
VILNIAUS UNIVERSITETAS

MATEMATIKOS IR INFORMATIKOS FAKULTETAS

MAGISTRO BAIGIAMASIS DARBAS

Ansamblio klasterizavimo metodų taikymas bendrojo
kraujo tyrimo rezultatams, naudojant „Python“

biblioteką „OpenEnsembles“

Applying Ensemble Clustering Methods to a Complete Blood
Count Test Results Using OpenEnsembles: A Python Resource for

Ensemble Clustering

GINTARĖ PETRIŠIŪNAITĖ

Vilnius 2020

MATEMATIKOS IR INFORMATIKOS FAKULTETAS
STATISTINĖS ANALIZĖS KATEDRA

Darbo vadovas: Doc. dr. Viktor Skorniakov

Darbas apgintas

Registravimo NR.

Ansamblio klasterizavimo metodų taikymas bendrojo kraujo tyrimo
rezultatams, naudojant „Python“ biblioteką „OpenEnsembles”

Santrauka

Siekiant įveikti atskirų klasterizavimo algoritmų trūkumus ir pagerinti klasterizavimo rezulta-
tus yra taikomas ansamblių klasterizavimo metodas. Šis metodas sujungia skirtingų klasterizavimo
algoritmų rezultatus ir gali pateikti pagerintą galutinį klasterizavimo rezultatą. Šiame darbe ansam-
blių klasterizavimas taikomas bendro kraujo tyrimo parametrams. Pašalinus išskirtis Tukey metodu
parametrams buvo apskaičiuotos referencinės ribos, kurios naudojamos klasterizavimo rezultatų
validacijai. Ansambliai buvo sukurti naudojant „Python“ biblioteką „OpenEnsembles“. Tankio
funkcijas naudojantys klasterizavimo algoritmai tiksliausiai aptiko išskirčių klasterius. Geriausi
klasterių ansambliai buvo sukurti naudojant „co-occurrence linkage“ ansamblio kūrimo būdą.

Raktiniai žodžiai : Ansamblio klasterizavimo metodai, Python, OpenEnsembles.

Applying Ensemble Clustering Methods to a Complete Blood Count Test
Results Using OpenEnsembles: A Python Resource for Ensemble Clustering

Abstract

Clustering algorithms have their individual limitations. In order to overcome limitations of
individual clustering algorithms and improve clustering results ensemble clustering method can be
applied. Ensemble clustering method combines results of cluster partitions of different clustering
algorithms and can produce the final clustering solution of an improved quality. This thesis focuses
on applying ensemble clustering methods to a Complete Blood Count test parameters. Refer-
ence intervals were calculated and used for cluster validation after outlier removal, using Tukey
fences. Ensembles were created using a Python library OpenEnsembles. Density based clustering
algorithms were able to detect outlier clusters. Ensembles created using co-occurrence linkage en-
semble creation method avoided over-merging or under-merging clusters unlike majority vote and
graph closure ensemble creation methods.

Keywords : Ensemble clustering, OpenEnsembles, Python, Clustering algorithms.

Table of Contents

1 Introduction 3

2 Available Clustering Algorithms 5
2.1 DBSCAN and HDBSCAN . 5
2.2 Agglomerative Clustering . 6
2.3 BIRCH . 6
2.4 K-Means . 6
2.5 Gaussian Mixture . 7
2.6 Mean-shift . 7
2.7 Affinity Propagation . 7
2.8 Spectral Clustering . 8
2.9 Clustering Metrics . 8

2.9.1 Linkages . 8
2.9.2 Distance metrics . 9

3 Ensemble Creation Methods 10
3.1 Majority voting, co-occurrence linkage and graph closure 10
3.2 Cluster Validation Methods . 10

4 Methodology 11
4.1 Data description and preparation . 11
4.2 Creation of the external validation metrics 12
4.3 Creation of cluster ensembles . 14
4.4 Hypotheses . 14

1

5 Results 15
5.1 Comparison of individual clustering algorithms 15
5.2 Comparison of distance metrics effects on the solution space 15
5.3 Ensemble results . 16

6 Conclusions 29

References 30

APPENDICES 32

2

1. Introduction

No single clustering algorithm is capable of correctly identifying the underlying structure
of all data sets. Therefore, different clustering algorithms applied to the same data set can
produce distinctly different results. In order to overcome limitations of individual clustering
algorithms and improve clustering results, ensemble clustering method can be applied. A
cluster ensemble combines results of cluster partitions of different clustering algorithms and
can produce final clustering solution of an improved quality.[18]

Clustering is used in a broad range of applications to analyze biological data, including
anomaly detection. An anomaly (also called an outlier) can be described as an object that
has a low affinity to all the clusters. This thesis focuses on cluster ensemble creation for
anomaly detection in results of Complete Blood Count(CBC) test parameter. This Complete
Blood Count (CBC) test panel measures parameters of red blood cells, white blood cells,
hemoglobin, hematocrit and platelets (thrombocytes).[4]

Creating and analyzing ensembles is done using a Python resource OpenEnsembles. The
OpenEnsembles library provides a unified interface for applying transformations to data,
clustering data, visualizing individual clustering solutions, visualizing and creating the en-
semble, calculating validation metrics for a clustering solution.[9] This library is dedicated
to clustering ensembles and is built using many open source Python projects, which include:
scikit-learn, Pandas, Matplotlib, NetworkX, and NumPy.[22]

The goal of this paper is to create cluster ensembles that are capable of recognizing outliers
(anomalies) in the Complete Blood Count test cell parameter groups more accurately than
individual clustering algorithms.

Objectives:

• To compare effects of distance metrics between objects on the solution space for DB-
SCAN, Spectral, AffinityPropagation, Agglomerative, K-Means clustering algorithms.

• To compare effects of linkages between objects (clusters) on the solution space for
agglomerative clustering algorithm.

• To identify most effective algorithms for outlier detection evaluating results of in-
dividual clustering solutions of Affinity Propagation, Birch, DBSCAN, HDBSCAN,
Gaussian Mixture, HDBSCAN, Mean shift, Agglomerative, K-means, and Spectral
clustering algorithms.

3

• From selected most effective algorithms, to create cluster ensembles using majority
voting, graph closure, and co-occurrence linkage ensemble creation methods.

Structure. The beginning of the thesis contains analysis and synthesis of previous research
and theoretical material about clustering algorithms, their metrics and methods for ensemble
creation. Further, in the methodological part, data description, hypotheses, ensemble design,
and the chosen validation metrics are presented. The final part includes results presentation.

4

2. Available Clustering Algorithms

This chapter presents clustering algorithms that are available in the OpenEnsembles library.
The list includes: K-means, Agglomerative, Spectral, Birch, GaussianMixture, HDBSCAN,
DBSCAN, Affinity Propagation algorithms.[9] These algorithms have their advantages, and
depending on a clustering goal, some may perform more accurately than others. For example,
there are algorithms designed to perform better with large data sets, are memory and time
efficient, other algorithms that are based on density estimation can identify clusters of various
shapes and sizes.

2.1 DBSCAN and HDBSCAN

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) algorithm creates
clusters as continuous regions of high density. For each object (instance), the algorithm
counts how many other objects are located within a tiny distance called epsilon from it.
This region is named the object’s epsilon neighborhood. If an object has at least minimum
sample of objects in its epsilon neighborhood (including itself), then it is considered a core
instance.[11] Core instance can also be defined as an object that is located in a dense region.
All objects in the neighborhood of a core instance belong to the same cluster. This can
include other core instances and, for this reason, a long sequence of neighboring core instances
creates a single cluster. An object that is not a core instance and does not have one in its
neighborhood is considered an anomaly (an outlier). If the clusters of objects are dense
enough this algorithm performs well and is able to separate clusters based on their density
regions.[17]

HDBSCAN (Hierarchical Density-Based Spatial Clustering of Applications with Noise)
algorithm performs clustering over varying epsilon values and integrates the result to find
a clustering that gives the best stability over epsilon. Therefore, the algorithm is able to
find clusters of varying densities which is not possible using DBSCAN. Objects that do not
have neighbors nearby are considered being noise and HDBSCAN labels them by giving such
objects a label with value -1.[19]

5

2.2 Agglomerative Clustering

This algorithm builds a hierarchy of clusters from the bottom up. At each iteration Ag-
glomerative clustering merges the closest pair of clusters (starting from individual objects).
The closest pair of clusters is determined by a specified linkage- single, complete, average, or
Wards. These linkages are described in detail in the 2.9 subsection about clustering metrics.
Agglomerative clustering algorithm can capture clusters of various shapes, and it can be
used with any pairwise distance metric. If an algorithm is applied to a very large data set,
it is recommended to provide a connectivity matrix in order for the algorithm to perform
better. Connectivity matrix is a sparse m×m matrix that indicates which pairs of objects
are neighbors.[17]

2.3 BIRCH

BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies) algorithm is mem-
ory and time efficient and was created to be particularly used for clustering of very large
datasets.[10],[21] It can be faster than other algorithms like K-Means, and produce similar
results, as long as the number of features is not very large (up to 20). BIRCH incrementally
clusters acquired data objects. It keeps a tree of cluster features (information about clusters)
which is updated in an iterative fashion.[20] The tree structure that is built during training
contains just enough information to rapidly assign each new object to a cluster, while not
having to store all the instances in the tree. Therefore, this process enables to use limited
memory, while handling large datasets.[17]

2.4 K-Means

The K-Means algorithm clusters data by trying to separate objects into a specified number
of clusters that have equal variance, minimizing a criterion known as the inertia or within-
cluster sum-of-squares. Inertia is the sum of squared error for each cluster. The smaller the
inertia, the closer together all the objects are and the denser the cluster is. Therefore, lower
values are better and zero is optimal.[3]

The k-means algorithm divides a set of N objects X into K disjoint clusters C, each
described by the mean of the cluster objects. The means are commonly called the cluster
“centroids”; note that they are not, in general, points from X , although they live in the
same space.

Minimization of the inertia (within-cluster sum-of-squares criterion) is expressed:

n∑
i=0

min
µj∈C

(||xi − µj||2)

6

In conclusion, K-means clustering method is based on the idea that a center can represent
a cluster. However, it performs poorly when the goal is to identify elongated clusters, or
clusters with irregular shapes or sizes.[17]

2.5 Gaussian Mixture

Gaussian Mixture algorithm clusters data in a very similar way to K-means. Gaussian
Mixture algorithm accounts for the variance. Therefore, it can detect even oblong clusters
(unlike K-means).[7]

2.6 Mean-shift

Mean-Shift clustering seeks to discover clusters in a smooth density of objects. It is a centroid
based algorithm, which works by updating candidates for centroids to be the mean of the
points (objects) within a region. This algorithm begins by putting a circle on each object,
then, for each circle, it calculates the mean of all the instances located within it, and it shifts
the circle so that it is centered on the mean. It automatically sets the number of clusters.
Next, it iterates this mean-shift step until all the circles stop moving.[17]

The centroid candidate is updated according to the following equation: xt+1
i = m(xti)

Samples within a given distance around an object xi , where m is the mean shift vec-
tor that is computed for each centroid using the following equation, effectively updating
a centroid to be the mean of the samples within a neighborhood N(xi) of an element xi,
containing:

m(xi) =

∑
xj∈N(xi)

K(xj − xi)xj∑
xj∈N(xi)

K(xj − xi)

In the next stage, the candidates for centroids are filtered to eliminate near-duplicates and
then a final set of centroids is formed. [8]

This algorithm has similar features to the DBSCAN and HDBSCAN algorithms because
it relies on the local density estimation and is able to find any number of clusters of any
shape.

2.7 Affinity Propagation

Affinity Propagation chooses the number of clusters based on the data provided. The algo-
rithm uses a voting system, where objects vote for similar objects to be their representatives.
When the algorithm converges, each object and its voters form a cluster. Affinity propaga-
tion can detect any number of clusters of different sizes and shapes, however, this algorithm
has a computational complexity not suited for large datasets. [17]

7

2.8 Spectral Clustering

Spectral clustering is a technique which has emerged from graph theory, where the commu-
nities of nodes are identified in a graph based on the edges connecting them. The algorithm
uses information from the eigenvalues (spectrum) of special matrices built from the graph or
the data set. [12] Spectral clustering can capture complex cluster structures but it does not
scale well to large number of objects, and it does not perform well when the clusters have sig-
nificantly different sizes. The algorithm reduces dimensionality by taking a similarity matrix
between the objects and creating a low-dimensional embedding from it. After that, it uses
another clustering algorithm in this low-dimensional space (Scikit-Learn’s implementation
uses K-Means). [8]

2.9 Clustering Metrics

Algorithms can be grouped by the metrics they use to produce results. These metrics
include a number of clusters K, distances between objects and linkages (distances between
clusters).[2]

The following metrics before clustering can be specified for these algorithms.

• Linkages: Agglomerative.

• Distances: K-means, HDBSCAN, DBSCAN, Spectral, AffinityPropagation, Agglom-
erative, Mean-shift.

• K: K-means, agglomerative, spectral, Birch, GaussianMixture.

2.9.1 Linkages

Linkages metric is used in Agglomerative clustering algorithm and it specifies distances
between clusters.

The following is the list of available linkages:

• Single linkage returns the minimum distance between the two points that belong to
clusters A and B.[5]

d(A,B) = min−→x ∈A,−→y ∈B
‖−→x −−→y ‖

Single linkage is fast, can perform well on non-globular data, and can handle quite
complicated cluster shapes. However, it performs poorly in the presence of noise.

• Complete linkage calculates the maximum distance distance between the two points
that belong to clusters A and B.[5]

d(A,B) = max−→x ∈A,−→y ∈B
‖−→x −−→y ‖

8

• Average linkage is determined, by calculating the average distance between all the
possible pairs of two objects in A and B clusters.[5]

d(A,B) =
1

A

1

B

∑
x∈A

∑
x∈B

d(x, y)

Average and complete linkage perform well on cleanly separated globe shaped (spher-
ical) clusters. [13]

2.9.2 Distance metrics

Distances between objects are implemented by K-means, HDBSCAN, DBSCAN, Spectral,
AffinityPropagation, Agglomerative, Mean-shift clustering algorithms.[8] Very often the mea-
sure of distance is the Euclidean metric which belongs to the Minkowski metric group. In ad-
dition, city-block(Manhattan), Euclidean and Chebyshev distances belong to the Minkowski
metric group.[3]

OpenEnsembles library allows to choose from a range of distances. Most frequently used
are:

• Minkowski distance is a metric on Euclidean space, and it is also considered as a
generalisation of Euclidean distance, Manhattan distance and Chebyshev distance.

Dij =

(
M∑
m=1

|xim − xjm|p
) 1

p

• Euclidean distance is a straight-line distance between two points.

Dij =

(
M∑
m=1

|xim − xjm|2
) 1

2

• Chebyshev distance is a special case of Minkowski distance as p→∞.

Dij = max
1≤m≤M

|xim − xjm|

• Manhattan (city-block) distance distance between two points measured along axes at
right angles. [3]

Dij =
M∑
m=1

|xim − xjm|

9

3. Ensemble Creation Methods

OpenEnsembles library allows creation of ensembles using majority voting, co-occurrence
linkage and graph closure methods. For all of them the only parameter that must be specified
is the threshold value. [1]

3.1 Majority voting, co-occurrence linkage and graph closure

Majority voting clusters together instances that have a high co-occurrence.
Graph closure uses co-occurrence matrices in order to create graphs, and clusters the

data based on cliques. Co-occurrence matrices portray how frequently a pair of objects has
been assigned to the same cluster.

Co-occurrence linkage implements a specific clustering algorithm, hierarchical (Agglom-
erative) clustering, by treating the co-occurrence matrix as a pairwise distance matrix. The
clustering ends when there is no element on the matrix with a value that is larger then the
threshold value.[16]

3.2 Cluster Validation Methods

The term cluster validation is used to design the procedure of evaluating the goodness of
clustering algorithm results. Clustering validation statistics can be categorized into internal
and external validation metrics. Internal cluster validation uses the internal information of
the clustering process to evaluate the goodness of a clustering structure without reference
to external information. External cluster validation has the results of a cluster analysis to
an externally known result, such as externally provided cluster class labels. It measures
the extent to which cluster labels match externally supplied class labels. Since we know
the “true” cluster number in advance, this approach can be used for determining the most
suitable clustering algorithm for a specific data set. [1]

10

4. Methodology

This chapter presents data, hypotheses, explanation of ensembles creation and formation of
validation metrics that were used in evaluating clustering results.

4.1 Data description and preparation

The dataset was collected in Vilniaus Centro Poliklinika during the time period between
June and December in 2017. In the dataset, there are results of venous and capillary pro-
phylactic Complete Blood Count test parameters and the age of a patient in days at the
time test was performed. The Complete Blood Count test measured parameters of red blood
cells (erythrocytes, mean corpuscular volume of erythrocytes, erythrocyte partition width,
hemoglobin, mean hemoglobin in erythrocyte and mean erythrocyte hemoglobin concentra-
tion), white blood cells (leukocytes, neutrophils, lymphocytes, monocytes, eosinophils and
basophils), hematocrit, and platelets, which help with clotting. The test was performed
on 3688 patients aged from 14 days to 18 years old. Test results were divided into groups
according to the patients age. There were only 32 patients of age that is less than 2 months
old patients, therefore this age group was excluded from ensemble creation because of not
sufficient number of instances. Therefore, patients test results were divided into the following
age groups: [2 months - 6 months), [6 months - 2 years), [2 years - 6 years), [6 years - 12
years), [12 years - 18 years). In addition, patients of [12 years - 18 years) age group were
split into groups of men and women. The table shows the number of patients in each age
group. The 4.1 table below shows the amount of patients in each age group. Ensembles
were chosen to be created for white blood cells called granulocytes (neutrophils, eosinophils,
basophils, and red blood cell parameters (hemoglobin, erythrocytes, and mean corpuscular
volume of erythrocytes).

11

Table 4.1: Number of patients in each age group
Age group Number of Patients
[2m.-6m.) 184
[6m.-2y.) 607
[2y.-6y.) 1322
[6y.-12y.) 904

[12y.-18y.) women 368
[12y.-18y.) men 271

4.2 Creation of the external validation metrics

This section describes cluster validation metrics creation. For clustering results validation
reference interval were calculated after removing outliers. The calculation of outlier values
and their removal was done using the Tukey Fences Method.[15] The Tukey method calculates
outliers based on the interquartile range. For example, if the first quartile Q1 (0.25) and
third quartile Q3 (0.75) are the lower and upper quartiles, respectively, then an outlier can
be defined as a value outside the range:

Q1 − k(Q3 −Q1), Q3 + k(Q3 −Q1)

K is a positive constant. A k = 1.5 was used in calculations as suggested by John Tukey.
(Using a large constant such as k = 3, only very significant outliers would be recognized).
4.2 table shows Tukey Fences values for granulocytes. Granulocytes had outliers only above
upper Tukey fence, while for all granulocytes the lower fence was 0.

Table 4.2: Outlier values for granulocytes
Eosinophils (109/l) Neutrophils (109/l) Basophils (109/l)

Age group
Lower
Tukey
fence

Upper
Tukey
fence

Lower
Tukey
fence

Upper
Tukey
fence

Lower
Tukey
fence

Upper
Tukey
fence

[2m.-6m.) 0 0.795 0 4.4995 0 0.08
[6m.-2y.) 0 0.68 0 7.95 0 0.07
[2y.-6y.) 0 0.78 0 11.85575 0 0.095
[6y.-12y.) 0 0.835 0 9.81675 0 0.095

[12y.-18y.) women 0 0.5 0 7.8275 0 0.07
[12y.-18y.) men 0 0.63 0 6.5 0 0.07

12

The 4.3 table below shows values of lower and upper Tukey fences for red blood cell
parameters.

Table 4.3: Outlier values for red blood cell parameters

Hemoglobin (g/l) Erythrocytes (1012/l)
Mean Corpuscular

Erythrocyte
Cell Volume (fl)

Age group
Lower
Tukey
fence

Upper
Tukey
fence

Lower
Tukey
fence

Upper
Tukey
fence

Lower
Tukey
fence

Upper
Tukey
fence

[2m.-6m.) 95.5 139.5 3.3205 5.5795 65.8425 85.1375
[6m.-2y.) 95 143 3.735 5.775 64.5 82.1
[2y.-6y.) 103.5 147.5 3.965 5.765 67.8 83
[6y.-12y.) 111.5 155.5 4.085 5.885 69.2625 87.7675

[12y.-18y.) women 110 158 3.86 5.7 73.6 95.2
[12y.-18y.) men 117.5 177.5 4.2725 6.2125 73.325 92.725

After the outleirs removal below the lower Tukey Fences and above the upper Tukey
Fences the 0.95 reference interval for was calculated using nonparRI function from R package
referenceIntervals. The clustering results are evaluated according to the reference values in
the tables below.

For granulocytes all values only above 97.5% are considered anomalies because there were
outliers present only above the upper Tukey fence (Table 4.4).

For red blood cell parameters values below 2.5% and above 97.5% are considered anoma-
lies as there were outliers below the lower and above the upper Tukey fences (Table 4.5).

13

Table 4.4: Reference intervals for granulocytes
Eosinophils (109/l) Neutrophils (109/l) Basophils (109/l)

Age group 2.50% 97.50% 2.50% 97.50% 2.50% 97.50%
[2m.-6m.) 0.04525 0.71475 0.708 3.774 0.01 0.07
[6m.-2y.) 0 0.5865 0.753 7.333 0.01 0.06425
[2y.-6y.) 0 0.67 1.52 10.68522 0.01 0.08
[6y.-12y.) 0.01 0.7275 1.28275 8.807 0.01 0.08

[12y.-18y.) women 0.015 0.44 1.4735 7.0065 0.01 0.06
[12y.-18y.) men 0.02 0.57675 1.2975 5.70375 0.01 0.06

Table 4.5: Reference intervals for red blood cells parameters

Hemoglobin (g/l) Erythrocytes (1012/l)
Mean Corpuscular

Erythrocyte
Cell Volume (fl)

Age group 2.50% 97.50% 2.50% 97.50% 2.50% 97.50%
[2m.-6m.) 101 134 3.5775 5.29 68.9 81.8
[6m.-2y.) 103 135 4.11 5.479 66.4925 79.315
[2y.-6y.) 111 142 4.24675 5.54 69.2 80.9
[6y.-12y.) 118 150 4.36 5.67 71.34 85.3

[12y.-18y.) women 113 151 4.14025 5.4595 77.025 90.66
[12y.-18y.) men 127 168 4.556 5.89 75.08 89.4

4.3 Creation of cluster ensembles

Ensembles were chosen to be created for white blood cells called granulocytes (neutrophils,
eosinophils, basophils) and red blood cell parameters (hemoglobin, erythrocytes, mean cor-
puscular volume of erythrocytes). Firstly, all individual clustering algorithms were tested on
the CBC test parameter subgroups. After that, the algorithms that were able to detect out-
liers were used for creating clustering ensembles using majority voting, co-occurrence linkage
and graph closure ensemble creation methods with different threshold values.

4.4 Hypotheses

• Density based algorithms such as HDBSCAN and Mean Shift will effectively identify
outliers.

• Parametric centroid based clustering algorithms, such as K-Means, Gaussian Mixture
will not be able to identify outliers.

• Cluster ensemble of selected algorithms will be more effective in anomaly detection than
solutions of individual algorithms.

• Minkowski family distance metrics (Euclidean, Manhattan, Chebyshev) will have a
similar effect on the solution space.

14

5. Results

This chapter presents the comparison of individual clustering algorithms, comparison of
distance metrics on the solution space, and cluster ensemble results.

5.1 Comparison of individual clustering algorithms

Many clustering algorithms are unable to recognize unusual shapes of anomaly clusters. That
is especially true with parametric clustering algorithms that have an implicit assumption
about cluster shapes. For example, K-means and Gaussian Mixture clustering algorithms
make an assumption that clusters form a shape of a Gaussian ball (sphere). As outlier
clusters do not form clusters of spherical shapes such algorithms are not suitable for outlier
detection. However, non-parametric density based clustering algorithms such as Mean-shift
algorithm, DBSCAN, and HDBSCAN and allow to discover clusters of unusual shapes.[14]
This implies that they are more suitable when clustering is used for anomaly detection.
Therefore, density based clustering algorithms are used to form cluster ensembles for outlier
detection. However, the DBSCAN algorithm preformed poorly as it merged all objects into
one cluster and finding a suitable epsilon value for a dataset difficult. Therefore, HDBSCAN
had an advantage because it is able to use different epsilon values when clustering. Birch,
Agglomerative, and Affinity propagation algorithms also merged results into one cluster.
Spectral clustering produced clusters of sphere shapes and therefore, is also not suitable for
outlier detection.

5.2 Comparison of distance metrics effects on the solution space

Co-occurrence matrices portray the similarities of clustering solutions for the same algorithm
with different distance metrics.

Figure 5.1 shows the distances effect on solution space when clustering red blood cell
parameters using HDBSCAN, [2m.-6m.) age group. Euclidean and Minkowski distances
produce exactly the same results. Therefore, in the ensemble creation will be used only
Euclidean distance.[6]

15

Figure 5.1: Co-occurrence matrix (Distances effect on solution space when clustering red
blood cell parameters using HDBSCAN, [2m.-6m.) age group)

5.3 Ensemble results

For ensemble creation the best performing algorithms were chosen to be used. Mean-shift
algorithm and HDBSCAN clustering algorithm solutions with Euclidean, Manhattan and
Chebyshev distance metrics were combined to form ensembles. Mean-shift algorithm distin-
guished less outliers when compared with HDBSCAN. HDBSCAN solutions with Manhattan
distances distinguished the higher amount of instances as outliers, compared to HDBSCAN
solutions that used Euclidean or Chebyshev distances. Ensemble creation was most accurate
when performed using co-occurrence linkage ensemble creation method. Majority vote and
Graph Closure was consistently under-merging clusters of outliers such that there was one
major cluster and many small clusters that were unmerged outliers. Choosing a suitable
threshold value was done by evaluating whether the clusters were under-merged or over-
merged. Ensemble results were best produced with co-occurrence linkage and threshold
values from 0.5 to 0.9. Frequently used threshold values were 0.6, 0.7, 0.9. However, in
some cases 0.9 threshold value over-merged results into a one large cluster. Therefore, in
those cases lower threshold values (0.5, 0.6, 0.7) produced better results by not over-merging
clusters.

16

Figure 5.2: Granulocytes clus-
tering results, [2m.-6m.) age
group

Figure 5.3: Co-occurrence linkage
ensemble

Figure 5.2 shows results of individual clustering algorithms of granulocytes in [2m.-6m.)
age group. The outlier values of HDBSCAN algorithm solutions were assigned value -1 and
are portrayed in purple color. Meanwhile, outliers from Mean-shift algorithm cluster were
assigned value 1, portrayed in light blue color (Figure 5.2). Individual clustering algorithms
of HDBSCAN with Euclidean distance, Manhattan distance, Chebyshev distance, and Mean-
shift algorithm distinguished 42, 41, 38, 32 instances as outliers, respectively. According to
validation metrics (reference values) this age group has 27 outliers, out of which 22 (81.48%)
were identified by the co-occurence linkage ensemble with threshold value 0.9. In total, the
co-occurence linkage ensemble (Figure 5.3) distinguished 54 instances as outliers which are
portrayed in red color.

17

Figure 5.4: Granulocytes clus-
tering results, [6m.-2y.) age
group

Figure 5.5: Co-occurrence linkage
ensemble

Figure 5.4 shows results of individual clustering algorithms of granulocytes in [6m.-2y.)
age group. The outlier values of HDBSCAN algorithm solutions were assigned value -1 and
are portrayed in purple color (Figure 5.4). Meanwhile, outliers from Mean-shift algorithm
cluster were assigned value 1, portrayed in light blue color (Figure 5.4). Individual clustering
algorithms of HDBSCAN with Euclidean distance, Manhattan distance, Chebyshev distance,
and Mean-shift algorithm distinguished 49, 58, 139, 46 instances as outliers, respectively.
According to validation metrics (reference values) this age group has 123 outliers, out of which
47 (38.21%) were identified by the co-occurence linkage ensemble with threshold value 0.8.
In total, the ensemble (Figure 5.5) distinguished 49 instances as outliers which are portrayed
in light blue color.

18

Figure 5.6: Granulocytes clus-
tering results, [2y.-6y.) age
group

Figure 5.7: Co-occurrence linkage
ensemble

The outlier values of HDBSCAN algorithm solutions were assigned value -1 and are por-
trayed in purple color (Figure 5.6). Meanwhile, outliers from Mean-shift algorithm cluster
were assigned value 1, portrayed in light blue color (Figure 5.6). Individual clustering al-
gorithms of HDBSCAN with Euclidean distance, Manhattan distance, Chebyshev distance,
and Mean-shift algorithm distinguished 55, 61, 45, 158 instances as outliers, respectively. Ac-
cording to validation metrics (reference values) this age group has 205 outliers, out of which
70 (34.14%) were identified by the co-occurence linkage ensemble with threshold value 0.9.
In total, the ensemble (Figure 5.7) distinguished 73 instances as outliers which are portrayed
in red color.

19

Figure 5.8: Granulocytes clus-
tering results, [6y.-12y.) age
group

Figure 5.9: Co-occurrence linkage
ensemble

The outlier values of HDBSCAN algorithm solutions were assigned value -1 and are por-
trayed in purple color (Figure 5.8). Meanwhile, outliers from Mean-shift algorithm cluster
were assigned value 1, portrayed in light blue color (Figure 5.8). Individual clustering al-
gorithms of HDBSCAN with Euclidean distance, Manhattan distance, Chebyshev distance,
and Mean-shift algorithm distinguished 268, 208, 38, 72 instances as outliers, respectively.
According to validation metrics (reference values) this age group has 160 outliers, out of
which 32 (20%) were identified by the co-occurence linkage ensemble with threshold value
0.6. In total, the ensemble (Figure 5.9) distinguished 37 instances as outliers which are
portrayed in light blue color.

20

Figure 5.10: Granulocytes clus-
tering results, women [12y.-18y.)
age group

Figure 5.11: Co-occurrence linkage
ensemble

The outlier values of HDBSCAN algorithm solutions are assigned value -1 and are por-
trayed in purple color (Figure 5.10). Individual clustering algorithms of HDBSCAN with
Euclidean distance, Manhattan distance, Chebyshev distance, and Mean-shift algorithm dis-
tinguished 33, 79, 32, 29 instances as outliers, respectively. According to validation metrics
(reference values) this age group has 72 outliers, out of which 45 (62.5%) were identified
by the co-occurence linkage ensemble with threshold value 0.8. In total, the co-occurrence
linkage ensemble (Figure 5.11) distinguished 55 instances as outliers which are portrayed in
light green color.

21

Figure 5.12: Granulocytes clus-
tering results, men [12y.-18y.)
age group

Figure 5.13: Co-occurrence linkage
ensemble

The outlier values of HDBSCAN algorithm solutions are assigned value -1 and are por-
trayed in purple color (Figure 5.12). Individual clustering algorithms of HDBSCAN with
Euclidean distance, Manhattan distance, Chebyshev distance, and Mean-shift algorithm dis-
tinguished 55, 57, 50, 40 instances as outliers, respectively. According to validation metrics
(reference values) this age group has 49 outliers, out of which 28 (57.14%) were identified
by the co-occurence linkage ensemble with threshold value 0.7. In total, the co-occurrence
linkage ensemble (Figure 5.13) distinguished 34 instances as outliers which are portrayed in
red color.

22

Figure 5.14: Parameters of red
blood cells clustering results,
[2m.-6m.) age group

Figure 5.15: Co-occurrence linkage
ensemble

The outlier values from HDBSCAN algorithm solutions are assigned value -1 and are
illustrated in purple color (Figure 5.14). Mean-shift algorithm assigned value 1 to outliers
and portrayed in color red. Individual clustering algorithms of HDBSCAN with Euclidean
distance, Manhattan distance, Chebyshev distance, and Mean-shift algorithm distinguished
20, 37, 20, 7 instances as outliers, respectively. According to validation metrics (reference
values) this age group has 20 outliers, out of which 16 (80%) were identified by the co-
occurence linkage ensemble with threshold value 0.7. In total, the ensemble (Figure 5.15)
distinguished 19 instances as outliers.

23

Figure 5.16: Parameters of red
blood cells clustering results,
[6m.-2y.) age group

Figure 5.17: Co-occurrence linkage
ensemble

The outlier values from HDBSCAN algorithm solutions are assigned value -1 and are
illustrated in purple color (Figure 5.16). Individual clustering algorithms of HDBSCAN
with Euclidean distance, Manhattan distance, Chebyshev distance, and Mean-shift algorithm
distinguished 93, 353, 23, 8 instances as outliers, respectively. According to validation metrics
(reference values) this age group has 72 outliers, out of which 67 (93.05%) were identified by
the co-occurence linkage ensemble with threshold value 0.5. In total, the ensemble (Figure
5.17) distinguished 98 instances as outliers and portrayed then in red color.

24

Figure 5.18: Parameters of red
blood cells clustering results,
[2y.-6y.) age group

Figure 5.19: Co-occurrence linkage
ensemble

The outlier values from HDBSCAN algorithm solutions are assigned value -1 and are il-
lustrated in purple color (Figure 5.18). Individual clustering algorithms of HDBSCAN with
Euclidean distance, Manhattan distance, Chebyshev distance, and Mean-shift algorithm dis-
tinguished 445, 418, 228, 16 instances as outliers, respectively. According to validation
metrics (reference values) this age group has 189 outliers, out of which 167 (88.35%) were
identified by the co-occurence linkage ensemble with threshold value 0.6. In total, the en-
semble (Figure 5.19) distinguished 461 instances as outliers in light blue color.

25

Figure 5.20: Parameters of red
blood cells clustering results,
[6y.-12y.) age group

Figure 5.21: Co-occurrence linkage
ensemble

Individual clustering algorithms of HDBSCAN with Euclidean distance, Manhattan dis-
tance, Chebyshev distance, and Mean-shift algorithm distinguished 457, 480, 48, 37 instances
as outliers, respectively. According to validation metrics (reference values) this age group
has 111 outliers, out of which 109 (98.19%) were identified by the co-occurrence linkage
ensemble with threshold value 0.5. In total, the ensemble (Figure 5.21) distinguished 515
instances as outliers and portrayed them in light green color.

26

Figure 5.22: Parameters of red
blood cells clustering results,
women [12y.-18y.) age group

Figure 5.23: Co-occurrence linkage
ensemble

Individual clustering algorithms of HDBSCAN with Euclidean distance, Manhattan dis-
tance, Chebyshev distance, and Mean-shift algorithm distinguished 83, 152, 19, 8 instances
as outliers, respectively. According to validation metrics (reference values) this age group has
56 outliers, out of which 20 (35.71%) were identified by the co-occurrence linkage ensemble
with threshold value 0.7. In total, the ensemble (Figure 5.23) distinguished 34 instances as
outliers and portrayed them in purple color.

27

Figure 5.24: Parameters of red
blood cells clustering results,
men [12y.-18y.) age group

Figure 5.25: Co-occurrence linkage
ensemble

Individual clustering algorithms of HDBSCAN with Euclidean distance, Manhattan dis-
tance, Chebyshev distance, and Mean-shift algorithm distinguished 22, 98, 43, 3 instances as
outliers, respectively. According to validation metrics (reference values) this age group has
24 outliers, out of which 19 (79.16%) were identified by the co-occurrence linkage ensemble
with threshold value 0.5. In total, the ensemble (Figure 5.25) distinguished 21 instances as
outliers and portrayed them in purple color.

28

6. Conclusions

Outlier clusters often have unusual shapes. Therefore, parametric clustering algorithms
such as K-means, Gaussian Mixture models perform poorly in outlier detection because
they cluster objects into spherical shapes, or oblong shapes (Gaussian Mixture algorithm).
Non parametric density based algorithms preform significantly better in outlier detection, as
they recognize unusual cluster shapes and sizes. These algorithms include HDBSCAN and
Mean-shift.

HDBSCAN algorithm solutions with Manhattan distance in most cases identified too
many objects as outliers, while Mean-shift in majority of cases identified the least amount of
outliers. However, HDBSCAN algorithm solutions with Manhattan distance identified out-
liers that algorithms like HDBSCAN with Euclidean metrics were not able to. HDBSCAN
solutions with Euclidean and Chebyshev distances in several solutions detected similar num-
ber of objects as outliers. However, HDBSCAN solutions with Euclidean distance usually
identified more than HDBSCAN with Chebyshev.

Ensembles created using majority voting and graph closure ensemble creation techniques,
with different threshold values, were under-merging outlier clusters. The outliers were un-
merged and separated into many clusters. Co-occurrence linkage ensemble creation method
was more successful in merging outlier clusters and produced best results with threshold
values ranging from 0.5 to 0.9.

29

References

[1] Cluster validation statistics: Must know methods. https://www.datanovia.com/en/
lessons/cluster-validation-statistics-must-know-methods.

[2] Clustering algorithms openensembles. https://naeglelab.github.io/OpenEnsembles/
clustering_algorithms.html.

[3] Clustering: Why to use it. https://towardsdatascience.com/
clustering-why-to-use-it-16d8e2fbafe.

[4] Complete blood count (cbc) test parameters. https://www.uofmhealth.org/
health-library/hw4260.

[5] Distances between clustering, hierarchical clustering 36-350, data mining,p.4.
[6] Documentation openensembles co-occurrence matrix. https://naeglelab.github.io/

OpenEnsembles/Examples/Demonstrate_Distance_Affinity_effects.html.
[7] Gaussian mixture models. https://towardsdatascience.com/

gaussian-mixture-models-d13a5e915c8e.
[8] K-means documentation from scikit-learn. https://scikit-learn.org/stable/modules/

clustering.html#k-means.
[9] Openensembles documentation. https://naeglelab.github.io/OpenEnsembles/index.

html.
[10] sklearn birch documentation. https://scikit-learn.org/stable/modules/generated/

sklearn.cluster.Birch.html.
[11] sklearn.cluster.dbscan documentation, leland mcinnes, john healy, and steve astels.

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html.
[12] W.fleshman-spectral clustering foundation and application. https://towardsdatascience.

com/spectral-clustering-aba2640c0d5b.
[13] Distances between clustering, hierarchical clustering. Data Mining, pages 36–350, 2009.
[14] R. J. Campello, D. Moulavi, and J. Sander. Density-based clustering based on hierar-

chical density estimates. In Pacific-Asia conference on knowledge discovery and data
mining, pages 160–172. Springer, 2013.

[15] J. W. Foreman. Data smart: Using data science to transform information into insight.
pages 337–341, 390–393, 2013.

[16] K. G. M. George Kyriakides. Hands-On Ensemble Learning with Python, 151-170. 2019.
[17] A. Géron. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow,

237-274. 2019.

30

https://www.datanovia.com/en/lessons/cluster-validation-statistics-must-know-methods
https://www.datanovia.com/en/lessons/cluster-validation-statistics-must-know-methods
https://naeglelab.github.io/OpenEnsembles/clustering_algorithms.html
https://naeglelab.github.io/OpenEnsembles/clustering_algorithms.html
https://towardsdatascience.com/clustering-why-to-use-it-16d8e2fbafe
https://towardsdatascience.com/clustering-why-to-use-it-16d8e2fbafe
https://www.uofmhealth.org/health-library/hw4260
https://www.uofmhealth.org/health-library/hw4260
https://naeglelab.github.io/OpenEnsembles/Examples/Demonstrate_Distance_Affinity_effects.html
https://naeglelab.github.io/OpenEnsembles/Examples/Demonstrate_Distance_Affinity_effects.html
https://towardsdatascience.com/gaussian-mixture-models-d13a5e915c8e
https://towardsdatascience.com/gaussian-mixture-models-d13a5e915c8e
https://scikit-learn.org/stable/modules/clustering.html#k-means
https://scikit-learn.org/stable/modules/clustering.html#k-means
https://naeglelab.github.io/OpenEnsembles/index.html
https://naeglelab.github.io/OpenEnsembles/index.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.Birch.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.Birch.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html
https://towardsdatascience.com/spectral-clustering-aba2640c0d5b
https://towardsdatascience.com/spectral-clustering-aba2640c0d5b

[18] R. J. A. K. J. M. M. Jinfeng Yi, Tianbao Yang. Robust ensemble clustering by matrix
completion. Data Mining (ICDM), IEEE International Conference, 2013.

[19] L. McInnes, J. Healy, and S. Astels. hdbscan: Hierarchical density based clustering. J.
Open Source Software, 2(11):205, 2017.

[20] B. N. O.Nasraoui. Clustering methods for big data analytics. page 119, 2008.
[21] M. L. Tian Zhang, Raghu Ramakrishnan. Birch: An efficient data clustering method

for very large databases. pages 103–114, 1996.
[22] Z. R. K. P. S. T.Ronan, S.Anastasio. Openensembles: A python resource for ensemble

clustering. Journal of Machine Learning Research, 18:1–6, 2018.

31

APPENDICES

Ensemble creation example code

32

33

	Introduction
	Available Clustering Algorithms
	DBSCAN and HDBSCAN
	Agglomerative Clustering
	BIRCH
	K-Means
	Gaussian Mixture
	Mean-shift
	Affinity Propagation
	Spectral Clustering
	Clustering Metrics
	Linkages
	Distance metrics

	Ensemble Creation Methods
	Majority voting, co-occurrence linkage and graph closure
	Cluster Validation Methods

	Methodology
	Data description and preparation
	Creation of the external validation metrics
	Creation of cluster ensembles
	Hypotheses

	Results
	Comparison of individual clustering algorithms
	Comparison of distance metrics effects on the solution space
	Ensemble results

	Conclusions
	References
	APPENDICES

