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Dvimačių sveikareikšmių sezoninių laiko eilučių modeliai: autovarijų
skaičiaus atvejis

Santrauka

Nors sveikareikšmių laiko eilučių modeliai yra plačiai nagrinėjami autorių, analizė kaip gali būti mod-

eliuojamos sveikareikšmės sezoninės laiko eilutės yra ribota. Darbas yra skirtas dvimačių sveikareikšmių

sezoninių laiko eilučių modelių nagrinėjimui. Darbe yra suformuluojami trys modeliai tokiems duomenims:

BINAR(1)s, BINGARCHs and TV-BINAR(1)s. Aprašyti vertinimo metodai yra patikrinami naudojant

simuliuotus duomenis. Empirinėje dalyje modeliai yra pritaikomi autoavarijų skaičiaus Lietuvoje per mėnesį

duomenims, kai avarijas sukėlė blaivūs arba neblaivūs vairuotojai.

Raktiniai žodžiai : Sezoniškumas, dvimatis INAR, dvimatis INGARCH, laike kintantis BINAR, dvimatis

Puasono skirstinys, avarijų skaičius

Modelling Bivariate Integer Valued Time Series with Seasonality: Evidence
on Car Accident Data

Abstract

Although models for time series of counts are currently intensively studied by a number of researchers,

analysis on how integer-valued time series with exhibited seasonality can be modelled is still limited. This

thesis is focused on formulating models for bivariate integer-valued time series with exhibited seasonality.

Hence, three models suitable to such are formulated: BINAR(1)s, BINGARCHs and TV-BINAR(1)s. The

considered estimation methods are tested on the simulated data. All three models are applied on the bivariate

car accident data. Time series consist of number of car accidents caused by the alcohol intoxicated drivers

and a number of car accidents caused by the sober drivers in Lithuania per month.

Key words : Seasonality, Bivariate INAR, Bivariate INGARCH, Time Variant BINAR, bivariate Poisson

distribution, number of car accidents



1 Introduction

Various processes in a number of disciplines are recorded as series of counts. Integer-valued

data can be found in areas such as economics, medicine, biology, criminology. For such data

the usual models (e.g. ARMA) are not suitable as they usually consider continuous distributions.

Models for time series of counts are currently intensively studied by a number of researchers.

Most studies consider binomial thinning operator based integer-valued AR model (INAR), see Al-

Osh and Alzaid (1987), Jin-Guan and Yuan (1991), Scotto et al. (2015). Although most articles

consider Poisson distribution for the marginals, model has also been analysed in terms of negative

binomial distribution (see Ristić et al. (2012)) or geometric distribution (see Ristić et al. (2009)).

Similarly to INAR, INMA model has been analysed by Al-Osh and Alzaid (1988). Although most

authors consider univariate models, based on the fact that many real-life processes has a bivariate

structure, Pedeli and Karlis (2011) formulated a bivariate INAR type model. Although bivariate

distributions are often used for the bivariate models, copula based models are also considered for

the matter (see Buteikis and Leipus (2019).

In addition to thinning operator based INAR type models, observation based integer-valued

GARCH models are considered (also called Poisson regression). Bivariate Poisson INGARCH(p, q)

model was constructed by Liu (2012) with proofs of the stationarity and ergodicity under certain

conditions.

Having the above, analysis on how integer-valued time series with exhibited seasonality can be

modelled is still limited. This thesis is focused on the question how bivariate integer-valued time

series with expressed seasonality can be modelled. The aim of the thesis is to adapt the models

for integer-valued time series to the process with seasonality. To do so we will formulate INAR

and INGARCH type models suitable for bivariate seasonal data linked by the bivariate Poisson

distribution and define new model mixing properties of the two above mentioned models (TV-

BINAR(1)s). To test the efficiency of chosen estimation methods for the models we will use the

simulated data. Finally we will estimate models on real-life car accident data.
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2 The bivariate seasonal models

In this thesis we will define 3 models that can be used for the bivariate integer-valued time

series with seasonality. We will also investigate certain properties of the models, describe param-

eter estimation methods and test them on simulated data to test the efficiency of the described

estimators.

The bivariate distribution for count data considered in the upcoming sections for the estimation

of models is a bivariate Poisson distribution with parameters λ1, λ2 and φ: BP (λ1, λ2, φ) and

probability mass function (pmf):

f(k, l) = P (Z1 = k, Z2 = l) =e−(λ1−λ2−φ)
(λ1 − φ)k

k!

(λ2 − φ)l

l!

×
min(k,l)∑
m=0

(
k

m

)(
l

m

)
m!(

φ

(λ1 − φ)(λ2 − φ)
)m.

(2.1)

Bivariate Poisson distribution can also be understood as a combination of three independent

random sequences X1 ∼ P (λ1), X2 ∼ P (λ2) and X3 ∼ P (φ), where Z1 = X1 + X3 and

Z2 = X2 +X3. Consequently:

µ(Zi) = Var(Zi) = E(Zi) = λi + φ, i = 1, 2; (2.2)

Cov(Z1, Z2) = φ. (2.3)

Furthermore, such construction leads to a logical conclusion that φ ∈ [0,min{λ1, λ2}]

2.1 The bivariate seasonal INAR model: BINARs

2.1.1 Model

As first suggested by Al-Osh and Alzaid (1987) the AR process of stationary non-negative

integer-valued random vectors Xt and Rt, t ∈ Z can be defined as (the INAR(1) model):

Xt = α ◦Xt−1 +Rt, t ∈ Z.

The given model suggests that realization of X at the time t consists of two components: the

survival elements from time t−1 and an innovation Rt - i.i.d. non-negative integer-valued random

variables with certain mean µ and finite variance σ2 that arrive during the time [t− 1; t) and does
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not depend on past values of Xt. The survival component is sum of Yi, i ∈ Z - a sequence of i.i.d.

Bernoulli random variables where P(Yi = 1) = α = 1 − P(Yi = 0), α ∈ [0, 1) (i.e. Yi = 1 with

probability α and Yi = 0 with probability 1− α ) and can be denoted as:

α ◦Xt−1 :=

Xt−1∑
i=1

Yi.

Here ’◦’ is a binomial thinning operator introduced by Steutel and Van Harn (1979).

The INAR process in real life example can be imagined as a queue of people, where each

person queuing at a time t − 1 will remain in the queue at a time t with the probability α (sur-

vival component) and Rt number of new people will join the queue during the interval [t − 1; t)

(innovation component).

A further modification of the model to account for seasonality of time series as investigated by

Bourguignon et al. (2016) and Buteikis and Leipus (2020) can be defined as (the INAR(1)s model):

Xt = α ◦Xt−s +Rt, t ∈ Z.

The model simply assumes survival dependence with the time t− s rather than time t− 1, where

s is the seasonal period.

Similarly as presented above, we will introduce a model for bivariate integer-valued time series

with seasonality.

Definition 2.1. Let Xt = [X1,t, X2,t]
′, t ∈ Z be stationary non-negative integer-valued bivari-

ate time series and Rt = [R1,t, R2,t]
′, t ∈ Z be a non-negative integer-valued bivariate random

sequence independent from Xt. Then the process Xt is a seasonal bivariate INAR process with

seasonal period s (BINAR(1)s), if it satisfies the equation:

Xt = A ◦Xt−s + Rt =

α1 0

0 α2

 ◦
X1,t−s

X2,t−s

+

R1,t

R2,t

 , t ∈ Z,

where αi ∈ [0, 1), i = 1, 2.

Worth noting that in the particular case, the parameter matrix A is diagonal for the sake of sim-

plicity. Nevertheless, other forms could also be considered. It is meaningful to analyse a bivariate

model if either coefficient matrix A is non-diagonal or innovations Rt are from the bivariate dis-

tribution (or joint in other way). The model is similar to a univariate case in a way it also consist
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of both survival and innovation components. What is more, the thinning operator ’◦’ serves as a

matrix multiplicator as well. Given the diagonality of coefficient matrix A in the particular case,

time series of the BINAR(1)s can be expressed separately:

Xt,j = αj ◦Xt−s,j +Rt,j, t ∈ Z,

where j = 1, 2.

Even though the latest equation is the same as in the univariate case of seasonal INAR model,

the two models have different properties as to account for the fact the time series are of a bivariate

process. The distributional properties of the model are revealed via distribution of the innovations

Rt.

It is interesting to note that BINAR(1)s model can be understood as a set of S independent

BINAR(1) processes that share same coefficient matrix A and same innovations Rt distribution

parameters. Moreover, the realization of Xt can also be expressed as a sum of innovations:

Xt,j = αj ◦Xt−s,j +Rt,j = αj ◦ (αj ◦Xt−2s,j +Rt−s,j) +Rt,j

d
= α2

j ◦Xt−2s,j + αj ◦Rt−s,j +Rt,j
d
= . . .

d
=

∞∑
k=0

αkj ◦Rt−ks,j.
(2.4)

2.1.2 Properties

In this section we will investigate some properties of the BINAR(1)s model. Properties have

been derived by using similar methods as for BINAR(1) model by Pedeli (2011). Here we will

assume the innovations Rt = [R1,t, R2,t]
′, t ∈ Z to have a bivariate Poisson distribution.

Conditional mean:

E(Xi,t|Xi,t−s) = αiXi,t−s + λi + φ, i = 1, 2.

Proof:

E(Xi,t|Xi,t−s) = E(αi ◦Xi,t−s +Ri,t|Xi,t−s) = E(αi ◦Xi,t−s|Xi,t−s) + E(Ri,t|Xi,t−s)

= αiE(Xi,t−s|Xi,t−s) + E(Ri,t) = αiXi,t−s + λi + φ. �

Unconditional mean:

E(Xt,i) =
λi + φ

1− αi
, i = 1, 2. (2.5)
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Proof:

E(Xt,i) = E(
∞∑
k=0

αki ◦Rt−ks,i) =
∞∑
k=0

E(αki ◦Rt−ks,i) =
∞∑
k=0

αkiERt−ks,i =
∞∑
k=0

αki (λi+φ) =
λi + φ

1− αi
. �

Unconditional variance:

Var(Xt,i) =
λi + φ

1− αi
, i = 1, 2. (2.6)

Proof:

Var(Xt,i) = Var(
∞∑
k=0

αki ◦Rt−ks,i) =
∞∑
k=0

Var(αki ◦Rt−ks,i)

=
∞∑
k=0

(α2k
i Var(Rt−ks,i) + αki (1− αki )E(Rt−ks,i)

=
∞∑
k=0

(α2k
i (λi + φ) + αki (1− αki )(λi + φ))

=
(λi + φ)

1− α2
i

+
(λi + φ)

1− αi
− (λi + φ)

1− α2
i

=
λi + φ

1− αi
. �

Covariance:

Cov(Xt,i, Xt,j) =
φ

1− αiαj
, i 6= j.

Proof:

Cov(Xt,i, Xt,j) = Cov(
∞∑
k=0

αki ◦Rt−ks,i,
∞∑
l=0

αli ◦Rt−ls,j)

=
∞∑

k,l=0

αki α
l
jCov(Rt−ks,i, Rt−ks,j) =

∞∑
k=0

αki α
k
jCov(Rt−ks,i, Rt−ks,j)

=
Cov(Rt−ks,i, Rt−ks,j)

1− αiαj
=

φ

1− αiαj
. �

As it can be noted from the equations (2.5) and (2.6), unconditional variance and mean of the

model (assuming bivariate Poisson distribution of the innovations) are equal. Thus model does not

exhibit overdispersion.

2.1.3 Conditional Least Squares estimation

Parameters of BINAR(1)s model can be estimated using Conditional Least Squares (CLS). For

the particular estimation, first we will construct the conditional expectations where the expectations
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depend on the information available at the time t− s:

µt|t−s =

E(X1,t|X1,t−s, X2,t−s)

E(X2,t|X1,t−s, X2,t−s)

 =

α1X1,t−s + λ1

α2X2,t−s + λ2

 ,
here λi = E(Ri,t) i = 1, 2.

Then we will calculate the difference between the actual realization at the time t and the con-

ditional expectation based on information available at the time t− s:

Xt − µt|t−s =

X1,t − α1X1,t−s − λ1
X2,t − α2X2,t−s − λ2

 .
To derive CLS estimates we will minimize the squared differences:

Q(αj, λj) = min
αj ,λj

N∑
n=s+1

(Xj,t − αjXj,t−s − λj)2, j = 1, 2.

Taking derivatives of Q(αj, λj) with respect to αj and λj and equating them to 0 leads to the

following system of equations:
∂Q

∂αj
=

N∑
n=s+1

−2Xj,t−s(Xj,t − αjXj,t−s − λj) = 0

∂Q

∂λj
=

N∑
n=s+1

−2(Xj,t − αjXj,t−s − λj) = 0

, j = 1, 2. (2.7)

From (2.7) we have the following equations:
N∑

n=s+1

Xj,tXj,t−s − αj
N∑

n=s+1

X2
j,t−s − λj

N∑
n=s+1

Xj,t−s = 0 (2.8)

and

λj =
1

N − s

N∑
n=s+1

(Xj,t − αjXj,t−s) =
1

N − s

N∑
n=s+1

Xj,t −
αj

N − s

N∑
n=s+1

Xj,t−s. (2.9)

Substituting (2.9) in (2.8):
N∑

n=s+1

Xj,tXj,t−s − αj
N∑

n=s+1

X2
j,t−s −

1

N − s

N∑
n=s+1

Xj,t

N∑
n=s+1

Xj,t−s

+
αj

N − s

N∑
n=s+1

Xj,t−s

N∑
n=s+1

Xj,t−s =
N∑

n=s+1

Xj,tXj,t−s −
1

N − s

N∑
n=s+1

Xj,t

N∑
n=s+1

Xj,t−s

− αj(
N∑

n=s+1

X2
j,t−s −

1

N − s

N∑
n=s+1

Xj,t−s

N∑
n=s+1

Xj,t−s) = 0.

(2.10)
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From (2.10) we have:

αj(
N∑

n=s+1

X2
j,t−s −

1

N − s

N∑
n=s+1

Xj,t−s

N∑
n=s+1

Xj,t−s)

=
N∑

n=s+1

Xj,tXj,t−s −
1

N − s

N∑
n=s+1

Xj,t

N∑
n=s+1

Xj,t−s.

(2.11)

Denoting mean as follows:

X̄j =
1

N − s

N∑
n=s+1

Xj,t−s,

(2.11) becomes

αj =

∑N
n=s+1Xj,tXj,t−s −

∑N
n=s+1Xj,tX̄j∑N

n=s+1X
2
j,t−s − (N − s)X̄2

j

=

∑N
n=s+1(Xj,t(Xj,t−s − X̄j))∑N

n=s+1(X
2
j,t−s − X̄2

j )
.

Hence,

α̂CLSj =

∑N
n=s+1(Xj,t(Xj,t−s − X̄j))∑N

n=s+1(X
2
j,t−s − X̄2

j )
, j = 1, 2,

λ̂CLSj =
1

N − s

N∑
n=s+1

(Xj,t − α̂CLSj Xj,t−s), j = 1, 2. (2.12)

Assuming the innovations to have bivariate distribution, we can see that CLS estimates do not

reveal the dependence parameter. As suggested by Pedeli (2011), it can be shown that the residuals

of the model are equal to the covariance of the innovation terms. Hence, the dependence parameter

φ can be estimated by minimizing the squared differences of the model residuals and the covariance

between the innovations:

Q(Cov(R1, R2)) = min
Cov(R1,R2)

N∑
t=s+1

{(X1,t−α1X1,t−s−λ1)(X2,t−α2X2,t−s−λ2)−Cov(R1, R2)}2.

If we assume bivariate Poisson distribution between the innovations, from (2.3) Cov(R1, R2) = φ,

and (2.1.3) becomes:

Q(φ) = min
φ

N∑
t=s+1

{(X1,t − α1X1,t−s − λ1)(X2,t − α2X2,t−s − λ2)− φ}2. (2.13)

Taking derivative of (2.13) with respect to φ leads to:

∂Q

∂φ
= 2

N∑
t=s+1

{(X1,t − α1X1,t−s − λ1)(X2,t − α2X2,t−s − λ2)− φ} = 0

9



φ =
1

N − s
{

N∑
t=s+1

(X1,t − α1X1,t−s)(X2,t − α2X2,t−s)−

− λ1
N∑

t=s+1

(X2,t − α2X2,t−s)− λ2
N∑

t=s+1

(X1,t − α1X1,t−s)}+ λ1λ2.

(2.14)

Since from (2.12)

λ̂CLSj =
1

N − s

N∑
t=s+1

(Xj,t − α̂CLSj Xj,t−s)

Subsituting λ̂CLSj in (2.14) we have:

φ̂CLS =
1

N − s

N∑
t=s+1

(X1,t − α̂CLS1 X1,t−s)(X2,t − α̂CLS2 X2,t−s)

− 1

N − s

N∑
t=s+1

(X1,t − α̂CLS1 X1,t−s)
1

N − s

N∑
t=s+1

(X2,t − α̂CLS2 X2,t−s)

− 1

N − s

N∑
t=s+1

(X2,t − α̂CLS2 X2,t−s)
1

N − s

N∑
t=s+1

(X1,t − α̂CLS1 X1,t−s)

+
1

N − s

N∑
t=s+1

(X1,t − α̂CLS1 X1,t−s)
1

N − s

N∑
t=s+1

(X2,t − α̂CLS2 X2,t−s)

=
1

N − s
{

N∑
t=s+1

(X1,t − α̂CLS1 X1,t−s)(X2,t − α̂CLS2 X2,t−s)

− 1

N − s

N∑
t=s+1

(X1,t − α̂CLS1 X1,t−s)
N∑

t=s+1

(X2,t − α̂CLS2 X2,t−s)}.

Worth noting that λ̂CLSj here represents E(Rj,t). Assuming the innovations term in the BINAR(1)s

model are distributed under bivariate Poisson distribution (R1, R2) ∼ BPo(λ1, λ2, φ), the expec-

tations are E(Rj,t) = λj +φ. Thus λ̂∗CLSj , representing the actual estimate of λj from the bivariate

Poisson distribution is:

λ̂∗CLSj = λ̂CLSj − φ̂CLS.

2.1.4 Conditional Maximum Likelihood estimation

The following estimation of BINAR(1)s via Conditional Maximum Likelihood (CML) is an

approach used in Pedeli and Karlis (2011) and Pedeli and Karlis (2013) for BINAR(1) and adapted

to for the seasonal model. The estimator of density can be written as a convolution of two binomials

(survival elements) and a bivariate distribution (innovations). As mentioned, for this instance we
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will assume the Bivariate Poisson distribution for the innovations. The pmf of binomials Xt =

[X1,t, X2,t]
′ can be written as follows:

f1(x1) = P(X1,t = x1,t|X1,t−s = x1,t−s) =

(
x1,t−s
x1,t

)
α
x1,t
1 (1− α1)

x1,t−s−x1,t , (2.15)

f2(x2) = P(X2,t = x2,t|X2,t−s = x2,t−s) =

(
x2,t−s
x2,t

)
α
x2,t
2 (1− α2)

x2,t−s−x2,t , (2.16)

where
(
a
b

)
is a binomial coefficient and is calculated as follows:(

a

b

)
=

a!

b! (a− b)!
.

Furthermore, considering distributional choice, pmf of innovations Rt = [R1,t, R2,t]
′ can be

written (as indicated in the (2.1)):

f3(k, l) = P (R1,t = k,R2,t = l) =e−(λ1−λ2−φ)
(λ1 − φ)k

k!

(λ2 − φ)l

l!

×
min(k,l)∑
m=0

(
k

m

)(
l

m

)
m!(

φ

(λ1 − φ)(λ2 − φ)
)m.

Given the above, the joint pmf (jpmf) for the BINAR(1)s process becomes:

f(x1,t, x2,t|x1,t−s, x2,t−s, α1, α2, λ1, λ2, φ) =

g1∑
k=0

g2∑
l=0

f1(x1,t − k)f2(x2,t − l)f3(k, l)

=

g1∑
k=0

g2∑
l=0

e−(λ1−λ2−φ)
(λ1 − φ)k

k!

(λ2 − φ)l

l!

min(k,l)∑
m=0

(
k

m

)(
l

m

)
m!(

φ

(λ1 − φ)(λ2φ)
)m

×
(
x1,t−s
x1,t − k

)
α
x1,t−k
1 (1− α1)

x1,t−s−x1,t+k
(
x2,t−s
x2,t − l

)
α
x2,t−l
2 (1− α2)

x2,t−s−x2,t+l,

where gj = min(xj,t, xj,t−s), j = 1, 2. From the jpmf we can now define the conditional log-

likelihood function:

`(α1, α2, λ1, λ2, φ) =
N∑

t=s+1

log f(x1,t, x2,t|x1,t−s, x2,t−s, α1, α2, λ1, λ2, φ).

To obtain CLM estimates of the unknown parameters, we maximize the conditional log-likelihood:

θ̂CLM = max
α1,α2,λ1,λ2,φ

`(α1, α2, λ1, λ2, φ).

Here θ indicates vector of the unknown parameters. Having formulated the maximization problem,

statistical software can be used to obtain the actual estimates of the parameters. In the particular
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instance, function optim in R was employed for the calculations. CLS estimates were used as the

initial values for the CML estimations. Although CML method is used to find global extreme,

unreasonably selected initial values of the parameters may lead to finding local rather than global

extremes and, hence, biased results.

2.1.5 Simulation

Simulations were performed to test if the constructed estimates are plausible. Both CLS and

CML methods were tested on the same sets of simulated data. Two different lengths of the time

series have been chosen to see how methods perform on small and larger samples. For the first

set of simulations, the length of the time series was N = 100, for the second - N = 500. For

each set a total of 200 independent experiments were performed. Actual parameters chosen were

the same for both sets of simulations. Parameters α1 and α2 indicating marginal dependence of

the series Xt respectively were chosen to be 0.7 and 0.5. Worth noting that data was simulated to

have a seasonal dependence with s = 12 to resemble seasonal dependence of the data used in the

empirical part. Parameters λ1, λ2 and φ of the Bivariate Poisson distribution accordingly are 2, 3

and 0.5.

To evaluate and compare parameter estimates certain measures of goodness need to be intro-

duced. For the numerical evaluation we will calculate Bias (2.17) and Root Mean Square Error

(RMSE) (2.18). For the visual comparison we will employ box plots.

Bias =
1

T

T∑
t=1

(θ̂t − θt), (2.17)

RMSE =

√√√√ 1

T

T∑
t=1

(θ̂t − θt)2. (2.18)

Table 1 represents results of both simulations. One can notice that within the set of shorter

simulations (N = 100) CML estimate does not significantly over-perform CLS estimate. For both

estimators BIAS and RMSE are relatively similar, and for the estimate of λ2 one can notice that

CLS estimator was even better. Nevertheless, in the set of simulations where N = 500 results are

slightly different. Even though BIAS is relatively similar for both estimators, RMSE reveals better

performance CML estimator.
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Table 1: Simulation results of BINAR(1)s=12

CLS estimation CML estimation

Size Real parameter BIAS RMSE BIAS RMSE

N = 100 α1=0.7 0.0233 0.1303 -0.0056 0.1578

α2=0.5 -0.0264 0.0923 -0.0376 0.1206

λ1=2 -0.1636 1.0204 -0.0280 0.8797

λ2=3 0.1833 0.8423 0.2976 0.9505

φ = 0.5 -0.0027 0.4728 0.0206 0.4223

N = 500 α1=0.7 -0.0028 0.0337 0.0020 0.0151

α2=0.5 -0.0010 0.0385 0.0002 0.0149

λ1=2 0.0074 0.3526 0.0064 0.2071

λ2=3 -0.0143 0.3347 -0.0045 0.2107

φ = 0.5 0.0161 0.2166 -0.0129 0.1700
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Figure 1: Simulation results of

BINAR(1)s=12; N = 100
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Figure 2: Simulation results of

BINAR(1)s=12; N = 500

Similar ideas are supported by the box plots. From Figure 1 we see that median values of both

estimators are close to the value of the real parameter used for the simulations (marked in green

dashed line). Additionally, even if more estimations are closer to the median value, CML produced

quite a number of outliers. Also, some cases had α parameters greater than 1. Having a bigger

sample solves for the problem of the outliers in the CML estimators as well as unreasonably large
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α (see Figure 2). In the set of simulations where N = 500, CLM estimates were closer to the

median value as the box plots are significantly shorter than those of CLS estimates.

2.2 The bivariate seasonal INGARCH model: BINGARCHS

2.2.1 Model

Another model for integer-valued time series is a GARCH type model first suggested by Fer-

land et al. (2006). The main idea behind the model is to propose a distribution suitable for integer

data and assume time dependence of the parameters. Namely, univariate INGARCH(p, q) model,

assuming Poisson distribution, can be written as follows:
Xt|Ft−1 ∼ P (λt), t ∈ Z,

λt = δ +

q∑
i=1

αiλt−i +

p∑
j=1

βjXt−j.

Model assumes that conditional mean at the time t depends on the past values of the condi-

tional mean and the previous observations of the variable itself. The model is known to be easily

estimated via CML. Moreover, positive value of λt can be ensured by keeping all parameters αi,

i = 1, ..., q and βj , j = 1, ..., p non-negative and parameter δ positive. The aforementioned model

is also called a Poisson autoregression (e.g. Fokianos et al. (2009)). Such models are not lim-

ited to Poisson distribution. Zhu (2011) formulated INGARCH(p, q) process for negative binomial

distribution, Zhu (2012) elaborated on zero-inflated Poisson distribution.

Based on the fact that a number of count data processes are of a multivariate nature, Liu (2012)

proposed a bivariate observation-driven count data model. Bivariate Poisson autoregression or a

BINGARCH(p, q) is defined as:


Xt|Ft−1 ∼ BP (λ1,t, λ2,t, φ), t ∈ Z,

λλλt = δδδ +

q∑
i=1

Aiλλλt−i +

p∑
j=1

BjXt−j.

Here λλλt = [λ1,t, λ2,t]
′, t ∈ Z, and coefficient matrices are as follows:

δδδ =

δ1
δ2

 ; Ai =

αi1 αi2

αi3 αi4

 ; Bj =

βj1 βj2

βj3 βj4

 .
14



Worth noting that structure of the coefficient matrices can be chosen for each case individually.

However, it is reasonable to consider a bivariate model if at least one of the coefficient matrices

is not diagonal or φ parameter is not equal to 0. Particular model establishes time dependent λ

parameters. In addition, time variant φ could also be analysed.

BINGARCH model for data with seasonal structure can be formulated as an instance of the

BINGARCH(p, q) model including first and the seasonal lags of the conditional mean and the

variables. Such form is suggested accounting for the fact that most data that exhibits seasonality

also depends from the first lag and, hence, such choice should help to explain the process better.

Definition 2.2. Let Xt = [X1,t, X2,t]
′, t ∈ Z be stationary non-negative integer-valued bivariate

time series. Then the process Xt is a seasonal bivariate INGARCH process with seasonal period s

(BINGARCHs), if it satisfies:



Xt|Ft−1 ∼ BP (λ1,t, λ2,t, φ), t ∈ Z

λλλt = [λ1,t, λ2,t]
′ = δδδ + A1λλλt−1 + A2λλλt−s + B1Xt−1 + B2Xt−s

=

δ1
δ2

+

α11 0

0 α12

λ1,t−1
λ2,t−1

+

α21 0

0 α22

λ1,t−s
λ2,t−s


+

β11 0

0 β12

X1,t−1

X2,t−1

+

β21 0

0 β22

X1,t−s

X2,t−s


where δi > 0, i = 1, 2, αi,j ≥ 0, i = 1, 2, j = 1, 2, βi,j ≥ 0, i = 1, 2, j = 1, 2.

As evident from (2.2), in the particular case the coefficient matrices were chosen to be diagonal

leaving the dependence between time series to be revealed via parameter φ. Such structure has been

chosen to simplify the model and reduce the number of parameters to be estimated. It also suggests

that realisation of data at the time t depends from certain factors that apply to both variables of the

data and affects them in the same way. Moreover, such structural form allows to express each

variable similarly as in the univariate case and examine properties accordingly:Xi,t|Ft−1 ∼ P (λi,t + φ), t ∈ Z,

λi,t = δi + α1iλi,t−1 + α2iλi,t−s + β1iXi,t−1 + β2iXi,t−s

i = 1, 2.

Stability theory for BINGARCH(p, q) model and, hence, applicable to BINGARCHs as well

(being an instance of the former model) has been provided by Liu (2012).
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2.2.2 Properties

In this section we will investigate some properties of the BINGARCHs model.

Conditional mean and variance:

µXi,t|Ft−1 = Var[Xi,t|Ft−1] = E(Xi,t|Ft−1) = λi,t + φ

= δi + α1,iλi,t−1 + α2,iλi,t−s + β1,iXi,t−1 + β2,iXi,t−s + φ, i = 1, 2.

Covariance (by the property of bivariate Poisson distribution from (2.3)):

Cov(X1, X2) = φ.

Unconditional mean:

E(Xi,t) = µi = E(Xi,t) =
δi + φ(1− α1 − α2)

1− (α1,i + α2,i + β1,i + β2,i)
, i = 1, 2. (2.19)

Proof:

E(Xi,t) = δi + φ+ α1,iE(λt−1) + α2,iE(λt−s) + β1,iE(Xi,t−1) + β2,iE(Xi,t−s). (2.20)

Assuming the process is stationary, we can write:

E(Xi,t) = E(Xi,t−1) = E(Xi,t−s)

and

E(λt−1) = E(λt−s).

What is more, from the properties of the bivariate Poisson distribution we can note that:

E(λt−1) = E(Xi,t − φ).

Hence, (2.20) can be rewritten:

E(Xi,t) = δi + φ+ α1,iE(Xi,t − φ) + α2,iE(Xi,t − φ) + β1,iE(Xi,t) + β2,iE(Xi,t). (2.21)

Collecting the terms in (2.21) we obtain:

E(Xi,t) =
δi + φ(1− α1 − α2)

1− (α1,i + α2,i + β1,i + β2,i)
. �

16



Unconditional variance:

Var[Xi,t] =
µi(1− (α1,i + β1,i)

2 − (α2,i + β2,i)
2 + (α2

1,i + α2
2,i))

1− ((α1,i + β1,i)2 + (α2,i + β2,i)2)
. (2.22)

Proof:

Equation can be proven in a similar manner as for APC(1,1) model (see Heinen (2003)) by applying

the following property on conditional variance:

Var[y] = Ex[Vary|x(y|x)] + Varx[Ey|x(y|x)].

Here

Ex[Vary|x(y|x)] = E[(Xi,t − µXi,t
)2] = µi, (2.23)

as defined in (2.19). And

Varx[Ey|x(y|x)] = E[(µXi,t
− µi)2]. (2.24)

To calculate the later expression (2.24), following steps can be taken:

µXi,t
− µi = α1,i(Xi,t−1 − µi) + β1,i(µXi,t−1

− µi) + α2,i(Xi,t−s − µi) + β2,i(µXi,t−s
− µi

µXi,t
− µi = α1,i(Xi,t−1 − µXi,t

) + (α1,i + β1,i)(µXi,t−1
− µi)

+ α2,i(Xi,t−s − µXi,t
) + (α2,i + β2,i)(µXi,t−s

− µi).
(2.25)

Squaring and taking the expectation of (2.25):

E[(µXi,t
− µi)2] = α2

1,iE[(Xi,t−1 − µXi,t−1
)2] + (α1,i + β1,i)

2E[(µXi,t−1
− µi)2]

+ α2
2,iE[(Xi,t−s − µXi,t

)2] + (α2,i + β2,i)
2E[(µXi,t−s

− µi)2].
(2.26)

Replacing conditional variance in (2.26) by its expression:

E[(Xi,t−1 − µXi,t−1
)2] = E[(Xi,t−s − µXi,t−s

)2] = µi,

we obtain:

Var[µXi,t
] =E[(µXi,t

− µi)2] = (α2
1,i + α2

2,i)µi

+ (α1,i + β1,i)
2E[(µXi,t−1

− µi)2] + (α2,i + β2,i)
2E[(µXi,t−s

− µi)2].
(2.27)

Here, assuming the process is stationary, we can write:

E[(µXi,t
− µi)2] = E[(µXi,t−1

− µi)2] = E[(µXi,t−s
− µi)2].
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Accordingly, we can rewrite (2.27):

Var[µXi,t
] =E[(µXi,t

− µi)2] = (α2
1,i + α2

2,i)µi

+ (α1,i + β1,i)
2E[(µXi,t

− µi)2] + (α2,i + β2,i)
2E[(µXi,t

− µi)2].
(2.28)

Collecting the terms in (2.28) we obtain:

Var[µXi,t
] = E[(µXi,t

− µi)2] =
µi(α

2
1,i + α2

2,i)

1− (α1,i + β1,i)2 − (α2,i + β2,i)2
. (2.29)

Finally, from (2.23) and (2.29):

Var[Xi,t] = E[(Xi,t − µi)2] = E[(Xi,t − µXi,t
)2] + E[(µXi,t

− µi)2]

= µi +
µi(α

2
1,i + α2

2,i)

1− (α1,i + β1,i)2 − (α2,i + β2,i)2

=
µi(1− (α1,i + β1,i)

2 − (α2,i + β2,i)
2 + (α2

1,i + α2
2,i))

1− (α1,i + β1,i)2 − (α2,i + β2,i)2
. �

From expression of unconditional variance in equation (2.22), it is not difficult to see that

Var[µXi,t
] > µi if (α2

1,i + α2
2,i) 6= 0. Hence BINGARCHs model exhibits overdispersion, even if

equidispersed marginal distribution (i.e. bivariate Poisson) is considered. Moreover, from (2.22)

and (2.19) one can notice that model has finite unconditional mean and variance if (α1,i + α2,i +

β1,i + β2,i) < 1.

2.2.3 Conditional Maximum Likelihood estimation

Approach how to estimate BINGARCH(p, q) model via CML has been described by Liu (2012).

Method is rather straight forward having the pmf of the data distribution can be used for estimation

of BINGARCHs as well:

f(k, l) = P (X1,t = k,X2,t = l) =e−(λ1,t−λ2,t−φ)
(λ1,t − φ)k

k!

(λ2,t − φ)l

l!

×
min(k,l)∑
m=0

(
k

m

)(
l

m

)
m!(

φ

(λ1,t − φ)(λ2,t − φ)
)m,

(2.30)

where

λλλt = δδδ + A1λλλt−1 + A2λλλt−s + B1Xt−1 + B2Xt−s,

as described in (2.2).
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From (2.30) we can define the conditional log-likelihood function:

`(α11, α12, α21, α22, β11, β12, β21, β22, φ)

=
N∑

t=s+1

log f(x1,t, x2,t|x1,t−1, x2,t−1, α11, α12, α21, α22, β11, β12, β21, β22, φ).

To obtain the CML estimates we maximize:

θ̂CLM = max
α11,α12,α21,α22,β11,β12,β21,β22,φ

`(α11, α12, α21, α22, β11, β12, β21, β22, φ).

Although the maximisation problem seems to be difficult considering number of parameters

to be optimized, actual maximisation process is less intense compared to that of the BINAR(1)s.

Function nlminb in R was used for the estimation of BINGARCHs. The initial parameter values for

maximisation process were selected randomly (in such a way that log-likelihood can be estimated

at the given values).

2.2.4 Simulation

Similarly as in Section 2.1.5 to sets of 200 independent simulations were performed. Length

of series for the first set was N = 100, for the second - N = 500. Seasonal lag has been chosen

s = 12, once again, to account for the structure of data later used in the empirical part. Bias and

RMSE (as introduced in the equations (2.17) and (2.18)) of the simulations are provided in the

Table 2. Box plots of the CML estimates are also available in the Figures 3 and 4.

As it can be noted from the Bias and RMSE of the estimated parameters, CML is rather accu-

rate, as the estimates are close to the real parameter values (Bias and RMSE are small). Although

in this instance initial parameter values were selected randomly (since CLS estimates were not

available), accuracy did not deteriorate. Having larger sample (N = 500) has even improved the

accuracy of the estimates. Similarly as in the instance of the BINAR(1)s, having smaller sample

size led to having more outliers of the parameter estimations as can be seen from Figure 3. Larger

sample size reduced this problem. However, from Figure 4 it can be noted that a number of outliers

were estimated in terms of intercept (δ1 and δ2). Nevertheless, in the set of simulations with the

larger sample size, more parameters were estimated closer to the median and their real values as

can be seen from the shorter box plots.
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Table 2: Simulation results of BINGARCHs=12

Size N = 100 N = 500

Real parameter BIAS RMSE BIAS RMSE

δ1=2 0.1160 1.1055 0.1366 0.6808

δ1=1 -0.1031 0.5152 -0.0318 0.3329

α11=0.15 0.0492 0.2069 0.0033 0.1025

α12=0.2 0.0960 0.2220 -0.0945 0.1297

α21=0.1 0.0535 0.2062 0.0767 0.1305

α22=0.2 0.0202 0.2037 0.0032 0.1211

β11=0.3 -0.0152 0.1496 -0.0019 0.0443

β12=0.3 -0.0317 0.1321 -0.0094 0.0464

β21=0.1 0.0096 0.1221 -0.0001 0.0411

β22=0.05 0.0411 0.0798 0.0007 0.0384

φ=0.1 0.2593 0.4394 0.0507 0.1756
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Figure 3: Simulation results of BINGARCHs=12; N = 100
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Figure 4: Simulation results of BINGARCHs=12; N = 500

2.3 The bivariate time variant seasonal INAR model: TV-BINARs

2.3.1 Model

In this section we will formulate new model for the bivariate count data with seasonality. As

noted Section 2.2.1, most data with expressed seasonality also exhibits significant dependence

on the first lag. BINGARCH model is capable of including additional lags without complicating

estimation of the model significantly. However, this model is limited to analysing the survival

information of the data. BINAR model on the other hand has a capability to model process in

terms of both survival and arrival elements. Although it technically is possible to extend this

model to BINAR(p) and introduce more lags (and e.g. construct a model in a similar manner that

the BINGARCHs was formulated for seasonal data), estimation of BINAR type models via CML

even when having only one lag included is computationally intense since. Considering the above,

we will formulate the model by mixing properties of both BINAR and BINGARCH models that

would be able to model both first and seasonal lag dependencies without intensifying the estimation

too much.

Definition 2.3. Let Xt = [X1,t, X2,t]
′, t ∈ Z be stationary non-negative integer-valued bivariate

time series and Rt = [R1,t, R2,t]
′, t ∈ Z be a non-negative integer-valued bivariate sequence.
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Then the process Xt is a bivariate time variant seasonal INAR process with seasonal period s

(TV-BINAR(1)s), if it satisfies the equation:

Xt = A ◦Xt−s + Rt =

α1 0

0 α2

 ◦
X1,t−s

X2,t−s

+

R1,t

R2,t

 , t ∈ Z

and Rt are innovations generated by a Poisson BINGARCH(1, 1) process
Rt|Ft−1 ∼ BP (λ1,t, λ2,t, φ),

λλλt = δδδ + G1λλλt−1 + B1Xt−1 =

δ1
δ2

+

γ1 0

0 γ2

λ1,t−1
λ2,t−1

+

β1 0

0 β2

X1,t−1

X2,t−1

 , (2.31)

where αi ∈ [0, 1), i = 1, 2; δi > 0, i = 1, 2; γi ≥ 0, i = 1, 2; βi ≥ 0, i = 1, 2.

It can be noted that this model varies in time in terms of the bivariate Poisson parameters λ1

and λ2 of the innovations. In this case the variability is expressed via realization of Xt−1. Although

we do not set the direct dependency, we assume that innovations carry information about the past.

In terms of the example given in Section 2.1.1 that BINAR process can be imagined as a queue of

people, in this case we suggest that number of people joining the queue during the time interval

[t− s; t] is influenced by how many people were in the queue at the time t− 1.

Once again, we will assume diagonality of all coefficient matrices and dependence of the time

series via parameter φ that is time invariant (i.e. remains constant over the time). Worth noting that

equation (2.4) holds for TV-BINAR(1)s as well.

2.3.2 Properties

In this section we will investigate some properties of the TV-BINAR(1)s model.

Conditional mean:

E(Xi,t|Xi,t−1) = αiXi,t−s + δi + γiλi,t−1 + βiXi,t−1 + φ, i = 1, 2.

Proof:

E(Xi,t|Xi,t−1) = E(αi ◦Xi,t−s +Ri,t|Xi,t−1) = E(αi ◦Xi,t−s|Xi,t−1) + E(Ri,t|Xi,t−1)

= αiXi,t−s + δi + γiλi,t−1 + βiXi,t−1 + φ. �
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Unonditional mean:

E(Xi) =
δi + φ(1− γi)

(1− αi)(1− γi)− βi
, i = 1, 2.

Proof:

Similarly as for BINAR(1)s model, we can express an observation as a sum of innovations

E(Xt,i) = E(
∞∑
k=0

αki ◦Rt−ks,i) =
∞∑
k=0

E(αki ◦Rt−ks,i) =
∞∑
k=0

αkiERt−ks,i =
E(Rt−ks,i)

1− αi
. (2.32)

We can also note that:

E(Rt,i) = φ+ δi + γiE(λi,t−1) + βiE(Xi,t−1). (2.33)

Assuming the process is stationary, we can disregard the time indexes in the expectations and

substitute (2.33) in (2.32):

E(Xi) =
φ+ δi + γiE(λi) + βiE(Xi)

1− αi
. (2.34)

We can also note that:

E(Xi) = αiE(Xi) + E(λi) + φ.

Hence,

E(λi) = (1− αi)E(Xi)− φ.

Therefore, we can rewrite (2.34) as follows:

E(Xi) =
φ+ δi + γi((1− αi)E(Xi)− φ) + βiE(Xi)

1− αi
. (2.35)

Here, after collecting the terms in (2.35) we finally obtain the result:

E(Xi) =
δi + φ(1− γi)

(1− αi)(1− γi)− βi
. �

It can be noted that Xi has a finite mean if αi < 1, i = 1, 2; γi < 1, i = 1, 2, βi 6=

(1− αi)(1− γi), i = 1, 2 and has a positive mean if βi < (1− αi)(1− γi), i = 1, 2.

Covariance:

Cov(Xt,i, Xt,j) =
φ

1− αiαj
, i 6= j.

Proof:

Same as in Section 2.1.2
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2.3.3 Conditional Maximum Likelihood estimation

TV-BINAR(1)s model can be estimated similarly as a BINAR model via CML. Here we will

also formulate density for each time period t as a convolution of two binomials and a bivariate

Poisson distribution. The pmfs of binomials Xt will be considered as shown in the equations

(2.15) and (2.16). The pmf of innovations will be used similarly as shown in the equation (2.1):

f(k, l) = P (R1,t = k,R2,t = l) =e−(λ1,t−λ2,t−φ)
(λ1,t − φ)k

k!

(λ2,t − φ)l

l!

×
min(k,l)∑
m=0

(
k

m

)(
l

m

)
m!(

φ

(λ1,t − φ)(λ2,t − φ)
)m,

(2.36)

where λ1,t and λ2,t from the equation (2.31) are:

λλλt = δδδ + G1λλλt−1 + B1Xt−1. (2.37)

Having the above, we can now define a jpmf for TV-BINAR(1)s:

f(x1,t, x2,t|x1,t−s, x2,t−s, α1, α2, λ1, λ2, φ) =

g1∑
k=0

g2∑
l=0

f1(x1,t − k)f2(x2,t − l)f3(k, l) =

=

g1∑
k=0

g2∑
l=0

e−(λ1,t−λ2,t−φ)
(λ1,t − φ)k

k!

(λ2,t − φ)l

l!

min(k,l)∑
m=0

(
k

m

)(
l

m

)
m!(

φ

(λ1,t − φ)(λ2,t − φ)
)m

×
(
x1,t−s
x1,t − k

)
α
x1,t−k
1 (1− α1)

x1,t−s−x1,t+k
(
x2,t−s
x2,t − l

)
α
x2,t−l
2 (1− α2)

x2,t−s−x2,t+l,

where gj = min(xj,t, xj,t−s), j = 1, 2 and λλλt as defined in the equation (2.37). The conditional

log-likelihood then is:

`(α1, α2, δ1, δ2, γ1, γ2, β1, β2, φ) =
N∑

t=s+1

log f(x1,t, x2,t|x1,t−1, x2,t−1, α1, α2, δ1, δ2, γ1, γ2, β1, β2, φ).

To obtain the CML estimates we maximize:

θ̂CLM = max
α1,α2,δ1,δ2,γ1,γ2,β1,β2,φ

`(α1, α2, δ1, δ2, γ1, γ2, β1, β2, φ).

Function optim in R has been used for the maximisation problem. Similarly as for estimation of

BINGARCH, since CLS estimates were not available, the initial parameter values for maximisation

process were selected randomly in a such way that log-likelihood can be estimated at the given

values.
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2.3.4 Simulation

Similar simulation set up as for the previous models has been used to test how suggested pa-

rameter estimation method works. Two sets of 200 independent simulations were created and

estimated with two different sample sizes: N = 100 and N = 500. Seasonal lag has been chosen

s = 12. Results of Bias and RMSE are presented in Table 3, box plots are available in Figures 5

and 6.

Table 3: Simulation results of TV-BINAR(1)s=12

Size N = 100 N = 500

Real parameter BIAS RMSE BIAS RMSE

α1=0.4 0.1974 0.2001 0.0032 0.0135

α2=0.5 0.1326 0.1360 0.0039 0.0134

δ1=2 -0.7720 0.9320 -0.1638 0.4172

δ2=3 -0.9394 1.1538 0.0918 0.4860

γ1=0.2 -0.0847 0.1824 -0.0018 0.1513

γ2=0.1 0.0180 0.1458 -0.0048 0.1087

β1=0.15 -0.0540 0.0796 -0.0178 0.0357

β2=0.2 -0.1039 0.1198 0.0090 0.0319

φ=0.1 0.1247 0.3222 0.1257 0.1881

Simulation results of TV-BINAR(1)s = 12 reveal that this model is not estimated as accurately

as the previous two. From the box plots in Tables 5 and 6 we see the median values of the estimates

visibly differ from the real parameter values for most of the parameters in both sets of simulations.

On the other hand we see that having a larger sample visibly reduced Bias and RMSE (e.g. for α1

Bias dropped from 0.1974 where N = 100 to 0.0032 where N = 500, RMSE respectively reduced

from 0.2001 to 0.0135). Worse accuracy could be explained by the previously mentioned idea that

result of the maximisation problem heavily relies on the initial values chosen as local extremes

may be found instead of global. Such problem did not occur for the BINGARCH model as the

estimation is computationally less intense. For the particular model, estimation is more complex

and not having initial CLS values influences the results.
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Figure 5: Simulation results of TV-BINAR(1)s=12; N = 100
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Figure 6: Simulation results of TV-BINAR(1)s=12; N = 500
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3 Evidence on car accident data

3.1 Data

Data used for the empirical part of this thesis is the car accident data from the Official Lithua-

nian Statistics Portal. The available data has a monthly frequency and ranges from January 2004 to

August 2019. Hence, a total of 188 observations are analysed. The data is classified as total num-

ber of accidents occurred during a given month and a number of accidents caused by the alcohol

intoxicated drivers. For the following application we will consider two time series - a number of

accidents caused by the alcohol intoxicated drivers and a number of accidents caused by the sober

drivers. The latter time series is derived by deducting a number of accidents caused by the alcohol

intoxicated drivers from the total number of accidents. In further analysis, following notation will

be used:

• X1,t - a number of accidents caused by the sober drivers at the time t;

• X2,t - a number of accidents caused by the alcohol intoxicated drivers at the time t.

Though it is evident that a number of accidents caused by the alcohol intoxicated drivers has

an additional factor of causality, both time series also share same contribution factors such as

infrastructure, weather conditions etc. Thus, it is reasonable to analyse the two time series as a

bivariate process. Visual representation of the data is available in Figure 7. It is interesting to

note that the number of accidents during the winter months is the lowest as one could assume vice

versa. The lowest number of accidents is usually recorded during February. This is not surprising

considering February is the shortest month of the year.

As can be seen from Figure 7, data has a structural break. The change is caused by the new

system of documenting the car accidents introduced as of 9 April 2008. Based on the the new

regulations, drivers may fill a traffic accident declaration and provide it directly to the insurance

company without the involvement of the police, if during the accident:

• no more than two vehicles were involved;

• nobody was injured of perished;
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Figure 7: Car incident data: number of car accidents caused by the alcohol intoxicated and sober

drivers

• both participants agree on the circumstances;

• both participants were sober.

If such declaration is filled, police does not receive information about the accident. And, hence,

such accident is not included in the statistics. Although involvement of police is mandatory were

one of the drivers is intoxicated, reduced number of accidents is also visible in the time series of

accidents caused by the alcohol intoxicated drivers. Even if such reduction formally should not

be supported by the new system, it could be reasoned that the drivers may mutually agree not to

report such accidents intentionally or, given low level of intoxication, it may not be visible.

To account for the change in the data, cumulative sum (CUSUM) has been performed on both

time series separately test to detect change in mean, as proposed by Horváth et al. (2019). The

test is available in R in the package CPAT. Change in mean for the number of accidents caused by

sober drivers was detected in the 60th period that of the intoxicated drivers was detected in the 58th

period (see Table 4). Considering the results, only observations starting from the 60th period (i.e.

December 2008) hve been used for the further analysis leaving the length of data set 129. Dashed
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green line in Figure 7 represents the point of change.

Table 4: CUSUM test results

CUSUM test

Variable Period Test statistics p-value

X1 60 8.3448 < 2.2e-16

X2 58 8.7932 < 2.2e-16

Figure 8: ACF, PACF and CCF of the number of car accidents caused by the alcohol intoxicated

and sober drivers
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From the autocorrelation and the partial autocorrelation plots of the time series we can note

that data exhibits dependence from the 12th lag. Finding is not surprising as data has a monthly

frequency and a seasonal dependence visible from Figure 7. Moreover, from the partial autocorre-

lation plots it is visible that data has a first lag dependency. Cross correlation plot suggests that the

data is strongly correlated. Correlation between the two time series is 0.5765. Hence, considering

bivariate models is reasonable.

Descriptive statistics of the two time series are provided in Table 5. Mean value of car accidents

caused by the sober drivers is 253 per month, variance 3109.1470, values range from 128 to 385.

Meanwhile number of car accidents caused by intoxicated ranges from 6 to 48 per month with

mean and variance 22 and 69.1165 respectively. It can be noted that both time series exhibits

overdispersion with mean values lower than the variance.

Table 5: Descriptive statistics

Variable Mean Variance Min Max

X1 253 3109.1470 128 385

X2 22 69.1165 6 48

ADF and KPSS test were performed to see if processes are stationary (see Table 6). Both tests

are available in R. Based on the ADF test results, both time series does not have a unit root (null

hypothesis is rejected in both cases having p-value less than 0.01). Result is supported by the KPSS

test results - for both time series null hypothesis indicating level stationarity is not rejected having

p-value greater than 0.1 (larger p-values are not provided in the output).

Table 6: Tests of stationarity and unit root

ADF test KPSS test

Variable Test statistics p-value Test statistics p-value

X1 -7.0058 0.01 0.3689 0.1

X2 -6.2023 0.01 0.8889 0.1
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3.2 Results

Three models - BINAR(1)s=12, BINGARCHs=12 and TV-BINAR(1)s=12 were fitted on the car

accident data. The dynamics of the three models can be written as follows:

1. Xt = A ◦Xt−12 + Rt; Rt ∼ BP (λ1, λ2, φ),

2.

Xt|Ft−1 ∼ BP (λ1,t, λ2,t, φ)

λλλt = δδδ + A1λλλt−1 + A2λλλt−12 + B1Xt−1 + B2Xt−12

,

3. Xt = A ◦Xt−12 + Rt,

where Rt is generated by a Poisson BINGARCH(1, 1) processRt|Ft−1 ∼ BP (λ1,t, λ2,t, φ),

λλλt = δδδ + G1λλλt−1 + B1Xt−1.

BINAR(1)s=12 was estimated using CLS and CML methods, BINGARCHs=12 and TV-BINAR(1)s=12

models were estimated using CML method. Fitted values of all models are plotted in Figures 9

and 10 for car accidents caused by the sober and intoxicated drivers respectively.
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Figure 9: Predictions of the number of car accidents caused by the sober drivers
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Figure 10: Predictions of the number of car accidents caused by the alcohol intoxicated drivers

From Figures 9 and 10 it is evident that all models managed to capture general movement of

data rather well. From visual analysis one can note that TV-BINAR(1)s=12 model seems to have

the closest fit to the data especially looking in the spikier parts of the data. Though all models seem

to have performed rather similarly for the X1 time series, both BINAR(1)s=12 model estimations

(CLS and CML) seem to have captured dynamics of the X2 the least favourably. This is especially

noticeable for the CLS predictions that are visibly different from the actual values of the data.

Assumption that TV-BINAR(1)s=12 model provided the closest fit to the data is also supported

by the AIC score provided in Table 7. TV-BINAR(1)s=12 model has the smallest AIC score com-

pared to that of the other two models estimated via CML. This indicates that the model has the

smallest out-of-sample prediction error.

Other interesting result is that all estimated models show a relatively similar φ value indication

that approximately 3-6 car accidents per month are caused by the same factors for both time series

(e.g. unusual weather or other environmental conditions). What is more, all three models revealed

that car accidents caused by the sober drivers have a higher dependency on its seasonal lag. Hence,

has a more expressed survival explanation power. Whereas number of car accidents caused by the
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Table 7: Estimation results

BINAR(1)CLS
s=12 BINAR(1)CML

s=12 BINGARCHs=12 TV-BINAR(1)s=12

α1 0.7016 0.7211 0.6616

α2 0.5172 0.5666 0.4972

λ1 61.8326 60.2403

λ2 2.7829 3.3210

δ1 0.8389 36.1318

δ2 0.2154 6.0004

α11 0.1382

α12 0.0583

α21 0.3195

α22 0.1592

β11 0.0816 0.0675

β12 0.3441 0.0729

β21 0.4429

β22 0.2971

γ1 0.2832

γ2 0.3158

φ 5.8756 5.4394 3.1657 4.1170

Log-likelihood 1802.67 1054.714 414.8945

AIC 3615.34 2131.428 847.789

intoxicated drivers is less predictable and less season dependent; thus, has more random dynamics.

Alternatively, number of car accidents caused by the intoxicated drivers showed a higher depen-

dency on period t− 1 (in BINGARCHs=12 and TV-BINAR(1)s=12 models) indicating a more rigid

behaviour. What is more, some interesting insights can be brought from the TV-BINAR(1)s=12

model parameter estimates about the structure of arrival element. From the δ̂1 and δ̂2 one can note

that respectively 36 and 6 car accidents per month are caused by the sober and intoxicated drivers

due to the unusual environmental conditions (constant components of λ1,t and λ2,t ∀t ), plus the
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arrival elements include 28 per cent and 32 per cent of arrival car accidents from the previous

month (parameters β̂11 and β̂12) and approximately 7 per cent of all car accidents occurred during

a previous month (parameters γ̂1 and γ̂2).
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Figure 11: Residual analysis of BINAR(1)CLS
s=12 model
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Figure 12: Residual analysis of BINAR(1)CML
s=12 model
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Figure 13: Residual analysis of BINGARCHs=12 model
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Figure 14: Residual analysis of TV-BINAR(1)s=12 model

From the residual analysis (Figures 11, 12, 13 and 14) it can be noted that none of the three

models is capable of describing all dynamics of the data. 12th lags of the residuals are significantly

autocorrelated for all estimations. In particular, BINAR(1)CLS
s=12 seems to be the least favourable

estimation as the residuals have the most significant autocorrelation lags (see Figure 11). Moreover,
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they do not seem to fall on a straight line in the Q-Q plot, suggesting that the residuals are not

normally distributed and has a number of extreme values. BINAR(1)CML
s=12 estimation residuals have

less significantly autocorrelated lags (see Figure 12). However, residuals of both time series show

a significant 1 lag in the PACF plot. This supports the assumption of limitation of BINAR(1)s=12

model in general, that it does not consider significant first order dependency of data, which is the

case for the most time series. Looking at the residuals of the BINGARCHs=12 estimation (see

Figure 13) one can note that model was successful at determining seasonal dependency on the

number of car accidents caused by the intoxicated drivers. Finally, from the residuals of the TV-

BINAR(1)s=12 model, we could support the idea that the model suited data the best (as suggested

from the visual analysis and the AIC score) as the residuals have the least number of significant

autocorrelation lags (generally, only the 12th lag is concerning) and the Q-Q plots suggest the most

normal distribution of the residuals.

To sum up the above we could suggest that the TV-BINAR(1)s=12 model suited data the best.

Nevertheless, non of the models captures the actual seasonal dependency properly. This indicates

that the dependency differs between the months and 12 different models should rather be estimated

(i.e for each month separately). However, this would not be reasonable for the particular dataset as

such segregation would leave us with 24 time series, with approximately 11 observations in each.

Estimating models on such short time series cannot be accurate and would likely provide false

inference.
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4 Conclusions and recommendations for future work

In this thesis three models for integer-valued bivariate time series with seasonality were formu-

lated: BINAR(1)s, BINGARCHs and TV-BINAR(1)s. CML estimation methods were suggested

for all three models. In addition, CLS estimation method was formulated for BINAR(1)s model.

Efficiency of the estimators has been tested on simulated data and evaluated using box plots, Bias

and RMSE.

Car accident data was used for the application of the models. Bivariate time series consist of

number of car accidents caused by the alcohol intoxicated drivers and a number of car accidents

caused by the sober drivers in Lithuania per month. Information for period from December 2008

to April 2019 was used for the estimation.

The fitted models revealed that the TV-BINAR(1)s=12 provided the best fit for the data hav-

ing the smallest AIC score. Moreover, residual analysis showed that the model was capable of

defining the most information of the data by leaving most of the autocorrelations of the residuals

insignificant.

From the parameter estimates it can be concluded that number of car accidents caused by the

sober drivers is more predictable than that of the intoxicated drivers as this time series showed

stronger seasonal dependency. Moreover, it can be concluded that the data is of a bivariate nature

since all three models captured the cross-dependence parameter. In addition, the estimated cross-

dependence parameter φ̂ was relatively similar for all models.

Residual analysis has shown that none of the models was able to effectively capture seasonality

of the data (12th autocorrelation lag was significant). This implies that seasonal dependency differs

between the months and one model should not be used for the given data. Alternatively, 12 different

models should have been estimated. However, considering the length of the analysed dataset,

constructing 12 different models would be unreasonable, as it would leave the particular time

series very short.

For the future work, different distributional choices could be considered for the models (e.g.

negative binomial) to compare the results. Most importantly, it would be necessary to analyse the

stability and other properties not considered in the thesis of the TV-BINAR(1)s model as well as

to think of alternative model estimation procedures to improve the accuracy of the estimates.
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A Appendix

R code for calculating BINAR(1)CLSs=12 estimates

cls_est<-function(y){

rez <- rep(NA,5)

names(rez) <- c("a1","a2","l1","l2","O")

for(i in 1:ncol(y)){

x <- y[,i]

x_a <- rep(NA, (length(x)-12))

for(j in 1:(length(x)-12)){

x_a[j] <- x[j+12]*(x[j]-mean(x))

}

x_b <- rep(NA, (length(x)-12))

for(j in 1:(length(x)-12)){

x_b[j] <- x[j]^2-mean(x)^2

}

a <- sum(x_a)/sum(x_b)

l <- (sum(x[13:length(x)]) - a*sum(x[1:(length(x)-12)]))

/(length(x)-12)

rez[i] <- a

rez[i+2] <- l

}

O <- (sum((y[13:nrow(y),1]-rez[1]*y[1:(nrow(y)-12),1])

*(y[13:nrow(y),2]-rez[2]*y[1:(nrow(y)-12),2]))

-(sum((y[13:nrow(y),1]-rez[1]*y[1:(nrow(y)-12),1]))

*sum((y[13:nrow(y),2]-rez[2]*y[1:(nrow(y)-12),2])))

/(length(x)-12))/(length(x)-12)

rez[5] <- O

rez[3] <- rez[3]-rez[5]

rez[4] <- rez[4]-rez[5]

rez

}
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R codes for calculating log-likelihood.

BINAR(1)s=12

cml_BP_INAR <- function(vec, y){

a1 <- vec[1]

a2 <- vec[2]

l1 <- vec[3]

l2 <- vec[4]

O <- vec[5]

temp <- rep(0,(nrow(y)-12))

i <- 13

while(i <= nrow(y)){

temp1 <- 0

for(k in 0:min(y[i,1],y[(i-12),1])){

temp2 <- 0

for(s in 0:min(y[i,2],y[(i-12),2])){

temp3 <- dbvpois(k, s, l1, l2, O)

pirmas <- dbinom(x = (y[i,1] - k), size = y[(i-12),1], prob = a1)

antras <- dbinom(x = (y[i,2] - s), size = y[(i-12),2], prob = a2)

temp2 <- temp2 + temp3*pirmas*antras

}

temp1 <- temp1 + temp2

}

temp[i-12] <- ifelse(temp1==0, NA, log(temp1))

i <- i+1

}

temp <- as.vector(na.omit(temp))

return(-sum(temp))

}
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BINGARCHs=12

cml_BP_INGARCH <-function(vec, y){

d1 <- vec[1]

d2 <- vec[2]

a11 <- vec[3]

a21 <- vec[4]

a12 <- vec[5]

a22 <- vec[6]

b11 <- vec[7]

b21 <- vec[8]

b12 <- vec[9]

b22 <- vec[10]

O <- vec[11]

temp <- rep(NA,(nrow(y)))

l1 <- rep(0, nrow(y))

l2 <- rep(0, nrow(y))

l1[1:12] <- (d1+O)/(1 - a11 - a12 - b11 - b12)

l2[1:12] <- (d2+O)/(1 - a21 - a22 - b21 - b22)

i <- 13

while (i<= nrow(y)) {

k <- y[(i),1]

s <- y[(i),2]

l1[i] <- (d1 + a11*(l1[i-1]) + a12*(l1[i-12])

+ b11*y[(i-1),1] + b12*y[(i-12),1])

l2[i] <- (d2 + a21*(l2[i-1]) + a22*(l2[i-12])

+ b21*y[(i-1),2] + b22*y[(i-12),2])

temp[i-12] <- log(dbvpois(k,s,l1[i],l2[i],O))

i<-i+1

}

temp <- as.vector(na.omit(temp))

return(-sum(temp))

}
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TV-BINAR(1)s=12

cml_BP_TV_INAR <- function(vec, y){

a1 <- vec[1]

a2 <- vec[2]

d1 <- vec[3]

d2 <- vec[4]

g1 <- vec[5]

g2 <- vec[6]

b1 <- vec[7]

b2 <- vec[8]

O <- vec[9]

l1 <- d1/(1 - g1 - b1)

l2 <- d2/(1 - g2 - b2)

temp <- rep(0,nrow(y))

i <- 13

while(i <= nrow(y)){

temp1 <- 0

for(k in 0:min(y[i,1],y[(i-12),1])){

temp2 <- 0

for(s in 0:min(y[i,2],y[(i-12),2])){

temp3 <- dbvpois(k, s, l1, l2, O)

pirmas <- dbinom(x = (y[i,1] - k), size = y[(i-12),1], prob = a1)

antras <- dbinom(x = (y[i,2] - s), size = y[(i-12),2], prob = a2)

temp2 <- temp2 + temp3*pirmas*antras

}

temp1 <- temp1 + temp2

}

temp[i-12] <- ifelse(temp1==0, NA, log(temp1))

l1 <- d1 + g1*l1 + b1*y[i,1]

l2 <- d2 + g2*l2 + b2*y[i,2]

i <- i+1

}
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temp <- as.vector(na.omit(temp))

return(-sum(temp))

}
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