
VILNIUS UNIVERSITY

FACULTY OF MATHEMATICS AND INFORMATICS

Master thesis

Two-way Enriched Clinical Trial Design in Bayesian
Framework

lšplėsto dvipakopio klinikinio randomizacijos plano analizė
Bajeso metodu

Antanas Mainelis

VILNIUS, 2019



FACULTY OF MATHEMATICS AND INFORMATICS
DEPARTMENT OF STATISTICAL ANALYSIS

Supervisor: Assoc. Prof., Dr. Viktor Skorniakov

Darbo gynimo data:

Registracijos NR.



Contents

Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Santrauka . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1. Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1. Clinical trial designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2. Original approach for TED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3. Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2. Parameters estimation in TED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1. Maximum likelihood estimation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1. Maximum likelihood method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.2. MLE in TED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2. Bayesian estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1. Bayes theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2. Prior distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.3. MCMC method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.4. Bayesian estimation in TED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3. Comparison of methods via data simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3. Hypothesis testing in TED using Bayes approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1. New parametrization and priors for one DF test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2. New parametrization and priors for two DF test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3. New parametrization and priors for three DF test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4. Power simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Appendix Nr. 1. Estimated bias for all cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Appendix Nr. 2. Estimated RMSE for all cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Appendix Nr. 3. Estimated KL divergence for all cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Appendix Nr. 4. R code for parameters estimation of one configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Appendix Nr. 5. R code for power simulations of one test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

1



Abbreviations

• DF - degree of freedom;

• GEE - generalized estimating equations;

• KL - Kullback - Leibler;

• MCMC - Markov Chain Monte Carlo;

• MLE - maximum likelihood estimation;

• RMSE - root mean square error;

• SPCD - sequential parallel design;

• TED - two-way enriched design.
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Abstract

A. Mainelis.Two-way Enriched Clinical Trial Design in Bayesian Framework: master thesis/

supervisor Assoc. Prof. Dr. V. Skorniakov; Vilnius university, faculty of Mathematics and Infor-

matics, department of Statistical Analysis.

The objective of this master thesis is to apply Bayesian methodology to the two-way enriched

design (TED) which helps to cope with the high rate of the placebo response. The main part is dedi-

cated to the model parameters estimation using the maximum likelihood (ML) and Bayes approach.

For the latter, the informative priors like constrained uniform, beta with appropriate parameters dis-

tributions and the objective priors like uniform distributions, Jeffreys, reference were tested. The

parameters were estimated on the simulated data. The ML estimates had the lowest bias in al-

most all the cases, but Bayesian estimates had lower RMSE and Kullback-Leibler divergence in the

majority of the configurations. Models with the informative priors showed the best results.

In the rest part of this thesis Bayes credible intervals for the hypothesis testing in TED are

proposed. The type I error and the power of the new testing procedure were evaluated using the

Markov Chain Monte Carlo simulations with the various parameters configurations. The power for

testing was higher than in the original approach in almost all the cases. However, type I error rate

was controlled well only in the models with the uniform distributions as priors.

Using the proposed method in TED, the sample size and the cost of the researches could be

reduced. This work could be extend for the continuous outcome in Bayesian framework. Also, the

alternative testing procedure might be developed.
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Santrauka

A. Mainelis. lšplėsto dvipakopio klinikinio randomizacijos plano analizė Bajeso metodu: ma-

gistro baigiamasis darbas/ vadovas doc. dr. V. Skorniakov; Vilniaus universitetas, Matematikos ir

informatikos fakultetas, Statistinės analizės katedra.

Šio magistro darbo tikslas - pritaikyti Bajeso metodologiją išplėsto dvipakopio klinikinio ran-

domizacijos plano atvejui. Šis planas padeda suvaldyti aukštą placebo atsaką. Pagrindinė darbo

dalis skirta parametrų vertinimui naudojant didžiausio tikėtinumo (DT) ir Bajeso metodus. Pas-

tarajam buvo pasirinkti informatyvūs aprioriniai skirstiniai tokie kaip apribotas tolygusis arba beta

skirstinys su atitinkamais parametrais ir neinformatyvūs - Jeffreys, ”reference” ir tolygūs intervale

(0,1) skirstiniai. Parametrai buvo vertinami naudojant generuotus duomenis. DT įverčiai beveik

visais atvejais turėjo mažiausią poslinkį, bet Bajeso įverčiai daugeliu situacijų turėjo mažesnes vidu-

tines kvadratines paklaidas bei Kullback-Leibler divergenciją. Rezultatai, gauti su informatyviais

aprioriniais skirstiniais, buvo geriausi.

Kita šio darbo dalis skirta hipotezių tikrinimui, kai naudojamas nagrinėjamas planas. Tam

tikslui pasiūlyta naudoti Bajeso pasikliautinuosius intervalus. Naudojantis Markovo grandinių

Monte Karlo metodu buvo įvertinta naujos hipotezių tikrinimo procedūros pirmos rūšies klaidos

tikimybė ir galia keletui parametrų kombinacijų. Beveik visais atvejais gauta galia buvo didesnė

negu pirminių pasiūlytų testų, tačiau pirmos rūšies klaidos tikimybė svyravo apie pasirinktą lyg-

menį tik naudojant tolygius apriorinius skirstinius.

Taigi, taikant Bajeso metodą imties dydis ir tyrimų kaina gali būti sumažinta kai naudojamas

išplėstas dvipakopis klinikinis randomizacijos planas. Pratęsiant šio darbo tematiką būtų galima

pasiūlyti alternatyvą hipotezių tikrinimui arba sukurti modelį tolydaus atsako atvejui.
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Introduction

Randomization designs for the clinical trials are widely spread in many medical related fields.

They are usually used to test the effect of a new drug or a treatment when the outcome is binary. As

a gold standard, subjects participating in the trial are randomly divided into two groups: treatment

and placebo. The treatment group gets the actual drug and another one gets only imitation - the

placebo. This way, the actual effect could be estimated after the trial is finished. However, there are

several disease areas, where the high rate of placebo response makes some difficulties to evidenti-

ate the clinically and statistically significant benefit of medication. These often include psychiatric

disorders like depression, anxiety, schizophrenia and other [2, 7, 13, 16]. In these cases, using

traditional randomization design is quite complicated because the required sample size to find sta-

tistically significant effect is greatly increasing. This leads to several issues: the research becomes

more expensive, more time consuming and needs much more effort.

To overcome previously mentioned challenges, new clinical trial designs were developed. The

latest one is the two-way enriched design (from now on it will be abbreviated as TED) introduced

by A. Ivanova and R. N. Tamura [5]. The authors of the later article shows that TED is superior over

other proposed designs by presenting that the sample size needed to acquire 80% power is smaller in

the most cases. The possible areas of application of TED, including epilepsy, periodontal and even

medical device clinical studies, already mentioned in some works [4, 6, 11]. However, the sample

size could be reduced more by incorporating Bayes theory. Therefore, the purpose of this work

is to show that Bayesian framework works better than proposed maximum likelihood approach for

TED and that the expenses of trials with the high rate of placebo response could be downsized. The

Bayesian approach is applied for the two statistical problems in TED: the parameters estimation

and the hypothesis testing.

This master thesis is organized as follows. The first chapter of this work is dedicated for a

brief summary of different proposed clinical trial designs, the original approach for TED and other

findings from literature review. In the second chapter, Bayesian approach for TED is introduced.

The main focus of that chapter is on the parameters estimation and the usage of different prior

distributions. Also, the comparison of Bayes and maximum likelihood estimates on the simulated

data is produced. The third chapter is devoted to the hypothesis testing and power simulations.

All three cases of tests from the original approach are tested. And finally, all the most important

findings and results are presented in the conclusions section.
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1. Literature review

1.1. Clinical trial designs

Clinical trials designs dedicated for coping with the high rate of placebo response are usually

called designs with enrichment strategies. They often consist of two sequential stages: one for

filtering out a part of subjects and another one for the actual randomization. Here three of the most

popular, besides TED, will be introduced in brief.

First one is called placebo lead-in (run-in) design. It is the first one proposed and it is quite

straightforward. The placebo is given for all subjects at so called stage 0 and then only placebo

non-responders are included into the randomization process for stage 1. In this way, the rate of

placebo response is expected to be lower after stage 1 is finished. However, a few drawbacks could

be already distinguished. The bigger sample size is needed and only the part of it is used in the

hypothesis testing. Moreover, the real benefit of using this design is arguable based on some works

which show that the effect size and placebo response rate do not change [8, 15].

Another design is randomized withdrawal design (also noted as randomized discontinuation).

The concept is similar to placebo lead-in design, except this time the drug (or treatment) is given

to all patients at stage 0 and only those who respond to the medication are included into the further

analysis. It is believed that trial subjects who switched to placebo after randomization are more

likely to lose the effect and this way the effect size should increase in overall. However, there

are resembling disadvantages using this procedure like the greater amount of sample in stage 0

and longer study time. This kind of design is especially suggested when population of patients is

heterogeneous and the health of only of a subset of it could be improved.

One more proposal for improving traditional parallel design and not so well prepared placebo

lead-in design is to use the sequential parallel comparison design (SPCD) [2]. Trials of this type

are conducted by first randomizing all patients to two groups like in the standard approach. In the

second stage all placebo non-responders are randomly reassigned again. It is similar to placebo

lead-in, however SPCD uses randomization in the initial stage as well. For the efficacy analysis,

all available data from first stage and results of the placebo non-responders from the second stage

is used. However, usually all patients are kept in the trial during both stages (for others the initial

treatment is kept) for blinding purpose. To make sure that sufficient amount of subjects participate

in the second stage, often higher proportion is allocated to placebo group at initial stage. This design

attempts to ease the placebo response rate and also to lessen the required sample size. That is why

this approach is popular among researchers and various models are developed to test the treatment
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effect. SPCD is the convenient way to reduce overall length of the research, however since all the

patients are enrolled in the study from beginning to an end, the novel design, two-way enriched

design (TED), was proposed. It will be discussed in more details in the next subsection because it

is the base of this master thesis.

1.2. Original approach for TED

As it was mentioned previously, TED was introduced by A. Ivanova and R. N. Tamura, and this

subsection will be based on their article [5]. This design combines two approaches from previous

subsection: randomized withdrawal design and SPCD. In the first stage all patients are randomly

assigned to the placebo or drug. In the stage 2 only drug responders and placebo non-responders are

re-randomized. Other subjects keep their initial treatment in the second stage, again, for blinding

purpose, but their data is not used in efficacy analysis. TED is depicted in Figure 1. This new design

is based on assumption that a drug, which works significantly more effectively than the placebo,

will also be more effective in the maintenance of efficacy. Therefore, using it the required sample

size could be reduced more than with SPCD.

In the article it is stated that there are two approaches for randomization. One is by using defi-

nition of TED which was introduced previously. Another one is to randomly assign patients to one

of the four sequences placebo-placebo, placebo-drug, drug-placebo and drug-drug at the beginning

of the trial. If the randomization is via Bernoulli random variables these two approaches are equiv-

Figure 1. Two-way enriched design [5].
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Table 1. Two-way enriched design.

Treatment Response

Stage 1 Stage 2 Stage 1 Stage 2 Count Probability

Placebo Placebo(n1)

No Yes n11 s2(1− q1)q2
No No n12 s2(1− q1)(1− q2)
Yes • n13 q1
No missing n14 (1− s2)(1− q1)

Placebo Drug (n2)

No Yes n21 s2(1− q1)p2
No No n22 s2(1− q1)(1− p2)
Yes • n23 q1
No missing n24 (1− s2)(1− q1)

Drug Placebo (n3)

No • n31 (1− p1)
Yes Yes n32 s3p1q3
Yes No n33 s3p1(1− q3)
Yes missing n34 (1− s3)p1

Drug Drug (n4)

No • n41 (1− p1)
Yes Yes n42 s3p1p3
Yes No n43 s3p1(1− p3)
Yes missing n44 (1− s3)p1

Note. p1: P(drug response in Stage 1), q1: P(placebo response in Stage 1), p2: P(drug
response in Stage 2|placebo non-responder in Stage 1), q2: P(placebo response in Stage
2|placebo non-responder in Stage 1), p3: P(drug response in Stage 2|drug responder in
Stage 1), q3: P(placebo response in Stage 2|drug responder in Stage 1), s2 is the proportion
of placebo non-responders in Stage 1 who participate in Stage 2, s3 is the proportion of
drug responders in Stage 1 who participate in Stage 2. Responses denoted ”•” are not
included in the analysis by design, n14 and n24 are placebo non-responders and n34 and
n44 are drug responders, who dropout and do not participate in Stage 2 [5].

alent. For simplification and consistency with the article, the latter one approach is used in this

thesis. The overall sample size will be noted as n and corresponding sample sizes for sequences

will be n1, n2, n3 and n4.

Some more definitions used in the article are necessary to understand the proposed approach.

Define b = (n1 + n2)/n, as the proportion selected for placebo group in the first stage. To get

the better view, further notations related to probabilities are introduced in Table 1. Based on these,

the joint likelihood function for unknown parameters (p1, q1, p2, q2, p3, q3, s2, s3) with a little

correction1 is expressed like this:

L(p1, q1, p2, q2, p3, q3, s2, s3) ∝ pn3+n4−n31−n41
1 (1− p1)

n31+n41qn23+n13
1 (1− q1)

n1+n2−n23−n13×

×pn21
2 (1− p2)

n22qn11
2 (1− q2)

n12pn42
3 (1− p3)

n43qn32
3 (1− q3)

n33×

×sn11+n12+n21+n22
2 (1− s2)

n14+n24sn32+n33+n42+n43
3 (1− s3)

n34+n44 .

1in the article there are typing mistakes with the power of p1 and (1− p1)
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However, for all the simulations and results, the authors consider parameters s2 and s3, called re-

tention rates, fixed at 1. Therefore, in this thesis they also will be fixed and the simpler likelihood

function will be exploited:

L(p1, q1, p2, q2, p3, q3) ∝ pn3+n4−n31−n41
1 (1− p1)

n31+n41qn23+n13
1 (1− q1)

n1+n2−n23−n13×

×pn21
2 (1− p2)

n22qn11
2 (1− q2)

n12pn42
3 (1− p3)

n43qn32
3 (1− q3)

n33 .
(1)

When the retention rates are not assumed to be equal to one, all the calculations could be quite

easily modified. However, this thesis aims to compare obtained results with the presented in [5], so

that part is omitted.

Ivanova and Tamura proposed three score tests for their newly developed design. They define

the treatment effects ∆1 = p1 − q1, ∆2 = p2 − q2 and ∆3 = p3 − q3. For the first test - score

test with one degree of freedom (DF), they assume that investigator might have some knowledge

and define new parameters ρ1 and ρ2 such that ∆1ρ2 = ∆2 and ∆1ρ3 = ∆3. The test is derived

under the assumption that r2 = ρ2 and r3 = ρ3, where r2 and r3 are known constants. Then

new likelihood, which uses new parametrization of p1 = ∆1 + q1, p2 = r2∆1 + q2 and p3 =

r3∆1 + q3, is presented. The hypothesis for testing is H0 : ∆1 = 0, which implies that treatment

effect equals 0 in both stages. For testing this hypothesis, score test is derived using maximum

likelihood estimates under H0. The presented test is asymptotic. More details could be found in

the article. The test is dependent on three parameters b, r2 and r3. In fact, authors show that other

clinical trial designs are the special cases of TED by changing these. For example when b = 1

it is placebo lead-in design, when b = 0 it is randomized withdrawal design, when b = 0.5 and

r2 = r3 = 0 it is the traditional parallel design. Therefore, if the investigator is willing to make

some assumptions, various combinations could be used, however, if making premise does not sound

right, the recommended values are suggested (b, r2, r3) = (0.5, 1, 1).

Other two tests are derived in a similar fashion. Score test with two degrees of freedom (DF)

uses parametrization where only one of the treatment effect is proportional to the effect in stage 1:

p2 = r2∆1 + q2 or p3 = r3∆1 + q3, and parameters to estimate are q1, q2, q3, ∆1 and one of ∆2 or

∆3. Score test with three DF uses parametrization with all three treatment effects ∆1, ∆2 and ∆3.

For all three tests, the sample sizes, which are required to achieve desired power, are provided

using optimal2 and recommended test parameters b, r1 and r2. However, comparison with other

designs are performed only for the first test. Authors show that the TED produces the lowest sample

size in the most of the cases using recommended values and in all cases using the optimal values.
2the optimal r2 = (p2 − q2)/(q1 − q1), r3 = (p3 − q3)/(q1 − q1) and the optimal b that maximizes power can be

found via grid search
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In this thesis, only the data related to recommended values (b, r2, r2) = (0.5, 1, 1) will be analyzed.

1.3. Related works

During literature review, only one work which introduced a new approach for TED was found.

It is a very recent article written by Liu et al [9] and published in June 2019. The authors briefly

review the most important clinical trial designs and propose a novel method for the latest one -

TED.

The new approach is based on the repeated measures model and it is justified because after the

first and second stage the measurements are made for the same subjects. For binary outcome design,

authors suggest to use logistic regression and, since there is a correlation between the outcomes

in the two stages within the same patient, they apply generalized estimating equations (GEE) to

estimate the treatment effect. Moreover, the approach with several different methods for continuous

outcome is introduced in their work. These include repeated measures model, weighted repeated

measures model with weights from propensity score and weights from K-means clustering. For

more details refer to [9] because this master thesis is focused on the method for the clinical trials

with binary outcome and no further analysis of that case is needed.

Turning to direct relation to this thesis, the effectiveness of the novel method for binary outcome

was tested through a broad simulation of type I error and power. For evaluation 1 000 000 and 10

000 data sets for each scenario, taken from Ivanova’s and Tamura’s manuscript, were generated,

accordingly. Power comparisons were made only with the score test with one degree of freedom.

Simulation showed that type I error is well controlled in almost every case. However, the notable

increase in the power was captured only in the situations, where one of the actual ∆1, ∆2 and ∆3

equals to 0 and only with certain model parameters, as can be seen from Table 2. So, for other

situations, there is no benefit of using this novel approach. Nevertheless, Liu et al extended TED

application for the clinical trials with the continuous outcome, and that is the main achievement of

Table 2. Power testing for H0 : ∆1 = 0 ∩∆2 = 0 ∩∆3 = 0 in Liu’s et al manuscript [9].

Score GEE GEE GEE GEE GEE
p1 q1 p2 q2 p3 q3 N Test(1df) ω1 = 0.5 ω1 = 0.6 ω1 = 0.7 ω1 = 0.8 ω1 = 0.9
0.4 0.3 0.4 0.3 0.9 0.8 412 0.79 0.71 0.76 0.77 0.75 0.68
0.5 0.3 0.4 0.2 0.9 0.8 128 0.8 0.65 0.71 0.76 0.77 0.74
0.5 0.3 0.4 0.1 0.9 0.8 96 0.82 0.64 0.7 0.73 0.71 0.65
0.4 0.3 0.4 0.3 0.9 0.7 312 0.8 0.81 0.82 0.8 0.73 0.61
0.5 0.3 0.4 0.2 0.9 0.7 104 0.81 0.7 0.74 0.75 0.73 0.66
0.5 0.3 0.4 0.1 0.9 0.7 80 0.82 0.66 0.71 0.71 0.67 0.6
0.4 0.4 0.4 0.3 0.9 0.8 2612 0.79 0.96 0.91 0.74 0.43 0.14
0.4 0.3 0.4 0.3 0.9 0.9 728 0.8 0.48 0.62 0.72 0.81 0.83
0.4 0.3 0.4 0.4 0.9 0.8 644 0.8 0.72 0.8 0.84 0.85 0.83
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their work because in some fields only observation of continuous quantities make sense.

Therefore, after literature review it was assured that TED could definitely be useful in clinical

trials and reducing the sample size would make it even more attractive to investigators. Furthermore,

no attempts to apply Bayes theory for TED were found and the latest approach works better for only

a few cases. This means that Bayes approach still eligible for improving the design.
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2. Parameters estimation in TED

Parameters estimation is fundamental task in many applied statistics fields. The more accurate

estimates, the more adequate conclusions. That is why the main purpose of this thesis is to show

that Bayesian estimation in TED is more precise for small samples, which is crucial in medicine,

than a maximum likelihood estimation. For this task, both methods will be introduced and applied

on the simulated data.

2.1. Maximum likelihood estimation

2.1.1. Maximum likelihood method

Maximum likelihood estimation (noted as MLE) is the common approach in statistics and, as

mentioned previously, Ivanova and Tamura applied it for TED as the base of their proposed tests.

That is why this method is used as reference in this master thesis and the core principles of it will be

reminded based on [1]. Suppose, X is a random vector having density f(x; θ), θ ∈ Θ ⊂ Rm, with

respect to some σ-finite measure on Rm, and the estimator θ̂ is needed. First of all, the likelihood

functionL(θ) = LX(θ) = f(X; θ) is found. It could be used as approximation of the probability that

the sample is close to x given the value of θ. Based on this, it seems plausible to look for estimator by

maximizingLx(θ) over the parameter’s θ space. The maximum likelihood (ML) estimator θ̂ = θ̂(X)

is then obtained by changing realization x to X in the maximum expression and it satisfies condition

L(θ̂) = sup
θ∈Θ

L(θ).

Usually, ML estimator is found by maximizing the function l(θ) = lnLX(θ). Logarithmic transfor-

mation is monotonic and continuous, consequently, it achieves maximum at the same point while

it’s expression often is simpler and more convenient to handle analytically. If function l(θ) achieves

maximum and is differentiable (derivative exists) with respect to θ, ML estimator satisfies likeli-

hood equations

l̇(θ) = 0; (2)

where

l̇(θ) =

(
∂l(θ)

∂θ1
, . . . ,

∂l(θ)

∂θm

)T

is the appropriate vector of derivatives. ML estimators are found by solving the system of equations

(2) with respect to θ, however, sometimes this system is not solvable by hand, therefore, numeric

methods are used to find solutions.
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2.1.2. MLE in TED

In case of TED, the vector of unknown parameters is θ = (p1, q1, p2, q2, p3, q3) =

(θ1, θ2, θ3, θ4, θ5, θ6). Log-likelihood function is l(θ) = (n3 + n4 − n31 − n41)lnp1 + (n31 +

n41)ln(1− p1) + (n23 + n13)lnq1 + (n1 + n2 − n23 − n13)ln(1− q1) + n21lnp2 + n22ln(1− p2) +

n11lnq2 + n12ln(1 − q2) + n42lnp3 + n43ln(1 − p3) + n32lnq3 + n33ln(1 − q3), which is derived

from (1). The system of equations (2) can be easily found and solved in this case, so no numeric

methods are needed:

∂l(θ)

∂p1
=
n3 + n4 − n31 − n41

p1
− n31 + n41

1− p1
= 0

...
∂l(θ)

∂q3
=
n32

q3
− n33

1− q3
= 0

The solution for the above system is:

p̂1 =
n3 + n4 − n31 − n41

n3 + n4

, q̂1 =
n23 + n13

n1 + n2

p̂2 =
n21

n21 + n22

, q̂2 =
n11

n11 + n12

p̂3 =
n42

n42 + n43

, q̂3 =
n32

n32 + n33

(3)

2.2. Bayesian estimation

2.2.1. Bayes theory

Bayesian statistics is very important part of this thesis, so some theoretical background is pro-

vided for the further understanding. This subsection is based on [3]. The essential thing, which

makes Bayesian approach different from the frequentist one, is that the parameter of interest θ is

treated as random rather than fixed and the sample is collected with only one observed value of pa-

rameter. In what follows, the brief description of the model corresponding to the case of absolutely

continuous parameter θ is provided. Denote a random sample (usually consisting of independent

identically distributed observations) as Y = (Y1, . . . ,Yn) and the observed data as y = (y1, . . . ,yn).

The joint density function for θ and Y can be expressed as a product of two densities:

p(θ, y) = π(θ)p(y | θ),

13



where π(θ) is the density of θ, which is called prior (the distribution is denoted accordingly), and

p(y | θ) is the density of the data. Then the conditional density of θ given Y = y can be derived

using Bayes’ theorem:

p(θ | y) = p(θ, y)

p(y)
=
π(θ)p(y | θ)

p(y)
,

where p(y) =
∫
π(θ)p(y | θ)dθ. The multiplier 1

p(y)
is independent of θ and, therefore, changes

nothing when it comes to maximization with respect to θ, so it can be omitted, and equivalent

expression can be used:

p(θ | y) ∝ π(θ)p(y | θ). (4)

The left side of (4) is called the posterior density. Moreover, it can be seen that p(y | θ) is the like-

lihood function. The formula above is the core for making conclusions about unknown parameter

θ in Bayesian interference. For example, the posterior expectation E(θ | Y = y) is usually used as

a point estimate.

Bayes method is highly dependent on the choice of the prior distributions. Wrong choice could

lead to the devastating conclusions. That is why this method gets a bunch of criticism. However,

the right choice of prior can significantly improve performance of the Bayesian based model and

increase the accuracy of the estimator. Nevertheless, there is no unique choice which prior distri-

bution should be used, but there are a few options. These will be described in the next subsection.

2.2.2. Prior distributions

Usually, the prior distribution belongs to some parametric family, e.g. θ ∼ Beta(α; β). The

corresponding parameters (in the example above, α and β) are called hyperparameters. One of

the options is to take the informative distribution (both family and hyperparameters are chosen

using additional information). They are based on the previous knowledge about θ or the opinion

of an expert. It is very valuable, when the information is reliable, because additional data could be

incorporated into the theoretical model.

When there is no trustworthy insights about the parameter, another option is to take one of the

noninformative (also called objective) priors. These have only the minor influence to the posterior

distribution. For example, it could be the uniform distribution or the normal distribution with a

large dispersion. One of the frequently met in the literature is the Jeffreys prior. It is proportional

to the determinant of the Fisher information matrix π(θ) =
√
det(I(θ)), where

I(θ) = −E
[
∂2

∂θ2
lnp(Y | θ)

]
.
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This one is popular because it is usually computationally simple. Moreover, the Jeffreys prior is

left invariant, which is useful property in many statistical problems.

One more objective prior is the reference prior. This one is the right invariant and in plentiful

problems it has more desirable properties than the previously described Jeffreys. More details

could be found in the [3]. However, derivation of the reference prior is not simple and that is

the reason for the rare applications. Nevertheless, it will be employed in this thesis and the brief

description is therefore provided. In the deriving of the reference prior, the parameters are assumed

as having different importance. Hence, the order of the parameters is important. Suppose, case of

d parameters is of interest and θ = (θ1, . . . , θd) is in order of parameters importance, i.e. θ1 is

the most important. Let S = (I(θ))−1 where I(θ) is Fisher information matrix and Sj be the

j × j principal submatrix of S. Let Hj = S−1
j and hj be the (j,j)-th element of Hj . Moreover, an

increasing sequence of compact (closed and bounded) hyperrectanglesK1i×· · ·×Kdi whose union

is Θ should be fixed. Then pi(θd | θ1, . . . , θd−1) = c′di(θ1, . . . , θd−1)
√
hd and the other conditional

distributions are determined iteratively:

pi(θj | θ1, . . . , θj−1) =

c
′
ji(θ1, . . . , θj−1)ψj(θ1, . . . , θj) on Kji

0 elsewhere,

where

ψj(θ1, . . . , θj) = exp
{∫

1

2
loghj(θ)pi(θj+1, . . . ,θd | θ1, . . . ,θj)dθj+1 . . . dθd

}

and c′ji(θ1, . . . , θj−1) is normalizing constant such that

∫
Kji

pi(θj | θ1, . . . , θj−1)dθj = 1.

Using the above expressions, the reference prior is then taken proportional to

π(θ) ∝ pi(θd | θ1, . . . , θd−1)pi(θd−1 | θ1, . . . , θd−2) . . . pi(θ2 | θ1)pi(θ1). (5)

There is also another procedure, but this one is more convenient algebraically.

To conclude, there are several options for the choice of the prior distribution. Some of them

were not even introduced in this subsection since this thesis will be limited to the presented ones

as these are considered to be the most appropriate for TED.
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2.2.3. MCMC method

Quite often the posterior distributions are complex and numerical methods are required to find

the estimates. One of the most popular methods in Bayesian interference is the Markov Chain

Monte Carlo (MCMC) method [3]. In a nutshell, its description is as follows. First, one constructs

a Marko chain having limiting stationary distribution which coincides with that of θ. After that,

one simulates a sufficiently long trajectory of the chain and makes use of the tail of that trajectory

to approximate distribution of θ as well as other related quantities (moments, quantiles, etc.). The

dropped part of the chain at the beginning of the trajectory is referred as burn in, and the reason for

dropping is due to the fact that initial members have distribution which is usually not close enough

to the stationary one. Hence may bias inference.

There are already several algorithms introduced for the simulation of the MCMC, but in this

thesis only one, the Metropolis-Hastings algorithm, was used. It is a modified version of a random

walk with acceptance/rejection rules for the convergence to the target distribution. This algorithm

works as follows.

1. The initial value θ0 is drawn from initial distribution p0(θ).

2. For the next steps t = 1, 2, · · · :

(a) The value θ∗ is proposed from the transitional distribution Jt(θ∗ | θt−1) at time t. The

transitional distribution is required to be symmetric, i.e

Jt(θa | θb) = Jt(θb | θa) ∀θa, θb, t.

(b) The ratio of the densities is calculated

r =
p(θ∗ | y)
p(θt−1 | y)

.

(c) Then

θt =

θ
∗ with probability min(r,1)

θt−1 otherwise.

Also, one more modification is required when parameters are constrained. E.g. if condition

0 < θ < 1 has to be satisfied, then θt = θ∗ with probability 0 in the case of θ∗ ≤ 0 or θ∗ ≥ 1. It is

proved that the sequence of the iterations θ1, θ2, . . . converges to the target distribution (inclusion

of conditions for bounded parameters needs more iterations) by showing that simulated sequence
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is Markov chain with unique stationary distribution which is the target distribution. Hence, this

method is really helpful in many cases and this work is not the exception.

2.2.4. Bayesian estimation in TED

This subsection is devoted to description of application of Bayes’ theory for the parameters

estimation in TED. Several previously described priors were used to find the best combination with

the same likelihood function (1), and here more details are provided.

The first one and the most common approach is to use the uniform U(0,1) prior distribution for

all the parameters. Before proceeding to that case, the definition of the Beta distributionBeta(α, β)

is reminded. It has two parameters α > 0 and β > 0 and the density function:

f(x) =
xα−1(1− x)β−1

B(α, β)
, x ∈ [0, 1].

Here B(α, β) = Γ(α)Γ(β)
Γ(α+β)

and Γ is the Gamma function, which, for any positive integer n, attains

value Γ(n) = (n − 1)!. It is quite obvious that Beta(1,1) and U(0,1) are equivalent distributions

with the density equal to 1 when x ∈ [0,1]. Therefore, it suffices to analyze the case with Beta prior

distribution.

In general, all the parameters are assumed to be independent and the joint prior π(θ) =

π(θ1)π(θ2)π(θ3)π(θ4)π(θ5)π(θ6) = π(p1)π(q1)π(p2)π(q2)π(p3)π(q3). Assuming that all the pa-

rameters have Beta distribution with the corresponding αi and βi, i = 1, . . . ,6, and taking into

account (4), the posterior distribution is given by

p(θ | y) ∝ pn3+n4−n31−n41
1 (1− p1)

n31+n41qn23+n13
1 (1− q1)

n1+n2−n23−n13pn21
2 (1− p2)

n22×

×qn11
2 (1− q2)

n12pn42
3 (1− p3)

n43qn32
3 (1− q3)

n33pα1−1
1 (1− p1)

β1−1qα2−1
1 (1− q1)

β2−1×

×pα3−1
2 (1− p2)

β3−1qα4−1
2 (1− q2)

β4−1pα5−1
3 (1− p3)

β5−1qα6−1
3 (1− q3)

β6−1.

It can be seen, that the posterior distribution is actually proportional to the product of the Beta

distributions with appropriate parameters. In this situation, the prior is called conjugate. These

types of priors have special property that the posterior distribution is of the same type as the prior

(in this case, Beta). Then the expectations of the corresponding Beta distributions can be taken as
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the estimators for the unknown parameters. Therefore, Bayesian estimators in this case are:

p̃1 =
n3 + n4 − n31 − n41 + α1

n3 + n4 + α1 + β1
, q̃1 =

n23 + n13 + α2

n1 + n2 + α2 + β2

p̃2 =
n21 + α3

n21 + n22 + α3 + β3
, q̃2 =

n11 + α4

n11 + n12 + α4 + β4

p̃3 =
n42 + α5

n42 + n43 + α5 + β5
, q̃3 =

n32 + α6

n32 + n33 + α6 + β6
.

(6)

Different estimators can be derived by varying values of α and β. For the special uniform case,

α1 = · · · = α6 = 1 and β1 = · · · = β6 = 1. This is uninformative prior. To model situations where

some prior information is available, several informative priors were investigated as well. The first

group of priors was based on ranges of values of parameters considered by Ivanova and Tamura

[5]. Parameters p1, q1, p2, q2 values that were used in Ivanova’s and Tamura’s manuscript were not

greater than 0.5 (in most cases less than 0.5), and values for the parameters p3, q3 were not less

than 0.7. That is why distributionsBeta(1,2),Beta(1,3) were used in this thesis as the informative

priors for the parameters p1, q1, p2, q2, and Beta(2,1), Beta(3,1) for the parameters p3, q3, which

makes the corresponding cases more likely to occur (see Figure 2).

There was one more informative prior tested in this work. Since in the most analyzed cases

probabilities p1, p2, p3 were higher than their corresponding probabilities q1, q2, q3, the modified

Figure 2. Density of the Beta priors.
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uniform distribution was used: the same U(0,1) prior was taken for the former parameters and

U(0,p1), U(0,p2), U(0, p3) for the latter, accordingly. In this case, the posterior distribution was

difficult to treat analytically, therefore the previously described MCMC method was applied for

finding the estimates. Actually, the means of the MCMC simulations were taken as the estimates.

However, quite often assumptions about the data are not feasible and then the objective priors

like U(0,1) are used. One more previously mentioned non informative prior investigated in this

thesis was Jeffreys. To derive its closed form, Fisher information matrix is needed. Let

np1 = n3 + n4 − n31 − n41, np12 = n31 + n41, nq11 = n23 + n13,

nq12 = n1 + n2 − n23 + n13, np21 = n21, np22 = n22, nq21 = n11, nq22 = n12,

np31 = n42, np32 = n43, nq31 = n32, nq32 = n33

(7)

and θ = (p1, q1, p2, q2, p3, q3) = (θ1, θ2, θ3, θ4, θ5, θ6). Then l(θ) = np11lnp1 + np12ln(1 − p1) +

nq11lnq1 + nq12ln(1 − q1) + np21lnp2 + np22ln(1 − p2) + nq21lnq2 + nq22ln(1 − q2) + np31lnp3 +

np32ln(1− p3) + nq31lnq3 + nq32ln(1− q3) and

∂l(θ)

∂θ1
=
∂l(θ)

∂p1
=
np11

p1
− np12

1− p1
,

∂l(θ)

∂θ21
= −np11

p21
− np12

(1− p1)2

−E
[
∂l(θ)

∂θ21

]
=

Enp11

p21
+

Enp12

(1− p1)2
,

where Enp11 = n3 + n4 − n3(1− p1)− n4(1− p1) = (n3 + n4)p1 and Enp12 = (n3 + n4)(1− p1)

by using Table 1. It is pretty obvious that −E
[
∂l(θ)
∂θiθj

]
= −E[0], i ̸= j, i,j = 1, . . . ,6 and the

other expectations −E
[
∂l(θ)

∂θ2k

]
, k = 2, . . . ,6 could be derived similarly with

Enq11 = (n1 + n2)q1, Enq12 = (n1 + n2)(1− q1), Enp21 = n2(1− q1)p2,

Enp22 = n2(1− q1)(1− p2), Enq21 = n1(1− q1)q2, Enq22 = n1(1− q1)(1− q2),

Enp31 = n4p1p3, Enp32 = n4p1(1− p3), Enq31 = n3p1q3, Enq32 = n3p1(1− q3).
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Thus, the Fisher information matrix is

I(θ) =



n3+n4

p1(1−p1)
0 0 0 0 0

0 n1+n2

q1(1−q1)
0 0 0 0

0 0 n2(1−q1)
p2(1−p2)

0 0 0

0 0 0 n1(1−q1)
q2(1−q2)

0 0

0 0 0 0 n4p1
p3(1−p3)

0

0 0 0 0 0 n3p1
q3(1−q3)


,

and the prior π(θ) =
√

| I(θ) |, where the determinant equals to the product of the diagonal

elements. Again, one can see that the posterior distribution is proportional to the product of

the Beta distributions. Therefore, the estimators using Jeffreys prior are obtained from (6) with

α1 =
3
2
, β1 =

1
2
, α2 =

1
2
, β2 =

3
2
, α3 = α4 = α5 = α6 =

1
2

and β3 = β4 = β5 = β6 =
1
2
.

Finally, the last of the previously described reference prior distributions which was applied in

TED was the reference prior. To derive its form, first of all the order of the parameters importance

has to be declared. In this case, the results in the treatment group are considered to be more impor-

tant than in the placebo group and the first stage is believed to be more meaningful rather than the

second. That is why the vector of parameters θ = (p1, p2, p3, q1, q2, q3) is analyzed and the Fisher

information matrix then has the different ordering on the diagonal:

I(θ) =



n3+n4

p1(1−p1)
0 0 0 0 0

0 n2(1−q1)
p2(1−p2)

0 0 0 0

0 0 n4p1
p3(1−p3)

0 0 0

0 0 0 n1+n2

q1(1−q1)
0 0

0 0 0 0 n1(1−q1)
q2(1−q2)

0

0 0 0 0 0 n3p1
q3(1−q3)


.

Although, in this special case, the positioning brings no essential difference as it is seen later. More-

over, in this case, Hj coincides with (see Subsection 2.2.2) the j × j principal submatrix of I(θ)

because only the elements on the diagonal are not equal 0. Consequently, h1 = n3+n4

p1(1−p1)
, . . . , h6 =

n3p1
q3(1−q3)

and, keeping the sequence of rectangles K1i × · · · ×K6i fixed, the first conditional distri-

bution is given by

pi(θ6 | θ1, . . . , θ5) = c′6i(θ1, . . . , θ5)

√
n3θ1

θ6(1− θ6)
on K6i,
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where

∫
K6i

c′6i(θ1, . . . , θ5)

√
n3θ1

θ6(1− θ6)
dθ6 = c′6i(θ1, . . . , θ5)

√
n3θ1arcsin(2θ6 − 1) |K6i

= 1 =⇒

=⇒ c′6i(θ1, . . . , θ5) = c6i
1√
θ1
.

Hence, the expression of the first conditional distribution:

pi(θ6 | θ1, . . . , θ5) =
c̃6i√

θ6(1− θ6)
.

The next conditional distribution is derived like this:

pi(θ5 | θ1, . . . , θ4) = c′5i(θ1, . . . , θ4)ψ5(θ1, . . . , θ5) on K5i,

ψ5(θ1, . . . , θ5) = exp
{∫

K6i

1

2
logh5pi(θ6 | θ1, . . . ,θ5)dθ6

}
= exp

{∫
K6i

1

2
log

n1(1− θ4)

θ5(1− θ5)

c̃6i√
θ6(1− θ6)

dθ6

}

=

√
n1(1− θ4)

θ5(1− θ5)
exp

{∫
K6i

c̃6i√
θ6(1− θ6)

dθ6

}

=

√
n1(1− θ4)

θ5(1− θ5)
c∗6,

c′5i(θ1, . . . , θ4) = c5i
1√

1− θ4
=⇒

pi(θ5 | θ1, . . . , θ4) =
c̃5i√

θ5(1− θ5)
.

The conditional distributions for parameters θ4, θ3 and the distribution pi(θ1) are obtained in the

same way and are very similar. For θ2, there is the difference in ψ function, because the element h2
depends on the θ4, but it does not make any significant impact:

ψ2(θ1, θ2) = exp
{∫

K6i×···×K3i

1

2
logh2pi(θ3, . . . ,θ6 | θ1,θ2)dθ6 . . . dθ3

}
= exp

{∫
K6i×···×K3i

1

2
log

n2(1− θ4)

θ2(1− θ2)

c̃6i√
θ6(1− θ6)

. . .
c̃3i√

θ3(1− θ3)
dθ6 . . . dθ3

}

=

√
n2

θ2(1− θ2)
exp

{∫
K6i×···×K3i

log
√
1− θ4c̃6i√

θ6(1− θ6)
. . .

c̃3i√
θ3(1− θ3)

dθ6 . . . dθ3

}

=

√
n2

θ2(1− θ2)
c∗2.

Everything else is equivalent to the procedure that was showed before and the distribution has anal-
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ogous expression. Note that all the distributions are proportional to the part of the corresponding hj
which is dependent on the θj regardless the order of the parameters. Furthermore, the expressions

of hj will also be the same, just with different indexes when the order is changed, because the Fisher

information matrix has only the elements on the diagonal. Thus, in this case, the reference prior is

proportional to the same combination of distributions regardless of the parameters placing and it is

obtained by using (5):

π(θ) ∝ 1√
q3(1− q3)

1√
q2(1− q2)

1√
q1(1− q1)

1√
p3(1− p3)

1√
p2(1− p2)

1√
p1(1− p1)

.

And once again, the posterior is proportional to the product of the Beta distributions and the esti-

mators are obtained using (6) with α1 = · · · = α6 =
1
2

and β1 = · · · = β6 =
1
2
.

At this point the theoretical part of the parameters estimation is finished. In many cases, the

Bayesian estimators in TED are just special cases of Beta-Binomial model with different α and β

values. In the next subsection, using careful simulations of the different situations, the question

which one of them is the best in particular settings is answered.

2.3. Comparison of methods via data simulation

Data simulation was performed using R computing environment [12]. Nine different combina-

tions of the parameters, taken from Ivanova’s and Tamura’s manuscript, were analysed. For each

case, three sample sizes - 60, 100 and 160 - were tested. These sizes were selected because the main

focus of this thesis was to show that the Bayesian estimates are more accurate for the small samples.

For each scenario, 10 000 datasets were generated (Figure 3). Data was simulated by generating the

ni (i = 1,2,3,4) values from U(0,1) distribution in every of the four groups: placebo-placebo,

placebo-drug, drug-placebo and drug-drug. Then, for example in the placebo-placebo group, the

number of generated values x which satisfy condition x ≤ (1 − q1)q2 is n11, the number of x’s

Figure 3. Combinations for the simulation of the data.
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such that (1 − q1)q2 < x ≤ 1 − q1 is n12, and the number of the other values is n13. Overall,

9 × 3 × 6 × 10000 estimates were obtained for each method. The ML estimates were evaluated

using (3) and the Bayesian estimates - using (6) with different parameters and MCMC method with

10 000 simulations and 1000 burn in as described in Subsection 2.2.4.

The main purpose of the simulations was to compare the different methods and the most im-

portant one — to compare the Bayes method versus MLE. Several metrics were calculated for that.

The first one was the bias. Let m be the number of the simulations (in previously mentioned case

m = 10000) and θ̃i be the estimate of the parameter θ during the i − th simulation. Then the

estimator of the bias:

b̂ias(θ) = θ − 1

m

m∑
i=1

θ̃i.

The next one measure was the root of the mean squared errors (RMSE):

RMSE =

√√√√ 1

m

m∑
i=1

(θ − θ̃i)2.

These two metrics were calculated for every parameter in every configuration of the parameter set

and n. The third one was quite different. It was the Kullback–Leibler (KL) divergence [10]. For

discrete probability distributions P and Q defined on the same probability space:

D(P || Q) =
∑
x∈Ω

P (x) ln
P (x)

Q(x)
.

Thus, assuming that Q is the distribution with the true parameters and P - with estimated ones,

the equivalence of these two distributions can be tested. E.g., using the first configuration with

q1 = 0.3 and q2 = 0.3 in the placebo-placebo group, the discrete distribution Q can be defined

this way: Ω = {1, 2, 3}, Q(1) = (1 − 0.3)0.3 = 0.21, Q(2) = (1 − 0.3)(1 − 0.3) = 0.49

and Q(3) = 0.3 (see Table 1). Let q̃1i and q̃2i be the estimates of the corresponding parameters

during the i − th iteration. Then the distribution Pi could be defined like this: Ω = {1, 2, 3},

Pi(1) = (1− q̃1i)q̃2i, P (2) = (1− q̃1i)(1− q̃2i) and P (3) = q̃2i, and KL divergence Di(Pi || Q)

could be easily calculated. The KL divergence that was used to compare the different methods was

the average of Di over all the iterations: D(P || Q) = 1
m

∑m
i=1Di(Pi || Q). For other groups and

configurations, KL divergence was estimated in an analogical manner. The KL divergence, which

is close to zero, indicates that the two distributions are almost identical.

Therefore, in total, RMSE and bias were evaluated for 9×3×6 configurations and KL divergence

was calculated for 9× 3× 4 cases for each of the seven approaches. Below, only the main insights
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Figure 4. Comparison of the RMSE between Bayes method with the different priors and MLE.

regarding the results are discussed. All the evaluated measures from the simulation are provided in

the appendix. First of all, after the examination of the results, it was found that none of the Bayesian

approaches had lower bias in absolute value than ML approach in almost all the cases (MLE bias

was the lowest in 99.38% cases). However, there was absolutely different situation when looking

at the RMSE. Bayesian method with all the priors worked better when comparing RMSE (Figure

4), but some of them gave better results than the others. Case with the semi informative Beta(1,2)

or Beta(2,1) [B(1,2)/B(2,1) in the Figure 4] and Beta(1,3) or Beta(3,1) [B(1,3)/B(3,1)] priors

in all the cases returned lower RMSE than MLE. Meanwhile, using the other informative prior

— combination of U(0,1) and U(0,p1), U(0, p2), U(0, p3) [U(0,1)/U(0,p)] — gave inferior results

and that is justified, because not all the cases satisfy assumption that was used in constructing

the prior. Actually, in the 45.06% of the configurations, this approach has returned the minimum

RMSE. Nevertheless, the combination of Beta(1,3) and Beta(3,1) as the prior surpassed it and,

consequently, RMSE were the minimal in 56.79% of the cases. Objective priors did not excel

other priors based on the minimum errors, however in the most cases they worked better than MLE.

The best of them was Jeffreys (based on the percentage of the configurations with lower RMSE than

obtained by using the MLE). Similar conclusions could be derived when comparing KL divergence

(Figure 5), but the superiority of the Bayesian estimates was not so evident as it was with the RMSE.

Again, the combination of the Beta(1,3) and Beta(3,1) as the prior worked better than MLE in
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Figure 5. Comparison of the KL divergence between Bayes method with the different priors and MLE.

almost all the cases and the KL divergence was minimal in around 60% of them. However, the

approach with U(0,1) was the best among the not informative priors with 75.93% of cases having

the divergence less than the divergence obtained by using the MLE.

In conclusion, the ML estimates are less biased than Bayesian. However, the more meaningful

metric in this case is the KL divergence because it lets to look at the similarity of the distributions

rather than the individual parameters. And based on that, the Bayes approach is better, because

KL divergence is lower in more than 50% of the cases regardless of the prior. The RMSE are not

contradictory to this conclusion either. Usage of the modest objective priors, i.e., incorporating just

a little of additional information, gives the better estimates than the MLE. And if the researcher is

willing to include more reliable information from the previous or pilot studies, then the estimates

become even more accurate.
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3. Hypothesis testing in TED using Bayes approach

There are two main fields in the applied statistics: the parameters estimation and the hypothesis

testing. The first one was discussed previously and it was shown that Bayesian inference works

better. In this section, the second one is analysed. However, in this thesis, only one quite simple

approach will be presented because the core of this thesis was the fist part. That approach is to use

the credible intervals [3, 14]. These are similar to the confidence intervals in the classical statistics,

but interpretation is quite different.

Let the unknown parameter be θ ∈ Θ ⊂ R and C ⊂ Θ be the (1 − α)100% credible interval.

Then it satisfies the condition:

P (θ ∈ C | X = x) ≥ 1− α,

where α ∈ (0,1) and x is the observed sample. For hypothesis testing, it is suggested to use the

equal-tailed or one-sided 1 − α credible interval. With qα(θ | x) denoting the posterior quantile

function of θ, such that P (θ < qα(θ | x)) = α, these two intervals are (qα/2(θ | x), q1−α/2(θ |

x)) and (qα(θ | x),+∞) or (−∞, q1−α(θ | x)) accordingly. Moreover, only the objective priors

are recommended to use when implementing this approach. Based on the previous section, the

uniform and Jeffreys priors were tested because the reference prior is computationally difficult and

no superiority over the Jeffreys was noticed in this case. The hypothesis testing using the credible

intervals is analogous to testing with the confidence intervals in the classical statistics. Suppose

H0 : θ = θ0 holds, then null hypothesis is accepted if θ0 ∈ C and rejected otherwise.

Furthermore, there is another concept proposed from Bayesian perspective. Let the hypothesis

for testing isH0 : θ ∈ Θ0 with alternativeH1 : θ ∈ Θ1, where Θ0 and Θ1 are of the same dimension

as for one-sided null and alternative. Then the posterior odds ratio P (Θ0|x)/P (Θ1|x) is calculated

and then using some threshold, e.g. 0.05
0.95

= 1
19

, conclusion about the hypothesis is made. However,

by looking at this more closer, it can be seen that it is the same as using the credible interval.

3.1. New parametrization and priors for one DF test

The primary objective of this part is to present the hypothesis testing alternative for the one DF

test (see Subsection 1.3). However, for the consistency purpose, performance of the same procedure

is also examined for other two tests described in Subsection 1.3. Thus, the new parametrization for
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likelihood function (1) is used:

L(∆1,∆2,∆3, q1, q2, q3) ∝ (∆1 + q1)
n3+n4−n31−n41(1−∆1 − q1)

n31+n41qn23+n13
1 ×

×(1− q1)
n1+n2−n23−n13(∆2 + q2)

n21(1−∆2 − q2)
n22×

×qn11
2 (1− q2)

n12(∆3 + q3)
n42(1−∆3 − q3)

n43qn32
3 (1− q3)

n33 ,

(8)

where ∆i = pi − qi, i = 1,2,3 and the same assumptions, that ∆2 = r2∆1 and ∆3 = r3∆1 as

for one DF test are valid. Only the case with r2 = r3 = 1 is analyzed. The general case could be

studied similarly.

This means that the vector of parameters for the estimation θ = (∆1, q1, q2, q3) = (θ1, θ2, θ3, θ4)

and the hypothesis for testing is H0 : ∆1 ≤ 0. In the original approach the equality was used, but,

in general, the values less than zero are also in the favor that the treatment was not effective enough.

This hypothesis was tested by using the 0.95 credible interval (q0.05(∆1 | x),+∞) of ∆1. If the

lower bound is more than zero, the null hypothesis is rejected, which means that the treatment is

effective.

For Bayesian approach, the priors are needed, and, as mentioned before, two of them

were tested. The first one was simple: ∆1 ∼ U(−1,1), q1,q2,q3 ∼ U(0,1) and π(θ) ∝

U(−1,1)U(0,1)U(0,1)U(0,1). The second one was Jeffreys and the determinant of the Fisher in-

formation matrix was needed, which is not as simple as it was in the second section. The following

is the derivation. First, the log-likelihood function is obtained using the same definitions (7):

l(θ) =np11ln(θ1 + θ2) + np12ln(1− θ1 − θ2) + nq11lnθ2 + nq12ln(1− θ2) + np21ln(θ1 + θ3)+

+ np22ln(1− θ1 − θ3) + nq21lnθ3 + nq22ln(1− θ3) + np31ln(θ1 + θ4)+

+ np32ln(1− θ1 − θ4) + nq31lnθ4 + nq32ln(1− θ4).

Then the first derivatives are found:

• l1 = ∂l(θ)
∂θ1

= np11

θ1+θ2
− np12

1−θ1−θ2
+ np21

θ1+θ3
− np22

1−θ1−θ3
+ np31

θ1+θ4
− np32

1−θ1−θ4
;

• l2 = ∂l(θ)
∂θ2

= np11

θ1+θ2
− np12

1−θ1−θ2
+ nq11

θ2
− nq12

1−θ2
;

• l3 = ∂l(θ)
∂θ3

= np21

θ1+θ3
− np22

1−θ1−θ3
+ nq21

θ3
− nq22

1−θ3
;

• l4 = ∂l(θ)
∂θ4

= np31

θ1+θ4
− np32

1−θ1−θ4
+ nq31

θ4
− nq32

1−θ4
.

Let lij = ∂li
∂θj
, i,j = 1,2,3,4. Then the second derivatives are:

• l11 = − np11

(θ1+θ2)2
− np12

(1−θ1−θ2)2
− np21

(θ1+θ3)2
− np22

(1−θ1−θ3)2
− np31

(θ1+θ4)2
− np32

(1−θ1−θ4)2
;
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• l12 = l21 = − np11

(θ1+θ2)2
− np12

(1−θ1−θ2)2
;

• l13 = l31 = − np21

(θ1+θ3)2
− np22

(1−θ1−θ3)2
;

• l14 = l41 = − np31

(θ1+θ4)2
− np32

(1−θ1−θ4)2
;

• l22 = − np11

(θ1+θ2)2
− np12

(1−θ1−θ2)2
− nq11

θ22
− nq12

(1−θ2)2
;

• l33 = − np21

(θ1+θ3)2
− np22

(1−θ1−θ3)2
− nq21

θ23
− nq22

(1−θ3)2
;

• l44 = − np31

(θ1+θ4)2
− np32

(1−θ1−θ4)2
− nq31

θ24
− nq32

(1−θ4)2
;

• l23 = l32 = l24 = l42 = l34 = l43 = 0.

Now, the expectations can be easily obtained by again using Table 1 as in the Subsection 2.2.4,

but with different parametrization. For short, put sij = −Elij . The determinant of the Fisher

information matrix is then:

|I(θ)| =

∣∣∣∣∣∣∣∣∣∣∣∣

s11 s12 s13 s14

s12 s22 0 0

s13 0 s33 0

s14 0 0 s44

∣∣∣∣∣∣∣∣∣∣∣∣
= −s14

∣∣∣∣∣∣∣∣∣
s12 s22 0

s13 0 s33

s14 0 0

∣∣∣∣∣∣∣∣∣+ s44

∣∣∣∣∣∣∣∣∣
s11 s12 s13

s12 s22 0

s13 0 s33

∣∣∣∣∣∣∣∣∣ =

= s14s22

∣∣∣∣∣∣s13 s33

s14 0

∣∣∣∣∣∣+ s44s13

∣∣∣∣∣∣s12 s22

s13 0

∣∣∣∣∣∣+ s44s33

∣∣∣∣∣∣s11 s12

s12 s22

∣∣∣∣∣∣ =
= −s214s22s33 − s44s

2
13s22 + s44s33s11s22 − s44s33s

2
12.

Thus, the posterior p(θ|x) ∼ L(x|θ)
√

|I(θ)| when Jeffreys prior is used. In both situations, the

posteriors were difficult to handle analitically and the MCMC method was used to get the credible

intervals. All parameters were constrained: θ1 ∈ (−1,1) and 0 ≤ θ2, θ3,θ4 ≤ 1. That is why 100

000 simulations with 10 000 burn in were used to better evaluate the credible intervals. The rest

90 000 values were considered to be taken from the posterior distribution and the 5− th percentile

of them was taken as the lower bound for the interval. If the value was greater than zero, null

hypothesis was rejected. And that was the procedure for testing the hypothesis in the Bayesian

framework.

3.2. New parametrization and priors for two DF test

For two DF test, the same likelihood function (8) was used, but, in this case, only one of the ∆2

and ∆3 was proportional to the ∆1. Let ∆1 = ∆2. Then the hypothesis for testing the treatment
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effect was H0 : ∆1 ≤ 0 ∩ ∆3 ≤ 0. That is why two credible intervals were used for testing and

hypothesis was accepted only if both lower bounds were not greater than zero. However, the type I

error increased by using this approach and the more appropriate concept would be better. One of

possible remedies would be to apply closed testing with some type of correction of p-value as it is

usually done in multiple testing procedures instead of applying closed testing without adjustments.

That is why in this case, the one-sided 0.975 credible intervals were used instead of the 0.95. This

solved the problem with the higher type I error.

Again, the first prior tested was based on the uniform priors: ∆1,∆3 ∼ U(0,1) and

q1,q2,q3 ∼ U(0,1). In this case, the vector of the unknown parameters θ = (∆1,∆3, q1, q2, q3) =

(θ1, θ2, θ3, θ4, θ5). Then, the Jeffreys prior was obtained by using the same notations from the pre-

vious section of this work. Here comes the derivation. The first derivatives are:

• l1 = np11

θ1+θ3
− np12

1−θ1−θ3
+ np21

θ1+θ4
− np22

1−θ1−θ4
;

• l2 = np31

θ2+θ5
− np32

1−θ2−θ5
;

• l3 = np11

θ1+θ3
− np12

1−θ1−θ3
+ nq11

θ3
− nq12

1−θ3
;

• l4 = np21

θ1+θ4
− np22

1−θ1−θ4
+ nq21

θ4
− nq22

1−θ4
;

• l5 = np31

θ2+θ5
− np32

1−θ2−θ5
+ nq31

θ5
− nq32

1−θ5
.

Using these, the second derivatives are calculated:

• l11 = − np11

(θ1+θ3)2
− np12

(1−θ1−θ3)2
− np21

(θ1+θ4)2
− np22

(1−θ1−θ4)2
;

• l12 = l21 = l15 = l51 = 0;

• l13 = l31 = − np11

(θ1+θ3)2
− np12

(1−θ1−θ3)2
;

• l14 = l41 = − np21

(θ1+θ4)2
− np22

(1−θ1−θ4)2
;

• l22 = l25 = l52 = − np31

(θ2+θ5)2
− np32

(1−θ2−θ5)2
;

• l23 = l32 = l24 = l42 = 0;

• l33 = − np11

(θ1+θ3)2
− np12

(1−θ1−θ3)2
− nq11

θ23
− nq12

(1−θ3)2
;

• l44 = − np21

(θ1+θ4)2
− np22

(1−θ1−θ4)2
− nq21

θ24
− nq22

(1−θ4)2
;

• l55 = − np31

(θ2+θ5)2
− np32

(1−θ2−θ5)2
− nq31

θ25
− nq32

(1−θ5)2
;

• l34 = l43 = l35 = l53 = l45 = l54 = 0.
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Then the Jeffreys prior is proportional to the square root of the

|I(θ)| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

s11 0 s13 s14 0

0 s22 0 0 s25

s13 0 s33 0 0

s14 0 0 s44 0

0 s25 0 0 s55

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= −s25

∣∣∣∣∣∣∣∣∣∣∣∣

s11 0 s13 s14

s13 0 s33 0

s14 0 0 s44

0 s25 0 0

∣∣∣∣∣∣∣∣∣∣∣∣
+ s55

∣∣∣∣∣∣∣∣∣∣∣∣

s11 0 s13 s14

0 s22 0 0

s13 0 s33 0

s14 0 0 s44

∣∣∣∣∣∣∣∣∣∣∣∣
=

= −s225

∣∣∣∣∣∣∣∣∣
s11 s13 s14

s13 s33 0

s14 0 s44

∣∣∣∣∣∣∣∣∣+ s55s22

∣∣∣∣∣∣∣∣∣
s11 s13 s14

s13 s33 0

s14 0 s44

∣∣∣∣∣∣∣∣∣ =

= (s55s22 − s225)

s14
∣∣∣∣∣∣s13 s33

s14 0

∣∣∣∣∣∣+ s44

∣∣∣∣∣∣s11 s13

s13 s33

∣∣∣∣∣∣
 =

= (s55s22 − s225)(−s214s33 + s44s11s33 − s44s
2
13).

Finally, the same procedure with 100 000 MCMC simulations was applied to draw the conclu-

sions about the treatment effect. Only with the previously mentioned adjustment, that the 2.5− th

percentiles of the generated posterior distributions values were taken as the lower bounds for the

intervals.

3.3. New parametrization and priors for three DF test

For the third test, no assumptions were made about the treatment effects between the stages and

all∆i were used in the parametrization, i.e. the likelihood function identical to (8) was incorporated

into the testing procedure. The null hypothesis was H0 : ∆1 ≤ 0 ∩∆2 ≤ 0 ∩∆3 ≤ 0 and it was

rejected if at least one lower bound of the three one-sided 0.984 credible intervals was more than

zero. The adjustment was made to better control the type I error as for the 2 DF test.

Therefore, six parameters were estimated θ = (∆1,∆2,∆3, q1, q2, q3) = (θ1, θ2, θ3, θ4, θ5, θ6)

and using the first approach:

π(θ) ∝ U(−1,1)U(−1,1)U(−1,1)U(0,1)U(0,1)U(0,1).

The Jeffreys prior was found equivalently to the both cases provided before. Here comes a short

reasoning. The first derivatives are:

• l1 = np11

θ1+θ4
− np12

1−θ1−θ4
;
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• l2 = np21

θ2+θ5
− np22

1−θ2−θ5
;

• l3 = np31

θ3+θ6
− np32

1−θ3−θ6

• l4 = np11

θ1+θ4
− np12

1−θ1−θ4
+ nq11

θ4
− nq12

1−θ4
;

• l5 = np21

θ2+θ5
− np22

1−θ2−θ5
+ nq21

θ5
− nq22

1−θ5
;

• l6 = np31

θ3+θ6
− np32

1−θ3−θ6
+ nq31

θ3
− nq32

1−θ6
.

Then the second derivative are:

• l11 = l14 = l41 = − np11

(θ1+θ4)2
− np12

(1−θ1−θ4)2
;

• l22 = l25 = l52 = − np21

(θ2+θ5)2
− np22

(1−θ2−θ5)2
;

• l33 = l36 = l63 = − np31

(θ3+θ6)2
− np32

(1−θ3−θ6)2

• l44 = − np11

(θ1+θ4)2
− np12

(1−θ1−θ4)2
− nq11

θ24
− nq12

(1−θ4)2
;

• l55 = − np21

(θ2+θ5)2
− np22

(1−θ2−θ5)2
− nq21

θ25
− nq22

(1−θ5)2
;

• l66 = − np31

(θ3+θ6)2
− np32

(1−θ3−θ6)2
− nq31

θ23
− nq32

(1−θ6)2
;

• all other lij = 0.

Lastly, the Fisher information is found and its determinant

|I(θ)| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

s11 0 0 s14 0 0

0 s22 0 0 s25 0

0 0 s33 0 0 s36

s14 0 0 s44 0 0

0 s25 0 0 s55 0

0 0 s36 0 0 s66

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

= s33

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

s11 0 s14 0 0

0 s22 0 s25 0

s14 0 s44 0 0

0 s25 0 s55 0

0 0 0 0 s66

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
− s36

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

s11 0 s14 0 0

0 s22 0 s25 0

0 0 0 0 s36

s14 0 s44 0 0

0 s25 0 s55 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=
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= (s66s33 − s236)

∣∣∣∣∣∣∣∣∣∣∣∣

s11 0 s14 0

0 s22 0 s25

s14 0 s44 0

0 s25 0 s55

∣∣∣∣∣∣∣∣∣∣∣∣
= (s66s33 − s236)(s22s55 − s225)

∣∣∣∣∣∣s11 s14

s14 s44

∣∣∣∣∣∣ =

= (s66s33 − s236)(s22s55 − s225)(s11s44 − s214).

Therefore, in this situation like in those examined before, the expression of the posterior density was

too complex in case of the Jeffreys prior and the MCMC simulations were used to get the credible

intervals.

3.4. Power simulation results

The main objective of these proposed tests in the Bayes framework, is to reduce the sample size

required to achieve 80% power. For that purpose, the broad simulation was performed using R

software. Recall that the power is the probability to reject the null hypothesis when it is really not

true. This means that the data for the power estimation has to hold the alternative hypothesis, which

in TED case meant that the treatment was effective. Nine different configurations of the parameters

were taken from the Ivanova’s and Tamura’s manuscript. The sample sizes for each case and test

were also taken from there to be able to compare the results.

Moreover, the type I error, probability to reject the null hypothesis when it is actually true, was

simulated, because all the results in Ivanova’s and Tamura’s manuscript are provided for type I error

rate of 0.05. For that reason, the data has to hold the null hypothesis, which in TED case meant

that the treatment was not effective enough, i.e. pi = qi, i = 1,2,3. Nine configurations of the

parameters were taken from [9] and the samples sizes were the same as for the power simulation.

The data was generated using the procedure described in Section 2.3 with the corresponding set

of the parameters and sample size n. In total, 10 000 simulations were executed for each combi-

nation of the parameters with n and test. For each combination two estimates were found: for test

with uniform priors and Jeffreys.

First of all, the type I error αwas estimated by taking the part of the cases where null hypothesis

was rejected when it was true. The hypothesis testing procedures from section 3.1, 3.2 and 3.3

of this thesis were used as appropriate. In all cases, the size of MCMC simulations was 100 000

with 10 000 burn in. Results are provided in Table 3. One can see that type I error rate is quite

well controlled for the alternative of 1 DF test when using the uniform distributions as the prior.

Meanwhile, it exceeds 0.05 in almost all the cases when using the Jeffreys prior. Similar situation is

observed with the alternatives of the other two tests: uniform gives better results than the Jeffreys.
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Table 3. Type I error for testing H0 : ∆1 ≤ 0 ∩∆2 ≤ 0 ∩∆3 ≤ 0 in Bayesian framework.

1 DF 2 DF 3 DF
p1 q1 p2 q2 p3 q3 Uniform Jeffreys Uniform Jeffreys Uniform Jeffreys
0.4 0.4 0.4 0.4 0.9 0.9 0.048 0.057 0.045 0.055 0.047 0.055

(n = 412) (n = 504) (n = 572)
0.5 0.5 0.4 0.4 0.9 0.9 0.041 0.064 0.037 0.060 0.043 0.062

(n = 128) (n = 152) (n = 170)
0.3 0.3 0.4 0.4 0.9 0.9 0.043 0.060 0.031 0.051 0.041 0.057

(n = 96) (n = 108) (n = 114)
0.4 0.4 0.4 0.4 0.7 0.7 0.049 0.056 0.053 0.060 0.047 0.055

(n = 312) (n = 328) (n = 372)
0.5 0.5 0.4 0.4 0.7 0.7 0.047 0.059 0.049 0.062 0.048 0.063

(n = 104) (n = 128) (n = 142)
0.3 0.3 0.4 0.4 0.7 0.7 0.048 0.065 0.042 0.066 0.039 0.058

(n = 80) (n = 96) (n = 100)
0.4 0.4 0.4 0.4 0.8 0.8 0.049 0.050 0.050 0.052 0.052 0.055

(n= 2612) (n = 1916) (n = 1446)
0.4 0.4 0.5 0.5 0.8 0.8 0.049 0.054 0.049 0.055 0.049 0.054

(n = 728) (n= 648) (n = 734)
0.4 0.4 0.3 0.3 0.8 0.8 0.052 0.057 0.050 0.055 0.044 0.048

(n = 644) (n = 772) (n = 716)

Moreover, it could be seen that the adjustments helped to control the type I error around 0.05 for

other two tests.

Thereafter, the power was evaluated by summing the cases where the null hypothesis was re-

Table 4. Power for testing H0 : ∆1 ≤ 0 ∩∆2 ≤ 0 ∩∆3 ≤ 0 in Bayesian framework.

1 DF 2 DF 3 DF
p1 q1 p2 q2 p3 q3 Uniform Jeffreys Uniform Jeffreys Uniform Jeffreys
0.4 0.3 0.4 0.3 0.9 0.8 0.86 0.87 0.84 0.86 0.79 0.82

(n = 412) (n = 504) (n = 572)
0.5 0.3 0.4 0.2 0.9 0.8 0.85 0.87 0.85 0.88 0.83 0.87

(n = 128) (n = 152) (n = 170)
0.5 0.3 0.4 0.1 0.9 0.8 0.85 0.88 0.84 0.88 0.79 0.84

(n = 96) (n = 108) (n = 114)
0.4 0.3 0.4 0.3 0.9 0.7 0.87 0.88 0.80 0.82 0.77 0.80

(n = 312) (n = 328) (n = 372)
0.5 0.3 0.4 0.2 0.9 0.7 0.85 0.88 0.83 0.87 0.80 0.85

(n = 104) (n = 128) (n = 142)
0.5 0.3 0.4 0.1 0.9 0.7 0.84 0.88 0.82 0.88 0.74 0.80

(n = 80) (n = 96) (n = 100)
0.4 0.4 0.4 0.3 0.9 0.8 0.86 0.87 0.83 0.84 0.80 0.81

(n = 2612) (n = 1916) (n = 1446)
0.4 0.3 0.4 0.3 0.9 0.9 0.87 0.88 0.87 0.89 0.85 0.86

(n = 728) (n= 648) (n = 734)
0.4 0.3 0.4 0.4 0.9 0.8 0.87 0.88 0.83 0.85 0.83 0.85

(n = 644) (n = 772) (n = 716)
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jected when it was false. All the simulations were made same as for the type I error just with the

different configurations of parameters. Power was estimated for all three alternative tests. The re-

sults of simulations are presented in Table 4. The highest power was obtained when the Jeffreys

prior was used. However, it is worth to remember that α was not controlled very well for Jeffreys

prior. Despite that, the approach with the uniform ditribution also has shown higher than 80%

power in the majority of the configurations (for 1 DF test in all the configurations) and the type I

error rate was controlled quite well. The power for the 2 DF and 3 DF tests is lower compared to 1

DF test, however, as it was mentioned previously, those two tests were not the main concern in this

thesis.

To conclude, the alternative testing to the one DF test in Bayesian framework has higher power,

which means that smaller sample sizes are needed. Although the usage of the uniform priors does

not give the highest power, it is the best choice of the two tested because the type I error was

controlled around 0.05. The actual sample size for achieving the 80% power could be estimated by

selecting the configuration of parameters which is expected and then running the simulations.
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Conclusions

In this thesis, the Bayesian models with six different prior distributions were created for the first

statistical problem in TED - parameters estimation. The comparison with the MLE was conducted

on the simulated data using various combinations of the parameters and sample sizes. The less

biased estimates were obtained using MLE approach, but Bayesian estimates had lower RMSE and

KL divergence in the majority of the configurations. The best results were achieved for the cases

with the informative priors like Beta distributions. When there is not much additional information,

the objective priors could be used and two of the best were Jeffreys and the combination of the

uniform distributions. The reference prior is more complex and the superiority over these two

was not detected. In conclusion, the Bayesian estimates are better than ML because the estimated

distribution of the data is closer to the actual one using the former approach based on the KL

divergence.

Hypothesis testing in the Bayesian approach was performed using the credible intervals. These

intervals were evaluated using the MCMC simulations and the parametrization of the models for

each of the three tests from the original approach. For the alternative of the 1 DF test, the simu-

lated power was higher than 80% for both priors: combination of the uniform distributions and the

Jeffreys. For other two tests, there were a few cases with the power less than 80% because of the

adjustment. However, it helped to control the type I error rate for those two tests and in the majority

of the cases the power was still higher. Thus, the smaller sample sizes are needed to achieve the

same power as in the original approach. Yet, the concept with Jeffreys prior did not controlled the

type I error rate around 0.05 for all the tests and the actual benefit of it could be questioned. Nev-

ertheless, the simulations from the Bayesian model with the uniform priors showed that the error

rate is controlled well, and the power is also higher than using the original approach.

To conclude, the results of this thesis could be applied directly. Using the previously mentioned

Bayesian methodology, the sample size could be reduced and the cost of the researches could be cut

without loss of the precision of the results. Furthermore, this work could be extended by proposing

the alternative Bayesian testing for the presented hypothesis using the other methodology. Besides

that, the model with continuous outcome could be developed in Bayesian framework as well.
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Appendix Nr. 1. Estimated bias for all cases

par true.val n m par.set MLE U(0,1) B12/B21 B13/B31 U(0,p) Jeffreys Reference
p1 0.4 60 10000 1 -0.001 -0.007 0.005 0.016 -0.019 -0.023 -0.005
q1 0.3 60 10000 1 0.001 -0.011 -0.002 0.007 -0.008 0.004 -0.005
p2 0.4 60 10000 1 0.001 -0.015 0.016 0.043 -0.026 -0.008 -0.008
q2 0.3 60 10000 1 0.000 -0.033 -0.008 0.014 0.015 -0.018 -0.018
p3 0.9 60 10000 1 0.000 0.106 0.081 0.062 0.144 0.062 0.062
q3 0.8 60 10000 1 0.001 0.080 0.047 0.021 0.143 0.047 0.047
p1 0.4 100 10000 1 0.002 -0.002 0.006 0.013 -0.014 -0.012 0.000
q1 0.3 100 10000 1 0.000 -0.008 -0.002 0.004 -0.016 0.002 -0.004
p2 0.4 100 10000 1 0.001 -0.010 0.011 0.029 -0.021 -0.005 -0.005
q2 0.3 100 10000 1 -0.001 -0.022 -0.006 0.008 0.003 -0.012 -0.012
p3 0.9 100 10000 1 -0.001 0.069 0.055 0.044 0.111 0.038 0.038
q3 0.8 100 10000 1 0.001 0.053 0.033 0.015 0.110 0.030 0.030
p1 0.4 160 10000 1 0.000 -0.002 0.003 0.007 -0.015 -0.008 -0.001
q1 0.3 160 10000 1 0.000 -0.005 -0.002 0.002 -0.022 0.001 -0.003
p2 0.4 160 10000 1 0.000 -0.007 0.007 0.019 -0.018 -0.003 -0.003
q2 0.3 160 10000 1 0.000 -0.013 -0.003 0.007 -0.006 -0.007 -0.007
p3 0.9 160 10000 1 0.000 0.046 0.038 0.031 0.091 0.025 0.025
q3 0.8 160 10000 1 -0.001 0.034 0.021 0.010 0.086 0.018 0.018
p1 0.5 60 10000 2 -0.001 -0.001 0.015 0.029 -0.001 -0.016 -0.001
q1 0.3 60 10000 2 0.000 -0.012 -0.003 0.006 -0.003 0.004 -0.006
p2 0.4 60 10000 2 0.001 -0.015 0.016 0.043 -0.015 -0.008 -0.008
q2 0.2 60 10000 2 0.000 -0.049 -0.030 -0.014 -0.008 -0.027 -0.027
p3 0.9 60 10000 2 0.000 0.088 0.069 0.054 0.088 0.050 0.050
q3 0.8 60 10000 2 0.002 0.067 0.041 0.019 0.101 0.039 0.039
p1 0.5 100 10000 2 0.000 0.000 0.009 0.018 0.000 -0.010 0.000
q1 0.3 100 10000 2 0.000 -0.008 -0.002 0.004 -0.005 0.002 -0.004
p2 0.4 100 10000 2 0.002 -0.009 0.011 0.030 -0.009 -0.004 -0.004
q2 0.2 100 10000 2 -0.001 -0.032 -0.020 -0.010 -0.011 -0.017 -0.017
p3 0.9 100 10000 2 0.000 0.057 0.047 0.038 0.057 0.031 0.031
q3 0.8 100 10000 2 -0.001 0.042 0.026 0.012 0.067 0.022 0.022
p1 0.5 160 10000 2 0.000 0.000 0.006 0.012 0.000 -0.006 0.000
q1 0.3 160 10000 2 0.000 -0.005 -0.001 0.002 -0.004 0.001 -0.003
p2 0.4 160 10000 2 -0.001 -0.007 0.006 0.018 -0.008 -0.004 -0.004
q2 0.2 160 10000 2 0.001 -0.019 -0.012 -0.006 -0.011 -0.010 -0.010
p3 0.9 160 10000 2 0.000 0.037 0.031 0.025 0.037 0.019 0.019
q3 0.8 160 10000 2 -0.001 0.027 0.017 0.008 0.044 0.014 0.014
p1 0.5 60 10000 3 -0.001 -0.001 0.014 0.029 -0.001 -0.017 -0.001
q1 0.3 60 10000 3 0.000 -0.013 -0.003 0.006 -0.004 0.003 -0.007
p2 0.4 60 10000 3 0.000 -0.016 0.015 0.042 -0.016 -0.009 -0.009
q2 0.1 60 10000 3 0.000 -0.066 -0.053 -0.042 -0.051 -0.036 -0.036
p3 0.9 60 10000 3 0.002 0.090 0.070 0.055 0.089 0.052 0.052
q3 0.8 60 10000 3 0.000 0.066 0.040 0.018 0.100 0.037 0.037
p1 0.5 100 10000 3 0.000 0.000 0.009 0.018 0.000 -0.010 0.000
q1 0.3 100 10000 3 0.001 -0.007 -0.001 0.004 -0.004 0.002 -0.003
p2 0.4 100 10000 3 0.000 -0.011 0.009 0.028 -0.011 -0.006 -0.006
q2 0.1 100 10000 3 0.000 -0.042 -0.035 -0.028 -0.037 -0.022 -0.022
p3 0.9 100 10000 3 -0.001 0.056 0.045 0.036 0.056 0.030 0.030
q3 0.8 100 10000 3 0.002 0.044 0.028 0.014 0.069 0.025 0.025
p1 0.5 160 10000 3 0.000 0.000 0.006 0.012 0.000 -0.006 0.000
q1 0.3 160 10000 3 0.000 -0.005 -0.001 0.002 -0.005 0.001 -0.003
p2 0.4 160 10000 3 0.002 -0.005 0.008 0.021 -0.005 -0.002 -0.002
q2 0.1 160 10000 3 0.000 -0.027 -0.023 -0.019 -0.026 -0.014 -0.014
p3 0.9 160 10000 3 0.000 0.037 0.031 0.026 0.037 0.020 0.020
q3 0.8 160 10000 3 0.001 0.029 0.019 0.009 0.045 0.016 0.016
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par true.val n m par.set MLE U(0,1) B12/B21 B13/B31 U(0,p) Jeffreys Reference
p1 0.4 60 10000 4 0.001 -0.005 0.007 0.019 -0.017 -0.021 -0.002
q1 0.3 60 10000 4 0.001 -0.012 -0.002 0.006 -0.008 0.004 -0.006
p2 0.4 60 10000 4 0.002 -0.015 0.017 0.044 -0.026 -0.007 -0.007
q2 0.3 60 10000 4 0.002 -0.031 -0.006 0.015 0.016 -0.016 -0.016
p3 0.9 60 10000 4 -0.001 0.106 0.081 0.062 0.144 0.061 0.061
q3 0.7 60 10000 4 -0.001 0.052 0.011 -0.022 0.093 0.030 0.030
p1 0.4 100 10000 4 0.001 -0.003 0.005 0.012 -0.016 -0.013 -0.001
q1 0.3 100 10000 4 0.000 -0.008 -0.002 0.004 -0.017 0.002 -0.004
p2 0.4 100 10000 4 0.003 -0.008 0.012 0.031 -0.020 -0.003 -0.003
q2 0.3 100 10000 4 0.002 -0.019 -0.003 0.011 0.004 -0.009 -0.009
p3 0.9 100 10000 4 -0.001 0.069 0.056 0.044 0.112 0.038 0.038
q3 0.7 100 10000 4 0.000 0.035 0.008 -0.015 0.069 0.019 0.019
p1 0.4 160 10000 4 0.000 -0.002 0.003 0.007 -0.014 -0.008 -0.001
q1 0.3 160 10000 4 0.001 -0.004 -0.001 0.003 -0.021 0.002 -0.002
p2 0.4 160 10000 4 -0.003 -0.009 0.004 0.017 -0.021 -0.006 -0.006
q2 0.3 160 10000 4 0.000 -0.013 -0.003 0.006 -0.006 -0.007 -0.007
p3 0.9 160 10000 4 0.001 0.047 0.039 0.031 0.091 0.025 0.025
q3 0.7 160 10000 4 0.000 0.023 0.005 -0.010 0.052 0.012 0.012
p1 0.5 60 10000 5 0.000 0.000 0.015 0.029 0.000 -0.016 0.000
q1 0.3 60 10000 5 -0.002 -0.014 -0.004 0.005 -0.005 0.002 -0.008
p2 0.4 60 10000 5 0.001 -0.016 0.016 0.043 -0.016 -0.008 -0.008
q2 0.2 60 10000 5 0.001 -0.049 -0.030 -0.014 -0.008 -0.026 -0.026
p3 0.9 60 10000 5 -0.001 0.087 0.069 0.053 0.087 0.049 0.049
q3 0.7 60 10000 5 0.003 0.046 0.012 -0.016 0.066 0.027 0.027
p1 0.5 100 10000 5 0.001 0.001 0.010 0.019 0.001 -0.009 0.001
q1 0.3 100 10000 5 0.000 -0.008 -0.002 0.004 -0.005 0.002 -0.004
p2 0.4 100 10000 5 0.001 -0.009 0.011 0.029 -0.009 -0.004 -0.004
q2 0.2 100 10000 5 0.000 -0.031 -0.020 -0.009 -0.011 -0.016 -0.016
p3 0.9 100 10000 5 0.000 0.057 0.046 0.037 0.057 0.031 0.031
q3 0.7 100 10000 5 0.000 0.028 0.007 -0.012 0.039 0.015 0.015
p1 0.5 160 10000 5 0.000 0.000 0.006 0.012 0.000 -0.006 0.000
q1 0.3 160 10000 5 0.001 -0.004 -0.001 0.003 -0.004 0.002 -0.002
p2 0.4 160 10000 5 0.000 -0.007 0.006 0.019 -0.007 -0.004 -0.004
q2 0.2 160 10000 5 0.001 -0.020 -0.013 -0.006 -0.011 -0.010 -0.010
p3 0.9 160 10000 5 0.000 0.037 0.031 0.026 0.037 0.020 0.020
q3 0.7 160 10000 5 0.000 0.019 0.004 -0.009 0.024 0.010 0.010
p1 0.5 60 10000 6 0.001 0.001 0.016 0.030 0.001 -0.015 0.001
q1 0.3 60 10000 6 0.000 -0.013 -0.003 0.006 -0.004 0.003 -0.007
p2 0.4 60 10000 6 0.004 -0.013 0.018 0.045 -0.013 -0.005 -0.005
q2 0.1 60 10000 6 -0.001 -0.067 -0.054 -0.043 -0.051 -0.037 -0.037
p3 0.9 60 10000 6 0.002 0.090 0.071 0.055 0.090 0.052 0.052
q3 0.7 60 10000 6 -0.001 0.043 0.008 -0.019 0.062 0.023 0.023
p1 0.5 100 10000 6 0.000 0.000 0.009 0.018 0.000 -0.010 0.000
q1 0.3 100 10000 6 -0.001 -0.009 -0.003 0.003 -0.006 0.001 -0.005
p2 0.4 100 10000 6 -0.001 -0.012 0.009 0.027 -0.012 -0.007 -0.007
q2 0.1 100 10000 6 0.001 -0.041 -0.034 -0.027 -0.036 -0.021 -0.021
p3 0.9 100 10000 6 0.000 0.057 0.046 0.037 0.057 0.031 0.031
q3 0.7 100 10000 6 -0.002 0.027 0.005 -0.014 0.038 0.014 0.014
p1 0.5 160 10000 6 0.001 0.001 0.007 0.013 0.001 -0.005 0.001
q1 0.3 160 10000 6 0.000 -0.004 -0.001 0.003 -0.004 0.002 -0.002
p2 0.4 160 10000 6 0.002 -0.005 0.008 0.020 -0.005 -0.002 -0.002
q2 0.1 160 10000 6 0.000 -0.027 -0.023 -0.019 -0.026 -0.014 -0.014
p3 0.9 160 10000 6 0.000 0.037 0.031 0.025 0.037 0.019 0.019
q3 0.7 160 10000 6 0.001 0.020 0.006 -0.007 0.025 0.011 0.011
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par true.val n m par.set MLE U(0,1) B12/B21 B13/B31 U(0,p) Jeffreys Reference
p1 0.4 60 10000 7 0.001 -0.006 0.007 0.018 -0.018 -0.021 -0.003
q1 0.4 60 10000 7 -0.001 -0.007 0.005 0.017 0.051 0.009 -0.004
p2 0.4 60 10000 7 0.000 -0.019 0.017 0.047 -0.029 -0.010 -0.010
q2 0.3 60 10000 7 0.002 -0.036 -0.007 0.017 0.020 -0.019 -0.019
p3 0.9 60 10000 7 0.000 0.107 0.082 0.063 0.145 0.063 0.063
q3 0.8 60 10000 7 0.003 0.082 0.048 0.022 0.143 0.049 0.049
p1 0.4 100 10000 7 0.000 -0.004 0.004 0.011 -0.016 -0.014 -0.002
q1 0.4 100 10000 7 -0.001 -0.005 0.003 0.010 0.038 0.005 -0.003
p2 0.4 100 10000 7 0.001 -0.012 0.012 0.033 -0.023 -0.006 -0.006
q2 0.3 100 10000 7 0.000 -0.024 -0.006 0.010 0.007 -0.013 -0.013
p3 0.9 100 10000 7 -0.001 0.069 0.056 0.044 0.112 0.038 0.038
q3 0.8 100 10000 7 -0.001 0.052 0.031 0.014 0.109 0.028 0.028
p1 0.4 160 10000 7 0.000 -0.002 0.003 0.007 -0.015 -0.008 -0.001
q1 0.4 160 10000 7 0.000 -0.002 0.002 0.007 0.028 0.004 -0.001
p2 0.4 160 10000 7 -0.001 -0.009 0.007 0.021 -0.021 -0.005 -0.005
q2 0.3 160 10000 7 0.000 -0.016 -0.004 0.007 -0.004 -0.008 -0.008
p3 0.9 160 10000 7 -0.001 0.045 0.037 0.030 0.092 0.023 0.023
q3 0.8 160 10000 7 0.000 0.034 0.022 0.010 0.087 0.018 0.018
p1 0.4 60 10000 8 0.000 -0.006 0.006 0.018 -0.018 -0.022 -0.003
q1 0.3 60 10000 8 0.001 -0.012 -0.002 0.007 -0.008 0.004 -0.006
p2 0.4 60 10000 8 -0.001 -0.017 0.014 0.041 -0.028 -0.010 -0.010
q2 0.3 60 10000 8 0.000 -0.033 -0.008 0.014 0.015 -0.018 -0.018
p3 0.9 60 10000 8 0.001 0.107 0.082 0.063 0.145 0.063 0.063
q3 0.9 60 10000 8 0.000 0.106 0.081 0.062 0.196 0.062 0.062
p1 0.4 100 10000 8 0.000 -0.004 0.004 0.011 -0.016 -0.013 -0.002
q1 0.3 100 10000 8 0.000 -0.007 -0.001 0.004 -0.016 0.002 -0.003
p2 0.4 100 10000 8 0.000 -0.010 0.010 0.028 -0.022 -0.005 -0.005
q2 0.3 100 10000 8 0.001 -0.020 -0.004 0.011 0.004 -0.010 -0.010
p3 0.9 100 10000 8 0.000 0.070 0.056 0.044 0.112 0.039 0.039
q3 0.9 100 10000 8 0.001 0.070 0.057 0.045 0.159 0.039 0.039
p1 0.4 160 10000 8 0.000 -0.002 0.002 0.007 -0.015 -0.008 -0.001
q1 0.3 160 10000 8 0.000 -0.005 -0.001 0.003 -0.021 0.002 -0.002
p2 0.4 160 10000 8 -0.001 -0.007 0.006 0.018 -0.019 -0.004 -0.004
q2 0.3 160 10000 8 -0.001 -0.014 -0.004 0.006 -0.007 -0.008 -0.008
p3 0.9 160 10000 8 0.000 0.046 0.038 0.031 0.092 0.025 0.025
q3 0.9 160 10000 8 -0.001 0.045 0.037 0.030 0.132 0.023 0.023
p1 0.4 60 10000 9 -0.001 -0.007 0.005 0.017 -0.019 -0.022 -0.004
q1 0.3 60 10000 9 0.000 -0.012 -0.003 0.006 -0.008 0.003 -0.006
p2 0.4 60 10000 9 0.003 -0.014 0.017 0.044 -0.025 -0.006 -0.006
q2 0.4 60 10000 9 0.000 -0.017 0.015 0.042 0.085 -0.009 -0.009
p3 0.9 60 10000 9 -0.001 0.105 0.081 0.062 0.144 0.061 0.061
q3 0.8 60 10000 9 0.001 0.080 0.047 0.021 0.142 0.047 0.047
p1 0.4 100 10000 9 0.000 -0.004 0.003 0.011 -0.016 -0.014 -0.002
q1 0.3 100 10000 9 0.000 -0.008 -0.002 0.004 -0.016 0.002 -0.004
p2 0.4 100 10000 9 0.003 -0.008 0.012 0.030 -0.020 -0.003 -0.003
q2 0.4 100 10000 9 -0.001 -0.011 0.009 0.027 0.068 -0.006 -0.006
p3 0.9 100 10000 9 -0.001 0.069 0.055 0.044 0.112 0.038 0.038
q3 0.8 100 10000 9 0.004 0.055 0.035 0.017 0.111 0.032 0.032
p1 0.4 160 10000 9 0.000 -0.003 0.002 0.007 -0.015 -0.009 -0.001
q1 0.3 160 10000 9 0.000 -0.005 -0.002 0.002 -0.022 0.001 -0.003
p2 0.4 160 10000 9 0.001 -0.006 0.007 0.019 -0.018 -0.003 -0.003
q2 0.4 160 10000 9 -0.001 -0.008 0.006 0.018 0.053 -0.004 -0.004
p3 0.9 160 10000 9 0.000 0.046 0.038 0.031 0.092 0.024 0.024
q3 0.8 160 10000 9 0.001 0.035 0.023 0.011 0.087 0.019 0.019
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Appendix Nr. 2. Estimated RMSE for all cases

par true.val n m par.set MLE U(0,1) B12/B21 B13/B31 U(0,p) Jeffreys Reference
p1 0.4 60 10000 1 0.090 0.085 0.082 0.081 0.080 0.088 0.088
q1 0.3 60 10000 1 0.084 0.080 0.076 0.074 0.062 0.079 0.081
p2 0.4 60 10000 1 0.153 0.128 0.119 0.117 0.118 0.139 0.139
q2 0.3 60 10000 1 0.144 0.125 0.111 0.104 0.072 0.132 0.132
p3 0.9 60 10000 1 0.128 0.143 0.116 0.096 0.177 0.125 0.125
q3 0.8 60 10000 1 0.177 0.150 0.120 0.101 0.173 0.154 0.154
p1 0.4 100 10000 1 0.070 0.067 0.066 0.066 0.065 0.068 0.068
q1 0.3 100 10000 1 0.065 0.063 0.061 0.060 0.058 0.062 0.064
p2 0.4 100 10000 1 0.119 0.107 0.102 0.101 0.099 0.113 0.113
q2 0.3 100 10000 1 0.110 0.101 0.094 0.089 0.065 0.105 0.105
p3 0.9 100 10000 1 0.097 0.106 0.092 0.080 0.146 0.095 0.095
q3 0.8 100 10000 1 0.130 0.120 0.103 0.091 0.139 0.121 0.121
p1 0.4 160 10000 1 0.055 0.054 0.053 0.053 0.053 0.054 0.054
q1 0.3 160 10000 1 0.051 0.050 0.049 0.049 0.056 0.050 0.051
p2 0.4 160 10000 1 0.093 0.087 0.084 0.084 0.082 0.090 0.090
q2 0.3 160 10000 1 0.087 0.082 0.078 0.076 0.061 0.084 0.084
p3 0.9 160 10000 1 0.077 0.083 0.075 0.069 0.129 0.077 0.077
q3 0.8 160 10000 1 0.101 0.096 0.087 0.081 0.117 0.097 0.097
p1 0.5 60 10000 2 0.091 0.085 0.084 0.085 0.085 0.087 0.088
q1 0.3 60 10000 2 0.084 0.079 0.076 0.074 0.067 0.079 0.081
p2 0.4 60 10000 2 0.156 0.131 0.121 0.119 0.131 0.142 0.142
q2 0.2 60 10000 2 0.126 0.116 0.101 0.091 0.066 0.117 0.117
p3 0.9 60 10000 2 0.113 0.125 0.105 0.089 0.125 0.111 0.111
q3 0.8 60 10000 2 0.153 0.136 0.113 0.097 0.138 0.138 0.138
p1 0.5 100 10000 2 0.071 0.068 0.068 0.068 0.068 0.069 0.070
q1 0.3 100 10000 2 0.065 0.063 0.062 0.061 0.059 0.063 0.064
p2 0.4 100 10000 2 0.118 0.106 0.101 0.100 0.107 0.112 0.112
q2 0.2 100 10000 2 0.096 0.092 0.084 0.078 0.065 0.092 0.092
p3 0.9 100 10000 2 0.087 0.094 0.084 0.075 0.095 0.086 0.086
q3 0.8 100 10000 2 0.116 0.108 0.096 0.087 0.103 0.109 0.109
p1 0.5 160 10000 2 0.056 0.055 0.054 0.055 0.055 0.055 0.055
q1 0.3 160 10000 2 0.051 0.050 0.049 0.049 0.049 0.050 0.051
p2 0.4 160 10000 2 0.094 0.088 0.085 0.084 0.088 0.091 0.091
q2 0.2 160 10000 2 0.076 0.073 0.069 0.066 0.061 0.074 0.074
p3 0.9 160 10000 2 0.068 0.072 0.066 0.061 0.072 0.067 0.067
q3 0.8 160 10000 2 0.090 0.086 0.080 0.075 0.080 0.087 0.087
p1 0.5 60 10000 3 0.090 0.085 0.083 0.085 0.085 0.086 0.087
q1 0.3 60 10000 3 0.085 0.080 0.077 0.075 0.068 0.079 0.082
p2 0.4 60 10000 3 0.154 0.129 0.120 0.118 0.130 0.140 0.140
q2 0.1 60 10000 3 0.095 0.103 0.091 0.080 0.079 0.094 0.094
p3 0.9 60 10000 3 0.115 0.128 0.107 0.091 0.128 0.113 0.113
q3 0.8 60 10000 3 0.151 0.134 0.112 0.096 0.136 0.136 0.136
p1 0.5 100 10000 3 0.070 0.068 0.067 0.068 0.068 0.068 0.069
q1 0.3 100 10000 3 0.065 0.063 0.061 0.060 0.059 0.063 0.064
p2 0.4 100 10000 3 0.118 0.106 0.101 0.099 0.106 0.112 0.112
q2 0.1 100 10000 3 0.072 0.077 0.070 0.065 0.069 0.072 0.072
p3 0.9 100 10000 3 0.086 0.093 0.082 0.074 0.093 0.084 0.084
q3 0.8 100 10000 3 0.116 0.109 0.096 0.088 0.105 0.110 0.110
p1 0.5 160 10000 3 0.056 0.055 0.054 0.055 0.055 0.055 0.055
q1 0.3 160 10000 3 0.051 0.050 0.049 0.049 0.049 0.050 0.051
p2 0.4 160 10000 3 0.094 0.088 0.085 0.085 0.088 0.091 0.091
q2 0.1 160 10000 3 0.057 0.060 0.056 0.053 0.058 0.057 0.057
p3 0.9 160 10000 3 0.068 0.072 0.066 0.062 0.072 0.067 0.067
q3 0.8 160 10000 3 0.091 0.087 0.081 0.076 0.081 0.088 0.088
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par true.val n m par.set MLE U(0,1) B12/B21 B13/B31 U(0,p) Jeffreys Reference
p1 0.4 60 10000 4 0.089 0.083 0.081 0.080 0.078 0.086 0.086
q1 0.3 60 10000 4 0.083 0.079 0.076 0.074 0.062 0.078 0.081
p2 0.4 60 10000 4 0.152 0.127 0.118 0.117 0.118 0.138 0.138
q2 0.3 60 10000 4 0.144 0.124 0.111 0.104 0.073 0.132 0.132
p3 0.9 60 10000 4 0.130 0.143 0.116 0.095 0.177 0.125 0.125
q3 0.7 60 10000 4 0.200 0.151 0.125 0.114 0.145 0.168 0.168
p1 0.4 100 10000 4 0.069 0.067 0.065 0.065 0.064 0.068 0.068
q1 0.3 100 10000 4 0.065 0.063 0.061 0.060 0.059 0.062 0.063
p2 0.4 100 10000 4 0.118 0.106 0.101 0.100 0.098 0.112 0.112
q2 0.3 100 10000 4 0.109 0.100 0.093 0.089 0.066 0.104 0.104
p3 0.9 100 10000 4 0.098 0.107 0.093 0.081 0.148 0.096 0.096
q3 0.7 100 10000 4 0.150 0.127 0.112 0.105 0.121 0.136 0.136
p1 0.4 160 10000 4 0.054 0.053 0.052 0.052 0.052 0.053 0.053
q1 0.3 160 10000 4 0.051 0.050 0.049 0.049 0.056 0.050 0.051
p2 0.4 160 10000 4 0.094 0.088 0.085 0.083 0.083 0.091 0.091
q2 0.3 160 10000 4 0.087 0.082 0.078 0.076 0.061 0.084 0.084
p3 0.9 160 10000 4 0.076 0.082 0.074 0.068 0.128 0.076 0.076
q3 0.7 160 10000 4 0.116 0.105 0.097 0.092 0.103 0.109 0.109
p1 0.5 60 10000 5 0.091 0.086 0.084 0.086 0.086 0.087 0.089
q1 0.3 60 10000 5 0.084 0.080 0.076 0.074 0.067 0.078 0.081
p2 0.4 60 10000 5 0.154 0.129 0.119 0.118 0.129 0.140 0.140
q2 0.2 60 10000 5 0.125 0.115 0.100 0.090 0.066 0.116 0.116
p3 0.9 60 10000 5 0.115 0.126 0.106 0.090 0.126 0.112 0.112
q3 0.7 60 10000 5 0.175 0.142 0.121 0.111 0.133 0.154 0.154
p1 0.5 100 10000 5 0.071 0.068 0.067 0.068 0.068 0.068 0.069
q1 0.3 100 10000 5 0.065 0.063 0.061 0.060 0.058 0.063 0.064
p2 0.4 100 10000 5 0.118 0.106 0.100 0.100 0.106 0.111 0.111
q2 0.2 100 10000 5 0.096 0.091 0.084 0.078 0.064 0.092 0.092
p3 0.9 100 10000 5 0.086 0.094 0.083 0.074 0.094 0.085 0.085
q3 0.7 100 10000 5 0.133 0.117 0.106 0.100 0.109 0.123 0.123
p1 0.5 160 10000 5 0.056 0.055 0.055 0.055 0.055 0.055 0.056
q1 0.3 160 10000 5 0.051 0.050 0.049 0.049 0.049 0.050 0.051
p2 0.4 160 10000 5 0.093 0.087 0.084 0.083 0.087 0.089 0.089
q2 0.2 160 10000 5 0.076 0.074 0.070 0.067 0.061 0.074 0.074
p3 0.9 160 10000 5 0.068 0.072 0.067 0.062 0.072 0.068 0.068
q3 0.7 160 10000 5 0.103 0.095 0.089 0.086 0.090 0.099 0.099
p1 0.5 60 10000 6 0.091 0.085 0.084 0.086 0.085 0.087 0.088
q1 0.3 60 10000 6 0.083 0.079 0.076 0.074 0.067 0.078 0.081
p2 0.4 60 10000 6 0.154 0.129 0.120 0.119 0.129 0.140 0.140
q2 0.1 60 10000 6 0.094 0.103 0.091 0.080 0.079 0.093 0.093
p3 0.9 60 10000 6 0.116 0.128 0.107 0.091 0.128 0.113 0.113
q3 0.7 60 10000 6 0.174 0.140 0.119 0.109 0.131 0.152 0.152
p1 0.5 100 10000 6 0.071 0.068 0.068 0.068 0.068 0.069 0.070
q1 0.3 100 10000 6 0.065 0.063 0.061 0.060 0.058 0.062 0.064
p2 0.4 100 10000 6 0.118 0.106 0.100 0.099 0.106 0.111 0.111
q2 0.1 100 10000 6 0.072 0.077 0.070 0.065 0.069 0.072 0.072
p3 0.9 100 10000 6 0.087 0.094 0.083 0.074 0.094 0.085 0.085
q3 0.7 100 10000 6 0.132 0.115 0.105 0.099 0.107 0.122 0.122
p1 0.5 160 10000 6 0.056 0.054 0.054 0.055 0.055 0.055 0.055
q1 0.3 160 10000 6 0.051 0.050 0.050 0.049 0.049 0.050 0.051
p2 0.4 160 10000 6 0.093 0.087 0.084 0.084 0.087 0.090 0.090
q2 0.1 160 10000 6 0.057 0.060 0.056 0.053 0.058 0.057 0.057
p3 0.9 160 10000 6 0.068 0.072 0.067 0.062 0.073 0.068 0.068
q3 0.7 160 10000 6 0.106 0.098 0.091 0.088 0.092 0.101 0.101
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par true.val n m par.set MLE U(0,1) B12/B21 B13/B31 U(0,p) Jeffreys Reference
p1 0.4 60 10000 7 0.089 0.083 0.081 0.080 0.078 0.086 0.086
q1 0.4 60 10000 7 0.090 0.084 0.082 0.081 0.068 0.085 0.087
p2 0.4 60 10000 7 0.169 0.137 0.125 0.124 0.126 0.151 0.151
q2 0.3 60 10000 7 0.157 0.131 0.115 0.107 0.074 0.141 0.141
p3 0.9 60 10000 7 0.130 0.144 0.117 0.097 0.179 0.126 0.126
q3 0.8 60 10000 7 0.175 0.150 0.120 0.100 0.173 0.153 0.153
p1 0.4 100 10000 7 0.069 0.067 0.065 0.065 0.064 0.068 0.068
q1 0.4 100 10000 7 0.069 0.067 0.065 0.065 0.054 0.067 0.068
p2 0.4 100 10000 7 0.130 0.115 0.108 0.107 0.106 0.122 0.122
q2 0.3 100 10000 7 0.121 0.109 0.100 0.095 0.068 0.113 0.113
p3 0.9 100 10000 7 0.098 0.107 0.093 0.081 0.148 0.096 0.096
q3 0.8 100 10000 7 0.131 0.120 0.104 0.092 0.139 0.122 0.122
p1 0.4 160 10000 7 0.055 0.053 0.053 0.053 0.053 0.054 0.054
q1 0.4 160 10000 7 0.055 0.054 0.053 0.053 0.045 0.054 0.055
p2 0.4 160 10000 7 0.100 0.093 0.089 0.088 0.087 0.096 0.096
q2 0.3 160 10000 7 0.094 0.088 0.083 0.081 0.063 0.090 0.090
p3 0.9 160 10000 7 0.076 0.081 0.074 0.067 0.129 0.075 0.075
q3 0.8 160 10000 7 0.102 0.097 0.088 0.081 0.118 0.098 0.098
p1 0.4 60 10000 8 0.088 0.083 0.080 0.080 0.078 0.085 0.085
q1 0.3 60 10000 8 0.084 0.079 0.076 0.074 0.061 0.079 0.081
p2 0.4 60 10000 8 0.154 0.130 0.120 0.118 0.120 0.141 0.141
q2 0.3 60 10000 8 0.143 0.123 0.110 0.103 0.072 0.131 0.131
p3 0.9 60 10000 8 0.132 0.145 0.117 0.097 0.179 0.127 0.127
q3 0.9 60 10000 8 0.131 0.144 0.117 0.097 0.211 0.127 0.127
p1 0.4 100 10000 8 0.069 0.066 0.065 0.065 0.064 0.068 0.068
q1 0.3 100 10000 8 0.065 0.063 0.061 0.060 0.059 0.062 0.063
p2 0.4 100 10000 8 0.118 0.106 0.101 0.100 0.099 0.112 0.112
q2 0.3 100 10000 8 0.110 0.100 0.093 0.089 0.066 0.104 0.104
p3 0.9 100 10000 8 0.099 0.108 0.093 0.082 0.148 0.097 0.097
q3 0.9 100 10000 8 0.099 0.108 0.094 0.082 0.175 0.097 0.097
p1 0.4 160 10000 8 0.055 0.054 0.053 0.053 0.054 0.054 0.054
q1 0.3 160 10000 8 0.052 0.051 0.050 0.049 0.057 0.050 0.051
p2 0.4 160 10000 8 0.094 0.088 0.085 0.084 0.082 0.091 0.091
q2 0.3 160 10000 8 0.088 0.083 0.079 0.077 0.062 0.085 0.085
p3 0.9 160 10000 8 0.076 0.082 0.074 0.068 0.129 0.076 0.076
q3 0.9 160 10000 8 0.076 0.081 0.074 0.067 0.149 0.075 0.075
p1 0.4 60 10000 9 0.087 0.082 0.080 0.079 0.077 0.085 0.085
q1 0.3 60 10000 9 0.084 0.080 0.077 0.075 0.062 0.079 0.082
p2 0.4 60 10000 9 0.153 0.128 0.119 0.118 0.118 0.139 0.139
q2 0.4 60 10000 9 0.153 0.129 0.119 0.117 0.104 0.140 0.140
p3 0.9 60 10000 9 0.130 0.143 0.116 0.096 0.178 0.126 0.126
q3 0.8 60 10000 9 0.174 0.148 0.118 0.099 0.171 0.151 0.151
p1 0.4 100 10000 9 0.070 0.068 0.066 0.066 0.065 0.069 0.069
q1 0.3 100 10000 9 0.065 0.063 0.061 0.060 0.059 0.063 0.064
p2 0.4 100 10000 9 0.120 0.107 0.102 0.101 0.099 0.113 0.113
q2 0.4 100 10000 9 0.119 0.107 0.102 0.100 0.085 0.113 0.113
p3 0.9 100 10000 9 0.099 0.107 0.093 0.081 0.147 0.097 0.097
q3 0.8 100 10000 9 0.132 0.121 0.104 0.092 0.141 0.122 0.122
p1 0.4 160 10000 9 0.054 0.053 0.053 0.052 0.053 0.054 0.054
q1 0.3 160 10000 9 0.051 0.050 0.049 0.049 0.057 0.050 0.051
p2 0.4 160 10000 9 0.093 0.087 0.084 0.083 0.082 0.090 0.090
q2 0.4 160 10000 9 0.093 0.087 0.084 0.083 0.070 0.090 0.090
p3 0.9 160 10000 9 0.077 0.082 0.075 0.068 0.129 0.076 0.076
q3 0.8 160 10000 9 0.104 0.098 0.089 0.082 0.119 0.099 0.099
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Appendix Nr. 3. Estimated KL divergence for all cases

sample n par p1 q1 p2 q2 p3 q3 MLE U(0,1) B12/B21 B13/B31 U(0,p) Jeffreys Ref
plac.-plac. 60 1 0.4 0.3 0.4 0.3 0.9 0.8 0.053 0.042 0.037 0.036 0.020 0.049 0.050
plac.-drug 60 1 0.4 0.3 0.4 0.3 0.9 0.8 0.057 0.042 0.038 0.039 0.031 0.049 0.050
drug-plac. 60 1 0.4 0.3 0.4 0.3 0.9 0.8 0.040 0.037 0.030 0.026 0.041 0.042 0.043
drug-drug 60 1 0.4 0.3 0.4 0.3 0.9 0.8 0.043 0.039 0.031 0.027 0.048 0.035 0.035
plac.-plac. 100 1 0.4 0.3 0.4 0.3 0.9 0.8 0.033 0.027 0.025 0.024 0.016 0.029 0.030
plac.-drug 100 1 0.4 0.3 0.4 0.3 0.9 0.8 0.034 0.027 0.026 0.026 0.023 0.030 0.030
drug-plac. 100 1 0.4 0.3 0.4 0.3 0.9 0.8 0.025 0.024 0.021 0.020 0.027 0.028 0.028
drug-drug 100 1 0.4 0.3 0.4 0.3 0.9 0.8 0.021 0.024 0.021 0.018 0.034 0.023 0.023
plac.-plac. 160 1 0.4 0.3 0.4 0.3 0.9 0.8 0.020 0.017 0.017 0.016 0.014 0.019 0.019
plac.-drug 160 1 0.4 0.3 0.4 0.3 0.9 0.8 0.020 0.018 0.017 0.017 0.017 0.019 0.019
drug-plac. 160 1 0.4 0.3 0.4 0.3 0.9 0.8 0.019 0.016 0.015 0.014 0.019 0.018 0.019
drug-drug 160 1 0.4 0.3 0.4 0.3 0.9 0.8 0.014 0.016 0.014 0.013 0.026 0.017 0.017
plac.-plac. 60 2 0.5 0.3 0.4 0.2 0.9 0.8 0.044 0.040 0.035 0.032 0.022 0.046 0.047
plac.-drug 60 2 0.5 0.3 0.4 0.2 0.9 0.8 0.058 0.043 0.039 0.039 0.039 0.050 0.051
drug-plac. 60 2 0.5 0.3 0.4 0.2 0.9 0.8 0.040 0.037 0.032 0.029 0.037 0.043 0.044
drug-drug 60 2 0.5 0.3 0.4 0.2 0.9 0.8 0.039 0.038 0.032 0.028 0.038 0.035 0.036
plac.-plac. 100 2 0.5 0.3 0.4 0.2 0.9 0.8 0.031 0.026 0.024 0.023 0.019 0.030 0.030
plac.-drug 100 2 0.5 0.3 0.4 0.2 0.9 0.8 0.034 0.027 0.026 0.026 0.026 0.030 0.030
drug-plac. 100 2 0.5 0.3 0.4 0.2 0.9 0.8 0.028 0.025 0.023 0.022 0.022 0.029 0.029
drug-drug 100 2 0.5 0.3 0.4 0.2 0.9 0.8 0.021 0.024 0.022 0.020 0.024 0.025 0.025
plac.-plac. 160 2 0.5 0.3 0.4 0.2 0.9 0.8 0.021 0.017 0.017 0.016 0.014 0.019 0.019
plac.-drug 160 2 0.5 0.3 0.4 0.2 0.9 0.8 0.020 0.018 0.017 0.017 0.018 0.019 0.019
drug-plac. 160 2 0.5 0.3 0.4 0.2 0.9 0.8 0.020 0.017 0.016 0.015 0.014 0.019 0.019
drug-drug 160 2 0.5 0.3 0.4 0.2 0.9 0.8 0.015 0.016 0.015 0.014 0.016 0.017 0.017
plac.-plac. 60 3 0.5 0.3 0.4 0.1 0.9 0.8 0.037 0.039 0.034 0.030 0.027 0.039 0.040
plac.-drug 60 3 0.5 0.3 0.4 0.1 0.9 0.8 0.058 0.042 0.039 0.039 0.039 0.049 0.050
drug-plac. 60 3 0.5 0.3 0.4 0.1 0.9 0.8 0.039 0.037 0.031 0.029 0.036 0.043 0.043
drug-drug 60 3 0.5 0.3 0.4 0.1 0.9 0.8 0.040 0.039 0.032 0.028 0.039 0.036 0.036
plac.-plac. 100 3 0.5 0.3 0.4 0.1 0.9 0.8 0.023 0.025 0.023 0.021 0.022 0.027 0.027
plac.-drug 100 3 0.5 0.3 0.4 0.1 0.9 0.8 0.033 0.027 0.026 0.026 0.026 0.030 0.030
drug-plac. 100 3 0.5 0.3 0.4 0.1 0.9 0.8 0.027 0.025 0.023 0.021 0.022 0.029 0.029
drug-drug 100 3 0.5 0.3 0.4 0.1 0.9 0.8 0.021 0.024 0.021 0.019 0.024 0.024 0.025
plac.-plac. 160 3 0.5 0.3 0.4 0.1 0.9 0.8 0.017 0.017 0.016 0.015 0.016 0.018 0.018
plac.-drug 160 3 0.5 0.3 0.4 0.1 0.9 0.8 0.020 0.018 0.017 0.017 0.018 0.019 0.019
drug-plac. 160 3 0.5 0.3 0.4 0.1 0.9 0.8 0.020 0.017 0.016 0.015 0.014 0.019 0.019
drug-drug 160 3 0.5 0.3 0.4 0.1 0.9 0.8 0.015 0.016 0.015 0.014 0.016 0.017 0.017
plac.-plac. 60 4 0.4 0.3 0.4 0.3 0.9 0.7 0.052 0.041 0.037 0.036 0.020 0.049 0.049
plac.-drug 60 4 0.4 0.3 0.4 0.3 0.9 0.7 0.056 0.041 0.038 0.038 0.031 0.048 0.049
drug-plac. 60 4 0.4 0.3 0.4 0.3 0.9 0.7 0.042 0.036 0.030 0.029 0.031 0.046 0.046
drug-drug 60 4 0.4 0.3 0.4 0.3 0.9 0.7 0.043 0.038 0.030 0.026 0.048 0.034 0.034
plac.-plac. 100 4 0.4 0.3 0.4 0.3 0.9 0.7 0.033 0.026 0.025 0.024 0.016 0.029 0.029
plac.-drug 100 4 0.4 0.3 0.4 0.3 0.9 0.7 0.033 0.027 0.026 0.026 0.023 0.029 0.030
drug-plac. 100 4 0.4 0.3 0.4 0.3 0.9 0.7 0.030 0.025 0.022 0.022 0.021 0.030 0.030
drug-drug 100 4 0.4 0.3 0.4 0.3 0.9 0.7 0.021 0.024 0.021 0.018 0.034 0.023 0.023
plac.-plac. 160 4 0.4 0.3 0.4 0.3 0.9 0.7 0.020 0.017 0.017 0.016 0.014 0.019 0.019
plac.-drug 160 4 0.4 0.3 0.4 0.3 0.9 0.7 0.020 0.018 0.017 0.017 0.017 0.019 0.019
drug-plac. 160 4 0.4 0.3 0.4 0.3 0.9 0.7 0.020 0.017 0.015 0.015 0.015 0.018 0.019
drug-drug 160 4 0.4 0.3 0.4 0.3 0.9 0.7 0.013 0.015 0.014 0.013 0.025 0.016 0.016
plac.-plac. 60 5 0.5 0.3 0.4 0.2 0.9 0.7 0.043 0.039 0.034 0.032 0.022 0.046 0.046
plac.-drug 60 5 0.5 0.3 0.4 0.2 0.9 0.7 0.056 0.042 0.038 0.039 0.038 0.049 0.050
drug-plac. 60 5 0.5 0.3 0.4 0.2 0.9 0.7 0.047 0.039 0.034 0.033 0.035 0.048 0.048
drug-drug 60 5 0.5 0.3 0.4 0.2 0.9 0.7 0.040 0.038 0.032 0.028 0.039 0.036 0.036
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sample n par p1 q1 p2 q2 p3 q3 MLE U(0,1) B12/B21 B13/B31 U(0,p) Jeffreys Ref
plac.-plac. 100 5 0.5 0.3 0.4 0.2 0.9 0.7 0.031 0.026 0.024 0.023 0.018 0.029 0.030
plac.-drug 100 5 0.5 0.3 0.4 0.2 0.9 0.7 0.033 0.027 0.025 0.026 0.026 0.029 0.030
drug-plac. 100 5 0.5 0.3 0.4 0.2 0.9 0.7 0.032 0.026 0.024 0.023 0.022 0.030 0.030
drug-drug 100 5 0.5 0.3 0.4 0.2 0.9 0.7 0.021 0.024 0.021 0.020 0.024 0.024 0.025
plac.-plac. 160 5 0.5 0.3 0.4 0.2 0.9 0.7 0.021 0.017 0.017 0.016 0.014 0.019 0.019
plac.-drug 160 5 0.5 0.3 0.4 0.2 0.9 0.7 0.020 0.017 0.017 0.017 0.017 0.018 0.019
drug-plac. 160 5 0.5 0.3 0.4 0.2 0.9 0.7 0.020 0.017 0.016 0.016 0.015 0.019 0.019
drug-drug 160 5 0.5 0.3 0.4 0.2 0.9 0.7 0.015 0.016 0.015 0.014 0.016 0.017 0.018
plac.-plac. 60 6 0.5 0.3 0.4 0.1 0.9 0.7 0.036 0.039 0.033 0.030 0.027 0.039 0.039
plac.-drug 60 6 0.5 0.3 0.4 0.1 0.9 0.7 0.056 0.042 0.039 0.039 0.038 0.049 0.050
drug-plac. 60 6 0.5 0.3 0.4 0.1 0.9 0.7 0.046 0.038 0.033 0.033 0.034 0.047 0.048
drug-drug 60 6 0.5 0.3 0.4 0.1 0.9 0.7 0.040 0.039 0.032 0.029 0.039 0.036 0.037
plac.-plac. 100 6 0.5 0.3 0.4 0.1 0.9 0.7 0.022 0.025 0.023 0.021 0.021 0.027 0.027
plac.-drug 100 6 0.5 0.3 0.4 0.1 0.9 0.7 0.033 0.027 0.025 0.025 0.026 0.029 0.029
drug-plac. 100 6 0.5 0.3 0.4 0.1 0.9 0.7 0.032 0.026 0.024 0.023 0.022 0.030 0.030
drug-drug 100 6 0.5 0.3 0.4 0.1 0.9 0.7 0.021 0.024 0.021 0.020 0.024 0.025 0.025
plac.-plac. 160 6 0.5 0.3 0.4 0.1 0.9 0.7 0.017 0.017 0.016 0.015 0.016 0.019 0.019
plac.-drug 160 6 0.5 0.3 0.4 0.1 0.9 0.7 0.020 0.018 0.017 0.017 0.017 0.019 0.019
drug-plac. 160 6 0.5 0.3 0.4 0.1 0.9 0.7 0.021 0.018 0.017 0.016 0.016 0.019 0.019
drug-drug 160 6 0.5 0.3 0.4 0.1 0.9 0.7 0.015 0.016 0.015 0.014 0.016 0.018 0.018
plac.-plac. 60 7 0.4 0.4 0.4 0.3 0.9 0.8 0.050 0.040 0.036 0.034 0.020 0.049 0.049
plac.-drug 60 7 0.4 0.4 0.4 0.3 0.9 0.8 0.056 0.042 0.038 0.038 0.032 0.050 0.050
drug-plac. 60 7 0.4 0.4 0.4 0.3 0.9 0.8 0.039 0.036 0.029 0.026 0.040 0.041 0.042
drug-drug 60 7 0.4 0.4 0.4 0.3 0.9 0.8 0.043 0.038 0.031 0.026 0.048 0.034 0.035
plac.-plac. 100 7 0.4 0.4 0.4 0.3 0.9 0.8 0.033 0.027 0.025 0.024 0.014 0.030 0.030
plac.-drug 100 7 0.4 0.4 0.4 0.3 0.9 0.8 0.034 0.027 0.026 0.026 0.021 0.030 0.031
drug-plac. 100 7 0.4 0.4 0.4 0.3 0.9 0.8 0.025 0.024 0.021 0.020 0.027 0.028 0.028
drug-drug 100 7 0.4 0.4 0.4 0.3 0.9 0.8 0.022 0.024 0.020 0.018 0.034 0.023 0.023
plac.-plac. 160 7 0.4 0.4 0.4 0.3 0.9 0.8 0.020 0.017 0.017 0.016 0.010 0.019 0.019
plac.-drug 160 7 0.4 0.4 0.4 0.3 0.9 0.8 0.020 0.017 0.017 0.017 0.014 0.018 0.019
drug-plac. 160 7 0.4 0.4 0.4 0.3 0.9 0.8 0.019 0.016 0.015 0.014 0.019 0.019 0.019
drug-drug 160 7 0.4 0.4 0.4 0.3 0.9 0.8 0.013 0.015 0.014 0.013 0.026 0.017 0.017
plac.-plac. 60 8 0.4 0.3 0.4 0.3 0.9 0.9 0.052 0.041 0.037 0.035 0.020 0.049 0.049
plac.-drug 60 8 0.4 0.3 0.4 0.3 0.9 0.9 0.057 0.042 0.039 0.039 0.032 0.050 0.050
drug-plac. 60 8 0.4 0.3 0.4 0.3 0.9 0.9 0.044 0.038 0.031 0.026 0.062 0.034 0.035
drug-drug 60 8 0.4 0.3 0.4 0.3 0.9 0.9 0.043 0.038 0.031 0.026 0.048 0.034 0.035
plac.-plac. 100 8 0.4 0.3 0.4 0.3 0.9 0.9 0.033 0.027 0.025 0.024 0.016 0.029 0.030
plac.-drug 100 8 0.4 0.3 0.4 0.3 0.9 0.9 0.033 0.027 0.025 0.025 0.023 0.030 0.030
drug-plac. 100 8 0.4 0.3 0.4 0.3 0.9 0.9 0.022 0.024 0.021 0.018 0.044 0.023 0.023
drug-drug 100 8 0.4 0.3 0.4 0.3 0.9 0.9 0.022 0.024 0.021 0.018 0.034 0.023 0.023
plac.-plac. 160 8 0.4 0.3 0.4 0.3 0.9 0.9 0.021 0.018 0.017 0.017 0.014 0.019 0.019
plac.-drug 160 8 0.4 0.3 0.4 0.3 0.9 0.9 0.020 0.018 0.017 0.017 0.017 0.019 0.019
drug-plac. 160 8 0.4 0.3 0.4 0.3 0.9 0.9 0.014 0.015 0.014 0.013 0.033 0.016 0.017
drug-drug 160 8 0.4 0.3 0.4 0.3 0.9 0.9 0.014 0.016 0.014 0.013 0.026 0.017 0.017
plac.-plac. 60 9 0.4 0.3 0.4 0.4 0.9 0.8 0.057 0.042 0.038 0.039 0.028 0.049 0.050
plac.-drug 60 9 0.4 0.3 0.4 0.4 0.9 0.8 0.057 0.042 0.039 0.039 0.031 0.049 0.050
drug-plac. 60 9 0.4 0.3 0.4 0.4 0.9 0.8 0.038 0.035 0.028 0.025 0.039 0.040 0.041
drug-drug 60 9 0.4 0.3 0.4 0.4 0.9 0.8 0.043 0.038 0.030 0.026 0.047 0.034 0.034
plac.-plac. 100 9 0.4 0.3 0.4 0.4 0.9 0.8 0.034 0.027 0.026 0.026 0.020 0.030 0.030
plac.-drug 100 9 0.4 0.3 0.4 0.4 0.9 0.8 0.034 0.028 0.026 0.026 0.023 0.030 0.030
drug-plac. 100 9 0.4 0.3 0.4 0.4 0.9 0.8 0.026 0.025 0.022 0.020 0.027 0.028 0.029
drug-drug 100 9 0.4 0.3 0.4 0.4 0.9 0.8 0.022 0.024 0.021 0.019 0.034 0.024 0.024
plac.-plac. 160 9 0.4 0.3 0.4 0.4 0.9 0.8 0.020 0.018 0.017 0.017 0.015 0.019 0.019
plac.-drug 160 9 0.4 0.3 0.4 0.4 0.9 0.8 0.020 0.017 0.017 0.017 0.017 0.018 0.018
drug-plac. 160 9 0.4 0.3 0.4 0.4 0.9 0.8 0.019 0.017 0.015 0.015 0.019 0.019 0.019
drug-drug 160 9 0.4 0.3 0.4 0.4 0.9 0.8 0.014 0.016 0.014 0.013 0.026 0.017 0.017
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Appendix Nr. 4. R code for parameters estimation of one configuration

library(FME)

library(tidyverse)

library(doParallel)

rezults <- list()

p.all <- list(c(0.4, 0.4, 0.9), c(0.5, 0.4, 0.9), c(0.5, 0.4, 0.9),

c(0.4, 0.4, 0.9), c(0.5, 0.4, 0.9), c(0.5, 0.4, 0.9),

c(0.4, 0.4, 0.9), c(0.4, 0.4, 0.9), c(0.4, 0.4, 0.9))

q.all <- list(c(0.3, 0.3, 0.8), c(0.3, 0.2, 0.8), c(0.3, 0.1, 0.8),

c(0.3, 0.3, 0.7), c(0.3, 0.2, 0.7), c(0.3, 0.1, 0.7),

c(0.4, 0.3, 0.8), c(0.3, 0.3, 0.9), c(0.3, 0.4, 0.8))

priors <- 7

k <- 1

n <- 60

# sample sizes

b <- 1/2

n <- c(b/2*n, b/2*n, (1-b)/2*n,(1-b)/2*n)

# true parameters values

p <- p.all[[k]]

q <- q.all[[k]]

# both s2 and s3 are fixed at ratio 1

s2 <- 1

s3 <- 1

# generating data

pp <- c(s2*(1-q[1])*q[2], s2*(1-q[1])*(1-q[2]), q[1], (1-s2)*(1-q[1]))

pd <- c(s2*(1-q[1])*p[2], s2*(1-q[1])*(1-p[2]), q[1], (1-s2)*(1-q[1]))

dp <- c(1-p[1], s3*p[1]*q[3], s3*p[1]*(1-q[3]), (1-s3)*p[1])

dd <- c(1-p[1], s3*p[1]*p[3], s3*p[1]*(1-p[3]), (1-s3)*p[1])

prob <- list(pp, pd, dp, dd)

m <- 10000

cl <- makeCluster(4)
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registerDoParallel(cl)

M <- foreach(i = 1:m, .combine = rbind, .packages = c("FME")) %dopar% {

count <- c()

M <- numeric(priors*6)

for (j in 1:4) {

pr <- prob[[j]]

u <- runif(n = n[j])

u <- ifelse(u <= pr[1], 1, ifelse(u <= pr[1]+pr[2], 2, ifelse(u <= pr

[1]+pr[2]+pr[3], 3, 4)))

count <- c(count, sum(u==1), sum(u==2), sum(u==3), sum(u==4))

}

# ML estimates

M[1] <- (n[3]+n[4]-count[9]-count[13])/(n[3]+n[4])

M[2] <- (count[3]+count[7])/(n[1]+n[2])

M[3] <- (count[5])/(count[5]+count[6])

M[4] <- (count[1])/(count[1]+count[2])

M[5] <- (count[14])/(count[14]+count[15])

M[6] <- (count[10])/(count[10]+count[11])

# Bayes uniform

alpha <- 1

beta <- 1

M[7] <- (n[3]+n[4]-count[9]-count[13]+alpha)/(n[3]+n[4]+alpha+beta)

M[8] <- (count[3]+count[7]+alpha)/(alpha+n[1]+n[2]+beta)

M[9] <- (count[5]+alpha)/ (count[5]+alpha+count[6]+beta)

M[10] <- (count[1]+alpha)/(count[1]+alpha+count[2]+beta)

M[11] <- (count[14]+alpha)/(count[14]+alpha+count[15]+beta)

M[12] <- (count[10]+alpha)/(count[10]+alpha+count[11]+beta)

# Bayes beta(1,2) or beta (2,1)

M[13] <- (n[3]+n[4]-count[9]-count[13]+1)/(n[3]+n[4]+1+2)

M[14] <- (count[3]+count[7]+1)/(1+n[1]+n[2]+2)
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M[15] <- (count[5]+1)/ (count[5]+1+count[6]+2)

M[16] <- (count[1]+1)/(count[1]+1+count[2]+2)

M[17] <- (count[14]+2)/(count[14]+2+count[15]+1)

M[18] <- (count[10]+2)/(count[10]+2+count[11]+1)

# Bayes beta(1,3) or beta (3,1)

M[19] <- (n[3]+n[4]-count[9]-count[13]+1)/(n[3]+n[4]+1+3)

M[20] <- (count[3]+count[7]+1)/(1+n[1]+n[2]+3)

M[21] <- (count[5]+1)/ (count[5]+1+count[6]+3)

M[22] <- (count[1]+1)/(count[1]+1+count[2]+3)

M[23] <- (count[14]+3)/(count[14]+3+count[15]+1)

M[24] <- (count[10]+3)/(count[10]+3+count[11]+1)

#

ll2 <- function(par) {

p1 <- par[1]

f1=(n[3]+n[4]-count[9]-count[13])*log(par[1]) + (count[9]+count[13])*

log(1-par[1]) +

(count[3]+count[7])*log(par[2]) + (n[1]+n[2]-count[3]-count[7])*log(1-

par[2]) +

count[5]*log(par[3]) + count[6]*log(1-par[3]) + count[1]*log(par[4]) +

count[2]*log(1-par[4]) +

count[14]*log(par[5]) + count[15]*log(1-par[5]) + count[10]*log(par

[6]) + count[11]*log(1-par[6])

f = -2*f1

return(f)

}

prior <- function(par) {

f2=dunif(par[1], 0, 1, log=TRUE) + dunif(par[2], 0, p[1], log=TRUE) +

dunif(par[3], 0, 1, log=TRUE) + dunif(par[4], 0, p[2], log=TRUE) +

dunif(par[5], 0, 1, log=TRUE) + dunif(par[6], 0, p[3], log=TRUE)

f = -2*f2

return(f)
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}

# Initial values

ini <- c(1/2, 1/2, 1/2, 1/2, 1/2, 1/2)

low <- rep(1e-10, 6)

up <- rep(0.99999999, 6)

# Bayes bounded u(0,p)

m1 <- modMCMC(ll2, ini, lower = low, upper = up, prior = prior,

niter = 10000, burninlength = 1000, verbose = FALSE)

M[25:30] <- apply(m1$pars, 2, mean)

# Jeffreys

alpha <- 1/2

beta <- 1/2

M[31] <- (n[3]+n[4]-count[9]-count[13]+3/2)/(n[3]+n[4]+3/2+1/2)

M[32] <- (count[3]+count[7]+1/2)/(1/2+n[1]+n[2]+3/2)

M[33] <- (count[5]+alpha)/(count[5]+alpha+count[6]+beta)

M[34] <- (count[1]+alpha)/(count[1]+alpha+count[2]+beta)

M[35] <- (count[14]+alpha)/(count[14]+alpha+count[15]+beta)

M[36] <- (count[10]+alpha)/(count[10]+alpha+count[11]+beta)

# Reference

M[37] <- (n[3]+n[4]-count[9]-count[13]+alpha)/(n[3]+n[4]+alpha+beta)

M[38] <- (count[3]+count[7]+alpha)/(alpha+n[1]+n[2]+beta)

M[39] <- (count[5]+alpha)/(count[5]+alpha+count[6]+beta)

M[40] <- (count[1]+alpha)/(count[1]+alpha+count[2]+beta)

M[41] <- (count[14]+alpha)/(count[14]+alpha+count[15]+beta)

M[42] <- (count[10]+alpha)/(count[10]+alpha+count[11]+beta)

M

}

stopCluster(cl)

colnames(M) <- rep(c("p1", "q1", "p2", "q2", "p3", "q3"), priors)
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Appendix Nr. 5. R code for power simulations of one test

library(FME)

library(doParallel)

modMCMC1 <- modMCMC

# modify MCMC

body(modMCMC1)[[59]][[4]][[4]][[2]] <-

substitute(any(parnew < lower) | any(parnew > upper) |

any(parnew[1] + parnew[2:4] > 1) | any(parnew[1] + parnew[2:4]

< 0))

body(modMCMC1)[[59]][[4]][[6]][[3]][[11]][[3]][[5]][[2]] <-

substitute(any(parnew < lower) | any(parnew > upper) |

any(parnew[1] + parnew[2:4] > 1) | any(parnew[1] + parnew[2:4]

< 0))

### Values from article

p.all <- list(c(0.4, 0.4, 0.9), c(0.5, 0.4, 0.9), c(0.5, 0.4, 0.9),

c(0.4, 0.4, 0.9), c(0.5, 0.4, 0.9), c(0.5, 0.4, 0.9),

c(0.4, 0.4, 0.9), c(0.4, 0.4, 0.9), c(0.4, 0.4, 0.9))

q.all <- list(c(0.3, 0.3, 0.8), c(0.3, 0.2, 0.8), c(0.3, 0.1, 0.8),

c(0.3, 0.3, 0.7), c(0.3, 0.2, 0.7), c(0.3, 0.1, 0.7),

c(0.4, 0.3, 0.8), c(0.3, 0.3, 0.9), c(0.3, 0.4, 0.8))

n.all1 <- c(412, 128, 96, 312, 104, 80, 2612, 728, 644)

power11 <- numeric(9)

power13 <- numeric(9)

for (k in 1:9) {

# sample sizes

b <- 1/2

n <- n.all1[k]

n1 <- c(b/2*n, b/2*n, (1-b)/2*n,(1-b)/2*n)

# true parameters values
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p <- p.all[[k]]

q <- q.all[[k]]

# both s2 and s3 are fixed at ratio 1

s2 <- 1

s3 <- 1

# generating data

pp <- c(s2*(1-q[1])*q[2], s2*(1-q[1])*(1-q[2]), q[1], (1-s2)*(1-q[1]))

pd <- c(s2*(1-q[1])*p[2], s2*(1-q[1])*(1-p[2]), q[1], (1-s2)*(1-q[1]))

dp <- c(1-p[1], s3*p[1]*q[3], s3*p[1]*(1-q[3]), (1-s3)*p[1])

dd <- c(1-p[1], s3*p[1]*p[3], s3*p[1]*(1-p[3]), (1-s3)*p[1])

prob <- list(pp, pd, dp, dd)

# Likelihood functions

ll1 <- function(par) {

f1=(n1[3]+n1[4]-count1[9]-count1[13])*log(par[1]+par[2]) + (count1[9]+

count1[13])*log(1-par[1]-par[2]) +

(count1[3]+count1[7])*log(par[2]) + (n1[1]+n1[2]-count1[3]-count1[7])*

log(1-par[2]) +

count1[5]*log(par[1]+par[3]) + count1[6]*log(1-par[1]-par[3]) + count1

[1]*log(par[3]) + count1[2]*log(1-par[3]) +

count1[14]*log(par[1]+par[4]) + count1[15]*log(1-par[1]-par[4]) +

count1[10]*log(par[4]) + count1[11]*log(1-par[4])

f = -2*f1

return(f)

}

# Priors

prior11 <- function(par) {

f2=dunif(par[1], -1, 1, log=TRUE) + dunif(par[2], 0, 1, log=TRUE) +

dunif(par[3], 0, 1, log=TRUE) + dunif(par[4], 0, 1, log=TRUE)

f = -2*f2

return(f)

}

prior13 <- function(par) {
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d1 <- par[1]

q1 <- par[2]

q2 <- par[3]

q3 <- par[4]

f11 = -(n1[4]*(d1+q1)/(d1+q3)+n1[4]*(d1+q1)/(1-d1-q3))^2*

((n1[3]+n1[4])/(d1+q1)+(n1[3]+n1[4])/(1-d1-q1)+(n1[1]+n1[2])/q1+(n1

[1]+n1[2])/(1-q1))*

(n1[2]*(1-q1)/(d1+q2)+n1[2]*(1-q1)/(1-d1-q2)+n1[1]*(1-q1)/q2+n1[1]*(1-

q1)/(1-q2))

f12 = -(n1[4]*(d1+q1)/(d1+q3)+n1[4]*(d1+q1)/(1-d1-q3)+n1[3]*(d1+q1)/q3+

n1[3]*(d1+q1)/(1-q3))*

(n1[2]*(1-q1)/(d1+q2)+n1[2]*(1-q1)/(1-d1-q2))^2*

((n1[3]+n1[4])/(d1+q1)+(n1[3]+n1[4])/(1-d1-q1)+(n1[1]+n1[2])/q1+(n1

[1]+n1[2])/(1-q1))

f13 = (n1[4]*(d1+q1)/(d1+q3)+n1[4]*(d1+q1)/(1-d1-q3)+n1[3]*(d1+q1)/q3+n1

[3]*(d1+q1)/(1-q3))*

(n1[2]*(1-q1)/(d1+q2)+n1[2]*(1-q1)/(1-d1-q2)+n1[1]*(1-q1)/q2+n1[1]*(1-

q1)/(1-q2))*

(((n1[3]+n1[4])/(d1+q1)+(n1[3]+n1[4])/(1-d1-q1)+n1[2]*(1-q1)/(d1+q2)+

n1[2]*(1-q1)/(1-d1-q2)+

n1[4]*(d1+q1)/(d1+q3)+n1[4]*(d1+q1)/(1-d1-q3))*

((n1[3]+n1[4])/(d1+q1)+(n1[3]+n1[4])/(1-d1-q1)+(n1[1]+n1[2])/q1+(n1

[1]+n1[2])/(1-q1))-

((n1[3]+n1[4])/(d1+q1)+(n1[3]+n1[4])/(1-d1-q1))^2

)

f2 = sqrt(f11+f12+f13)

f = -2*log(f2)

return(f)

}

# Initial values

ini1 <- c(0.2, 0.5, 0.5, 0.5)

low1 <- c(-1, rep(1e-10, 3))
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up1 <- rep(0.99999999, 4)

m <- 10000

cl <- makeCluster(4)

registerDoParallel(cl)

M <- foreach(i = 1:m, .combine = rbind, .packages = c("FME")) %dopar% {

# Data simulations

count1 <- c()

for (j in 1:4) {

pr <- prob[[j]]

u <- runif(n = n1[j])

u <- ifelse(u <= pr[1], 1, ifelse(u <= pr[1]+pr[2], 2, ifelse(u <= pr

[1]+pr[2]+pr[3], 3, 4)))

count1 <- c(count1, sum(u==1), sum(u==2), sum(u==3), sum(u==4))

}

# Models

m11 <- modMCMC1(ll1, ini1, lower = low1, upper = up1, prior = prior11,

niter = 100000, burninlength = 10000, verbose = FALSE)

m13 <- modMCMC1(ll1, ini1, lower = low1, upper = up1, prior = prior13,

niter = 100000, burninlength = 10000, verbose = FALSE)

# Results

data.frame(hip11 = (quantile(m11$pars[,1], 0.05) > 0),

hip13 = quantile(m13$pars[,1], 0.05) > 0)

}

stopCluster(cl)

power11[k] <- sum(M$hip11)/m

power13[k] <- sum(M$hip13)/m

}
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