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Lietuvos moksleivių pažangumas matematikos srityje: PISA duomenų analizė

Santrauka

Šiame darbe buvo tiriama, ar grynos matematikos poveikis turi didesnę įtaką negu taikomosios matematikos

poveikis Lietuvos moksleivių PISA matematikos testų rezultatams. Analizė rodo, kad grynos matematikos in-

deksas turi teigiamą ir nuoseklų ryšį su Lietuvos moskleivių PISA matematikos testų raštingumo balais. Penki

pritaikyti modeliai pagrindžia hipotezę: grynos matematikos poveikio indekso padidėjimas vienu vienetu didina

studentų matematikos raštingumą 18–27 balais. Toks ryšys išlaikomas ir atsižvelgiant į moksleivių socialinį-

ekonominį statusą bei klasę. Tyrimo hipotezė galioja visiems matematikos poskyriams. Taikomosios matem-

atikos poveikis PISA matematikos testui visais atvejais buvo neigiamas ir dažniausiai nereikšmingas. Taikomo-

sios matematikos poveikis matematikos raštingumui Lietuvoje yra “kvadratinis” ir primena kvadratinį sąryšį:

jis daro teigiamą įtaką iki kol pasiekia tam tikrą savo indekso lygį ir vėliau matematinis raštingumas pradėda

mažėti. Latvijos ir Estijos analizė rodo, grynosios ir taikomosios matematikos indeksų poveikis yra panašūs į

Lietuvos atvejį.

Raktiniai žodžiai : (Matematinis raštingumas, Hierarchinis tiesinis modelis, PISA duomenų analizė, taiko-

mosios matematikos poveikis, Lietuvos moksleivių matematikos žinios, PISA duomenų analizė)

The analysis of factors which affect school students knowledge of mathematics
in Lithuania: indications from PISA

Abstract

This study examined whether the exposure to pure mathematics has bigger impact on PISA mathematics

literacy scores compared to exposure to applied mathematics in Lithuania. Results suggest that exposure to pure

mathematics has a positive and consistent relationship with mathematics literacy score on population level in

Lithuania. Five fitted models support the hypothesis: a one unit increase in index of exposure to pure mathe-

matics will increase student mathematics literacy score by 18-27 points. The relationship is resilient even after

controlling for students’ socioeconomic status and grade. The hypothesis of the study holds for all sub-areas

of mathematics. Estimate of exposure to applied mathematics coefficient was negative in all cases and usually

insignificant. The negative relationship of exposure to applied mathematics with mathematics literacy score in

Lithuania appear to be “semi-quadratic”: it has a positive relationship with mathematics literacy score, but after

a certain level of exposure of applied mathematics index is reached ML score starts to decrease. The analysis of

Latvia and Estonia shows that index of exposure to applied mathematics follows similar pattern.

Key words : (Mathematics literacy, hierarchical linear modeling, exposure to pure mathematics, exposure to

applied mathematics, Lithuania students’ knowledge of mathematics, survey data analysis, PISA data analysis)



Contents

1 Introduction 2

2 Background 5

3 Data, its origins and features 9
3.1 Sampling design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 The assessment method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Survey results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4 Reported values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.4.1 Plausible values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4.2 Regressors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4.3 Levels of analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Methodology 18
4.1 Specification of various models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 Analysis with plausible values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 Practical part 21
5.1 Exploratory analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2 Modeling step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6 Results 27
6.1 A closer look at the Lithuania: results from different models . . . . . . . . . . . . . 27
6.2 Comparison with other countries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

7 Conclusions 35

8 Appendix 36

1 Introduction

School students from Lithuania tend to have lower results in international PISA mathematics tests
compared to OECD average. Starting with 2006, when Lithuanian students scored 486 and gap with
OECD average was only 4 points [OECD, 2007], the difference extended to 19 points in 2009 [OECD,
2010]. While 2006 results had shown no statistical difference, 2009 results were significant, meaning
that Lithuanian students average was significantly lower that OECD average that year. Distinction
between Lithuania results and OECD average has shrunk to 8 points according to 2018 data, but
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still is significantly lower that OECD average [OECD, 2019]. Different results come from TIMMS
data, where Lithuanian student average score in mathematics during 2003-2015 year had grown from
502 to 511 points with 2015 year result being significantly higher than TIMMS 500 points average
[Mullis et al., 2016]. These results should be treated more carefully because the list of participants
goes beyond Europe and OECD countries. Furthermore, 2012 – 2015 PISA data shows that Lithuania
had 25,4 – 26 per cent of all students below baseline proficiency level in mathematics [OECD, 2013b,
2016a]. That mean every fourth student can only answer questions which involve familiar context
with all the relevant information given; carry out routine tasks with all instructions present; perform
actions that are obvious according to given task [OECD, 2013a].

According to Valdemaras Razumas, Vice Minister of education and sports in Lithuania opinion,
one of the main reasons why Lithuanian students perform how they do is high level of social exclusion
between students in cities and regions; another reason was stated to be insufficient quality of teaching
in the regions [LRT, 2019]. In addition, not only those two reasons matter but also the motivations
of students – students from city schools can choose from a wide variety of after class activities, while
small-regional educations systems suffer from insufficient funding needed to ensure such possibilities
to students.

The results from OECD raised some questions to government and educational system, which was
under reform since 90’s. The effects of it are child-centered paradigm and prioritization of general
skills acquired by students through educational curriculum, while the role of teachers in educational
process was criticized [Norvaiša, 2019]. The balance between learning and teaching paradigms could
be explored by didactics of mathematics. However, Lithuania lacks experience in this particular do-
main: there is no local organization that works in this area; poor financial support e only two universi-
ties in the country work with didactics in mathematics as a scientific discipline; a lack of incentives to
perform scientific researches in all areas of didactics of mathematics, such as teaching quality, students
learning possibilities and exogenous factors, such as home and school atmosphere [Narkevičienė and
Novikienė, 2018].

Besides educational system’s political background, the main questions are still here – what should
be done in Lithuania differently so that students would perform better in mathematics on average and
how to minimize the percentage of students below baseline proficiency level in mathematics. The
common knowledge emphasizes the importance of home and school environment at lower proficiency
levels, while attitude towards mathematics and self-confidence comes make greater impact on higher
proficiency levels. PISA publications based on 2012 data underline the importance of “universal”
factor – exposure to pure mathematics which appears to have a strong relationship with final PISA
mathematics literacy score [OECD, 2016b]. A lack of such type of mathematics in Lithuania was
stated by some students. Mainly they stress the way mathematics is taught in the schools – with
no understanding of what actually lies behind the formulas but only blind application of it [Tiešytė
et al., 2001]. Content analysis of mathematical textbooks confirms the presence of a problem with an
example how the topic of “powers and integer exponents” was presented in different books from 1982
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to 2013: the earliest books presented the definition of a concept, properties and proof of properties
with specific numbers, while latest book aims its attention only on computation process of particular
topic without explaining the meaning or even agreement on formula [Norvaiša, 2019]. Therefore, the
hypothesis of this work is to check whether exposure to pure mathematics has bigger influence on
standardized PISA test results in Lithuania compared with exposure to applied mathematics.

A proper analysis of student performance in mathematics using PISA survey data suggest imple-
mentation of various data analysis techniques. Considering the features of survey data, the analysis of
factors was performed using multilevel models which are able to account for differences that appear
due to sampling design. As multilevel models suggest hierarchical structure of data, it is important
to choose whether or not to scale the weights. Analysis without scaling can result in biased esti-
mates, while application of scaling techniques can over-correct bias, therefore it is advised to perform
sensitivity analysis. In this work sensitivity analysis is performed by comparing results from scaled
weights and conditional weights. As a “sanity” check, linear regression model was also fitted in order
to compare signs and significance levels of estimates. In addition, PISA survey report results as a
combination of plausible values, so this work will also overview the techniques of working with such
data.

Results suggest that exposure to pure mathematics has a positive and consistent relationship with
mathematics literacy score on population level in Lithuania. Such relationship is statistically sig-
nificant, while exposure to applied mathematics has negative (quadratic form) relationship which is
usually insignificant. It is supported by the multilevel models for survey data with different model
specification: random intercept with fixed slopes and both random intercepts and slopes. Results from
4 multilevel models and 1 linear regression model support the hypothesis: a one unit increase in index
of exposure to pure mathematics will increase student ML score by 18-27 points. The relationship is
resilient even after controlling for students’ socioeconomic status and grade. The negative relationship
of exposure to applied mathematics with mathematics literacy score in Lithuania appear to be “semi-
quadratic”: it has a positive relationship with mathematics literacy score, but after a certain level of
exposure of applied mathematics index is reached e ML starts to decrease. The analysis of Latvia and
Estonia shows that index of exposure to applied mathematics follows same pattern, but even greater.
This relationship was also confirmed by literature and PISA reports. The hypothesis of the study holds
for all sub-areas of mathematics. The estimate of exposure to pure mathematics coefficient vary be-
tween 24 and 29 points, meaning that 1 unit increase in index of exposure to pure mathematics will
increase student ML score by 24-29 points. Estimate of exposure to applied mathematics coefficient
was negative in all cases and usually insignificant.

This work will consist from background section, where context and literature will be reviewed.
The second part will describe PISA survey and its main characteristics. After PISA data origins
and features section section of used methodology will follow. It will describe specification of models,
weights scaling procedures, theory of plausible values and how to work with them. After that practical
part will be presented, which was divided into two subsections: exploratory analysis and modeling
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step. The first will present brief characteristics of data set, while second will describe the workflow.
Results and conclusion will be discussed at the end.

2 Background

International organizations are main source of information in a context of student’s performance. Such
organizations have reliable resources to gather, clean up and prepare data for analysis and, notably,
present the comparable results at international level. There are two such worth to mention organi-
zations e International Association for the Evaluation of Educational Achievement (IEA) and The
Organisation for Economic Co-operation and Development (OECD). Trends in International Mathe-
matics and Science Study (TIMMS), a flagship study of IEA, focuses on school student’s performance
in mathematics and science subjects, evaluates the differences how these subjects are being taught
between participating countries, collects empirical information about the curriculum and its imple-
mentation. This study mainly targets fourth and eighth grade students. TIMMS tends to evaluate
student’s abilities in mathematical tasks from school curriculum. TIMMS publications analyze a wide
variety of topics, e.g. socioeconomic inequalities and educational outcomes [Broer et al., 2019], im-
portance of soft and cross-subject skills, effects of classroom instructions [Kim, 2018]. Programme
for international students’ assessment (PISA), developed by Organisation for Economic Co-operation
and Development (OECD), measures school students’ knowledge and skills in science, reading, math-
ematics. PISA tries to find out whether students can apply what they have learned in school to real life
situations. The study mainly focuses 15-year-old school students in each participating county. PISA
provides extended studies for each time stamp when data were collected. Latest available studies give
insights about student well-being, policies and practices for successful schools, as well as some in-
depth reports, such as equity in education and effective teacher policies. In this work author’s primary
focus is mathematics topic in PISA survey, rather that TIMMS because:

• PISA focuses on mathematics knowledge implementation in real life situations, while TIMMS
examines it via test based on school curriculum. This fundamental feature makes PISA results
unique and valuable in today’s world;

• there are differences between countries education systems, so target audience defined by age
could provide more meaningful and comparable information what students are capable of at
particular age, rather than grade;

• regularity, which helps countries to track students progress in key aspects of learning;

• the decision to participate in PISA or not is taken by governments, whose policy interested in
the results.

The PISA survey, its test design as well as the relevance of results was seriously challenged by aca-
demic world. In 2014 more than 100 academics around the globe called OECD to skip the next PISA
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2015 cycle [The Guardian, 2014]. The negative consequences of PISA included the escalation of
standardized testing for students, teachers, school officials and an unreasonable “rally” to the “top”
of PISA rankings, while it is known that results from such tests tend to be imperfect; the three-year
assessment cycle has caused a shift to short-term goals, while educational reforms widely known to
be long-term in order to achieve any major results; PISA tests only three subjects, while the range of
students abilities is way larger – it includes moral, civic, artistic, physical sides and aspects, thereby
narrowing our imagination on what education is and how should be taught [Strauss, 2019]. Another
portion of criticism was recently stated by Yong Zhao, a Foundation Distinguished Professor in the
School of Education at the University of Kansas. He writes: “The foundation upon which PISA has

built its success, has been seriously challenged. First, there is no evidence to justify, let alone prove,

the claim that PISA indeed measures skills that are essential for life in modern economies. Second,

the claim is an imposition of a monolithic and West-centric view of societies on the rest of the world.

Third, the claim distorts the purpose of education” [Washington Post, 2019]. However, it was nicely
stated by R.Ževlys that PISA has many faces – some of them are attractive, whereas others are not.
Therefore, various aspects of PISA survey should be used in professional and skillful way in order to
achieve quality and valuable results [Želvys et al., 2016].

There is a strong relationship between educational inequality and attainment of educational quali-
fications that is connected to social status [Breen and Jonsson, 2005]. Students with higher socioeco-
nomic status (SES) (e. g. family financial status, school resources, country income) usually have more
learning opportunities and that helps them to perform better [Baker et al., 2002]. Students with low
socioeconomic status lack some of the essential skills needed to perform better. Performance differ-
ences appear more frequently on those tasks that require deeper knowledge of symbolic and technical
operations as well as on tasks which require model-building skills. As a consequence, students’ so-
cioeconomic status and differences between schools’ socioeconomic distribution of students create
additional sources of variation in mathematical literacy e between schools and within school. Across
OECD counties, students’ SES and differences between schools’ composition explain around 9 per-
cent (on average) of the variation in familiarity with mathematics on country level [OECD, 2016b].
The fact that low-SES students are missing needed level of familiarity with mathematics concepts
can explain around 19-20 percent of performance differences in Malaysia – students from schools
with higher socioeconomic status outperformed students from schools with low socioeconomic sta-
tus [Thien, 2016]. Differences in students’ socioeconomic status have greater significance on stu-
dents’ performance if particular county has unequal distribution of qualified teachers or clustering of
privileged students – such factors usually lowers students results [Chiu and Khoo, 2005]. The rela-
tionship between SES and student’s performance when student and school socioeconomic status are
dis-aggregated suggests that increase in school socioeconomic status increases performance of par-
ticular school student regardless of their individual SES [Perry and McConney, 2010]. The gap in
educational achievements between high and low SES group is also confirmed and shown by TIMMS
publications: e.g. despite of Lithuania economy growth during 1995-2015 period, the difference be-
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tween high- and low- SES students in TIMMS mathematics test results extended from 73 points in
1995 to 90 points in 2015 [Broer et al., 2019]. Numerous PISA reports confirm the existence of a
strong link between socioeconomic status and both opportunities to learn and students performance
[OECD, 2007, 2010, 2013a, 2016a, 2019].

The four “Opportunity to Learn” (OTL) content variables were identified by Stevens [1993] –
coverage, exposure, emphasis and quality of instructional delivery in order to assure that all students
receive quality education and support in different fields of it. In order to assess and evaluate the
OTL variables PISA 2012 designed special tasks – some representing more traditional tasks, some
strongly connected with critical and analytical thinking. The OTL variables considered to be impor-
tant concept in international surveys like PISA that has strong relationship with overall student per-
formance[Schmidt and Maier, 2009]. PISA results confirm that exposure to pure mathematics have a
strong link with performance in mathematics. This relationship increases as mathematical problems
become more difficult, while exposure to applied mathematics has weaker relationship with mathemat-
ics literacy. Exposure to pure mathematics and learning such type of mathematics through real-world
applications are significantly related to all the PISA mathematics literacy scores across 43 countries
[Cogan et al., 2019]. The conclusions about performance and pure mathematics relationship were
stable even after controlling for other factors that have direct link with performance (e.g. SES, grade
level). The connection of applied mathematics and mathematics literacy was not such consistent and
in cases when it was significant relationship had quadratic form – with negative coefficient, meaning
that after some infection point “Applied mathematics” index was negatively related to performance.
Such results support hypothesis that pure mathematics is highly related to mathematics literacy, just
as it was found in [OECD, 2016b].

Comprehensive PISA report “Equations and Inequalities. Making mathematics accessible to all”
suggests several important conclusions: first of all, it shows that educational systems have a lot of
differences in the degree to student’s exposure to mathematics concepts and the way those concepts are
presented to students. Secondly, such variation is even bigger within country level rather that between.
It can be explained by educational system on country level. For example, Lithuania has decentralized
education system, where school governance is distributed between different level authorities – state,
municipal and, finally, school [OECD, 2017].

While international educational studies provide vast amount of information to analyze, there is
a lack of any analysis of mathematical performance conducted on within-country level of Lithuania,
especially with PISA data. The targeted analysis of Lithuania which describes the connection of eco-
nomic and educational variables was performed by [Mikk, 2006] using TIMMS data. The analysis
revealed a strong relationship between mathematical results and variables, previously stated by oth-
ers authors, e.g. students’ motivation, economic development of country, teachers related factors and
etc. It was also stated that there is a positive relationship of student’s self-confidence and mathemat-
ics score in TIMMS test, however the estimate was lower compared to countries with higher scores.
Another analyses was carried on university students in order to explore a relationship of different vari-
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ables and students’ performance in university. Article by [Murauskas and Radavičius, 2010] suggests
that that students’ results of mathematical analysis subject are impacted by professor “factor”, so the
assesment rules must be unified in a more uniform way. This inference is supported by [Radavičius
and Samusenko, 2010] where authors suggest that the student’s average of grades in university is not
appropriate criteria for comparison of students’ performance. The main reason of this inference is
being the fact that test difficulty between different test/exam composers (professors), so students are
“favoured” to choose university courses which are easier. The students’ motivation to choose “easier”
subjects in university may be connected with their attitude towards mathematics in school. The re-
cent study of Lithuanian and Latvian students’ interest in mathematics suggest that almost half of the
students dislikes mathematics and show no effort and motivation when dealing with problems that re-
quire effort[Cēdere et al., 2018]. Authors also notice that explored cognitive interest variables explain
about a half of total variance, so that another reasons of differences in interest are present. Although
such results come from non international organization data, it has a connection with PISA results. Ac-
cording to [OECD, 2016b], another source of variation may come from teachers e students taught by
particular teacher may have higher mathematics performance as a consequence of higher self-concept,
because their teacher differentiates students by their abilities and encourages them to work in small
groups. The report also shows some insights about students’ interest in mathematics, anxiety towards
mathematics and discusses what could be done to ensure that all students have equal or at least similar
opportunities in mathematics learning. At OECD level, 53 per cent of students answered that they are
interested in mathematics they face in school, while 38 per cent reported that they enjoy to study it.
There is a controversy on the achievement-attitude paradox which suggests that mean of achievements
level correlate with mean of attitude level towards particular subject, but the sign is opposite to what is
expected – greater results are being achieved by students with more negative feelings about that sub-
ject rather than opposing; however, it can’t be explained through cultural differences, but the answers
may be found in alternative questionnaire designs [Lu and Bolt, 2015].

It is clear that educational systems have a lot of differences in the degree to student’s exposure to
mathematics concepts and the way those concepts are presented to students. Such variation is even
bigger within country level rather that between [OECD, 2017]. It can be explained by educational
system on country level1. The literature review suggest that analysis of students’ school performance
is a common topic on international level, however not in Lithuania. Therefore the main hypothesis of
this study is stated as:

Exposure to pure mathematics has bigger influence on PISA test results in Lithuania compared

with applied mathematics.

The main tasks of the work is:

• To examine descriptive statistics of students’ performance in mathematics on country level;

1Lithuania has decentralized education system, where school governance is distributed between different level author-
ities – state, municipal and, finally, school.
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• To perform complex PISA survey data analysis using various regression methods on country
level;

• To compare differences in parameter estimates between models on country level;

• To collate results with other countries.

The additional task will be to study whether the hypothesis of study holds independently from area
(capital, city, town, village), school type (gymnasium, secondary school, basic school, other), stu-
dent socioeconomic status (socially-economically advantaged, “normal” and disadvantaged students).
However, the analysis on different levels than country could provide biased estimates and must be
treated more carefully because of the features of sampling design, as it described in 3.1.

3 Data, its origins and features

OECD describes The Programme for International Students Assessment (PISA) as:
“collaborative effort among OECD member countries to measure how well 15-year-old students

approaching the end of compulsory schooling are prepared to meet the challenges of today’s knowl-

edge societies” [OECD, 2014, page 22].
PISA collects information every three years and presents results of knowledge in mathematics,

science and reading at three different levels – students, schools and countries. PISA 2012 – fifth PISA
survey with primary focus on mathematics, while reading, science and problem-solving topics were
minor areas of the survey. The assessment of three major topics is combined with explicit information
about each student: his approach to learning, home background, learning environment, self-confidence
and motivation. In addition, PISA expands the list of factors which may influence student results by
addressing additional questionnaires to school principals and parents. Thereby, study examines how
particular home and school factors interact with students results and gives insights on factors that
actually make a difference. Starting with 2006, Lithuania participated in PISA survey as partner
country. In 2012 it was the first time when Lithuania participated in mathematically-targeted PISA
survey.

This section will present general ideas of PISA survey. First subsection will present features of
sampling design, second e general idea about assessment method, third e brief explanation of survey
outcomes, and fourth e an insights about reported values that are main focus of the study.

3.1 Sampling design

Surveys in education usually are drawn with two-stage stratified sample design. First of all, schools
with target audience of 15-years old are chosen from a comprehensive national list of all PISA-eligible
schools. Then, a simple random sample is drawn from all available students in that school. There-
fore, two-stage sampling procedure will affect weights calculation process, while properties of student
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sample will be impacted by school selection procedure. Main characteristics of PISA 2012 two-stage
stratified sample design consisted of:

• First stage – schools are chosen from school sampling frame with probabilities proportional to a
number of 15-years-old students enrolled in the particular school. Consequently, larger schools
(with bigger PISA-eligible target audience) have had a bigger probability of being selected than
small schools. This method is also called systematic probability proportional to size (PPS)
sampling [OECD, 2014].

• Second stage – students within sampled schools are chosen with equal probabilities (simple ran-
dom sample). Particularly, a complete list of 15-years-old PISA-eligible students was prepared
for each selected school. Within the framework of PISA, the number of students from each
school that will be chosen in the sample was set to 35 (although it could vary between countries
if there is an agreement between government and survey officials). Whenever so-called Target
Cluster Size (TCS) was set, a sample of students were selected with equal probabilities if school
PISA survey target audience was bigger than TCS; in case whether it was equal or smaller than
TCS, all PISA-eligible students on the list were selected.

In order to ensure accuracy and precision, PISA selected the sample students using professional prin-
ciples of scientific sampling, so that the full target population of PISA-eligible 15-years-old were rep-
resented in each participating country. The minimum number of schools and students had to be 150
and 4500 respectively. While those two values may be less than defined minimum (e.g. by choosing
less schools, but more students, or by choosing all available target population, if it is less than defined
size), the TCS minimum threshold was defined to be at least 20 students per school. This requirement
was obligatory in order to fulfill a major objective of PISA analysis – the within- and between- school
variance components estimation with adequate accuracy. The minimum requirements were fulfilled
in Lithuania – the number of selected schools was equal to 216, while the “unweighted” number of
students – 4618.

PISA data set includes the survey weights which facilitate the proper analysis and ensure that
inferences made on population level are valid. However, weights are not the same across students’ e
the selection probabilities of students may vary due to complex two-stage survey design which consists
from school and student sampling. Another reasons, why weights vary are: the intention of country or
government to over- or under-sample particular sectors of school population for international purposes;
in-accurateness of information about school size at the time of school sampling; school and student
non-response rate; survey weights trimming effect in order to prevent the influence of a small group
of students.

The final weight W i j for student j from school i consists from two base weights and five adjustment
factors [OECD, 2014, page 133]:

Wi j = t2i j f1i f2i j f A
1i jt1iw2i jw1i (1)
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where:

• w1i e school base weight, the inverse of the probability that particular school i will be selected
in school sample.

• w2i je student base weight (within-school), the inverse of the probability that student j within the
school i will be selected.

• t2i j f1i f2i j f A
1i jt1i e adjustment and trimming factors. For more information see [Chapter 8 of

PISA 2012 Technical Report, OECD, 2014, pages 132-141].

For simplicity (although, the values of trimming and adjustment factors are unknown) the formula of
W i j will be equal to the product of w2i j and w1i.

In order to assure that population parameter estimates are unbiased PISA data should be weighted[OECD,
2009, page 56]. The sub-populations parameter estimates using weights might be still biased, because
the survey is designed to represent a country, meaning that there were no sub-populations (by re-
gion, school type, student-socioeconomic status) sample design or it is unknown. Therefore, such
sub-populations will not represent itself as a different sample, but as a part of country level design.

3.2 The assessment method

International surveys such a PISA often have a complex assessment design. Such complexity comes
from variety of developed items which are included in the final tests in order to provide valid and com-
parable results. The full PISA 2012 paper-based assessment consisted of 110 cognitive mathematics
items, 44 reading and 53 science items, which required respectively 270, 90 and 90 minutes of testing
time [OECD, 2014]. However, it is unreasonable and even impossible to test each student with whole
set of questions due to:

• Student’s results may be affected by fatigue which could start from extended testing time; as a
consequence, it can bias the survey results.

• School administrations may refuse to free their students for such a long time and that would pro-
duce additional undesirable bias in the results because of the reduction on school participation
rate [OECD, 2009].

In order to overcome those limitations, the whole set of items were divided into thirteen item clusters
(seven mathematics clusters and three clusters for each reading and science). The final standard book-
lets for the Main PISA Survey were composed of four clusters (two mathematics, one reading and one
science). By using cluster rotation design, also known as balanced incomplete block design, 13 stan-
dard booklets for the Main PISA Survey were created. Main idea of this method is that each cluster
(of 13) appear only in four test booklets (once in each of possible four positions in four-cluster book-
let). Consequently, each student in different country was randomly assigned to the one of 13 booklets,
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hence total student testing time was considered to be about two hours (4 item clusters multiplied by
30 minutes of solving time).

The division of cognitive test items into clusters and usage of balanced incomplete block design
ensured that all booklets can be linked together. This can be considered as one of the main features of
the PISA survey, because it helps to take into account that booklets may have different difficulty levels.
Therefore, PISA do not use raw student’s score, but apply standardization procedure to neutralize the
effect of test differences on final students scores. Other arguments also do not support the usage of raw
scores. For example, student who gets zero correct answers will have a test score of 0 e but that doesn’t
mean he has no competencies; while student who gets all the correct answers cannot be considered as
having all competencies [Wright and Stone, 1979].

In order to overcome those difficulties PISA applies Rasch Model for scaling. Detailed explanation
of the item scaling theory and Rasch Model implementation can be found in PISA 2012 Technical
Report [OECD, 2014] and PISA Data Analysis Manual SPSS® Second Edition [OECD, 2009].

3.3 Survey results

The outcome of survey, despite context student data are three major domains: mathematical literacy,
reading literacy and scientific literacy. The definitions accent students’ skills and functional knowl-
edge about each domain, meaning that students are able to carry out more than just simple tasks that
have one single correct answer, but to interpret or evaluate material. The definitions also focus on
the students’ ability to apply their knowledge in unfamiliar situations when mathematical concept of
particular task is not obvious. Mathematical literacy (ML) has been defined as:

“An individual’s capacity to formulate, employ, and interpret mathematics in a variety of contexts.

It includes reasoning mathematically and using mathematical concepts, procedures, facts and tools to

describe, explain and predict phenomena. It assists individuals to recognize the role that mathematics

plays in the world and to make the well-founded judgments and decisions needed by constructive,

engaged and reflective citizens” [OECD, 2013a, page 17].
Besides evaluating final mathematics score, known as ML, PISA also reports students’ perfor-

mance in content and processes areas. Content area in turn is divided into four traditional mathematics
topics [OECD, 2016b]:

• Change and relationships. Tasks related to this topic often require from students the application
of algebra and knowledge of mathematical models in order to describe and predict change.

• Space and shape. Tasks related to space and shape, compared with other topics most closely
related to geometry. Usually tasks require from students’ abilities to create and read maps,
interpret three-dimensional scenes from different perspectives, transform and create representa-
tion of shapes.
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• Quantity. Tasks related to quantity usually requires knowledge of numbers and number opera-
tions.

• Uncertainty and data: Tasks related to uncertainty and data has a strong connection with prob-
ability theory and statistics. Students usually need to demonstrate knowledge of variation in
processes, uncertainty and error in measurement.

The processes area describes what students do and which methods apply to connect the context of
particular task with their knowledge of mathematics and thereby solve a problem. PISA defines three
processes – formulate, employ and interpret, which are drawn from a set of fundamental mathematical
competencies required by students in order to use their mathematical knowledge. The brief explana-
tion of those competencies is given below, while explicit definitions of such capabilities can be found
in framework for [OECD, 2013a]:

• Communication. Ability of reading, decoding and interpreting statements with modeling follow-
up.

• Mathematising. Transforming real world problems to a strict mathematical form.

• Representation. Ability to use a variety of available representations to interact with a problem.

• Reasoning and argument. The ability to use logical thinking, make inferences and provide
justifications.

• Devising strategies for solving problems. The skill that helps students to create a plan or strategy
how mathematics should be used in order to solve a problem.

• Using symbolic, formal and technical language and operations. The ability to use mathematics
definitions, rules and formal systems described in symbolic expressions.

Considering possibility to evaluate not only the mathematical literacy of Lithuanian students, but a
wide range of abilities defining mathematical skills, the work will analyze how different variables
affect content and processes areas of mathematical knowledge.

3.4 Reported values

The “Reported values” subsection is hereby divided into three minor parts: plausible values, regressors
and levels of analysis. The first part ( 3.4.1 on the next page) will give a brief explanation of the
idea of plausible values (a dependent variables) that are used to report students score in PISA tests.
Second part will present factors that are believed to have an impact on dependent variable, primarily e
connected with mathematics plus some general ones. In third part potential levels of analysis will be
observed and how they are defined by PISA.
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3.4.1 Plausible values

PISA report student performance in mathematics (as well as other domains) through plausible val-
ues (PV). This methodology first time was implemented in the National Assessment of Educational
Progress studies [Beaton, 1987]. The main motivation why this method is being used is that PISA be-
longs to the category of educational assessments with the purpose to assess the knowledge and skills
of a population, rather that to measure knowledge and skills of individual. Consequently, the main
goal is to reduce error when making inferences about the population, while minimization of measured
error connected with each individual is not so important.

There are two reasons why PISA reports plausible values instead of students’ actual final scores.
First of all, to minimize the difference between reported value and true value, which can occur due to
rounding process and measurement error. Secondly, to make inferences about unobserved proficiency
levels of target population. As it was mentioned in the 3.2 on page 11, particular student final score
will not necessarily represent his proficiency level in particular subject because of:

1. test complexity

2. mental and physical dispositions on the day of assessment

3. surroundings in which students are tested.

Methodology of plausible values consists of:

• mathematically computing distributions (denoted as posterior distributions) around the reported
values; and

• assigning to each observation a set of random values drawn from the posterior distributions. In
the particular PISA case – 5 plausible values are being assigned to each observation.

The meaning of plausible values and its methodology can be illustrated through example from sports.
Imagine the situation that long jump (sport) tournament takes place, but it has a different format – the
results of athletes are reported not as regular continuous variable, but in term of integers only, e.g. 3
meters, 4 meters, 5 meters and so on. In this case the range of possible results is a predefined number
of values, while in reality observations can observed anywhere between minimum and maximum.
Consequently, the jump length distribution can be drawn for those predefined numbers. So, if a value
of 6 meters is taken it doesn’t mean that reported jump length was exactly 6 meters, but only on
average. Reader can remember already defined risks between reported and true value, which occur
in this particular case. However, if the difference between the length of particular athlete’s jump and
closest integer is small, then probability of judge mistake is also small. For example, if the length of
jump was equal to 6,05 meters, the reported value scarcely be 5 or 7 meters, but likely be 6 meters.
Hereby, random values from the posterior distributions can be defined as plausible values [OECD,
2014]. From the particular example, a range of values from normal distributions around 6 meters
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(reported value) can be assigned to particular athlete’s performance of 6,05 meters – e.g. 5,47 meters,
6,03 meters, 7,02 meters and so on.

The explanation of plausible values through sports example is connected with tests such as PISA,
because it consists from dichotomous items – test tasks. The student raw score (e.g. number of
correct answers) hereby is discontinuous variable, while his mental ability can be treated as continuous
variable. It has been pointed out:

“The simplest way to describe plausible values is to say that plausible values are a representation

of the range of abilities that a student might reasonably have. [. . . ] Instead of directly estimating

a student’s ability θ, a probability distribution for a student’s θ is estimated. That is, instead of

obtaining a point estimate for θ, like a WLE, a range of possible values for a student’s θ, with an

associated probability for each of these values is estimated. Plausible values are random draws from

this (estimated) distribution for a student’s θ” [Adams and Wu, 2002].
Hereby, instead of one final ML score PISA data reports 5 plausible values of each test score (so

for mathematics literacy) for each student. The same applies to sub-scales in mathematics, defined by
processes and content areas. The main features of calculations using plausible values described in 4.3
on page 20. For more information about PV, see [Chapter 6 of PISA Data Analysis Manual: SPSS®
Second Edition, OECD, 2009, pages 93-101] and [Chapter 9 of PISA 2012 Technical Report, OECD,
2014, pages 144-158].

3.4.2 Regressors

This part will describe the range of factors selected according to their connection with ML. The one
section of those factors is directly connected with mathematics and its context, namely OTL vari-
ables, while other considered as general factors. Although the main focus of this study is to explore
relationship between students’ performance in mathematics and their knowledge of pure and applied
mathematics, the importance of referred general factors cannot be ignored [Thien, 2016, Cogan et al.,
2019]. Both exposure to pure mathematics and exposure to applied mathematics were measured by
student-reported answers for a special questions, designed by PISA. Those indices were normalized
to have average of 0 and standard deviation of 1 on OECD level. According to PISA 2012, OTL
variables related to ML are (the abbreviations are defined in brackets):

• Exposure to pure mathematics (EXPUREM) – the experience with mathematical tasks that re-
quire knowledge of algebra, in particular – linear and quadratic equations, reported by students.

• Exposure to applied mathematics (EXAPPLM) – the experience of most commonly known
“world” problems and straightforward tasks, such as calculating how many square meters of
tiles you need to cover the floor or calculating a power consumption of electronic device per
week, also reported by students.

Connected with mathematics and its context are:
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• Familiarity with mathematical concepts (FAMCON) – students are being asked how familiar
they are with different mathematical concepts. The question contained 16 different topics which
included 3 non-existing pseudo-concepts with an eye to reveal over-claiming students. Conse-
quently, the index was corrected and had same properties as exposure indices e average of 0 and
standard deviation of 1.

• Interest in mathematics (INTMAT) – enjoyment of and interest in mathematics measured by
student-reported answers.

• Learning time (MMINS) – the amount of time student spends in regular mathematical lessons
(in minutes).

The general factors are:

• Grade (GRADE) – the actual grade of particular student in particular country whenever he
participates in PISA assessment. Modal grade in Lithuania was 9 and values on individual level
are reported as difference between student grade and modal grade. Important variable on within-
country level because of the simple intuition – students in higher grade have had more years in
education, consequently, they are more experienced and familiar with particular topic.

• Socio-economic status (ESCS) – is a broad concept that summarizes a variety of student, school
and system factors. PISA estimates students’ SES as an index based on “such indicators as par-

ents’ education and occupation, the number and type of home possessions that are considered

proxies for wealth, and the educational resources available at home” [OECD, 2016b, page 74].

3.4.3 Levels of analysis

PISA results can be analyzed on between- and within- country levels. As it was mentioned before, the
main focus of this work is to analyze Lithuania students’ ML on different levels, which are motivated
by cultural and political context. Therefore, the results of this work consist of:

• Country level. The students are considered as a unite population despite of differences on indi-
vidual level.

• Area level. The PISA school questionnaire includes a question about the description of commu-
nity in which particular school is located. School officials need to point out whether the school
is located in[OECD, 2013a, page 213]:

– A village or rural area (fewer than 3000 people)

– A small town (from 3000 to about 15000 people)

– A town (from 15 000 to about 100 000 people)

– A city (from 100 000 to about 1 000 000 people)
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– A large city (with over 1 000 000 people)

The particular level is being analyzed because of the context mentioned in introduction part – politi-
cians in Lithuania underlines the inefficiency of schools located in villages and rural areas mainly
because of the lack of funding and absence of high-quality teaching instructions (both are believed to
be present in towns and cities). Hereby the work aims to test whether the exposure to pure and applied
mathematics could be the key in order to narrow the gap between regions. PISA underlines that data
derived from school questionnaires’ should not be examined at school level but on student level with
the use of student final and replicate weights.

• School type level. The stratification of school sample is used in order to improve the efficiency
of sample design, namely by ensuring that all parts of population are included in the sample
and each specific group of the population is adequately represented in the sample. The data set
divides schools (and, as a consequence – students) into four groups:

– Gymnasium

– Secondary school

– Basic school

– Other

The motivation to analyze this level of stratification lies on the surface – it is believed that students
from gymnasium perform better compared to other the students from other type of schools, especially
basic and others, which often includes the schools of national minorities, in Lithuania. The reasons
of such beliefs are closely related to area level stratification – the better schools (consequently with
higher “status”) are located in the “crowded” areas with sufficient funding, while smaller schools
may experience student and funding scarcity. The funding argument is also connected with quality of
teaching e dependent variable of teacher’s well-being. Hereby, more motivated and qualified teachers
tend to choose better schools, while basic and others schools may experience scarcity for such teachers.

• SES level. At this level students are categorized according to their socioeconomic profile. The
importance of SES was stated by numerous authors[Baker et al., 2002, Breen and Jonsson, 2005,
Chiu and Khoo, 2005] and PISA all-time reports. In this work author uses three levels of SES
described by PISA[OECD, 2016b, page 33] :

– Socioeconomically advantaged students. The students whose economic, social and cultural
status (ESCS) index value is at or above the 75th percentile of their own country.

– Socioeconomically disadvantaged students. Consequently, the students whose ESCS index
value is below the 25th percentile in their own country.

– Socioeconomically “neutral” students. The students whose ESCS index value is between
25th and 75th percentiles of their own economy.
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• Proficiency level. Proficiency scales have been developed by PISA in order to make results more
accessible to governments. The proficiency level can be understood as a composition of skills
required by student to successfully solve problems with particular difficulty level. They are not
included in final PISA data sets, but can be derived from the plausible values and cut-points
reported by particular year report. The total of 7 levels can be derived from the date, starting
from below one (lowest possible) and ending with 6th (highest possible). For more information
about proficiency scale descriptions, see [OECD, 2013a, PISA 2012 Framework, p.41]. Instead
of analyzing each group of students according to proficiency levels, the author will focus on
low, normal and top performers:

– Low performers – students at or below proficiency Level 1, who scored less than 420.1
points.

– Top performers – students at Level 5 or 6 of proficiency, who scored more than 607 points.

– Normal (average) performers – students between 2 and 4 proficiency level, who scored
from 420.1 to less than 607.

4 Methodology

This part will introduce specification of models that will be used in the analysis, the implementation
of weights in multilevel models and general ideas of statistic analysis with plausible values.

4.1 Specification of various models

The fact that PISA has two-stage stratified sample design implies the potential to use multilevel models
(so-called models with hierarchical structure, where it appears as it described in 3.1 on page 9 part).
As a consequence, such model with PISA survey data will have two levels:

• Level-1 e students (units i from second stage of sample design);

• Level-2 e schools (units j from first stage of sample design).

The main idea why levels appear and are important in analysis is the reason that the assumption of
independence does not always hold in two-stage design [Raudenbush and Bryk, 2002]. The multilevel
model takes into account that students are nested within schools and classes. As schools are first stage
of stratified sampling (and the level-2 of multilevel model) the students within same school may have
more in common compared to students from another schools[OECD, 2009]. Therefore, the assump-
tion of independence should be adapted by using variance component models which decompose the
variance into group and individual parts: group components are perfectly correlated within groups,
but independent between; individual components are all independent [Raudenbush and Bryk, 2002].
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With respect to two-stage PISA survey data design the mathematical specification of model has the
form:

y = Xβ +Zu+ ε (2)

where y is the vector of outcomes, X is a matrix of covariates associated with regressors that are
assumed to be fixed, β is the vector of fixed-effect regression coefficients, Z is a matrix of covariates
associated with regressors that are assumed to be random, and u is the vector of random effects. The
models usually fitted by PISA [OECD, 2009] and other authors [Chiu and Khoo, 2005, Perry and
McConney, 2010, Cogan et al., 2019] are type of multilevel models called Hierarchical Linear Models
(HLM) with two levels and following notation and form[Raudenbush and Bryk, 2002]:

yi j = β0 j +Xβ1 j + εi j (3)

β0 j = γ00 +δ0 j (4)

β1 j = γ01 +δ1 j (5)

Where yi j is the first level, β 0 j and β 1 j are second levels, random intercept and random slope
models respectively; δ 0 j and δ 1 j are the error terms for the intercept and slope and have variances
of τ00 and τ11. The efficiency of multilevel model can be calculated using Intraclass Correlation
parameter:

IC =
τ00

τ00 + τ11
(6)

If δ0 j = δ1 j = 0, so Level-2 variances τ00and τ11are equal to 0 and HLM would be mathematically
equal to a simple linear regression. The differences between those two model tend to be bigger if
Level-2 variance gets bigger, so multilevel model produce more precise estimates of standard errors,
while linear regression underestimates them. However, the motivation to use multilevel model over
linear regression directly connected with the social segregation in particular country, more precisely e
differences between schools. E.g., if some schools in country are attended primarily by high-SES stu-
dents, while others by low-SES e such segregation will create social segregation, so if yi j is correlated
with SES, multilevel model will give a better fit.

Considering the availability of sub-scores of ML described in 3.3 on page 12, the multivariate
multiple regression (MMR) will be used. This technique expands opportunities of multiple linear
regression by including the ability to handle multiple outcome variables:

Y = XB+E (7)

where Y is a matrix of k observations on n dependent variables, X is a matrix for independent variables,
B is a matrix of regression coefficients and E is a matrix of errors. Therefore, besides primary analysis
on students general mathematics score, the n will consist of additional 7 sub-scores in mathematics
(content and processes areas).
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4.2 Weights

For the most analyses it is recommended and enough to use student final weight W i j, while multilevel
analysis cannot be performed only with W i j, especially if the assumption of equal probability sampling
at the first stage does not hold (as it is in PISA). Therefore the multilevel analysis suggests the usage
of conditional weights retrieved from Wi j or the usage of weight rescaling procedure in order to make
w2i j independent from w1i [Rabe-Hesketh and Skrondal, 2006]. PISA reports w1i, so the conditional
weight w2i j can be obtained as:

w2i j =Wi j/w1i (8)

When w2i j is available, rescaling becomes available, but still important decision to make, because
usage of weight rescaling methods can help to avoid biased estimates. Notably weight scaling methods
should be used when number of students within a school is small and students base weights (Level-1)
are very different from 1 [Rabe-Hesketh and Skrondal, 2006]. The scaling method used in this work
is the one described in[Pfeffermann et al., 1998]:

W ∗i j =Wi j(
ni

∑ j Wi j
) (9)

where j indexes the individuals, i e the groups and ni represents number of students in group i.
The motivation to use this scaling method comes from simulations which suggest that it works

better for informative weights [Pfeffermann et al., 1998]. This method is also defined as default for
PISA survey data in the EdSurvey package of R statistical software. With weighting being a complex
issue in recent years2, in this work author will consider analysis with both weight transformation
methods as a form of sensitivity analysis.

4.3 Analysis with plausible values

As it was stated in 3.4.1 on page 14, PISA reports 5 plausible values for each particular student
score. The “correct” way of calculating population statistics is to estimate particular statistic θ using
each plausible value separately and then average them. If N is number of plausible values, then
mathematically:

λ =
1
N

N

∑
i=1

λi (10)

Then the final error variance equals to the sum of sampling variance and imputation variance[OECD,
2014, page 148]:

2PISA has been using weight “normalization” procedure so the sum of the weights is equal to the number of students in
the dataset. However, the use of separate weights at different levels was under technical discussion, as it stated in [OECD,
2009, page 222]
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V =U∗+(1+N−1)BN (11)

where sampling variance U∗ is the average of N sampling variances

U∗ =
1
N

N

∑
i=1

UN (12)

where UN is a sampling variance calculated using a replication methodology known as Balanced
Repeated Replication (BRR), Fay’s method [OECD, 2014]. In countries, where not all schools were
selected, but a sample of schools, it was decided (by PISA) to generate 80 replicate weights[OECD,
2009]. Sampling variance formula then becomes:

UN = 1
1

G(1− k)2

G

∑
i=1

(λ̂i− λ̂ )2 (13)

where G = 80 and k = 0.5 (Fay method’s factor).
BN is imputation variance equals to:

BN =
1

N−1

N

∑
i=1

(λi−λ )2 (14)

Therefore, final standard error is equal to:

SE =
√

V (15)

5 Practical part

5.1 Exploratory analysis

To start with, general statistics are derived from the data. According to PISA 2012 data, average math-
ematics score of Lithuania students was 478.82. Sample size of 4618 students represented population
of total 33042 students. In the Table 1 on page 23 we can see sample size, weighted sample size,
mean score, population percentages and standard error of mean and percentage values in Lithuania
and its sub-levels (region, type of school, SES group, grade). Additionally, “D.mean” column show
the difference between country mean and particular sub-level mean, where statistically significant (p
< 0.05) differences are bold.

Lithuanian students from schools located in cities score the most on average compared with other
regions. The 37.49 per cent of total population have the average result near 500 points and the dif-
ference with total population is statistically significant. However, there are no statistically significant
difference between students from schools located in the cities and towns, only with small towns and
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villages. The one and only region which has statistically significant mean differences compared with
others e village. Such results confirm that there are differences between cities and rest of the regions,
just as it was mentioned in 1 section.

More detailed look on school type level confirms that students from gymnasium score the most.
Raw mean differences with other school types vary between 32.44 e 72,02 points. Such results follow
the consistent intuition that gymnasiums usually have better quality of teaching with combination
of other factors (mainly located in cities, have students with higher SES). However, there are no
statistically significant differences between “other” and the rest types of schools. It can be explained
by a vast variation of in mean scores between schools of “other” type, likely because this type includes
special or (and) ethnic minorities schools.

Socioeconomically advantaged students on average score 521.57 points. The differences between
this type of students and others (with average SES and SES disadvantaged) are all statistically signifi-
cant. As it was mentioned 2 section, SES is one of the main factors which affect students knowledge
and test scores.

The last level of analysis is grade. The target population of PISA (15-years-old students) in Lithua-
nia mainly (81.21 per cent) were in the 9th grade (out of twelve) with the average score of 480.01
points. The results from Table 1 confirms the PISA test scores varies a lot between depending on stu-
dent grade. E.g., students from 11th grade scored 597.86 points, while students from 7th grade only
347.82 points. Such differences suggest the importance of grade factor and the fact that analysis must
control this effect.

The values in the table are calculated using formulas described in 4.3 on page 20 with uncondi-
tional final student weight. Graphical representation of mean differences are presented in Figure (5) e
Figure (8) on pages 36e38.
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Level N Weighted N Mean SE(Mean) Percent SE(Percent) D.mean
Lithuania 4618 33041.96 478.82 2.64 100.00 0.00 0
City 1736 12387.33 498.74 3.73 37.49 1.05 -19.92
Town 950 6837.43 488.83 8.14 20.69 2.41 -10.01
Small Town 1042 7230.43 469.09 6.00 21.88 2.43 9.73
Village 890 6586.77 441.66 4.37 19.93 1.25 37.16
Gymnasium 2715 19182.73 499.69 3.21 58.06 0.77 -20.87
Secondary 1052 7523.57 467.25 4.93 22.77 0.64 11.57
Basic 746 5687.85 429.58 5.95 17.21 0.62 49.24
Other 105 647.81 427.67 39.88 1.96 0.69 51.15
SES advantaged 1150 8208.74 521.57 3.32 25.03 0.93 -42.75
SES avg 2283 16350.17 478.05 2.73 49.86 0.92 0.77
SES disadvantaged 1148 8230.37 438.90 3.50 25.10 0.88 39.92
Modal grade + 2 2 13.38 597.86 18.39 0.04 0.03 -119.04
Modal grade + 1 525 4060.72 506.91 5.96 12.36 0.72 -28.09
Modal grade 3761 26680.45 480.01 2.63 81.21 0.69 -1.19
Modal grade e 1 278 2049.27 418.76 6.35 6.24 0.55 60.06
Modal grade e 2 7 50.17 347.82 21.99 0.15 0.06 131.00

Table 1: Descriptive statistics of ML in Lithuania.

Another possible way of grouping students can be derived using proficiency scales in ML. The
detailed results with cut-points, sample and population number of students and percentages of students
on different proficiency levels are presented in Table 2. According to PISA 2012, 26.01 per cent of
students in Lithuania do not achieve second level of proficiency in mathematics, and only 8.06 per cent
of students are ranked as top performers. Both shares of students are statistically different compared
with OECD average with share of low performers above and share of top performers below OECD
average.

Level Cut-points N Weighted N Percent SE(Percent)
Below Proficiency Level 1 (<) 357.77 395.00 2889.27 8.74 0.68
At Proficiency Level 1 420.07 799.20 5707.69 17.27 0.89
At Proficiency Level 2 482.38 1201.00 8569.80 25.94 0.80
At Proficiency Level 3 544.68 1136.00 8128.27 24.60 1.01
At Proficiency Level 4 606.99 711.80 5083.39 15.38 0.70
At Proficiency Level 5 669.3 307.60 2188.86 6.62 0.49
At Proficiency Level 6 (>) 669.3 67.40 474.69 1.44 0.24

Table 2: Share of students by proficiency level

5.2 Modeling step

While final student weights can be used in almost all analysis, the chosen specification of model
(multilevel model) implies the use of different weights at different levels. However, PISA do not
report higher stages weights, e.g. regions, so in this work author consider multilevel model with two
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levels according to two-stage sampling design e schools and students. As it was mentioned in 4.1 on
page 18, the multilevel model can be considered as a mix of fixed and random effects. Bearing in mind
that Level-2 weights are accessible, the choice between fix and random effects in multilevel model is
present.

As the first step of explanatory analysis of possible multilevel model specifications, differences in
ML mean scores between schools in Lithuania were checked. The aim of this step is to analyze what
kind of intercept effect must be selected. Multilevel model with fixed intercept will have the same
intercept as linear regression model, if δ o jin 4 on page 19 will be equal to zero. The opposite site,
model with random intercept will result in random intercept for each Level-2 unit (school). In the
Figure 1 we can see that schools in Lithuania vary a lot in ML mean scores.
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Figure 1: Mean differences of ML scores in Lithuania by school ID

This is an important argument in order to use multilevel model with random intercepts at Level-2
(school level). It is also suggested by [OECD, 2009] to analyze decomposition of variance of the
dependent variable which is divided into the within-school and between-school variance. Hereby, the
multilevel model formula 3 on page 19 equals to:

yi j = β0 j + εi j (16)

β0 j = γ00 +δ0 j (17)

The amount of variation explained by school differences are presented in the Table (3), where
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6 possible outcomes are presented, depending on used number of observations due to missing data.
outcome 1-2 e full population, outcome 3-4 e after controlling for SES and grade, outcome 5-6 e after
controlling for SES, grade and other variables related to ML. There are differences in results when two
types of weights were used: weights adjusted by scaling method (scaled W) seem to give much lower
between-school variance estimates with bigger intercepts, while conditional weights (conditional W)
imply bigger between-school variance, but smaller within-school variance, so the intraclass correlation
becomes bigger. The on should bear in mind that model with conditional weights may result in biased
estimates, while scaling method could over-correct bias. Hereby by, both situations will be considered
to analyze whether final model estimates are sensitive to weights.

Models with weights N Between-school
variance

Within-school
variance

IC Intercept

Outcome 1, scaled W 4618 1429.331 6139.368 0.189 462.327
Outcome 2, conditional W 4618 2372.985 5341.795 0.308 451.207
Outcome 3, scaled W 2987 1203.030 6348.226 0.159 467.847
Outcome 4, conditional W 2987 2482.872 5204.127 0.323 454.253
Outcome 5, scaled W 1434 584.9595 7124.110 0.076 479.529
Outcome 6, conditional W 1434 2556.737 5111.529 0.333 460.368

Table 3: “Empty” model with random intercepts between- and within-school variance estimates and
intraclass correlations

As the second step, the choice between fixed and random slopes is considered. The combination
of random intercepts and fixed slopes will result in a model that is very similar to ordinary least
squares (OLS) method, however starting point of each slope will vary depending on school intercept.
A multilevel model with random intercepts and slopes would mean that each Level-2 factor (school)
will have both unique intercept and slope. The intuition of multilevel model is also different: while
OLS procedure show the exact value of intercept and slope, multilevel model with both random effects
shows the average value of the intercept and slope between chosen schools. Such model specification
can reasonably reduce variation, however the overall reduction depends on the differences between
schools which appear when regressors from 3.4.2 on page 15 are under analysis. Figure 2 on the
following page suggest that there are not so much differences in exposure to pure mathematics slopes
between schools. Initial analysis of three main factors (student SES, exposure to pure and applied
mathematics indices) show that slopes hardly vary between different regions and different schools.
Graphical representation of random slopes for sub-populations presented in Figure (9) e Figure (11)
on pages 38e39.
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Figure 2: Random intercepts with fixed and random slopes for exposure to pure mathematics index
value by school ID

Practical recommendation when fitting multilevel models is to compare estimates the with esti-
mates from OLS procedure. Another important argument in order to perform OLS procedure e the fact
that it is simpler to explain. Hereby, next part will examine results from 3 different models: random
intercept model with fixed slopes, random intercept model with random slopes and linear regression.
It will result in 5 different model outcomes, because unconditional weights and scaling procedure will
be used to examine whether the multilevel model estimates are sensitive to weights (both multilevel
models will be fitted using two different weight techniques). The fifth outcome will be OLS estimates
(with final student weight only). So, the equation of model with four primary Level-1 independent
variables will have a form:

yi j = β0 j +β1 j(GRADE)i j +β2 j(ESCS)i j +β3 j(EXPUREM)i j +β 4 j(EXAPPLM)i j + εi j (18)

When multilevel model with random intercept and fixed slopes is considered, the random intercept
will have form defined in Equation 4 on page 19, while multilevel model with both random intercept
and random slopes, random effects βi j will be equal to:

β1 j = γ10 +δ1 j (19)

β2 j = γ20 +δ2 j (20)
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β3 j = γ30 +δ3 j (21)

β4 j = γ40 +δ4 j (22)

For model with more Level-1 independent variables (MMINS, FAMCON, INTMAT from Subsec-
tion (3.4.2)) same logic will be applied.

In the next section results of described models are presented using abbreviations:

• Multilevel models with random intercepts and fixed slopes are defined as Model 1 and Model 2,
where Model 1 was fitted using weight scaling procedure, whereas Model 2 e using conditional
weighs.

• Multilevel models with both random intercepts and slopes are defined as Model 3 and Model 4,
where Model 3 was fitted using weight scaling procedure, whereas Model 4 e using conditional
weighs.

• The linear regression model is defined as Model 5.

6 Results

The first subsection will discuss results of analysis for Lithuania: present different models and overview
relationship of variables defined in hypothesis with the mathematics literacy. In the second part results
will be compared with PISA reports and results from [Cogan et al., 2019]. In addition, some of the
models will be fitted for Latvia and Estonia in order to check whether hypothesis holds for neighboring
countries and what are the differences in estimates.

6.1 A closer look at the Lithuania: results from different models

The estimates of intercept, grade, SES index, exposure to pure and applied mathematics indices of
4 different model specification with 5 outcomes portrayed in Table 4 on the following page. All
estimates in 5 models are statistically significant (p<0.01), except index of exposure to applied math-
ematics e only in one model it is statistically significant with at p = 0.05 and in other two cases with at
p = 0.1. Three predictors out of 4 have positive impact on ML score e grade, SES and exposure to pure
mathematics index, while exposure to applied mathematics index has a negative sign. However, it is
clear that estimates vary between models, especially between multilevel models with same specifica-
tion but different weights technique applied. A closer look on IC also confirms differences in identical
models with different weights, e.g. Model 1 and Model 2 (random intercept multilevel model with
fixed slopes) have IC equal to 0.074 and 0.259, meaning that in first case specified predictors explain
only 7.4 per cent of variation between-schools, while the rest 92.6 percent is due to within-schools
variation, while in the second e 25.9 per cent of variation between-schools and 74.1 percent within.
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Even greater difference in IC appear in multilevel model with both random intercept and slope. In this
case, Model 4 with unconditional weights explains 50.1 per cent of variation on between-school level,
while Model 3 with weights scaling procedure indicates that there are only 8.4 per cent of variation
explained by differences in schools.

Effect Model 1 Model 2 Model 3 Model 4 Model 5
Intercept 474.54***

(2.86)
460.67***

(3.77)
474.08***

(2.86)
463.34***

(3.86)
479.42***

(2.17)
Grade 31.52***

(3.46)
31.99***

(3.42)
26.23***

(1.79)
19.01***

(1.81)
29.81***

(4.35)
Socioeconomic status index
[escs]

27.03***
(1.80)

18.14***
(1.61)

31.25***
(3.44)

30.03***
(3.67)

31.47***
(1.88)

Exposure to pure mathematics
index [expurem]

23.96***
(1.93)

18.33***
(1.84)

24.41***
(1.93)

19.10***
(2.10)

26.70***
(2.13)

Exposure to applied mathematics
index [exapplm]

-3.71 .
(1.96)

-2.02
(1.87)

-3.96*
(1.95)

-3.23
(2.24)

-3.74 .
(2.14)

Model statistic IC IC IC IC R2

Value 0.074 0.259 0.084 0.501 0.221
Note: Standard errors are in parentheses. Predictors abbreviations are in square brackets.
Significance codes: .p < .1. *p < .05. **p < .01. ***p < .001.

Table 4: Results from 5 different models with primary predictors

The efficiency of multilevel model can also be checked by comparing the difference in explained
variance between fitted model and empty model (with only random intercepts). Hereby, comparison
between Table 3 on page 25 and Table 5 on the following page is considered. As we can see, Model
1 between-school residual variation decreased from 1203.030 to 446.207, while within-school resid-
ual variance decreased from 6348.226 to 5572.540. Therefore, the amount of variance explained by
grade, escs, expurem and exapplm at school level is equal to 1− 446.207

1203.030 = 0.629, while at the stu-
dent level: 1− 5572.540

6348.226 = 0.122. Such results suggest that there are some segregation in schools and
model catches them. The common thinking suggest that those differences appear mainly because of
the differences in SES status (so one part of school is being attended by SES-advantaged students,
while other e by disadvantaged. The same inferences can be applied to Model 3 with random slopes.
Another interesting case appear when conditional weights are being used. So while Model 2 with ran-
dom intercepts and fixed slopes follows the familiar path and decreases between- and within-school
variance, the Model 4 with both random effects substantially increases school variance : from 2482.87
to 3876.47. It can be explained by the fact the lower-performing students may have deeper slopes
while high-achievers e flatter.
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Models with weights N Between-school
variance

Within-school
variance

IC

Model 1, scaled weights 2987 446.207 5572.540 0.074
Model 2, conditional weights 2987 1620.288 4638.146 0.259
Model 3, scaled weights 2987 506.120 5551.081 0.084
Model 4, conditional weights 2987 3876.466 3862.261 0.501

Table 5: Between- and within-school variance estimates and intraclass correlations in multilevel model
with random intercepts and fixed slopes

Usage of two techniques to apply weighted analysis, as a part of sensitivity analysis suggest that
estimates are stable in meaning of statistical significance and sign of relationship. Model 1 suggest
lower standard error at school level (intercept) compared to Model 2, but larger standard error at
student level, while Model 2 suggest smaller standard errors for all predictors. Model 3 suggest
lower standard errors for all estimates compared to Model 4. However, according to [Rabe-Hesketh
and Skrondal, 2006], while unconditional (raw) Level-1 weights may produce positive bias, scaling
methods may over-correct it in smaller cluster sizes.

Another part of sensitivity analysis is to compare multilevel model results with estimates from
OLS procedure. If scaling procedure is considered as primary, the estimates linear regression are very
similar to estimates from Model 1 and Model 3. However, if no scaling method applied, Intraclass
Correlation from Model 2 and Model 4 suggest that multilevel models should be used. However, for
the hypothesis testing procedure there is no need to choose one model, because there are no differences
in signs of relationships and significance level between multilevel models themselves and compared
to OLS procedure.

Exposure to pure mathematics has a positive relationship and is statistically significant (p < 0.001)
in all sub-scores of mathematical knowledge, whether exposure to applied mathematics has a negative
relationship and is statistically significant (p < 0.01) in “uncertainty and data” and “interpret” sub-
scores. The results of multivariate regression for ML sub-scores are presented in Table (6). It is clear
that results of multivariate regression are very similar because sub-scores correlate with each other as
well as with final ML score (residual correlation matrix can be examined in Table 9 on page 40).

Initial model with primary predictors supports the hypothesis that exposure to pure mathematics
has bigger (and positive) impact on ML scores, compared with exposure to applied mathematics index.
This statement holds for all 5 defined models even after controlling for student grade and SES index,
also for all sub-scores (content and processes areas) of mathematical knowledge. While relationship
of exposure to pure mathematics to ML seem to have a strong link in all cases, the relationship of
exposure to applied mathematics and ML is questionable. The main concern here is the negative sign
e meaning that student with higher exposure to applied mathematics index value will have lower ML
results. A deeper look at proficiency levels suggest that exposure to applied mathematics has a positive
relationship with ML, but after a certain level of exposure to applied mathematics is reached ML starts
to decrease. The quadratic relationship of applied mathematics to ML was analyzed by [Cogan et al.,
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Effect Change
and

Relation-
ship

Quantity Space and
shape

Uncertain-
Ty and

data

Employ Formulate Interpret

Intercept 479.96***
(2.66)

482.93***
(2.45)

473.72***
(2.64)

473.79***
(2.33)

482.76***
(2.30)

477.76***
(2.61)

473.10***
(2.64)

Grade 32.64***
(4.71)

28.34***
(4.82)

29.66***
(4.82)

31.26***
(3.92)

27.37***
(4.13)

31.71***
(5.05)

25.84***
(4.52)

Socio-economic
status index

32.02***
(2.06)

31.40***
(2.06)

32.77***
(2.52)

30.66***
(1.96)

29.86***
(1.98)

34.78***
(2.37)

31.98***
(1.99)

Index of exposure to
pure mathematics

26.79***
(2.24)

27.41***
(2.36)

27.26***
(2.42)

26.86***
(2.06)

26.40***
(2.25)

29.03***
(2.71)

24.13***
(2.26)

Index of exposure to
applied mathematics

-4.15 .
(2.16)

-2.23
(2.37)

-3.70
(2.26)

-5.63**
(2.22)

-2.14
(2.16)

-3.73
(2.24)

-6.39**
(2.26)

R2 0.22 0.20 0.19 0.21 0.22 0.20 0.19
Note: Standard errors are in parentheses.
Significance codes: .p < .1. *p < .05. **p < .01. ***p < .001.

Table 6: Multivariate regression results on different ML sub-scores

2019], however, no analysis for Lithuania was performed. The graphical representation of both indices
relationships to ML show that exposure to applied mathematics has almost similar form to quadratic.
It can be seen in 3 on the following page that despite of low starting point (below 400) when index
of exposure to applied mathematics reaches -1, the illustrated line breaks the average ML score in
Lithuania. However, after this point there are no significant increase in ML despite growth of exposure
to applied mathematics, whereas ML is increasing as exposure to pure mathematics increases.

The [OECD, 2016b] suggest that there are significant relationship between other factors connected
with mathematics (familiarity with concepts, interest in mathematics and learning time per week) and
ML. Hereby, the Equation 3 on page 19 will have a form:

yi j = β0 j+β1 j(GRADE)i j+β2 j(ESCS)i j+β3 j(EXPUREM)i j+β 4 j(EXAPPLM)i j+β 5 j(MMINS)i j+

β 6 j(FAMCON)i j +β 7 j(INT MAT )+ εi j

The results of such model specification are shown in Table 7 on page 32. However there are
only two model specifications: multilevel model with random intercepts and fixed slopes and linear
regression. The specification of multilevel model with random slopes is inaccessible because there
are not enough observations for generated amount of random factors. According to the Table 7 on
page 32, statistically significant relationship with ML have 4 predictors: student SES, exposure to
pure mathematics index, familiarity with mathematical concepts and interest in mathematics, whether
grade, exposure to applied mathematics and learning time per week aren’t significant. The IC of
Model 1.1 is very small (0.0009), while IC of Model 2.2 equals to 0.241. The differences in IC
between model with same specification appear due to differences in weights. In addition, Model 1.1
have similar estimates to Model 5.1. Even after controlling for more predictors exposure to pure
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Figure 3: Relationship between pure and applied mathematics indices and ML in Lithuania

mathematics has a strong link with ML, being statistically significant (p < 0.001) in all three model
outcomes, whereas exposure to applied mathematics being insignificant (p < 0.1) in all three cases.
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Effect Model
1.1

Model 2.1 Model
5.1

Intercept 459.33***
(16.10)

481.95***
(9.38)

459.48***
(37.51)

Modal grade -1 -23.45
(15.38)

-35.55
(7.71)

-23.94
(35.44)

Modal grade -1 24.11
(13.49)

-1.60
(5.17)

23.13
(35.01)

Modal grade +1 27.71
(15.32)

9.81
(8.57)

23.49
(35.66)

Socioeconomic status index
[escs]

26.15***
(2.27)

17.82***
(2.12)

25.83***
(2.30)

Exposure to pure mathematics
[expurem]

20.34***
(2.68)

16.49***
(2.47)

21.02***
(2.89)

Exposure to applied mathematics
[exapplm]

-4.76 .
(2.65)

-3.91 .
(2.66)

-4.48 .
(2.57)

Learning time per week
[mmins]

0.03
(0.05)

-0.03
(0.04)

0.04
(0.05)

Familiarity with mathematical
concepts [famcon]

31.66***
(3.23)

28.33***
(3.09)

32.44***
(3.48)

Interest in mathematics
[intmat]

7.85***
(1.89)

9.16***
(1.76)

7.50***
(2.03)

Statistic IC IC R2

Value 0.0009 0.241 0.3315
Note: Standard errors are in parentheses. Predictors abbreviations are in square brackets.
Significance codes: .p < .1. *p < .05. **p < .01. ***p < .001.

Table 7: Results from 3 different models with all related to mathematics predictors

6.2 Comparison with other countries

In general PISA data show that students’ ML scores positively associated with their exposure to pure
and applied mathematics. The [Figures 3.8a in OECD, 2016b, p. 139] show whenever students from
different countries are more frequently exposed to pure mathematics problems, their performance in
mathematics grows. According to this analysis a one unit increase in index of exposure to pure math-
ematics will result in more than 30 points positive score-difference for student in Lithuania. Those
results do not contradict the estimates from 6.1 on page 27, where index of exposure to pure mathe-
matics is associated with 18-27 points increase in student ML score. Comparing with other countries,
a one unit increase in index of exposure to pure mathematics for average student will result in 3-47
points increase in performance in mathematics. However, more frequent exposure to applied mathe-
matics do not always associate with increase of ML. On average one unit increase in index of applied
mathematics will increase ML score by about 9 points [OECD, 2016b, p. 138]. However, in some
countries this relationship is negative. According to PISA, Lithuania has positive relationship between
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Effect
Model 1

LT
Model 1

LV
Model 1

EST
Model 5

LT
Model 5

LV
Model 5

EST

(Intercept)
474.54***

(2.86)
505.52***

(2.42)
525.64***

(2.42)
479.42***

(2.17)
507.34***

(2.23)
525.51***

(2.35)

Grade
31.52***

(3.46)
48.48***

(3.43)
35.08***

(2.80)
29.81***

(2.86)
48.47***

(2.86)
32.92***

(2.99)
Socioeconomic status
index [escs]

27.03***
(1.80)

24.14***
(1.63)

20.58***
(1.91)

31.47***
(1.88)

26.58***
(2.86)

25.40***
(1.90)

Exposure to applied
mathematics [exapplm]

-3.71 .
(1.96)

-1.98
(1.72)

-4.59**
(1.78 )

-3.74
(2.13)

-2.90
(2.19)

-1.97
(2.01)

Exposure to pure
mathematics [expurem]

23.96***
(1.93)

17.86***
(1.77)

12.55***
(1.42)

26.70***
(2.14)

19.05***
(1.95)

13.19***
(1.73)

Statistics IC IC IC R2 R2 R2

Value 0.074 0.076 0.097 0.221 0.284 0.141
Note: Standard errors are in parentheses. Predictors abbreviations are in square brackets.
Significance codes: .p < .1. *p < .05. **p < .01. ***p < .001.

Table 8: Results from two models using primary predictors

index of applied mathematics and ML, but the analysis in precious part suggest that this relationship
has a quadratic form, therefore to a certain level relationship is positive, while after crossing that
level it becomes negative. The work of [Cogan et al., 2019] show that “School maths” (an OTL vari-
able which is closely related to exposure to pure mathematics) have strong link with performance in
mathematics, while “Applied maths” primarily had a quadratic form. Therefore, results from differ-
ent models analyzed in this work at Lithuania level do not disagree with conclusion made by those
authors.

In addition the results from 6.1 on page 27 for Lithuania were compared with Latvia and Estonia
using same models. At the first step the differences between-schools were checked using empty model
with only random intercept at Level-2. The IC values of Latvia and Estonia equal to 0.166 and 0.133,
while Lithuania had IC equal 0.189 using weights scaling technique and full available data set. The
analysis of Lithuania using different models showed that predictors are resilient to various weights
techniques as well as models. Therefore, comparison of Lithuania with Latvia and Estonia will be
made using multilevel model with random intercepts and fixed slopes (Model 1); linear regression
(Model 5). Result are shown in 8

Latvia and Estonia statistically significant estimates of the models are the same, as in Lithuania:
the one variable, which is not statistically significant in all models e index of exposure to applied
mathematics. It is important to note, that in PISA 2012 Latvia and Estonia had bigger mean scores
in mathematics compared to Lithuania (LV e 491 points, EST e 521 points). That’s why Lithuania
intercept the smallest compared to neighboring countries. Grade variable in Latvia and Estonia has
greater impact on results compared to Lithuania. Estimate of SES index suggest that Lithuanian
students’ performance in mathematics are affected by their SES more that in neighboring countries.
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Figure 4: Relationship between pure and applied mathematics indices and ML in Latvia and Estonia

The one unit increase in SES will result in 27-31.5 points increase in ML score, while in Latvia and
Estonia the ML score will increase by 20-27 points. Another reason why there are SES differences
may be bigger social segregation of students in Lithuania.

The comparison of indices of exposure to pure and applied mathematics support the study hypoth-
esis, however, the impact of exposure to pure mathematics on ML in Latvia and Estonia is much lower.
While exposure to pure mathematics estimates in Lithuania are between 23.96-26.7 points, Latvia and
Estonia has 17-86-19.95 and 12.55-13.19 accordingly, whereas parameters are statistically significant
at p < 0.001. The exposure to applied mathematics has a negative relationship with performance in
mathematics, however, all but one are statistically insignificant.

The relationship between exposure to pure mathematics and ML score are positive, while in Latvia
seem to be almost linear, whereas in Estonia e quadratic (positive). The slopes of exposure to pure
mathematics in Latvia and Estonia are flatter than in Lithuania. It can be the a consequence of overall
higher results in Latvia and especially Estonia. It was also observed by PISA that in countries with
high average ML score exposure to pure mathematics has bigger impact on low performing students,
rather than top performers, therefore countries with higher ML average score would have flatter slope
on exposure to pure mathematics.

The quadratic (negative) relationship of applied mathematics and ML score was also observed
in Latvia and Estonia. Quadratic relationship of applied mathematics in Latvia has little influence
on students’ ML scores, when in Estonia average ML score start rapidly decreasing after index of
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exposure to applied mathematics passes value of 0.

7 Conclusions

1. The hypothesis of the study cannot be rejected – exposure to pure mathematics has a positive
and consistent relationship with mathematics literacy score on population level in Lithuania.
Such relationship is statistically significant, while exposure to applied mathematics has negative
(quadratic form) relationship which is usually insignificant. It is supported by the multilevel
models for survey data with different model specification: random intercept with fixed slopes
and both random intercepts and slopes. Risks from analysis of survey data with two-stage design
and two-level weights was controlled using weight scaling procedure and conditional weights.
Multilevel modeling with conditional weights resulted in higher intraclass correlation compared
to model where weights scaling procedure was used. Hereby estimates from four different
multilevel models were compared with each other and with linear regression model as final step
of sensitivity analysis. Results from all 5 models support the hypothesis: a one unit increase
in index of exposure to pure mathematics will increase student ML score by 18-27 points. The
relationship is resilient even after controlling for students’ socioeconomic status and grade.

2. The negative relationship of exposure to applied mathematics with mathematics literacy score
in Lithuania appear to be “semi-quadratic”: it has a positive relationship with mathematics
literacy score, but after a certain level of exposure of applied mathematics index is reached e ML
starts to decrease. The analysis of Latvia and Estonia shows that index of exposure to applied
mathematics follows same pattern, but even greater. This relationship was also confirmed by
literature and PISA reports.

3. The hypothesis of the study holds for all sub-areas of mathematics. The estimate of exposure to
pure mathematics coefficient vary between 24 and 29 points, meaning that 1 unit increase in in-
dex of exposure to pure mathematics will increase student ML score by 24-29 points. Estimate
of exposure to applied mathematics coefficient was negative in all cases and usually insignif-
icant. Those results were expected because mathematics literacy score and its sub-scores are
correlated.

4. The analysis of other related factors with mathematics area suggest that learning time per week
is not statistically significant on population level, while familiarity with mathematics concepts
and interest in mathematics have statistically significant positive relationship with mathematics
literacy score. It was confirmed using multilevel model and linear regression model.

5. A statistically significant positive relationship of pure mathematics and ML holds in all regions,
types of schools and SES groups. However, those results must be treated more carefully, because
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the survey design was developed to analyze population level data with possible analysis at school
level, not higher levels.

6. The future research can be continued with more detailed analysis of weight scaling techniques
as well as school-level cluster analysis in Lithuania in order to evaluate best model and, hereby,
unbiased estimates and standard errors (or with minimal bias). It is also possible to include
school-level data and analyze relationship between school-level variables and results in any
PISA subject literacy score.

8 Appendix
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Figure 5: Mean differences of ML scores in Lithuania by region type
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Figure 6: Mean differences of ML scores in Lithuania by school type
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Figure 7: Mean differences of ML scores in Lithuania by socioeconomic groups
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Figure 8: Mean differences of ML scores in Lithuania by student grades
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Figure 9: Random slopes for exposure to applied mathematics index in regions for every type of school
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Figure 10: Random slopes for exposure to pure mathematics index in regions for every type of school
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Figure 11: Random slopes for SES index in regions for every type of school
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math macc macq macs macu mape mapf mapi
math 1.000 0.945 0.946 0.918 0.938 0.963 0.945 0.946
macc 0.945 1.000 0.923 0.890 0.916 0.934 0.911 0.920
macq 0.946 0.923 1.000 0.885 0.916 0.940 0.912 0.917
macs 0.918 0.890 0.885 1.000 0.888 0.898 0.912 0.871
macu 0.938 0.916 0.916 0.888 1.000 0.913 0.912 0.928
mape 0.963 0.934 0.940 0.898 0.913 1.000 0.931 0.938
mapf 0.945 0.911 0.912 0.912 0.912 0.931 1.000 0.918
mapi 0.946 0.920 0.917 0.871 0.928 0.938 0.918 1.000

Table 9: Multivariate regression residual correlation matrix
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D. Tiešytė et al. Matematika mokykloje, matematika universitete. Ar lengva peršokti į naujas roges?
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