.CPA encryption algorithm doesn’t use complicated operations (ex. modulo inverse?) so it
may be a good candidate for AVDFs. It uses only addition, multiplication and sampling from error
distributions. Errors that get introduced during the steps obfuscate operations of the mechanism
and can hide messages. They are sampled from distributions around points in a lattice and from
general randomness. Encryption and decryption is performed with help of error correcting codes*
to recover obfuscated parameters from random errors.

1.6.1 Key generation

Distribution S : {0, 1}!s is a space of random seeds where I, is a positive length of a seed. I,
doesn’t participate in the key generation algorithm.

Operation = < Samp(D, seed) is an abstract random generator that returns a sample from
a distribution D for a given seed. Equivalently (x,z,...,x;) < Samp(Dy, Dy, ..., Dy; seed)
returns ¢ samples.

Let ¢ be a modulus and define a polynomial ring R, = Z,/(z™ — 1). U(R,) a uniform distri-
bution over R,.

U™ is a distribution that is constructed in such a way that some of the space around a specific
point can be sampled for points. Authors of LAC.CPA provide binomial and Gaussian distribu-
tions as examples and suggest to use binomial distribution to improve performance.

Dollar sampling notation from step 1 refers to coordinate-wise sampling®. Operation in step 5
is vector multiplication that results in an element of field R,. It produces a public key b.

3SNTRU uses modulo inverse[10].
4 Authors use BCH[24] error correction codes.
SCoordinate-wise sampling: https://crypto.stackexchange.com/a/37797.
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Algorithm 5. LAC.CPA.KG() [17]

Ensure: A pair of public key and secret key (pk, sk).

AN A T R >

seed, &g

a < Samp(U(R,); seed,) € R,

s & gk

e & pnh

b« as+e€ Ry

return (pk := (seed,,b), sk :=s)

1.6.2 Encryption

Algorithm 6 describes the steps for encryption. Encryption is performed by encoding the message

m into a error correcting code m with [, as it’s length. The payload is then adjusted for decryption
decoding and multiplied by the public key b and other random parameters.

Algorithm 6. LAC.CPA.Enc(pk = (seed,,b),m € {0, 1}!™; seed € S) [17]

Ensure: A ciphertext c.

1:

AN A T

a < Samp(U(R,); seed,) € R,

m < ECCEnc(m) € {0,1}"

(r,€1,e2) < Samp(¥™h Gl Yl seed)
< ar+e € Ry

o = (br), +ex+ [£]-meZl

return ¢ := (¢, ¢p) € Ry X Z

1.6.3 Decryption

Decryption algorithm 7 derives parameter u from secret key component and removes ciphering
components from the ciphertext. This is done by matching between the error values in a range

because  was added to every component of ciphertext during encryption. Line 10 of the algorithm
uses error correcting decoding to recover the final plaintext.

Algorithm 7. LAC.CPA.Dec(sk = s,¢ = (c1,¢2)) [17]

Ensure: A plaintext m.

1:

—_ =
—_ O

D ARl

u<c1s € R,
m < ¢y — (u), € Zl
fori=0tol, — 1do
if%gﬁzi<%‘1then
m; + 1
else
m; < 0
end if
end for
m < ECCDec(m)

: return m

13



1.7 Delay mechanisms

Delay mechanisms ensure that computation cannot continue until specific period of time passes.
This can be achieved in several ways:

* Reliance on a third party
* Classic slow function

* Verifiable delay function (VDF)

Reliance on a third party is a trust-based scheme for unveiling data. Third party can agree to
hold keys for specific time and needs to be trusted not to disclose them. It can be combined with a
secret sharing mechanism so that the risk of premature disclosure would be reduced by spreading
the trust between multiple third parties [28].

Classic slow functions are CPU-intensive tasks that occupy a single core and run for a specified
amount of time. The execution yields a value that can be used as a solution of the domain problem
(e.g. a secret key for exchange of company data). The main drawback of this kind of approach is
that validation of the performed computation is expensive [26].

VDFs are similar to slow functions but they add fast verification of the solution. This means that
the verifier doesn’t need to reevaluate the work performed by the solver [3].

1.8 Verifiable delay function

Verifiable delay function is a busy wait puzzle function that yields a value. To call function a
Verifiable Delay Function (VDF) it has to allow efficient verification of its result [3]:

puzzle = Setup(D)
answer = FEval(D,puzzle) (1.6)
result = Verify(D,puzzle, answer)

Where Setup is puzzle creation with D initial parameter(s) for the puzzle, Eval is a resource-
intensive step and Veri fy is verification function for the answer.

1.9 Sending messages into the future

It’s very easy to take a cryptographic key and store it in a vault for some time. One could construct
a system which allows users to rely on a third party. This party then would hold the keys and
would be responsible to reveal them at specified moment.

This kind of naive system may work for some usecases but it wouldn’t be private enough for
very sensitive applications. The sensitivity of information would eventually incur that some form
of insider would be able to read the data.

Prevention of this kind of behavior could be to have a specific contract with the provider but
even then nobody could be sure. To increase this kind of certainty the private keys shouldn’t exist
anywhere before the specified time.
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This concept of sending messages into the future is already known for a while[26]. And there
are many already explored ways to do it [23, 16].

One of the concepts that may deliver at least short-term results would be a proof of work public
brute-force system [12, 4, 1]. Using this kind of mechanism the constructed system would not
allow anybody to decrypt the information without producing enough effort for PoW verifications.

1.10 Secret sharing scheme

Secret sharing schemes allow sharing a secret piece of information among a group of participants.
This kind of schemes[29, 28] allow to split secret information into several parts with ability to
recover it when enough participants cooperate.

1.10.1 Shamir’s secret sharing

Shamir’s secret sharing scheme is based on interpolation of a polynomial over a field G F'(¢)[28].
Every participant is given a point and the final polynomial is recovered using interpolation. Out-
put of sharing scheme secret’s recovery is the constant coefficient of the polynomial that isn’t
multiplied by variable . The scheme has these properties:

* Valid threshold scheme — Any set of ¢ participants can reconstruct the secret value s when
it’s constructed for ¢ out of n total shares.

* Perfect — shares of ¢ — 1 participants don’t reveal any information about the secret s.
* Ideal — every share has the same length as the secret.
* Linear — shares are linear combinations® of the secret and random values.

* Multiplicative — product from two different scheme secrets can be obtained by multiplying
shares of both secrets.

Additionally it supports weighted participation for the users in the scheme. It can be done in an
unorthodox way by issuing more of the shares to a single participating entity.

1.10.2 Schemes with complex access structures

Complex ownership models in secret sharing schemes are called access structures. Schemes that
use these ownership models use mathematical relations to reduce the size of weighted shares
[7,22, 15]. Multipartite access schemes allow efficient groups of share weights while ensuring va-
lidity and perfectness (see chapter 1.10.1). Bipartite[22, 15], Tripartite[7] and Multipartite access
schemes represent two, three and many weight partitions respectively’. Schemes that use access
structures with single weight for all shares are already provided by schemes similar to Shamir’s
secret sharing scheme (see chapter 1.10.1).

6 Addition or multiplication.
"For instance bipartite access structure allows two kinds of weights to be used at the same time in a single sharing
scheme with any share combination for secret recovery.
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1.11 Threshold encryption scheme

Threshold encryption schemes are cryptographic techniques to reduce communication between
multiple involved peers for decryption. There are numerous such encryption schemes [6] for
different cryptosystems. Not all cryptosystems support it.

2 AVDF puzzles

Asymmetric key VDF puzzle is a computational problem that enforces the solver to compute until
the solution is found. It’s defined as a cryptographic key pair that has an unknown private key but
that key exists. It’s difficulty level depends on the key’s cryptosystem’s parameters.

Asymmetric key VDF (AVDF) is constructed as a public key from an asymmetric cryptosystem
where public key is generated without a private one. AVDF has two additional functions -- Encrypt
and Decrypt. Both of those functions are asymmetric encryption functions from the underlying
cryptosystem.

2.1 AVDF cryptosystem

AVDF cryptosystem is an abstract cryptosystem that allows public key generation (or verification)
without reliance on private keys.

By choosing parameters for the cryptosystem we can adjust the length of resulting asymmetric
public keys (and change difficulties of puzzles).

In order to make a specific asymmetric cryptosystem behave like a VDF function we have to
make sure that:

* At least one of (or leaning towards both?®) is true:

— All public keys resemble a private key [5]
— It’s possible to verify that private key exists for a random public key (L.E. it’s part of
the field [14])

* It’s possible to verify that private and public keys match. Verification of the public-private
key pair should be a relatively easy task. Most of the cryptosystems generate private key
first and then derive the public key from it.

* Private key derivation from public one is a hard task and it’s security depends on the param-
eters of the cryptosystem.

2.2 AVDF puzzle workflow

Let D be valid puzzle difficulty parameters®, c be a cryptosystem created using parameters D and
let R be an abstract random generator.

8ECIES doesn’t strongly follow this rule. Details can be found in section ??.
Cryptosystems may expect specially picked numbers (e.g. prime) as construction parameters.
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Then VDF workflow (from equations 1.6) would result in:

public = Setup(R,c)
private = FEwval(c, public) (2.1)
v = Verify(c, public, private)

Where:

* Setup involves generation of a new public key without knowing the private key.
* Fuval is a guess stage which eventually yields a matching private key.
» Verifyis performed by deriving a public key from the private one and checking for equality.

* Newly acquired boolean parameter v is true when found private key matches the public one.

2.3 AVDF cryptosystem setup

To construct a cryptosystem for AVDF puzzle creation it’s needed to know the computation dif-
ficulty of Ewval and time target. This difficulty then should be converted into cryptosystem’s
parameters. It’s useful to start with a small difficulty and increase until the difficulty matches the
resources on hand.

2.4 AVDF puzzle encryption workflow

Let public be a public key in a cryptosystem ¢ which is valid AVDF puzzle, and m a plaintext
message. Then encryption and decryption would be performed as follows:

/

m' = Decrypt(Eval(c, public), Encrypt(c, public, m)) (2.2)

And m' would be equal to m

2.5 Randomness in Fval

Ewval may use an encapsulated random generator (not connected to the Setup step). This means
that it could add additional randomness to the system in the form of a generated private key.

2.6 Difficulty adjustment

For every cryptosystem type the adjustment of difficulty may be a different kind of process. Gen-
erally cryptosystem’s difficulty of an already functioning cryptosystem can’t be changed. Security
level and key length is defined by field power, modulo or other parameters of the cryptosystem
[2], [5]. If we want to produce cryptosystems with different security levels (i.e. different public
key lengths) we have to construct a new cryptosystem for exact adjusted key length.

17



3 Cryptosystem suitability for AVDF

Not all public key cryptosystems are suitable for AVDF puzzle construction. The construct expects
one additional property over public key cryptosystems — trustless public key setup without a
private key.

This section lists only changes in public key derivation methods because the remaining parts
of the cryptosystem shouldn’t be changed. Changing them would result in unintentional deviation
from original cryptosystem designs and that wouldn’t be desirable from security point of view.
Changes to public key derivation and usage in AVDF scheme may have an impact on overall
security of cryptosystems.

3.1 El Gamal asymmetric encryption scheme

El Gamal’s cryptosystem parameters can be adjusted to include all possible entries of it’s group
(See chapter 1.4). This property allows to generate public keys with assurance that private keys
will exist every time. It not only allows to use this scheme with key existence but does it in a
lossless way — all public keys resemble a private key.

3.2 ECIES asymmetric encryption scheme

Public key in ECIES is a point on an elliptic curve.

It’s easy to generate points and verify that they exist on the curve, but point verification is not
enough to use them as valid public keys. Trustless public key generation can’t be done reliably
because ECC doesn’t work with whole group of points [14] (in contrast with EI Gamal). So it
will either force AVDF creation to stick with inefficient curves or result in increased network
calculation costs to find (and verify) the desired complexity of generated curves.

3.3 LAC CPA public-key encryption scheme

Algorithm 5 defines a way to generate a key pair for LAC.CPA scheme. Trustless key generation
requires adjustment of parameters of this cryptosystem:

1. Trustless public key generation shouldn’t involve a private key or seed.
2. Error distributions U™" may not allow to pick all possible elements of the R,.

The distributions are constructed in a specific way such that if one would overlay them onto
a n dimensional lattice in n 4+ 1 dimension space the whole field would be (mostly) uniformly
covered. Therefore this means that all (or most) points from I?, are parts of a distribution near a
lattice point.

3.3.1 LAC.CPA: public key generation without a private key

If we’d take algorithms 5, 6 and 7 and extract all transformations of the public key and plaintext
we’d get the following:
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a = Samp(U(R,); seed,) € R, Initial randomness from seed,,.

b= as+ e Public key generation with error ey, & gt
(r,e1,e9) = Samp(¥™", U™ Wl seed) New randomness during encryption.
co=ar+e € R, Ciphertext (part 1)
co = (br), + s+ ng . €7Zl  Ciphertext (part 2).
u=cs € R, Produced during decryption.

m=cy— (u), € Zé’” Recoverable plaintext. Used in later steps (See alg. 7.).

Let’s remove the components of public key to see what part errors play in 7m:

co = (br), +ex+ Lg} -m Ciphertext (part 2).
= (r(as + exg)), +e2+ [g} -m Elimination of b.

u=cs = s(ar +e;)

m = cy — (u),
B 0 - L 3.1)
= (r(as + exg))i, + €2+ [51 -m — (u)y, Elimination of c,.

r(as + exg))i, + €2 + [%1 -m — (s(ar + e1));, Elimination of w.

2
Tekg)l, + €2 + Lg} -m — (se1)y, Elimination of ars.

The cryptosystem’s public key b is composed of components a, s and e of which a and e are
random errors taken from errors distributions (see algorithm 5). Equations 3.1 show that expanded
version of m doesn’t involve a. One of the interesting things is that all of the coefficients are

= (
= (ars + regg), + €2 + Lg} -m — (ars + se1);,  Expansion of nested elements.
= (

multiplied by an error sample in some way except of the message — r, ei,, €2 and e; are all
additionally produced errors. This means that the algorithm doesn’t break if error distribution
Ut is chosen together with constant ¢ (see algorithms 6 and 7) is used. And this means that
it’s possible to find lattice and error distribution pairs that allow any public key to be used in
encryption.

Cryptosystem’s use of error-correcting codes can adjust the recoverability of the message even
further. AVDF produced from LAC.CPA structure would be able to additionally adjust message’s
recoverability by adjusting parameters of error-correcting code.

4 Naive AVDF puzzle time-lock chain

One of the simplest variations of time lock can be created by chaining multiple AVDF puzzles to-
gether. This would involve one or more computers brute-forcing the keys for the chain to advance.

An implementation for a single CPU can be scaled up by using a PoW mechanism such as
in Bitcoin[1]. The mechanism provides means to stop premature advancement of the global state
(chain) by forcing all of the participants to solve a hard problem. Once any of the participants
solves and shares the solution the chain can advance further [1].
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Bitcoin’s implementation uses SHA256 hash with a threshold (difficulty) that is used to change
the amount of computation to find a problem solution [1]. It is possible to change that problem into
something else. For this chapter SHA256 hash will be replaced by an abstract AVDF problem.

To define a simplistic time-lock mechanism and send an encrypted message it is needed to
have two execution contexts: Loop and Encryption. Loop context will belong to miners of the
chain and Encryption context will belong to the individual user.

4.1 VDF Loop

Loop context is worked on by miners to advance the chain. This phase of the algorithm produces
new keys so that data encryption user could use them.

Let R, be a seeded random generator; createCryptosystem(r : R;,d : P) be a function
to produce an AVDF-compatible cryptosystem; ¢ and ¢, — sequence numbers; Seed — seeding
function to produce a new random generator; d — difficulty of a cryptosystem; P — valid AVDF
cryptosystem parameters.

Initialization step:

1y, Ry = createCryptosystem(Ry, d)

This mechanism can be used to connect many AVDF puzzles:

publicy, R, = Setup(ct, Ry)
private, = FEwval(public;)
Ry = Seed(R}, private;)

R; generation seed has to be immutable i.e. the results have to be verifiable if validating with
same input parameters. Eval may generate keys using a random generator, but it’s not supplied
in these equations because the order of keys is not relevant. Produced random generators (R, and
R}) are advancements of the initial random generator because only the advanced version contains
new randomness.

4.2 Locking

In order to make lock (Encrypt) and reveal (Decrypt) mechanisms work the public key has to
be generated first. This means that not only public; has to be publically disclosed, but all other
parameters too, even the randomness generators. The parameters for cryptosystem c¢; should be
chosen such that it would take some'® time until Eval finishes it’s lookup. Encryption would be
performed simply by:

ciphertext = Encrypt(c;, publicy, plaintext)

This would mean that message would be undecipherable in the context of the executing machine!!
until it calculates the private key and reveals it.

10Strength of public; is adjustable by choosing cryptosystem’s complexity
"1 Bval step is paralellizable and fixed in complexity so attacker could use more resources and find the private key
in advance.
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Figure 1. Diagram of naive locking mechanism.

Figure 1 shows the relations between chain-connected AVDF puzzles. Parameter b, shows
a single PoW block with a sequence number n. Public and private asymmetric key sequence is
presented as pub,, and priv,, and their parameter n shows which block the keypair belongs to. Key
pub,, can’t be known before executing Fval because derivation of pub,, uses priv,,_; as a seed.

4.3 Difficulty adjustment

Bitcoin network adjusts it’s difficulty using SMA of previous block times [1]. As there is only
one key per block the difficulty has to be adjusted by changing the complexity of the underlying
cryptosystem (AVDF).

4.4 Feasibility and shortcomings

The scheme 4.1 is a valid Proof of Work protocol but it has at least three problems:
* Difference in difficulty target size.
* Proof of Work and block finality [1].

* Only one public key exists per single block.

Difference in difficulty target size. There is a difference between brute-forcing of a thresholded
SHA?256 hash and of an asymmetric key. There is only one key as a target for an asymmetric key
and threshold that is used in Bitcoin allows brute-forcing many hashes at the same time'?. At
first this may look trivial but it becomes tricky when chain returns to a similar kind of difficulty.
When previously visited difficulty is reached again the system has a possibility to generate the
same public key for brute-forcing. This problem can be solved by a history search or ordering of
the public keys. The existence of previously mined key would reveal the message of the sender.

The problem won’t occur with miner’s block rewards because the block’s AVDF puzzle’s
cryptosystem and public key randomness should be seeded from previous blocks.

PoW block finality. In the event of a temporary fork some calculations are lost. It is considered
that weaker chain never happened [1]. Users of the weaker fork will not get their decryption key
because that key won’t be saved onto the main chain. This means that PoOW mechanism doesn’t
ensure that all users will be able to decrypt their data. It’s known as 51% attack against PoW
network [1] and it is one of the weak points of PoW mechanism.

2Thresholded brute-force is the way that Bitcoin adjusts it’s difficulty [1]
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Key granularity It’s a concern about usability of the system. At any given moment in time there
exists only a single key to be discovered by PoW network. This means that user of the system will
only be able to send messages to a single moment in time. That moment will come after the
network will publish the private key.

10— Durations of blocks

Duration (seconds)

0 10 20 30 40 50

Figure 2. Single block duration in each epoch

Figure 2 presents a graph of 50 mined block times. The duration deviation from the mean is
larger than the mean itself. This means that single key target doesn’t smooth out the differences
enough between guesses.

S Chain of multiple key batches

To improve usability of naive time-lock mechanism from chapter 4 more keys have to be generated
to be brute-forced at the same time. Batching of more than one key would allow users to choose
decryption times for their messages using threshold encryption schemes (read more in chapter 6).

pu-b[]o o0 o pub[]n o0 0

Eval h Eval Eval h
privily| o 0 e privil,
B B
0 n

Figure 3. Chained multiple-keypair batches.

Figure 3 depicts a scheme of AVDF batches that extends the key list when private keys are
revealed. It’s an extension of design in Figure 1. The scheme shows use of multiple public keys
per multiple-block epoch B,,. pub[] and priv[] are public and private asymmetric key lists. Arrows
FEwval is a step of multiple AVDF puzzles and arrows h show randomness seeding from previous
multi-block epoch outcomes to the next generation of AVDFs. They additionally show finalization
of a private key calculation — advancement can be made only after the end of this calculation.

It’s not enough to epoch-batch the keys in the system. Batches have to be stored and their
contents have to be ordered in some way.

This can be achieved in several ways:

» External finalization of key batches

o AVDF for PoW block finalization
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5.1 External finalization of key batches

Choice of external ledger for key snapshot validation would allow use of smart contracts of non-
PoW blockchains and even more efficient (but arguably safer in worst-case scenarios) technologies
like centralized storage. It would be flexible to do it this way but the design has at least these flaws:

* External storage system.

* Blockchain with two different kinds of PoW.

5.1.1 External storage system

External storage system!? can be used for key sequence validation and ordering. As it doesn’t
force to use a blockchain it may be a good choice to save resources. Stored data could be any
sequence of keys and the keys would be able to be cleaned up after some amount of time. This
kind of activity would be governed by policy of the external system’s supervising party. The design
would improve partition-tolerance (compared to PoW blockchain)[8] as it would allow cheap and
flexible way to synchronize AVDF puzzle outcomes.

The risk is that the owner of the external validation system can rollback or change previous
work of the miners that solve AVDF puzzles and save outcomes on the ledger. It also means that
puzzles can be created from any keys that are published by the system provider — even maliciously
created ones.

Additional risk may involve a decrease of miner or user anonimity as external system would
require some kind of registration, policy or fee.

5.1.2 Blockchain with two different kinds of PoW

Two different kinds of PoW is a working design choice but wouldn’t be too beneficial in the long
term. It would function the same if an external smart contract would be used to store the mined
keys and external system would validate their existence. The only difference is that miners would
have to balance their resources between AVDF mining and regular block-validation mining. This
would be confusing as reward mechanism would be triggered at different rates for each miner

group.

Comparison with Bitcoin PoW network Change in key production mechanism changes the
semantics of the block. Validation mechanism from chapter 4 included a private key calculation.
In this case the AVDF puzzle solution is regarded more as a transaction than a validation hash
digest. It is a message of proof that calculation happened, but it doesn’t finalize the block. In
Bitcoin these transactions would exist in mempool [1] until they are incorporated into a block.

5.2 AVDF for PoW block finalization

In order to be used as a PoW chain and avoid reliance on external systems for key batch lifecycle
a change of PoW validation problem is needed. To use AVDF as PoW block’s computational
problem'# it’s randomness has to be seedable and it should support deterministic verification.

3Not related to AVDF solving.
14Bitcoin’s implementation uses SHA256 as it’s computational [1] problem.
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Figure 4. Chained verifiable multiple-keypair batches

Figure 4 contains one additional arrow h compared to Fig. 3. It is an additional seed that pre-
vents the system to change it’s previously calculated private keys. Private keys of cryptosystems
are generally shorter than their private keys so collision is inevitable!.

5.2.1 Mining incentivization

Bitcoin is a value transaction system powered by PoW[1]. To incentivize mining of the AVDF
puzzles for data time-locks the system should reuse this model.

In Bitcoin’s case miners prepend an UTXO to block’s transaction list that rewards them. If the
mined block is valid [1] then the reward is carried through.

To use same kind of mechanism it is needed to have similar wallets to Bitcoin’s ones. This
way after a miner produces a successive block she will be able to get rewards for the work.

5.2.2 Security and external keys

External key cracking attack would decrease security of the whole system for the time-lock users.
To prevent this kind of attack the awarding mechanism should involve hash checks of key ori-
gin. Any non-chain related private keys should not be awarded even though they would decrypt
correctly. Le. blocks of data can only be accepted if they correctly contain hashes of previous
block data. This way an external attacker would be forced to either attack the system without
incentivization or commit the resources to the system.

5.2.3 Usability for the time-lock users

In order to use this system on a broad scale an SPV [1] client implementation is needed. This
way users would be able to run light clients on weaker devices (Such as smartphones or even
IoT devices). SPV node would trust a list of chosen (or privately hosted) nodes to get the newest
unmined private keys.

5.2.4 Tests

Duration difference between blocks It would be optimal to maintain similar duration in all
blocks without adding any extra computing power and without changing any difficulty. To test
that the blocks don’t change their difficulty randomly ANOVA one-way test was performed for
different data sets.

STwo private keys can end up having the same public key.
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Figure 5. Multiple keys as targets. All keys are mandatory to advance. Block prime is a prime
number used in El Gamal cryptosystem. 200 block epochs with 60 keys in each of them.

The distribution of the results is similar to the graph 2.

All data sets contain 5 blocks of El Gamal cryptosystem benchmarks with different key counts
in each of them. P value is the one used in public key derivation.

ANOVA one-way results:

Prime P | Keys in a block | ANOVA F' value | ANOVA p value
60037 4 ~ 1.6 0.23
60037 9 ~ 2.738 4.19 %1072
60037 18 ~ 1.22 0.31
60037 36 ~ 1.8 1.31% 107!
60037 360 ~ 3.9 3.47% 1073
154043 36000 ~ 201.18 1.76 x 10717

The tests show that not only the blocks are not similar, but as the keys count and P increases the
difference may increase (because p value nears to zero). This analysis shows that current approach
for key targeting is not good enough if perfect time division intervals are desired.

Duration dependence on block difficulty Figure 5 shows difficulty changes of one hundred
blocks containing 360 keys each (Every data point is time of 360 keys). The difficulty is changed
every 20 blocks. The prime number was derived first and all of the public keys were generated
from it. Then brute force mechanism was used to produce durations.

There is some visible dependence between duration and block prime (difficulty) but the signal
is still mostly chaotic.

5.3 Block validation public key set

Bitcoin uses a difficulty value for it’s block hash calculation. It is a number that leads to calculate
hash that has many leading zeros. The remaining part of the hash is not restricted. So Bitcoin
network may accept many hashes, but only one'® would be added to a block as validation proof
[1].

161n the occurrence of a temporary fork several keys can coexist, but after the fork resolution the redundant keys
get destroyed
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This is very similar to the list of public keys in section 5. It is similar in a way that the key list
will exist.

The key list can be used to finalize a single block and if difficulty doesn’t change then it can
be reused again.

E E E

o,n-1 o,n o,n+1

o 0 o> — 3 > @ 0 O
Bn-l Bn Bn+1

Figure 6. Block key target progression.

Figure 6 shows a way to share and reuse unbruteforced keys between different block mining
sessions. « is the difficulty of the block and n is block number. Each successive block epoch B,
is assigned a target key list £, ,. This way miners can know which public keys are known and
which are useful to pick for next round of work.

E, n+11s produced by removing the key that was used for validation of a previous block from
it’s target key pool and adding a new one:

5 € Ea,n
§ ¢ Ean
Ea,n-i—l — vx<Eo¢,n ANz 7é 5) U {6/}
Where ¢’ is previously unused public key matching difficulty c.

This scheme is sensitive to PoW chain forks. In the event of a PoW fork the key £ would be a
different entry of £, ,,.

5.3.1 Impact on SPV clients

Public key storage would pose a challenge because the network will need to calculate currently
accepted key set. This would mean that light nodes (SPV [1]) won’t be able to be as light as they
could be. Most probably the keys would be stored in separate blocks and included into a block if
needed.

5.3.2 Comparison to Bitcoin PoW network

This scheme will still work in PoW mode, but it’s possible that block time will be changed. Also
the keys will have to be part of the block (current target keys should be stored in older blocks) so
that it would be possible to calculate.

5.3.3 Security

Node has to guess a private key from a public key list to perform block validation. Network’s
security will depend on very weak keys. This will not only have the bad effects when forking, but
also it will pose a risk for encryption users. Security of encrypted messages will be lowered:
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* Chain forks may render encrypted data undecipherable by destroying targeted used keys.

* Forks will also reveal multiple keys at once by merging keys from non-included blocks.

* Individual keys may be cracked with lesser effort because they will be weak !

5.3.4 Tests

Similar ANOVA one-way analysis was performed to a different set of key blocks. This time blocks

were generated with more targeted keys but it was allowed to mine less of them to proceed:

Prime P | Keys in a block | Accept threshold | ANOVA F' value | ANOVA p value
60037 4000 36 ~ 4.76 % 1072 0.9957
60037 400 36 ~ 0.91 0.4576
60037 40 36 ~ 2 9.6547 * 1072

This time the output contains some schemes where blocks are not significantly different statis-
tically (p > 0.05). This strategy may work to control the randomness in a block, but it will add
additional block size and other significant computations if used in PoW!8.

5.4 Avoiding the paradox of bus arrival

Previously presented chain design has a flaw that prevents it from being useful for continuous use.
To ensure usability system is supposed to continuously offer a set of public keys for user data
encryption. Time-lock has to be achievable at any time.

n+1

(a) No overlay
(b) With block overlay

Figure 7. Overlaying of blocks to provide new key availability for users.

To solve this problem a macro-level design choice has to be made. In order to allow key
availability at any time miners shouldn’t completely exhaust every target key batch but preserve
at least some keys for the future.

Figure 7b shows how design in Fig. 7a can be improved by overlaying blocks onto each other.
B,, are consecutive block epochs. Parameter ¢,, shows their respective mining start times. Gray
curve-shaped areas denote public keys that are left to brute-force in each key target batch. They
are shown as continuous but in real-world case they would be discrete. ¢ axis shows publically
available remaining keys as total remaining multi-block difficulty. ¢,,;, and it’s dashed line shows

17Bitcoin’s block hash #580204 contains 19 leading zeros. This may grant at most 76 bits of security.
18 Aditionally one may use a bloom filter to reduce the size of the key set.
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the lowest possible key set size (remaining minimal difficulty) when user joins and decides to
encrypt a message.

Ui, Us, Us are examples of three users and their message encryption times. User key requests
can occur at any moment so the system has to ensure key existence.

Using the design of Figure 7a users who join the network at precise time moment of block start
are able to choose between all possible keys. But users who decide to join between block change
periods have less or none available keys to choose from.

In Figure 7b darker curved areas that overlap between two consecutive blocks show key sets
that match between two target key sets. This scheme of block overlay reuses the keys from previ-
ous block.

Two consecutive-block key reuse strategies exist:

* Implicit target key set reuse

* Blocking target key set reuse

5.4.1 Implicit target key set reuse

Implicitly sharing keys between consecutive blocks is easier from implementation point of view.
Keys are stored as a single thresholded pool that is given for a brute-force algorithm. It has a caveat
that impacts time-lock users though — some keys can remain unbruteforced for a very long time or
not brute-forced at all. This would result in a time-lock that has a chance of not being predictably
recoverable. Some time-lock messages would end up completely unrecoverable.

Y
Bn+1

Figure 8. Implicit overlay key trail.

Figure 8 shows a trail of overlap between multiple target key sets. The area near the ¢ axis
between ¢, and ¢, 3 involves leakage of keys from epoch B,,. Keys can leak into a very far
future. This would be the result of continuously adding new keys to the key batches without
completely finishing the previous ones.

5.4.2 Blocking target key set reuse

Figure 7b implies that keys become mined in each consecutive epoch. This way the chain can
advance in a safe manner.

From implementation perspective this is achievable by enforcing the miners to mine spe-
cific keys at the right time. Keys should be divided into two groups: mandatory and threshold-
mandatory. Miners would be expected to mine on a batch of keys as in chapter 5.4.1 but acceptance
criteria would depend on keys which are mined. Thresholded-mandatory group wouldn’t need to
be fully mined whereas mandatory group would need to be fully mined. No new keys should be
issued before finishing the mandatory group even if threshold-mandatory group is exhausted.
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5.5 Difficulty adjustment
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Figure 9. Adjustment of PoW difficulty from « to 8 through multi-block epochs.

Every PoW blockchain adjusts it’s difficulty in some way. A difficulty-adjustable version of a
protocol was presented in chapter 4. It has ability to adjust it’s difficulty at every PoW block.

Usability improvements that were defined previously are not compatible with difficulty adjust-
ment at every block!®. As block-sets share their brute-force target keys between their neighbors
user messages won’t be recoverable after a sudden change in difficulty of blockchain. The design
has to be adjusted to allow the difficulty changes.

Figure 9 presents three public key batches that are used to mine multiple block epochs each
(Bn, Bp+1, Bri2). The epochs contain same structure as it’s shown in figure 4. The middle batch
allows two kinds of key difficulties blend into a single key set. This allows adjustment of the
difficulty on a macro-block level.

5.5.1 Key set sizes during transition

Target key set B, is composed of two different public key sets: pubq 41 and pubg ,,+1. To ensure
the properties of chapter 5.4.2 all keys targeted in epoch B,, have to be brute-forced in epoch 5, 1.
It is achievable by calculating total needed work power ¢ (See figure 7b) and allocating respective
amount of keys of difficulty f.

5.5.2 Multiple difficulty adjustments in a row

It’s possible to adjust difficulty multiple times in a row. It can be done by copying the structure
of figure 9 of epoch B,,; multiple times in a row. The work power calculation c is similar to the
single-transition mode.

5.5.3 Time-lock threshold encryption during change of difficulty

During a change of the mining difficulty two cryptosystems are presented on the system at the
same time. Change of the difficulty is a complex action from cryptographical point of view. There
is no easy way to know which cryptosystems are compatible between each other even if they are
based on the same concept. It can also mean that they can’t be compatible at all. This means that
threshold scheme for two different cryptosystems may not exist.

Previous concepts allow guaranteed decryption and choice of the decryption time. Difficulty
changes decrease mining certainty because miners have to leverage two key target lists composed

9PoW allows it. Bitcoin adjusts difficulty every 2016 blocks [1].
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of two different cryptosystems. To retain previously defined properties without the risk of chang-
ing the decryption time user of the system has to construct encrypted time-lock package is a spe-
cific way. When two cryptosystems are present at the same time the user is forced to combine two
threshold encryption schemes or use a secret sharing scheme with bipartite access structure. It’s
further discussed in chapter 6.2.

6 Message decryption time targeting

To freeze a message using combination of AVDF and PoW frameworks user has to perform a
threshold encryption using the provided keys. User has to be able to choose his threshold encryp-
tion/sharing scheme to reduce size of time-frozen messages.

For most of the block difficulty epochs® it may not be possible to use a single scheme that
could be similar to Shamir’s secret sharing scheme with AVDF encryption on top. This chapter
presents multiple options of thresholded secret sharing for different access structure needs.

6.1 Time targeting for homogeneous difficulty epoch

Homogeneous difficulty epoch is the simplest case where only one cryptosystem is present on the
system. User messages can be split using any secret sharing scheme without any consideration
about weights[6].

6.2 Time targeting during difficulty-change epoch

Difficulty change epoch contains two different incompatible cryptosystems (see fig. 9). To allow
predictable decryption of the value it has to be split into parts and shared between two different-
weight threshold locks. It can be achieved in two ways:

» Threshold encryption with code-based access structure

* Threshold secret sharing with bipartite access structure.

6.2.1 Code-based bipartite access structure using threshold encryption

Code-based approach combines multiple threshold encrypted[6] versions of the same message
into one large payload. It can be achieved by taking each group of keys and producing threshold-
encrypted message for each valid sub-combination. It is not a straightforward task because both
epoch key pools contain keys of different difficulties: « and f3.

i €10,..., 0},
T C (ia,iﬂ) ig € {0, ...,lﬂ}, (6.1)

waia + wgiﬁ 2 Wq

Figure 10. Bipartite threshold access structure for difficulty-adjusted epoch.

2For instance Bitcoin’s difficulty is changed almost every time it’s possible to do it: https:/bitinfocharts.com/
comparison/bitcoin-difficulty.html
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Equation 6.1 shows a set of threshold locks 7" for encryption in difficulty adjustment epoch.
Each threshold lock will be created from returned indexes. For instance (5, 2) would allow secret
retrieval with 5 keys from first set and with any 2 of the other key set.

It is not an optimized version of lock-choosing algorithm. This equation chooses all thresholds
that are stronger or equal with w, so it includes interleaving locks too. Result-optimized code
snippet version is listed in appendix B.

The set is composed using an iterative sum over two integer sequences where [, and lg are
pool sizes of both epochs where indexes are used to produce combinations of the keys. These pool
sizes may be different from each-other if difficulty algorithm decides it (I, ~ [3). Parameter wy is
a total weight needed for decryption using threshold-scheme. w, and ws are weights of a single
pool key each.

Example: If epochs share 50% of their keys and target size of each epoch is 10 then parameter
Cmin = 10 % 0.5 = 5 (see ¢y, from figure 7b) and lengths [, = Ig = ¢, = 5. Let’s say difficulty
algorithm decided to change the difficulty from o = 10 to § = 11. Then total difficulty of the
whole transition epoch would become:

W = Cpin(a+ B) = 5% (10 + 11) = 105.

Let’s say user wants to ensure their time-lock message’s decryptability after 40% of epoch’s
elapsed time. Then decryption threshold weight would be equal to:

wg = wg * 40% = 105 x 0.4 = 42.

User needs to perform multiple threshold encryption locks. Threshold encryption lock count is
calculable by using equation 6.1. Calculation code snippet is presented in appendix B.
The code snippet from appendix B listed 6 possible encryption schemes for this given example:

({0 4] [1 3] [2 2] [3 2] [4 1] [5 OD

Figure 11. Sample multi-lock tuple list of [/, /3] for difficulty change epoch time-lock threshold
lock creation.

At this stage real-world application would construct multiple threshold-encrypted versions of
the same message using thresholds from figure 11.

Threshold lock composition is performed by nesting two locks in-
side of each-other. It’s done by creating a first lock and using it as an

input for the second one. Nesting example is shown in figure 12. LOCka
Every item from this list is a blueprint for a threshold signature
scheme of two cryptosystems. See appendix Lock

B

6.2.2 Secret sharing with bipartite access structure

Bipartite sharing scheme similar to 6.2.1 can also be implemented by Figure 12. Lock compo-
using a secret sharing scheme with this sharing property[22, 15]. After sition.
constructing bipartite scheme AVDF encryption has to be matched with each share.
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7 Implementation

The code part of the project contains a proof of concept that demonstrates creation of time-lock
chain. It was written in Go programming language [27] which is a systems programming language.
The language offers execution speed such that when it’s tuned correctly?! it can be comparable to
C code.

Application is a command-line tool that performs brute-force calculations and finds the keys if
parameters do not overwhelm the machine that it’s being ran on. The calculations are not offloaded
onto a graphics card and rely solely on processor’s capabilities. It uses all available resources for
it’s computations. If maximum block count parameter is provided or operation is in single-block
mode the data file with chain data is produced.

Appendix C contains application’s development timeline. Appendices D and E contain code-
base size and dependency list.

7.1 Operation modes

The application doesn’t implement all of the complex schemes defined in this thesis. The calcula-
tions can be performed in several ways:

* Single block mode works on a single pool of keys/hashes without a chain.

* Adaptive mode emulates chain behavior with asymmetric keys or hashes used for block
validation.

7.1.1 Single-block mode

Single-block mode performs a brute-force calculation for a single targeted set of keys to measure
brute-force time for a single block with different parameters. The data is then serialized into a file.

7.1.2 Adaptive chain-based mode

Adaptive chain-based mode picks a PoW target difficulty according to previous chain timing data
or command-line parameter (genesis difficulty). This difficulty is then used for it’s next brute-
force operation. If the block count parameter is set the chain is stopped after the specific block and
serialized into a file.

In a Bitcoin-like PoW difficulty is a number that filters hashes for validity. For time-lock
case it has to use asymmetric public keys (AVDF puzzles). As asymmetric public keys can be
regarded to as numbers they can be ordered as well. The application uses a threshold value for the
keys to match them and doesn’t generate them in advance. It correctly??> implements AVDF Loop
workflow (defined in chapter 2.2) for El Gamal’s cryptosystem. SHA256 validation mechanism is
also implemented and can be chosen using a command-line argument. Choice of SHA256 option
doesn’t change any other options and block production mechanism.

Blocks in the code are similar to block epochs in this document. The next block epoch is
always present and is generated from previous ones.

The application doesn’t implement complex peer-to-peer binary communication protocols.
Application’s chain environment doesn’t emulate real-world PoW behavior. It can’t cooperate

21 Parallelism is easier to implement; Garbage collector is optional.
22Generates public keys without knowing private keys.
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with other miners. It emulates only best-case execution without any wastefully targeted computa-
tion. Forking, network partitioning, network failures and other interferences/attacks are also not
taken into account.

7.2 Difficulty retargeting mechanisms

Depending on the implementation of the underlying PoW validation primitive the system may need
a different kind of difficulty adjustment curve. Hash-based validation and AVDFs use different
mechanics to change the difficulty of underlying PoW problems.

SHA256 is a hash-based scheme and it allows 225 of combinations. While AVDF-based
cryptosystem has to be adjusted and it’s size is changed every time a harder problem is required.
The scheme similar to as in Hash-based adjustment could also be used for AVDFs but then the
user would lose practicality of document encryption using generated AVDF public keys.

The application contains implementations of two difficulty adjustment mechanisms. AVDFs
require difficulty that gets increased when harder problem is needed while Hash-based verification
requires the difficulty to decrease.

7.2.1 Difficulty retarget jump limit

Implementations of Bitcoin nodes[20, 21] limit radical jumps of the difficulty. This is required to
avoid dramatic changes in difficulty as sometimes chain can get overwhelmed by influx of mining
power.

7.2.2 ElGamal’s scheme tests

ElGamal’s scheme has shown that it’s not only possible to adjust it to match performance of
SHA256 but also use it for validation PoW block. A benchmark that compared these two algo-
rithms was performed on a single Raspberry Pi 4B that is equipped with Quad core 64-bit 1.5GHz
ARM processor. It executed 20 runs of each blockchain where each run is similar to one depicted
in figure 5.

Graphs from appendices A.1 and A.2 represent blockchain execution on a single CPU that was
developed for this thesis. Enlarged versions of equilibrium that is visible in the last 60 blocks are
included in appendices A.3 and A.4. The graph of SHA256 is meant to represent current state
of Bitcoin and similar PoW networks. Whereas graph of ElGamal represents AVDF-based PoW
network. Difficulty adjustment step is capped at 4 because sometimes the initial jump is too high.
High jump can result in unrealistic difficulty targets. Bitcoin also uses this value and it’s capped
at 4[20, 21]. The long tail of SHA256’s difficulty is produced because it starts from smaller value
relatively to ElGamal. ElGamal’s cryptosystem starts at difficulty 0.5 * 10* and stops increasing
at about 1.5 x 10° whereas SHA256 is initialized with 2256 — (0.5 * 10* and stops decreasing®® at
about 4.4  10™

The graphs show that ElIGamal’s scheme is more volatile than SHA256. There are many in-
stances where block target time 10 seconds that is marked by black dotted line is surpassed and
sometimes even values near 25 seconds are reached. It may be a problem of optimization or it
could be a problem with the cryptosystem itself. It could be the consequence of cryptography type
and may not be fixable without trying other cryptosystems.

23In SHA256 PoW difficulty gets harder for lower values[1].
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Haar wavelet transformation was also performed before computing SMA of block difficulties.
The wavelets were averaged at fourth level of the signal decomposition. It’s presented in appendix
A.5 but it doesn’t show any changes between results of appendix A.1.

8 Performance

The presented version of PoW protocol can be assessed for performance in two ways:
* Miner performance
» Key brute-force performance
 User time-lock encryption performance

* Message size.

8.1 Miner performance

Mining performance completely depends on the PoW mechanism[1]. PoW difficulty is adjusted so
that mining wouldn’t continue without slowdown or very large front-running won’t occur[21, 20].

8.2 Key brute-force performance

Miners can use any means of parallelization to find keys for given key epoch. They are not con-
strained with not using custom mining implementations on GPUs?* or ASICs?.

8.3 User time-lock encryption performance

The design of PoW described in chapter 5 provides means to publicly obtain public keys. Every
public key appears publically available after miners mine it and is used for validation of each
blockchain block. As a batch of unsolved public keys are available and freely obtainable the users
can use them without any permissions or requests. Nothing is persisted in context of the presented
design.

8.4 Message size

The only limiting factor performance-wise is encryption of each time-lock message. Chapter 6
defines a way to encrypt the messages but the final encryption size and structure is chosen individ-
ually for every message. Complex time targets can result in very long messages (see sample code
result lengths of appendix B) and it’s evident that time locking should be only used to encapsulate
the keys that will be used for decryption. Once the time-lock is unlocked the in-advance chosen
strong key would provide the data. This means that two parties can exchange any number of mes-
sages without any restrictions and the only limit could become the size of the time-lock encryption
message.

24Graphical processing unit.
2 Application-specific integrated circuit.
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9 Security

System defined in chapter 5 is based on Bitcoin-like PoW. This means that many security concepts
are inherited from Bitcoin:

e It’s hard to find block validation hash[1]

* Some computation gets ignored[1] because forking preserves only the block that was pro-
duced by majority

¢ Others.

9.1 Block hashes as public keys

Difficulty-chosen SHA256 value that is used in Bitcoin’s block validation is hard to find. This
thesis presents this same concept which is transformed to be used with asymmetric cryptosystems.
It’s still hard to find the private key when previous data is the input into AVDF’s random generator.
Eventually difficulty parameter of the presented chain will reach a value that is close to equilibrium
and that would result in security which is currently provided by Bitcoin.

It’s a wishful thinking that some system can achieve hash levels of Bitcoin but it may be
possible with a usecase that works and is useful.

Security depends on the token-reward model incentivizes mining of the coin instead of brute-
forcing the keys without providing them back to the system.

9.2 External brute-force attack

One of Bitcoin’s security assumptions is that no external actor can combine more computing power
than the shared mining of all miners[1]it’s called 51% attack and the system defined in this thesis
is vulnerable to it.
Bitcoin guards itself in several ways. One of them is snow-layer-based block production.
Bitcoin blocks are chained in such a way that every block verification depends on it’s previous
one. Current block may be a victim of a 51% fork but it’s immutability gets increased with every
consecutive block that depends on it and it’s hard to cheat and front-mine all the time.

9.3 Quantum computing based attack

Introduction of a cryptosystem instead of hashing algorithm for block validation decreases security
of block validation depending on the choice of cryptosystem.

ElGamal’s cryptosystem (see chapter 1.3) was used to test feasibility of difficulty adjustment
and on-the-spot AVDF derivation. It is malleable which means that it’s ciphertexts can be tam-
pered with. It’s based on discrete logarithm problem which is known to be attackable by quantum
computers. So although being convenient for practical tests of this thesis it’s not secure to use in
real-world case.

Second scheme that was considered was ECIES which is the current standard for secure com-
munication. This scheme is based on Elliptic curve discrete logarithm problem so it’s also attack-
able by quantum computer.

A different kind of unknown cryptosystem was presented to be used instead of ElGamal.
LAC.CPA is a Lattice-based cryptosystem that could be secure enough to prevent quantum-computer
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cracking. It’s a fresh cryptosystem so it may not be extensively secure?® in on itself but it’s a good
sign that lattices can be adjusted for this task. It’s based on a hard lattice problem — learning with
errors. LWE is not NP-hard — it’s based on a modified version of problem that is comparable to
NP-hard so it’s good enough.

10 Conclusions

This thesis has described a trustless alternative to send messages into a near future based on PoW.
It presented multiple changes that ensure that the chain is lively and users can access the keys for
production of time-locks.

Conclusions:

* Chapter 5 described an approach for short-term?’ time-locking. It was done by complement-
ing the design of the PoW with additional abstractions such as block epoch. This looks as a
viable strategy to construct PoW-based time-lock scheme.

* Hardness of block validation cryptosystem can be adjusted on the fly depending on chain’s
difficulty. Tests using ElGamal’s cryptosystem can adjust it’s public key length depending
on the needed difficulty (see chapter 5).

* Some currently widely used public key cryptosystems are vulnerable to quantum computers
but some newly proposed ones can be used for this system instead. LWE-based cryptosys-
tem LAC.CPA (see chapter 3.3) could theoretically be used to prevent quantum-based key
cracking.

* Elliptic curve cryptography is not ideal for use in trustless key derivation. It doesn’t ensure
existence of a private key for all points of an elliptic curve which means that decryption is
not guaranteed (more in chapter 3.2).

10.1 Future work

This thesis provides several abstractions and theories but it’s not enough to build a well functioning
and unbeatable system. To be sure that system is usable at least these points have to be taken into
account:

* Explore ElGamal’s difficulty retargeting mechanism by changing constraints on cryptosys-
tem’s prime number.

* Investigate LAC.CPA and other related lattice cryptosystems for security and suitability.

* Investigate the possibility to use elliptic curves. Lossful variant of a cryptosystem can still
allow decryption if time-lock is produced with future keys.

* Investigate the volatility reduction of the mechanism. Implementation of ElIGamal’s scheme
increases volatility (see section 7.2.2) compared to SHA256 which is currently us