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1 Abstract

Heart Rate Data Analysis Using Functional Methods

Abstract

Heart rate is one of the most informative data point that we can collect non-invasably.

Heart rate reflects anxiety, stress, sleep quality, physical exercise, illness, ingestion of drugs

and many other events that we might experience on a day-to-day basis. In this master

thesis a use for heart rate data collected by smart watches is suggested - an online algorithm

that can detect an abnormal heart rate behavior and raise an alert to the wearable device

user. Creation of an effective online detection algorithm could be implemented into wearable

devices and be used as a preventative measure to combat the rise of the heart diseases. The

thesis exploits functional data analysis to smooth the point-wise measurements into functions

for each 24 hour period. Using additional data of active calories burned, the heart rate data

set is grouped into specific activity level clusters using functional expectation maximization

algorithm. The results of clustering are cleaned of outliers using functional outlier detection

by depth measures. Then the deepest functions are found for each group and L2-distances are

calculated between the deepest function and all the rest in the group. The 99.9% percentile

value of each group is set as the threshold for alerting. The testing data set is then taken

one day at a time, assigned to a particular group using the methodology described, then the

L2-distance between the day considered and its group’s deepest function is calculated. If the

calculated value exceeds 99.9% percentile value the day is registered as an outlier if not -

it is added to the group and the statistics are recalculated before the end of iteration. The

suggested algorithm reached the accuracy of 91.67% with the testing data set.

Key words: functional data analysis, heart rate, online change detection, functional

depth.

Širdies ritmo duomenų analizė funkciniais metodais

Santrauka

Širdies ritmas yra vienas iš informatyviausių duomenų, kuriuos mes galime surinkti ne

invaziniu būdu. Širdies ritmas atspindi nerimą, stresą, miego kokybę, fizinį krūvį, ligas,

vaistų poveikį ir dar daug kitų reiškinių, kuriuos mes patiriame kiekvieną dieną. Šiame mag-

istro baigiamajame darbe yra siūlomas naujas panaudojimo būdas širdies ritmo duomenim
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surinktiem išmaniųjų laikrodžių - realiu laiku (angl. online) veikiantis algoritmas, kuris

identifikuoja anomalų širdies ritmą ir apie tai įspėja išmaniojo įrenginio naudotoją. Efek-

tyvus realaus laiko algoritmas galėtų būti implementuotas į išmaniuosius įrenginius ir tar-

nauti kaip prevencinė priemonė kovoje su širdies ligomis. Baigiamajame darbe naudojama

funkcinė duomenų analizė suglodinti pataškiams širdies ritmo duomenims 24 valandų in-

tervaluose. Naudojantis papildomais aktyvių sudegintų kalorijų duomenimis, širdies ritmo

duomenys yra sugrupuojami į grupes su specifiniu aktyvumo lygiu, pasitelkiant funckinį

tikėtinumo maksimizavimo algoritmą. Iš gautų grupių yra pašalinamos visos išskirtys nau-

dojantis funkciniais gylio matavimais, tada giliausia funkcija yra randama kiekvienai grupei.

L2-atstumai yra suskaičiuojami tarp grupės giliausios funkcijos ir visų likusių. 99.9% procen-

tilio reikšmė kiekvienoje grupėje yra nustatoma kaip riba siūlomame algoritme. Testavimo

duomenų rinkinys yra imamas po vieną dieną iš eilės, toji diena yra priskiriama prie vienos

iš suformuotų grupių pagal aktyvių sudegintų kalorijų duomenis, L2-atstumas suskaičiuoja-

mas tarp naujos dienos ir grupės giliausios funkcijos. Jei apskaičiuota reikšmė yra didesnė

nei 99.9% procentilio reiškmė - diena yra išskirtis, jei ne - diena yra pridedama prie grupės

ir statistikos perskaičiuojamos. Baigiamajame darbe pasiūlytas algoritmas pasiekia 91.67%

tikslumą testavimo duomenų rinkinyje.

Raktiniai žodžiai: funkcinė duomenų analizė, širdies ritmas, pokyčio nustatymas realiu

laiku, funkcinis gylis.

2 Introduction

Heart rate is one of the most informative data point that we can collect non-invasably. Heart

rate reflects anxiety, stress, sleep quality, physical exercise, illness, ingestion of drugs and

many more other event that we might experience on a day-to-day basis. The beforementioned

reasons might be the main contributers, which determined the fact that more and more smart

wearable devices (usually smart watches) available on the market now come with the heart

rate monitoring capabilities. The rise in the availability of the functionality means that now

it is not only the athletes who are voluntarily collecting their heart rate data, but everyone

has this choice as well. In addition to the availability of functionality, the wearable smart

device changed how we collect heart rate data as well. Now instead of collecting the data

only for the period of interest, say for a duration of a physical exercise, we collect the data

continuously with only the minor pauses for the reacharging of the said device. With this

collection of the heart rate data comes an issue - the use of it. With the exceptions of
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high and low heart rate detection, providing a point-in-time value of the measurement and

detenction of atrial fibrilations, there has not been any significant uses of the data so far.

In this master thesis another use for the data is suggested - an online algorithm that can

detect an abnormal heart rate behavior and raise an alert to the wearable device user. As of

the defense of the thesis, no academic papers have been found, which would tackle the same

problem or even the same data as is being tackled with this thesis. It is extremely important

to note that research in this area is very important as creation of an effective online detection

algorithm of abnormal heart rate behavior could be implemented into wearable devices and

be used as a preventative measure to combat the rise of the heart diseases. In addition to

this, additional input from the medical professionals would allow to adjust the algorithm

into the version that could track the progression of already diagnosed illnesses.

The master thesis exploits functional data analysis (hereinafter FDA) to smooth the

point-wise measurements into functions for each 24 hour period, which minimizes the is-

sue of measurement error. In addition to this, the abstraction allows FDA to make use

of additional information from the functions, contrary to classical multivariate statistical

techniques. The suggested approach constitutes of the clustering of the additional data set

containing smoothed active calories burned using functional expectation maximization al-

gorithm to get four interpretable groups of dates. The results of clustering are then used

to split the heart rate data set into the same groups, which are cleaned of outliers using

functional outlier detection by depth measures. Then the deepest functions are found for

each group using random projections and Tukey’s method and L2-distances are calculated

between the deepest function and all the rest in the group. The 99.9% percentile value of

each group is set as the threshold for alerting. The testing data set is then taken one day at

a time, assigned to a particular group using the same methodology as described, then the

L2-distance between the day considered and its group’s deepest function is calculated. If the

calculated value exceeds 99.9% percentile value the day is registered as an outlier if not -

it is added to the group and the statistics are recalculated before the end of iteration. The

suggested algorithm reached the accuracy of 91.67% with the testing data set if an offline

method for an outlier detection is considered as a ground truth.

The paper is structured as follows: section 3 covers the research applying functional

data analysis to the data collected from the heart muscle. Section 4 explains the data used

for the suggested algorithm. Section 5 covers the step by step methodology. In section 6

the results of the analysis are presented and the errors are discussed. Section 7 provides

a summary of the analysis, the benefits of the suggested approach, their importance and
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future development of the research.

3 Literature review

Academic literature surrounding the application of functional analysis for heart rate data

is extremely sparse. The vast majority of the publications of FDA application for medical

data are to do with either the analysis of electrocardiogram or functional magnetic reso-

nance imaging data. This section will cover general papers applying functional data analysis

approaches to data collected about the heart muscle.

One work that is marginally similar and is applying FDA methods to heart rate data is

Matabuena et al. (2019). In the paper, the authors use functional data analysis to create

a new method to predict maximum heart rate (MHR). According to the authors, MHR is

widely used in the prescription and monitoring of exercise intensity, and also as a criterion

for the termination of sub-maximal aerobic fitness tests in clinical populations. Matabuena

et al. (2019) argue that the traditional way of predicting the MHR from the age-based

formula, usually 220 - age, leads to very high error rates, which could mean that the training

prescribed to an individual is inaccurate. In the paper, the authors use data gathered every

5 seconds during a 6-minute interval of low intensity sub-maximal exercise test. Using the

data gathered, the authors fit both linear regression and functional regression see Table 1.

Table 1: Matabuena et al. (2019) regression models.
Regression type Model (MHR=) R2 RMSE
Linear regression 209.9− 0.77× A 0.238 7.044

Functional regression s(HR[0,6] + s(dHR[0,6]) + s(HRmax
[0,6] ) + s(A) 0.737 4.143

For the functional regression HR[0,6] and dHR[0,6] are the heart rate (hereinafter HR) and

the derivative of HR for the first six minutes of the treadmill test, respectively. The function

s(· · · ) denotes the additive effect over the variable. Variable A in both cases is age. As

can be seen from the above table the difference between the models is vast when comparing

R2and the lowest RMSE values.

According to the authors, this paper is the first one to apply FDA approaches to model

and predict the maximum heart rate value of an athlete and their functional data model

reduced the predictive error by more than 50% compared to current models within the

literature.

The second paper applying FDA approach to heart rate data is Ratcliffe et al. (2002).
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In their work, the authors use functional regression to model longitudinal data where the

number of measurements on the functional covariate is much greater than the number of

subject in the study. The aim of the study was to determine if the foetal heart rate responses

to the stimulus are predictive of birth outcomes, and of the infant’s development at 18

months of age. They have applied the technique to periodically stimulated foetal heart

rates. According to the authors, the heart rate tracings were used as a predictor in child’s

psychomotor development. The data was gathered in late pregnancy of 73 women, the

measurements were taken using Corometrics cardiotocograph. For each subject, the data

was recorded over 19-minute period, 14 days or less before birth. The above-mentioned

stimulus was introduced via a medical device placed on the mother’s abdomen and given

every minute for a total of 19 stimuli. According to Ratcliffe et al. (2002), this stimulus

initially results in an increase in the foetal heart rate, with the response decreasing with

repetition of the stimulus.

The authors chose to model the Psychomotor Development Index (hereinafter PDI), which

helps to quantify the new-born’s development. The higher the PDI score – the better the

development. For the model itself, the authors apply the modified version of Ramsay and

Silverman (Functional Data Analysis, 1997) method for functional linear regression:

yi = zTi α +

q∑
s=1

γs

∫
xi,s(t)β(t)dt+ εi, i = 1, . . . , n

where yi is the response from the ith subject, αis the vector of parameters for the covariates,

zi is the vector of the covariates for the ith subject, γs is the parameter for the sth stimulus,

xi,s(t) is the functional covariate for the ith subject, measured at time t within the sth

stimulus, β(t) is the functional parameter for the times and εi:NID(0, σ2
ε) is the error

associated with subject i.

For comparison, the authors have fitted a standard linear regression model without the

functional covariate. The mentioned model has achieved R2equal to 7.10 percent. For

the functional regression, the same parameter reached 68.77 percent, which is a significant

improvement. The overall conclusion that the authors arrive to is that changes in foetal

heart rate after stimulation, as well as infant’s sex, are important factors in prediction of

child’s development at the age of 18 months.

Another work applying FDA approached to heart data is Zhou et al. (2009). In the

paper, the authors are using functional data analysis to extract a common shape from
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ECG1measurement (see Figure 1) for each subject and then models the deviation of each

curve in sequence from that reference curve as a four-dimensional vector. According to the

authors, the representation can be used to distinguish differences between beats or to model

shape changes in a subject’s T-wave over time. This has important implications as the T-

wave of an ECG represents the ventricular repolarization that is critical in restoration of the

hear muscle to a pre-heart-beat state prior to the next beat. Alterations to this part of the

ECG measurements could mean various heart conditions.

Figure 1: Example of different waves within an ECG recording. Zhou et al. (2009)

Zhou et al. (2009) motivated by Izem et al. (2005) create a model that decomposes

the data into the above mentioned reference curve and four modes of variation that are of

interest to the authors: uphill slope, downhill slope, horizontal location and vertical shift

(see Figure 2).
1Electrocardiogram - a recording – a graph of voltage versus time – of the electrical activity of the heart

using electrodes placed on the skin (Leonard (2010))
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Figure 2: Four modes of variation of T-waves: uphill slope change (u), downhill slope change
(d), horizontal location (m) and vertical shift (h). Zhou et al. (2009)

According to the authors, the reference curve represents the common shape of the T-wave;

an element in the data matrix X is modelled as:

xitj = xi(tj) =


√
uidiK(ui(tj −mi) + hi + εi(tj), tj ≤ mi

√
uidiK(di(tj −mi) + hi + εi(tj), tj > mi

where i = 1, . . . , I, j = 1, . . . , J, K is the reference curve, the four parameters ui, di,mi, hi

are the four modes of variation as described above. As the reference curve the authors decide

to take the Fréchet mean of the curves in the sample. According to Zhou et al. (2009), the

Fréchet mean is a generalized mean on the nonlinear manifold, therefore, it represents the

common shape of the curves. According to the authors, the model accounts for the entire

T-wave morphology, making the estimation robust to the marking of T-wave boundaries.

Applications such as classification of beats were illustrated by the authors showing that

decomposition allows for a better detection of arrhythmia in subjects. Different modes of

variation of T-waves allows to see correlation between the specific modes and length of QT

(time from start of Q-wave until the end of T-wave – indicator of heart arrhythmia), which,

according to the authors, is difficult to measure using other techniques. According to Zhou

et al. (2009), the representation can be used to distinguish differences between beats or

to model shape changes in a subject’s T-wave over time. This model provides physically

interpretable parameters characterizing T-wave shape, and is robust to the determination

8



of the endpoint of the T-wave. Thus, this dimension reduction methodology offers the

strong potential for definition of more robust and more informative biomarkers of cardiac

abnormalities than the QT (or QT corrected) interval in current use.

4 Data

The training data set used in this paper is collected from 2018-04-08 until 2018-10-11 - this

constitutes 187 days for the training data set. The testing data set was collected from 2019-

06-01 until 2018-08-13 - 74 days. The data being considered is the heart rate and active

calories burned data that was collected using Apple Watch Series 3 and Series 4 devices

during the beforementioned periods. The heart rate data was taken 259 times per day on

average, that is every 5 minutes and 33 seconds on average (see Figure 3).

Figure 3: Raw heart rate measurement data.

It is important to mention that these are averages as the data is being collected at semi-

random intervals. From observations, the measurements are taken at a more stable time

intervals during the night hours and at less stable intervals during the day hours (see Figure

4). The interval would become even shorter if the algorithm determines higher activity levels
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such as workouts.

Figure 4: Average time in minutes in between measurements of the heart rate.

The data for the active calories burned is reported for each hour and the value is equal to

all active calories burned up until that time point, meaning that the data is monotonically

increasing during time (see Figure 5). According to the manufacturer (see Apple Support

(2019)), the active calories burned data is calculated by intaking the data about user, such

as height, weight, gender and age. Every full minute of movement that equals or exceeds the

intensity of a brisk walk counts toward the user’s active calories burned. The determination

of whether or not activity exceeds the intensity of a brisk walk is done through the gyroscopes

and accelerometers in the smart watch (the manufacturer asks to make sure that the arms

swing freely when doing any exercise). In addition to this, the smart watch uses the data

collected from the heart rate sensor and GPS to adjust the active calories burned data so it

reflects intesity better.
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Figure 5: Active calories burned data.

5 Methodology

Functional data analysis considers each observation as a function that can be evaluated

on any interval chosen. In the case of this thesis, the curves are obtained using the non-

parametric methodology - the kernel smoothing. This is applicable for both the heart rate

and active calories burned data. According to Ferraty and Vieu (2006), the non parametric

smoothing of the functional data is given by the smoothing matrix S = (sij). For the chosen

method of Nadaraya-Watson estimator, the matrix takes shape:

sj(ti) =
K(

ti−tj
h

)∑m
k=1K( ti−tk

h
)

where K(· · · ) is the kernel function. The kernel being used for the analysis is Gaussian:

K(t) = exp

{
− t2

2b2

}
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Here b is the bandwidth. The Gaussian kernel is chosen as it is the default smoothing

kernel. In addition, the choice of the kernel has a limited impact compared to the choice of

bandwidth parameter. The kernel smoothing implementation is provided by Febrero-Bande

and Oviedo de la Fuente (2012) in the R software package fda.usc. Said implementation

allows to use the generalized cross-validation criterion to pick the optimal bandwidth:

Generalized cross− validation : GCV (ν) =
1

n

n∑
i=1

(yi − ŷνi )2wiΞ(ν)

where Ξ(ν) denotes the type of penalizing function, and wi is the weight at point ti. The

implementation calculates 101 GCV values for each curve and chooses the optimal band-

width value, which corresponds to the lowest GCV value among calculated. The chosen

penalization function is the generalized cross-validation:

Generalized cross− validation : GCV : Ξ(ν) = (1− tr(Sν)n−1)−2

The algorithm chosen for the clustering of the active calories burned data is FunFEM

(functional expectation-maximization algorithm) first introduced by Bouveyron and Jacques

(2014) and further developed by Bouveyron,Come and Jacques (2015). According to the

authors, the algorithm applies 12 different discriminative functional mixture models (here-

inafter DFM), which model the data into a single discriminative subspace. This subspace

subsequently allows an insightful visualization of the clustered data and eases the comparison

of systems regarding the identified patters. A family of 12 models is also proposed by relax-

ing or constraining the main DFM model, allowing it to handle a wide range of situations.

The model selection is performed by the Bayesian information criterion. As this thesis is not

analyzing different methods of functional data clustering, the authors elects not to explain

the algorithm in-depth, for more details see Bouveyron,Come and Jacques (2015).

The heart rate data is split into the same clusters as active calories burned data according

to the date. The new data sets are then checked for outliers and all found outliers are

removed. This is done to form "clean" data sets, which would contain no outliers, to have

a basis for each group to compare the observations from the test data set to, i.e. a known

normal behavior of the heart muscle in each respective group. The algorithm chosen to

identify the outliers in the offline detection scenario is implemented in the R software package

fda.usc. It is outlier detection in functional data by depth measures, where function weights

the data according to depth. The chosen method is described in Febrero-Bande et al. (2008).
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According to the authors of the paper, depth and outlyingness are inverse notions, so that if

an outlier is in the dataset, the corresponding curve will have a significantly lower depth when

compared to the rest of the data set. Therefore, a way to detect the presence of functional

outliers is to look for curves with lower depths. The specific method is chosen to align the

methodology throughout the analysis, i.e. match to the deepest function methodology.

The cleaned data is then passed to deepest function detection part. The deepest function

is considered as a representative for the whole group. The algorithm chosen to identify the

deepest function was suggested by Cuevas et al. (2007) and is implemented in the above

mentioned R software package fda.usc. The algorithm returns the vectors of sample random

projection, and random functional depth values. The random projection depth described in

Cuevas et al. (2007) is based on the average univariate depth of one-dimensional projections

of the data. According to the authors, the projections are taken randomly as a sample of

standard normal d-dimensional random variables, where d stands for the dimensionality of

the data. The functional data are projected into the real line in random directions as for the

random projection depths. Afterwards, an approximation of the half-space (Tukey) depth

based on this limited number of univariate projections is assessed. For more details, see

Cuevas et al. (2007).

The last step before the online detection can be tested against the test data set, the L2-

distance is calculated between the deepest function for the group and all the rest functions

that fall into the same group. The distance between curves measure chosen for online outlier

detection method is the L2(X) space. L2(X) denotes the set of square-integrable functions on

X. The distance measure was chosen for its easy interpretation, i.e. the L2-distance can be

interpreted as function’s energy. In addition, L2 has been previously used in medicine. For

example, von Dobeln,Astrand and Bergstrom (1967) use the L2-distance in their analysis of

age and other factors related to maximum oxygen uptake. The L2-distance between functions

f and g is calculated as follows:

d(f, g) =

√∫
X

|f − g|2dµ

The 90%, 95%, 97.5% and 99.9% percentile values are calculated for each groups’ L2-

distance values. This is used as the thresholds to raise an alarm to a wearable device user

that their heart rate shows deviation from the group’s norm.

After the groups are formed, cleaned, the deepest functions for each group are identified

and the L2-distances are calculated the online detection algorithm can be setup. Taking the
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test data set one day at a time, it is assigned to one of the groups identified in the clustering

part. This is done using the same methodology described above. Knowing the group that

the new day belongs to, the L2-distance is then calculated between the new function and

the group’s deepest function. This value is compared to the 90%, 95%, 97.5% and 99.9%

percentile values of the relevant group, if the threshold is breached the day is considered as

an outlier, if not - the day is added to the group, the deepest function and percentile value

are recalculated.

After the online detection algorithm runs through the test data set, conventional outlier

detection described above is performed on the test data set split into relevant groups. The

performance of the algorithm is evaluated based on the Type I and Type II errors when

comparing the online detection algorithm versus the conventional offline method. The final

version of the online algorithm uses the threshold value which provides the best results when

compared to the offline method.
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6 Results

The training sets of hear rate data (see Figure 6) and the active calories burned data are

smoothed to X axis of 0 to 1440 (measurement at every minute) and 0 to 24 (measurement

at every hour) respectively.

Figure 6: Smoothed heart rate and active calories burned data
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An example of a raw data and smoothed curve for one observation is provided in Figure 7.

As can be seen the curve follows the trend quite well. The mean squared error for particular

example is equal to 69.52, whilst the mean absolute percentage error is 6.4%. These values

are quite similar for all the days being considered.
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Figure 7: Raw heart rate measurement data and the corresponding smoothed curve.

The smoothed out active calories burned data is passed to the functional EM clustering

algorithm with an imposed limitation of forming from 2 to 4 clusters. The limitation is

imposed to have interpretable clusters. The optimal cluster number, the same as the type

of model defined in the Methodology section, is chosen by the BIC value. The model that

fit the analyzed data can be seen in Table 2.

Table 2: Discriminative functional mixture model chosen
Model

∑
k βk No of variance parameters

DFM[αkjβk] Diagonal Free (K − 1)(p−K/2) +K2

In the case of the analyzed data set, the optimal number of clusters is 4, summary

statistics for all four groups are provided in the table below.

Table 3: Summary statistics for the active calories burned data clusters
Group 1 Group 2 Group 3 Group 4

No. of observations 70 27 39 51
Minimum 281.8 254.4 271.1 208.7

1st Quartile 437.1 380.4 510.7 318.1
Median 470.7 434.6 695.3 377.2
Mean 506.5 462.2 669.1 414.4

3rd Quartile 548.9 499.6 751.0 483.7
Maximum 864.7 849.2 1333.6 740.5
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As can be seen from the Table 3, groups 1 and 2 are very similar to each other according

to all summary statistics. However, because the number of clusters was determined through

iteration and BIC, the similar groups are not joined together and are left as separate for the

further analysis. Using the data obtained in the clustering of the active calories burned data,

the heart rate data set is split up into the same groups according to the date. The outlier

detection is performed for each data set separately and the outliers are removed. Numbers

of outliers in each group are provided in the table below.

Table 4: Numbers of outliers found in each group of heart rate data
Group No. of outliers

1 3
2 4
3 4
4 2

After the outliers have been removed, the deepest function for each group is found (see

Figure 8). The thicker black lines in each graph represent the deepest function for each

group.

Figure 8: Groups of hear rate data and their deepest functions
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The L2-distances are then calculated for each group (see Figure 9). The downward spikes

to zero in each graph identify the location of the deepest function in each group.

Figure 9: L2-distances for each group
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The threshold values for the online detection algorithm are then calculated at 90%, 95%,

97.5% and 99.9% percentile values (see Table 5).

Table 5: Threshold values for the online detection algorithm
90% 95% 97.5% 99.9%

Group 1 406.71 428.55 471.88 546.47
Group 2 360.12 373.16 392.64 427.70
Group 3 753.21 822.58 836.15 857.34
Group 4 403.93 471.16 521.92 537.16

The test data set is prepared to be plugged in into the online detection algorithm by

smoothing both heart rate and active calories burned data (see Figure 10). After obtaining

the smoothed data sets, data is plugged in a day at a time into the online detection algorithm.
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Figure 10: Smoothed test data sets
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The online detection algorithm first assigns the observation it is handling to one of the

four identified groups according to the active calories burned data for a specific day. This

is done in the same manner that the initial groups were formed (see Methodology). After

assigning the observation (t) to a relevant group, the algorithm then picks one of the four

group based scenarios. Within the scenario, the algorithm calculates the L2 metric value

comparing the new observation (t) versus the deepest function within the group. Then the

L2 value is compared to four percentile values of the group - 90%, 95%, 97.5% and 99.9%.

If the L2 value is higher then the observation (t) is recorded as an outlier. If the value falls

below the percentile then the new observation (t) is joined to the group and both the deepest

function and percentile values are re-estimated again. The iteration is completed and the

algorithm picks another observation (t+1).

The chosen approach has the advantage of having a zero lead time to outlier detection.

Meaning that when an abnormal observation is present it will be detected as soon as that

day goes into the algorithm and minimal amount of time passes between the taking of

the measurement and outlier detection. The zero lead time of the algorithm has important
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implications to the use of the algorithm as it ensures that the crucial time between a medical

event regarding the heart muscle occurring to the time that the wearable device user is

notified of the possible event is minimal, hence, if needed, appropriate action can be taken

without a delay.

The online detection algorithm finds 17 outliers with 90% threshold, 16 outliers with 95%,

14 with 97.5% and 13 with 99.9%. For comparison, conventional offline outlier detection

algorithm is run for the whole set of the 74 day test data set. The offline method finds

12 outliers within the groups. If we assume that the conventional offline outlier detection

method constitutes the ground truth, then he miss-match between the methods contains

both Type I and Type II errors (see Table 6). From the table we can see that the number

of Type I error decreases when we are increasing the threshold, whilst the Type II error

is constant in all four versions, i.e. the algorithm always misses one abnormal observation

identified by the offline method.

Table 6: Type I and Type II errors of the algorithm
90% 95%

Type I error Type II error Type I error Type II error
2019-6-1 2019-7-26 2019-6-7 2019-7-26
2019-6-7 2019-6-15
2019-6-15 2019-7-1
2019-7-1 2019-7-12
2019-7-12 2019-7-24
2019-7-24

97.5% 99.9%
Type I error Type II error Type I error Type II error
2019-6-15 2019-7-26 2019-06-15 2019-07-26
2019-7-12 2019-07-24
2019-07-24

For the rest of the analysis the version with 99.9% percentile threshold value will be

considered as it provides the highest accuracy. All three errors that occurred are investigated

deeper. Figure 11 shows the function for the day that alerted as false positive and its group

on the left and the relevant group’s L2 values with red dot as value for the false positive.

From the left side plot the false positive function seems to be within the range of norm for

the majority of the day, only starting to look as an outlier from 16:30. The failed function’s

close proximity to the others within the group is reflected in the right side plot as well. It

shows the L2 value when comparing the outlier with the deepest function of the group as a

red dot. As can be seen from the figure, the red dot is just above the threshold with value
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of 553.73, whilst the threshold is equal to 537.16.

Figure 11: 2019-06-15 Type I error
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Figure 12 depicts the same figures as described above only for the false positive outlier

of the day 2019-07-24. From the left side plot, the false positive outlier looks quite volatile,

even though the rest of the group could not be taken as homogeneous. In this particular

case, the plot of the right had side shows the outlier being further away from the rest of the

group if we compared it to the results of the 2019-06-15 Type I error. The L2 value for the

outlier and the deepest function in the group is 625.26, whilst the threshold is set at 546.47.
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Figure 12: 2019-07-24 Type I error
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The worst of the three errors is depicted in the Figure 13. In this case, the offline outlier

detection method identified this function as an outlier, whilst the online algorithm indicated

the function to be normal. This is illustrated in the figure below. In both the left and right

hand side plots, the function in question does seem to belong to its specified group. The

only obvious region of interest is the night hours depicted in the left hand side plot - they

start at a significantly higher point than the majority of the observations and then moves

downwards as the hours pass. The L2value for this function is equal to 496.85, whilst the

threshold is set at 819.66.
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Figure 13: 2019-07-26 Type II error
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As the Type II error is more significant when considering the medical data, i.e. it is

better to have a normal observation raised as an alert than to miss an abnormal observation,

the error rate for the algorithm comes in at 8.33%. Overall, the result should be improved

- with a goal of having zero Type II errors and minimizing the amount of Type I errors.

However, this can only be achieve with the further analysis and research into the subject,

including the medical professionals to help fine tune the algorithm, decide on definition of

medical outlier versus a statistical one and interpretation of the data.

7 Summary

In this master thesis functional data analysis is used to construct an algorithm for the online

detection of an abnormal heart rate behavior. The algorithm makes a reasonable assumption

that there are at least four different clusters of days according to the activity (measured in the

active calories burned) and uses the clusters to form bases of heart rate measurement values

using training data. The test data then is assigned to a particular group according to activity
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levels and checked against the deepest function of the group by calculating the L2-distance,

if it breaches the 99.9% percentile value of the group the day is considered as abnormal.

The suggested algorithm reached accuracy of 91.67% when compared to conventional offline

methods. The research is planned to be continued further, ingesting all the data that is

collected on a smart watch, using activity measures more extensively in creating better

detection clusters and analysing the speed of change of the heart rate. In addition, the

future research will include medical professionals to help determine the difference between a

statistical and a medical outlier.

It is important to note that the biggest strength of the suggested algorithm is the zero

lead time to detection, meaning that the algorithm is capable of detecting an abnormal heart

rate behavior instantly after the data for a full day is gathered. This has a very important

implication to the possible use of the algorithm as it minimizes the time period between a

possible medical event and its detection, hence the user can seek medical attention as soon

as possible, if that is needed.
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