
VILNIAUS UNIVERSITETAS

MATEMATIKOS IR INFORMATIKOS FAKULTETAS

Magistro baigiamasis darbas

Neveiksnių paskolų dalinių išieškojimo
reitingų prognozavimas

Forecasting Partial Recovery Rates for
Non-Performing Loans

Indrė Baranauskaitė

VILNIUS 2020

MATEMATIKOS IR INFORMATIKOS FAKULTETAS
STATISTINĖS ANALIZĖS KATEDRA

Darbo vadovė doc. dr. Rūta Levulienė

Darbo recenzentė dr. Jolita Bernatavičienė

Darbas apgintas

Registravimo Nr.

Neveiksnių paskolų dalinių išieškojimo reitingų prognozavimas

Santrauka

Remiantis tikrais skolų portfelio duomenimis, kuriuos suteikė viena skolų išieškojimo įmonė,

daliniai išieškojimo reitingai po skolų portfelio nusipirkimo buvo modeliuoti naudojant vieno ir

dviejų etapų modelius bei ansamblį. Vieno etapo modeliai - regresijos algoritmai - buvo taikyti

su šiais metodais: atraminių vektorių mašina, atsitiktinų miškų algoritmu, k-artimiausiais kaimy-

nais, dirbtiniais neuroniniais tinklais ir ekstremalaus gradiento auginimu. Dviejų etapų modeliai

susideda iš klasifikavimo ir regresijos. Pirmame etape išieškojimo reitingai klasifikuojami į lygius

nuliui ir kitus. Antrame etape taikomi regresijos algoritmai didesniems nei nulis reitingams. Klasi-

fikavimui buvo naudoti du metodai: binarinė logistinė regresija ir atsitiktinių miškų algoritmas.

Antrajame etape buvo naudoti anksčiau minėti regresijos algoritmai. Dar vienas taikytas modelis -

beta perteklinių nulių ir vienetų regresija. Geriausias modelis vertinant pasirinktais suderinamumo

rodikliais buvo vieno etapo atsitiktinių miškų algoritmas. Prognozavimo tikslumui pagerinti buvo

naudotas apjungimo ansamblis įtraukiant tris geriausius modelius: atsitiktinių miškų, ekstremalaus

gradiento auginimo ir dirbtinių neuroninių tinklų algoritmus. Įgyvendinus metodą paaiškėjo, jog

ansamblis žymiai nepranoko geriausių vieno etapo modelių. Reikšmingi faktoriai buvo mokėjimų

suma iki portfelio nusipirkimo ir susidariusios skolos dydis. Mėnesinių išieškojimo reitingų prog-

nozavimui buvo naudotas atsitiktinių miškų ciklas, modeliuojantis ir prognozuojantis išieškojimo

reitingus pamėnesiui.

Raktiniai žodžiai : neveiksni paskola, išieškojimo reitingai, mašininis mokymasis, prognozavimas

1

Forecasting partial recovery rates for non-performing loans

Abstract

Based on real debt portfolio data provided by debt collection company, partial recovery rates

post portfolio acquisition were modelled using one-stage, two-stage models and models ensemble.

One-stage algorithms included support vector machines, random forests, k-nearest neighbors, ar-

tificial neural networks and extreme gradient boosting. Two-stage models classified recovery rates

into zeros and others as stage one and then applied regression to observations higher than zero.

Classification methods used were binary logistic regression and random forests. For the second

stage, same regression algorithms were used as mentioned before. Moreover, the beta one and zero

inflated regression was also implemented, modelling one and zero with Bernoulli random variable

and other values with beta regression. The best model evaluated on test data was one-stage random

forests. Ensemble stacking was built out of three best performing models: random forests, extreme

gradient boosting and artificial neural networks. However, ensemble outperformed one-stage ran-

dom forests marginally. The most significant variables were found to be pre-acquisition collections

and debt amount at loan default. Additionally, monthly forecast machine was implemented using

a loop of random forests.

Key words : non-performing loans, recovery rates, machine learning, forecasting

2

Contents

1 Introduction 5

2 Methodology 10

2.1 Classification . 11

2.1.1 Binary Logistic Regression . 11

2.1.2 Random Forests . 14

2.2 Regression . 15

2.2.1 Support Vector Machines . 15

2.2.2 Random Forests . 19

2.2.3 K-Nearest Neighbours . 20

2.2.4 Artificial Neural Networks . 20

2.2.5 Inflated Beta Regression . 23

2.2.6 Extreme Gradient Boosting . 24

2.3 Ensemble. Stacking . 25

2.4 Goodness-of-fit metrics . 26

3 Implementation 28

3.1 Data overview . 28

3.2 One-stage models . 30

3.2.1 Support Vector Machines . 31

3.2.2 Random Forests . 32

3.2.3 K-Nearest Neighbors . 33

3.2.4 Artificial Neural Networks . 34

3

3.2.5 Extreme Gradient Boosting . 36

3.3 Two-stage models . 37

3.3.1 Classification. Binary Logistic Regression 38

3.3.2 Classification. Random Forests . 42

3.3.3 Regression . 43

3.3.4 Inflated Beta Regression . 48

3.4 Models evaluation . 52

3.5 Ensemble. Stacking . 53

3.6 Monthly forecast . 55

4 Conclusions 58

5 Bibliography 59

Chapter 1

Introduction

Non-performing loans are loans that fail to repay their amount according to a plan and shortly

can be referred as debts. Formal description [17] suggests a loan becomes a debt after the

absence of payment exceeds 90 days. It is of a loan issuers interest to aggregate a set of debts

and sell it in the non-performing loan (NPL) auction to debt collection companies. Potential

buyers are distributed with debt data and are required to produce a price acceptable to

both parties. The key variable of price is debt recovery rate (RR), which is a percentage

achievable to recover a debt as of its balance amount. Additionally, loss given default (LGD)

is one minus recovery rate. One of the main tasks of debt collection companies is to forecast

recovery rates based on the data provided by seller and own expertise.

One European debt collection agency donated anonymised debt portfolio data set includ-

ing account and payment level information. With this data, it was sought to produce models

which could forecast recovery rates post debt portfolio acquisition. Recovery process for this

portfolio was not full, so the models were applied to partial recovery rates. Moreover, since

recovery rates were zero inflated, the hypothesis was raised that two-stage models separat-

ing zeros first and then modelling others with regression or zero-one inflated model should

produce more accurate forecasts than one-stage models, which applied regression only. This

was believed due to the fact that incomplete collection process resulted in extreme excess of

zeros in recovery rates. Therefore, they should be treated differently.

Goal: Forecast partial recovery rates post portfolio purchase for different periods of

recovery time using one-stage, two-stage models and ensemble.

5

Tasks:

1) Apply one-stage regression algorithms to the modelling of recovery rates, which in-

cludes: support vector machines, random forests, k-nearest neighbors, artificial neural

networks and extreme gradient boosting.

2) Apply two-stage algorithm to model recovery rates. The first stage classifies rates

into zeros and others using binary logistic regression and random forests classifier.

Second stage applies regression to higher than zero recovery rates using same regression

methods as in one-stage. Additionally, as a two-stage approach apply zero and one beta

inflated model, which models zeros and ones with Bernoulli distribution and for others

uses beta regression.

3) Extract the key variables having significance in modeling recovery rates.

4) Build ensemble of best performing models using stacking technique.

5) Build models on monthly recovery rates and produce monthly forecasts.

This Master thesis focuses not only on different modeling approaches, but also concerns

predicting RR using ensemble stacking technique. Furthermore, time needed for debt recov-

ery is also acknowledged by modeling recovery rates cumulatively achieved during partial

collection. In addition, monthly recovery rates are also modeled. Building a model that pre-

dicts monthly recovery rates could be beneficial to any debt collection company as it would

fasten new portfolio analysis process. Once the model is built, the only thing left would be

to predict monthly recovery rates for the new data.

For implementation, computer software R was used, with packages noted in the Appendix

8.

The structure of the Master’s thesis is the following. To begin with, provided literature

overview introduces with relevant papers used to base further analysis. Then the methodol-

ogy is outlined implemented in the thesis. Next with the methodology provided follows its

implementations on the data of interest. After a number of methods is applied, ensemble

stacking is built using the best performing models. Also, a loop of random forests is imple-

6

mented to model monthly recovery rates. Lastly, the thesis ends with results and conclusions

of analysis done.

7

Literature overview

Articles about loss given default (LGD is one minus RR) experienced a breakthrough in mid-

2000s. This was influenced by Basel II publication [2]. Basel II was a set of international

banking regulations provided by Basel Committee on Bank Supervision [1], where financial

institutions were endorsed to allow scientists to use their debt internal data to measure

credit risk variables of their portfolios. Early publications included J. Dermine and C. Neto

de Carvalho’s article [12], where authors introduced LGD modelling with mortality rates for

different periods. Different approach was suggested in [6] by R. Calabrese and M. Zenga.

Here the authors modelled recovery rates as a mixed random variable and the mixture of

beta kernels estimator. Later, in this work’s continuation [7], written by R. Calabrese,

it was proposed to use mixture of a Bernoulli and a beta random variables as a mixed

random variable to model RR. Another article [20] published by M. Qi, X. Zhao, concerned

implementing machine learning algorithms to model LGD. The paper included analysis of

parametric methods - ordinary least squares, fractional response, inverse Gaussian regressions

and inverse Gaussian regression with beta transformation as well as artificial neural networks

and regression trees as non-parametric methods. As compared to other publications [12],

[6], [7], where authors concentrated on developing one type of the model, in [20] it was

suggested to test different types of models and compare their accuracy. It was proved that

non-parametric models proposed outperformed parametric. In early 2010s, G. Loterman,

I. Brown, D. Martens, C. Mues and B. Baesens presented the article [16], where authors

introduced with in total twelve different linear and non-linear regression algorithms for LGD.

Another publication comparing the number of diverse models by T. Bellotti and J. Crook

[4] also recommended using a decision tree model, which implied a multi-step procedure.

First, using binary logistic regression to classify observations into LGD equal to zero and

8

others, and then another binary logistic to split LGD equal to one and others. Remaining

values were modelled with regression. It is worth-mentioning that modelled LGD was also

partial. Other publication written by M. Oliveira Jr, F. Louzada, G. Pereira, F. Moreira

and R. Calabrese in [19] analysed the multimodality and zero-one inflation of LGD. Here the

authors proposed a mix of degenerate distributions to handle inflation. The multimodality

observed in other cases was solved by using inflated mixture of beta regressions. One of the

latest papers on RR were written in 2019. In [13] H. Ye and A. Belotti’s publication the

authors modelled recovery rates from debt collection agency point of view after purchasing

a portfolio. Here the number of methods was applied: linear regression, linear regression

with Lasso, beta regression and inflated beta regression. In addition, it was suggested to use

a two-stage model: a beta mixture model combined with a logistic regression model, which

was a similar proposal to that described in [4], but for the regression authors decided to use

a beta mixture model in order to deal with multimodality, which eventually gave the best

model performance. Another paper published by A. Bellotti, P. Gambetti, D. Brigo and

F. Vrins [3] was of focus on machine learning. In total, twenty different machine learning

algorithms were applied and described in this work.

A few theoretical articles were also concerned in this thesis. This included two articles

on support vector machines presented by T. Trafalis and H. Ince in [22] and C. Cortes,

V. Vapnik in their work [9]. Moreover, beta inflated model was effectively presented by R.

Ospina and S. Ferrari in [18]. On artificial neural networks visualisation in software R, article

by M. Beck in [5] provided explanations on different graphic tools to view a neural network.

9

Chapter 2

Methodology

In the Master’s thesis, two types of modelling approaches were proposed: one-stage and

two-stage. One-stage models included regression only, while two-stage models consisted of

classification and regression.

1) One-stage model approach. Most of before discussed literature concerned applying re-

gression to model RR and LGD. To take one, in [3], several regression algorithms that

authors used were support vector regression, random forests and k-nearest neighbors.

These methods as well as artificial neural networks proposed in articles [20] and [16]

were applied as a one-stage approach. Additionally, extreme gradient boosting was

also applied.

2) Two-stage model approach. The two-stage model was first introduced in [4] and devel-

oped in [13]. This proposal included a multi-step procedure. The first step - classifica-

tion into serviced (RR > 0) and unserviced cases (RR = 0), which are defined below

this paragraph. The second stage - applications of regression algorithms to serviced

(RR > 0) cases. In addition, the inflated beta regression model with inflation at zero

and one was used. This was also considered as a two-stage approach as RR ∈ {0, 1}

were modelled differently than other values. Such methods are quite popular among

modeling recovery rates and loss given default in [6], [7], [19] and [13].

2.0.1 Definition. Debts having their collection process successfully started by the collection

10

Figure 2.1: Decision tree model illustrating the two-stage approach.

company after acquisition of the portfolio are called serviced and their RR > 0. Similarly,

debts with pending start or failed collection process are called unserviced and their RR = 0.

For two-stage modelling, except the beta zero and one inflated method, the second stage

lead to modeling RR ∈ (0, 1] with statistical tools discussed in 2.2. These algorithms were

applied to model such cases. The decision tree figure 2.1 graphically displays the two-stage

approach.

The chapter is split into sections about classification and regression methods. Classifi-

cation methods included binary logistic regression and random forests. For regression such

methods were applied: support vector machines, random forests, k-nearest neighbors, artifi-

cial neural networks and extreme gradient boosting. Additionally, the inflated beta regression

was used, incorporating modelling one and zero values with Bernoulli random variable and

remaining values with beta regression.

2.1 Classification

2.1.1 Binary Logistic Regression

The idea to use binary logistic approach for classification arose from papers [4] and [13]. In

[4], the authors suggested applying logistic regression twice: firstly, to split LGD = 1 and

others and then the remaining split into LGD = 0 and others. Binary logistic regression

was also used in [13] to separate RR = 1 and others. In this Master’s thesis, binary logistic

11

regression was used in two-stage modelling recovery rates, at stage one to classify debts into

serviced (RR > 0) and unserviced (RR = 0).

The detailed theory on the binary logistic regression, otherwise known as the logit re-

gression, is explained in V. Čekanavičius "Multivariate statistical analysis" lecture notes [10]

with practical examples explained by the same author in his practice notes [11]. In this

subsection the explanations on the binary logistic regression are based on before mentioned

sources.

According to [10], the binary logistic regression belongs to the generalized linear models

family, defined as follows:

2.1.1 Definition. A model for the mean of the dependent variable is called generalized

linear model and has to satisfy the following conditions:

GLM: g(µj) = β0 + β1Xj1 + β2Xj2 + ...+ βKXjK , j = 1, ..., n.

Here

• µj = EYj, and Yj belongs to exponential family.

• The right-hand side of equality is called models predictor : ηj(β) = β0 +β1Xj1 +

β2Xj2 + ...+ βKXjK .

• Link function g(·) has inverse, that is µj = g−1(ηj(β)).

• Parameters β are unknown.

If it is assumed that gT (µ) := (g(µ1), g(µ2), ..., g(µn)), µT = (µ1, µ2, ..., µn), then GLM

can be written in matrix form

g(µ) = Xβ;

X is called the design matrix, and β is the vector of parameters.

Binary logistic regression assumes the binomial distribution, which belongs to the expo-

nential family of distributions and has the logit canonical link function:

12

• Link function g(µ) = ln µ
1−µ .

• Model ln µ
1−µ = Xβ.

• Mean estimate µ̂ = exp(Xβ̂)
1+exp(Xβ̂) .

Typically, the values of Y are coded with 0 and 1. According to V. Čekanavičius practical

examples [10], for logit regession to work, there are certain requirements for data that must

not be violated:

1) The proportion of smaller group must be at least 20% of all observations, otherwise

the binary logistic will not work.

2) If model contains many categorical regressors, then for each combination of their values

there should be at least 5 observations in the data.

3) Regressors are not strongly correlated. Although multicollinearity is not a serious

problem in logistic models, some authors recommend to drop some variables from the

model if their standard errors SE > 5.

Overall, a good model should satisfy:

1) Maximum likelihood chi square test’s p < 0.05.

2) Wald test’s p < 0.05 for each regressor (all regressors are statistically significant).

3) At least 50% of cases when Y = 1 and at least 50% of cases when Y = 0 are correctly

classified.

4) Cook’s distance ≤ 1 and all DFBeta ≤ 1 for all observations.

5) Chosen pseudo-determinant coefficient ≥ 0.20.

Moreover, odds ratio P (Y = 1)/P (Y = 0) for different variables should be calculated,

showing how odds change when variable 1 is increased by a unity and others are held constant.

Forecasts are made for P (Y = 1). Typically, if the forecast is > 0.5, then it is assumed that

the observation is classified into "1" group, otherwise "0" [11]. However, the threshold defining

13

whether observation is classified as "1" can be arbitrarily changed depending on the data.

This is especially relevant to imbalanced data, where one class of observations is significantly

lower as compared to other groups.

2.1.2 Random Forests

Random forests algorithm is not commonly used for classification in a two-stage RR models.

This method was selected due to being able to handle imbalanced data sets, which was the

case of our interest, as well as the ability to provide a reliable feature importance estimates.

Random forest algorithm is explicitly described in [14]. Random forests are an ensem-

ble learning method for both classification and regression tasks. Some of the important

definitions are as follows:

2.1.2 Definition. Decision tree methods are tree-based methods, which involve stratifying

or segmenting the predictor space into a number of simple regions. The set of splitting rules

used to segment the predictor space can be summarized in a tree.

2.1.3 Definition. Classification trees building includes two main steps:

1) The predictor space (the set of possible values for X1, X2,...,Xp) is divided into J

distinct and non-overlapping regions, R1, R2,...,RJ .

2) For every observation that falls into the region Rj, the same prediction is made, which

is simply most commonly occurring class of training observations in that region Rj .

The main goal here is to minimize the classification error rate E, which is the fraction of the

training observations in that region that do not belong to the most common class:

E = 1−max
k

p̂mk

Here p̂mk represents the proportion of training observations in the mth region that are from

the kth class.

For random forests, a number of decision trees on bootstrapped training samples is

built. When building decision trees, each time a split in a tree is considered, a random

14

sample of m predictors is chosen as split candidates from the full set of p predictors. The

split is allowed to use only one of those m predictors. A fresh sample of m predictors is

taken at each split, and typically is chosen m ≈ √p. By not considering total number of

predictors each time, random forests lowers the correlation between the splits.

2.2 Regression

2.2.1 Support Vector Machines

Support vector machines (SVMs) were used in papers [16] and [3]. This method was chosen

due to availability to use different kernels, which allowed more flexibility. Although the

authors in [3] claimed that the SVM model did not achieve better accuracy than most

other models they used, another publishing concerning this method [16] stated that SVM

outperformed most other linear approaches. Therefore, SVM was applied in this thesis as

well.

The theory of support vector machines is provided in [22] and [9] and explanations on

this method are based on these sources.

SVM algorithm is based on statistical learning theory and can be applied to classification

and regression. In classification case, optimal hyperplane is found that separates two classes.

In order to find an optimal hyperplane, a norm of vector ω has to be minimized, which

defines the separating hyperplane. This is equivalent to maximizing the margin between two

classes. In the case of regression, the goal is to construct a hyperplane that lies "close" to as

many of the data points as possible. Therefore, the objective is to choose a hyperplane with

small norm while simultaneously minimizing the sum of the distances from the data points

to the hyperplane.

To begin with, linearly separable case - the ε-insensitive support vector regression - is to

be explained. In the ε-insensitive support vector regression, the idea is to find such function

f(x) that has an ε deviation from the actually obtained target yi for all training data and

at the same time is as flat as possible.

Suppose a linear function f of form:

15

f(x) = ωx+ b, ω ∈ χ, b ∈ R (2.1)

Small ω should be sought, which is called a support vector. The problem can be written

as a convex optimization problem:

minimize
1
2‖ω‖

2 (2.2)

subject to

yi − ωxi − b ≤ ε, (2.3)

ωxi + b− yi ≤ ε (2.4)

The assumption in 2.3 and 2.4 is that such a function f exists that approximates all pairs

(xi, yi) with ε precision. However, sometimes some errors should be allowed. Analogously to

the “soft margin” loss function, slack variables ξi, ξ∗i are introduced to cope with otherwise

infeasible constraints of the optimization problem 2.2. Hence the formulation can be written

as:

minimize
1
2‖ω‖

2 + C
l∑

i=1
(ξi + ξ∗i)

subject to

yi − ωxi − b ≤ ε+ ξi

ωxi + b− yi ≤ ε+ ξ∗i

ξ,ξ
∗
i ≥ 0, (i = 1, ...,m)

The constant C > 0 is called the cost parameter, which determines the trade-off between

the flatness of f and the amount up to which deviations larger than ε are tolerated.

Figure 2.2 show soft margin loss setting for linear kernel SVM. This is called ε-insensitive

loss function | ξ |ε and is described by

| ξ |ε=

0 if | ξ |≤ ε

| ξ | −ε if | ξ |� ε

Then, the dual problem can be formulated by constructing the Lagrangian function:

16

Figure 2.2: The soft margin loss setting for a linear SVM. [22]

L = 1
2‖ω‖

2 + C
l∑

i=1
(ξi + ξ∗i)−

l∑
i=1

(λi(εi + ξi − yi + ωξi + b))

−
l∑

i=1
(λ∗i (yi + εi + ξ∗i − ωξi − b))−

l∑
i=1

(ηiξi + η∗i ξ
∗
i),

(2.5)

here λi, λ∗i , ηi, η∗i ≥ 0.

The optimal solution is the following:

∂L

∂ω
= ω −

l∑
i=1

(λ∗i − λi) = 0

∂L

∂b
=

l∑
i=1

(λi − λ∗i) = 0

∂L

∂ξi
= C − λi − ηi = 0

∂L

∂ξ∗i
= C − λ∗i − η∗i = 0

(2.6)

Dual problem is obtained by substituting 2.6 into 2.5. Specifically, the dual problem is

as follows: maximize

−1
2

l∑
i=1

l∑
j=1

(λi − λ∗i)(λj − λ∗j)xixj − ε
l∑

i=1
(λi − λ∗i) + ε

l∑
i=1

yi(λi − λ∗i)

Subject to ∑
(λi − λ∗i) = 0,

here λi, λ∗i ∈(0,C).

17

Solving 2.5 for ω,

ω∗ =
l∑

i=1
(λi − λ∗i)xi

and by 2.1,

f(x) =
l∑

i=1
(λi − λ∗i)xix+ b∗.

Optimal value of b is computed from the complementary slackness conditions, given by:

λi(ε+ ξi − yy + ω∗xi + b) = 0

λ∗i (ε+ ξ∗i − yy + ω∗xi + b) = 0

(C − λi)ξi = 0

(C − λ∗i)ξ∗i = 0

(2.7)

Some conclusions could be made from the equations 2.7. First of all, only samples (xi, yi)

with corresponding λi = C lie outside the ε-insensitive tube around f . The set of dual

variables can never be not equal to zero at the same time, λi, λ∗l . If λi 6= 0, then λ∗i = 0 and

vice versa. Finally if λi ∈ (0, C), then the corresponding ξ is zero. So b can be calculated:

b∗ = yi − ω∗xi − ε

forλi ∈ (0, C)

b∗ = yi − ω∗xi + ε

forλ∗i ∈ (0, C)

(2.8)

For the non-linear case, the problem is as follows. Firstly, input space need to be mapped

into feature space and a hyperplane should be found in the feature space. The following

problem is obtained:

max

−1
2

l∑
i=1

l∑
j=1

(λi − λ∗i)(λj − λ∗j)K(xi, xj)−
l∑

i=1
(λi − λ∗i) +

l∑
i=1

yi(λi − λ∗i)

subject to ∑
(λi − λ∗i) = 0,

18

here λi, λ∗i ∈ (0, C). At the optimal solution:

ω∗ =
l∑

i=1
(λi − λ∗i)K(xi)

and

f(x) =
l∑

i=1
(λi − λ∗i)K(xi, x) + b

here K(...) is a kernel function.

According to [9], any symmetric positive semi-definite function, which satisfies Mercer’s

conditions can be used as a kernel function in the SVMs context. Mercer’s conditions can

be written as,

∫ ∫
K(x, y)g(x)g(y)dxdy > 0,

∫
g2(x)dx ≤ ∞

here

K(x, y) =
∞∑
i=1

αiψ(x)ψ(y), αi ≥ 0.

As far as kernels are concerned, they can be chosen from a variety and the most common

ones used are linear, radial, polynomial and sigmoid. A number of kernels should be tested

and the best one should be chosen.

2.2.2 Random Forests

Random forests for regression was used in [3] where authors managed to obtain one of the

best accuracy out of all models they applied. Explanations on random forest classification

algorithm were provided in section 2.1.2. However, as compared to classification, in case of

regression the main goal is not to minimize the classification error rate E, but to find such

boxes R1,...,RJ that minimize the RSS (residual sum of squares), given by
J∑
j=1

∑
i∈Rj

(yi − ŷRj)2

where ŷRj is the mean response for the training observations within the jth box. Once the

regions R1,...,RJ have been created, the response for a given test observation is predicted

by using the mean of the training observations in the region to which that test observation

belongs.

19

2.2.3 K-Nearest Neighbours

K-nearest neighbors algorithm (KNN) is a simple method based on distance measurements

and can be applied to classification and regression. In [3], authors showed that KNN was

the best performing algorithm out of 20 used. Therefore, it was also included in this thesis.

Explanations on KNN algorithm provided are based on statistical book [14].

For regression, given a positive integer K and a test observation x0, the KNN algorithm

first identifies theK points in the training data that are closest to x0, represented by N0, term

"closest" meaning the shortest in calculated distance (Euclidean, Manhattan, Minkowski for

numerical and Hamming for categorical variables). It then outputs the average value of these

K nearest values to x0.

The aforementioned distances between two points xi and yi are calculated in the following

way:

Euclidean √√√√ K∑
i=1

(xi − yi)2

Manhattan
K∑
i=1
|xi − yi|

Minkowsi (
K∑
i=1

(|xi − yi|)q
) 1

q

Hamming

DH =
K∑
i=1
|xi − yi|,

here if x = y ⇒ D = 0, if x 6= y,⇒ D = 1.

The choice of K highly depends on the data. It is advised to use a large K value in order

to be more precise, however, the best way to determine K value is by tuning.

2.2.4 Artificial Neural Networks

Artificial neural networks are one of the most popular modern tools of statistical modelling

and implemented in many RR and LGD related papers, such as [3], [16] and [20]. The

20

authors there managed to achieve comparably good results in forecasting. The explanations

on artificial neural networks are provided in book [15].

A technical neural network consists of simple processing units, the neurons, and directed,

weighted connections between those neurons. Here, the strength of a connection (or the

connecting weight) between two neurons i and j is referred to as wi,j.

2.2.1 Definition. A neural network is a sorted triple (N, V, w) with two sets N, V and

a function w where N is the set of neurons and V a set {(i, j)|i, j ∈ N} whose elements

are called connections between neuron i and neuron j. The function w : V → R defines

the weights, where w((i, j)), the weight of the connection between neuron i and neuron j is

shortened to wi,j. Depending on the point of view it is either undefined or 0 for connections

that do not exist in the network.

The weights can be implemented in a square weight matrix W or, optionally, in a weight

vector W with the row number of the matrix indicating where the connection begins, and

the column number of the matrix indicating which neuron is the target. The numeric 0

marks a non-existing connection.

Data is transferred between neurons using connections with the connecting weight being

either excitatory or inhibitory.

A neuron j usually has a number of neurons with a connection to j, which transfer their

output to j. For a neuron j the propagation function receives the outputs oi1,..., oin of other

neurons i1, i2,..., in (which are connected to j), and transforms them in consideration of the

connecting weights wi,j into the network input netj that can be further processed by the

activation function. Thus, the network input is the result of the propagation function.

2.2.2 Definition. Propagation function and network input. Let I = {i1, i2, ..., in} be

the set of neurons, such that ∀z ∈ {1, ..., n} : ∃wiz ,j. Then the network input of j, called

netj , is calculated by the propagation function fprop as follows:

netj = fprop(oi1, ..., oin, wi1,j, ..., win,j),

here is the multiplication of the output of each neuron i by wi,j , and the summation of

21

the results:

netj =
∑
i∈I

(oiwi,j).

Based on the model of nature, every neuron is always active. The reactions of the neurons

to the input values depend on this activation state. The activation state indicates the extent

of a neuron’s activation and is often shortly referred to as activation. It’s formal definition

is included in the following definition of the activation function.

2.2.3 Definition. Activation state. Let j be a neuron. The activation state aj, in short

activation, is explicitly assigned to j, indicates the extent of the neuron’s activity and results

from the activation function.

The activation function determines the activation of a neuron dependent on network

input and threshold value. At a certain time the activation aj of a neuron j depends on the

previous activation state of the neuron and the external input.

2.2.4 Definition. Activation function and activation. Let j be a neuron. The activa-

tion function is defined as

aj(t) = fact(netj(t), aj(t− 1),Θj).

It transforms the network input netj , as well as the previous activation state aj(t1) into

a new activation state aj(t), with the threshold value Θ playing an important role.

Common activation functions include binary threshold function, which can only take two

values: if the input is above a certain threshold, the function changes from one value to

another, but otherwise remains constant. Also, very popular is the Fermi function or logistic

function:
1

1 + e−x
,

which maps to the range of values (0, 1), and the hyperbolic tangent, which maps to (−1, 1).

An output function may be used to process the activation once again. The output

function of a neuron j calculates the values which are transferred to the other neurons

connected to j. More formally:

2.2.5 Definition. Output function. Let j be a neuron. The output function fout = oj

calculates the output value oj of the neuron j from its activation state aj.

22

Generally, both input and output functions are defined globally. Often output function is

the identity, meaning that the activation aj is directly output: if fout(aj) = aj, then oj = aj.

Artificial neural networks can be of one or more layers or neurons. In practice, one layer

neural network was used with 10 neurons.

2.2.5 Inflated Beta Regression

The use of beta regression to model debt RR is beneficial as beta distribution lies in (0, 1)

and is very suitable to model rates. Several RR and LGD related papers in past have shown

implementations of beta or beta mixture regressions, such as [16] and [4]. However, beta

regression does not include the end values 0 and 1, which is needed for debt RR and LGD.

Inflation at 0 or 1 is common in such data. It was suggested by [6], [7], [19] and [13] to use

0 and 1 inflated beta distribution regression, where probabilities of 0 and 1 were modelled

separately and interval (0, 1) was modelled with the beta distribution. In this thesis data of

interest, the RRs were highly inflated with zeros and had some values at 1, which suggested

not only 0 inflated, but also 1 inflated model in order to incorporate both end values of RR

into the model.

Further explanations on this model are based on books [21] and [18].

Since beta distribution does not include 0 and 1, it is proposed to use a mixture of a

beta and Bernoulli distributions. Specifically, it is assumed that the cumulative distribution

function of the random variable y is the following:

BEINF (y|α, γ, µ, φ) = αBer(y|γ) + (1− α)F (y|µ, φ),

here Ber(y|γ) represents the cumulative distribution function of a Bernoulli random variable

with parameter γ and F (y|µ, φ) is the cumulative distribution function of B(µ, φ). Here,

0 < µ, γ, α < 1 and φ > 0, α being the mixture parameter.

Further, using other parametrisations that are implemented in statistical software R

"gamlss" package, the definition can be written as:

2.2.6 Definition. Inflated beta distribution. The probability (density) function of the

23

inflated beta distribution, denoted by BEINF(µ, σ, ν, τ) is defined by:

fY (y|µ, σ, ν, τ) =

p0 if y = 0

(1− p0 − p1) 1
B(α,β) if 0 < y < 1

p1 if y = 1

for 0 ≤ y ≤ 1, where α = µ(1 − σ2)/σ2, β = (1 − µ)(1 − σ2)/σ2, p0 = ν(1 + ν + τ)−1,

p1 = τ(1 + ν + τ)−1, β > 0, 0 < p0 < 1, 0 < p1 < 1 − p0. Hence BEINF(µ, σ, ν, τ) has

parameters µ = α/(α+β) and σ = (α+β+1)− 1
2 , ν = p0/p2, τ = p1/p2, where p2 = 1−p0−p1.

Hence 0 < µ < 1, 0 < σ < 1, ν > 0 and τ > 0.

The expected value is given by

E(y) = τ + µ

(1 + ν + τ) . (2.9)

2.2.6 Extreme Gradient Boosting

Extreme gradient boosting (XGBoost) is an implementation of gradient boosted decision

trees, which are more advanced in terms of speed and performance than regular decision

trees. Simply, this method is a tree based approach, and tree based methods are one of the

best performing when modelling RRs, according to recent publication [3]. The explanations

on XGBoost are provided in [8] and boosting technique is defined in [14].

2.2.7 Definition. Boosting is an ensemble technique. Here new models are added sequen-

tially to correct the errors made by existing models until no further improvements can be

made.

2.2.8 Definition. Gradient boosting is a method where new models are created that predict

the residuals of prior models and then added together to make the final prediction. Each

tree learns from previously built trees and updates the residual errors. It uses a gradient

descent algorithm (first-order iterative optimization algorithm for finding the minimum of a

function) to minimize the loss when adding new models.

Gradient boosting could be split into the following steps:

24

• initialize the boosting algorithm with F0(x) (a function which minimizes the loss func-

tion or MSE), defined as:

F0(x) = argminγ
n∑
i=1

L(yi, γ),

here yi is the target variable, γ is prediction and function L is the loss function or

MSE.

• compute iteratively the gradient of the loss function:

rim = −α
[∂(L(yi, F (xi))

∂F (xi)
]
F (x)=Fm−1(x)

,

here α is the learning rate.

• the multiplicative factor γm for each terminal node is derived and the boosted model

Fm(x) is defined:

Fm(x) = Fm−1(x) + γmhm(x),

here function hm(x) computes the mean of the residuals (y − Fm−1).

XGBoost algorithm has advantage over regular gradient boosting machines as the imple-

mented algorithm allows for parallel calculations, distributed and out-of-core computations

as well as cache optimizations. In XGBoost, a model is fit on the gradient of loss generated

from the previous step. This method works with any differentiable loss function.

2.3 Ensemble. Stacking

According to [23], model ensembles are methods that train multiple learners and use a

combination of them for forecasting. This is done for the purpose of improving the forecast

accuracy and is more effective than using one model most of the times. There are many

ensemble techniques available, simple ones include averaging, where forecast result is the

average of multiple models predictions and weighted averaging, where the result is the average

of multiple weighted models predictions. One of more advanced methods of ensemble is called

stacking. General stacking procedure is described in figure 2.3.

25

Figure 2.3: A general stacking procedure from [23].

2.3.1 Definition. Stacking is a procedure where combined individual learners are used to

train another learner. Individual learners are called first-level, while a combiner of them is

called a meta-learner.

Stacking used in this Master’s thesis included the following steps. First, training data was

split into ensemble-train and ensemble-validate data with the chosen ratio. Then, ensemble-

train data was used for training first-level models and generation of new data set for training

a meta-learner. First-level and meta-learner models were different statistical models imple-

mented.

In this Master’s thesis, stacking method was applied to combine the predictability of a

few best-performing models implemented.

2.4 Goodness-of-fit metrics

The model goodness-of-fit is compared using these metrics: the root mean squared error

(RMSE), the mean absolute error (MAE) and the coefficient of determination (R2). The

definitions of metrics are defined below:

26

2.4.1 Definition. Root mean squared error.

RMSE =

√√√√ n∑
i=1

(
(ŷi − yi)2

n

)

here ŷi are predicted values, yi - true values, i = 1, ..., n, n ∈ N - number of observations.

2.4.2 Definition. Mean absolute error.

MAE = 1
n

n∑
i=1
|ŷi − yi|

here ŷi are predicted values, yi - true values, i = 1, ..., n, n ∈ N - number of observations.

2.4.3 Definition. Coefficient of determination.

R2 = n(∑n
i=1 ŷiyi)−

∑n
i=1 ŷi

∑n
i=1 yi√[

n
∑n
i=1 y

2
i − (∑n

i=1 yi)2
][
n
∑n
i=1 ŷ

2
i − (∑n

i=1 ŷi)2
]

here ŷi are predicted values, yi - true values, i = 1, ..., n, n ∈ N - number of observations.

27

Chapter 3

Implementation

3.1 Data overview

The methodology described in Chapter 2 was implemented using real debt portfolio data.

The data set was donated by anonymous debt collection agency from Europe and included

a purchased portfolio information on 118,413 accounts and 178,861 post default payments.

To begin with, table 5.1, provided in the Appendix 1, describes data variables provided.

Additionally, other account level variables were created using payment level information

pre-purchase, described in 5.2 in Appendix 2. The variable of interest was RR - recovery

rate post portfolio acquisition. Since only 28 months of post-acquisition performance were

available, the models were established on partial recovery and then on a monthly basis. The

RR variable could be defined as follows:

RRj =
k∑
i=1

Paymentsi
Balancej

,

here, j is the observation number, i ∈ [1, k], k - the number of months post portfolio ac-

quisition, Paymentsi - payments made after portfolio acquisition, Balancej - amount of

debt (money) at the point of acquiring the portfolio for the j debt. The RR variable was

calculated for each observation.

Certain procedures were done before models could be implemented. Firstly, outlier de-

tection was applied to numeric variables "dbal" and "age". To inspect the outlying values

for these variables, Tukey’s method was used, which identified an outlier as a value not in

28

range [−1.5QIR, 1.5IQR]. The graphical results, provided in Appendix 3, are demonstrated

in figure 5.1 for default balance and figure 5.2 in Appendix 4 for debt age. The graphs

include boxplots and histograms of default balance and debt age comparing distributions

pre and post outlier detection procedure. It is shown that excluding values below -1.5 QIR

and above 1.5 QIR has a positive impact allowing the distributions to be more consistent.

Overall, around 16000 observations were identified as outlying in default balance and around

4000 outlying in debt age.

Secondly, numerical values were then transformed to obtain values in interval [0, 1], which

is a standard procedure for statistical modelling. To obtain this, the following formula was

applied:

x−min(X)
max(X)−min(X) ,

here x ∈ X ⊂ R, X is the set of variable values.

Thirdly, categorical variables were coded as dummy variables, so that they were numeric

and could be used as covariates in regression algorithms.

Regarding correlation between variables, the chart 5.3 in Appendix 5 represents the

strength of Spearman’s correlation between covariates and implies whether it is positive or

negative. The significance level is p = 0.01. Non-significant correlations are left blank in the

graph. The figure shows that the strongest correlations are between the variables represent-

ing payment information before portfolio purchase, which includes interactions between the

following: "iavg", "pl12m", "colli", "RRl12m", "nl12m", "ctot", "cavg" and "LGDpre". While

most of the relationships are positive, it can be observed that "LGDpre" variable has a

negative correlation with before mentioned covariates.

The variable of interest is RR - recovery rate post acquisition. In figures 3.1 it is demon-

strated that the distribution of RR is zero inflated. In fact, 90% of the data has RR = 0.

Such cases were referred as "unserviced", meaning their collection process post purchase had

not started yet. Other observations having RR > 0 were indicated as "serviced" and their

collection process had started. In the second graph of 3.1 the multimodality of RR ∈ (0, 1)

can be identified, especially the modes are clear when RR ≈ 0.1 and RR ≈ 0.8. The reasons

for modes in there could be that the soft collection process for observations around mode 0.1

29

Type Number of debts Mean SD Min Max

Train 88,809 0.06 0.219 0 1

Test 29,604 0.06 0.218 0 1

Table 3.1: Data set split into training and test.

has been applied. Second mode around 0.8 could be explained by agreements with debtors

to pay 80% of their debt in return to closing their accounts.

Figure 3.1: Recovery rates histograms presented in different intervals.

For models application, data was split into training and test samples with the standard

ratio of 75% and 25%, showed in table 3.1. All models were applied to train data, then

goodness-of-fit metrics were evaluated on test data.

In next sections of this chapter, models were implemented on the data provided. Firstly,

one-stage regression models, secondly, two-stage combining classification with regression,

then ensemble stacking with the best performing models. Lastly, models were built on

monthly recovery rates.

3.2 One-stage models

One-stage model is the most popular way to approach the problem of modelling LGD and

RR. In this Master’s thesis, a number of regression algorithms was applied: support vector

30

regression (SVR), random forests (RF), K-nearest neighbors (KNN), artificial neural net-

works (ANN) and XGBoost (XGB). As a result, implemented models were evaluated in

terms of their RMSE, MAE and R2, defined in subsection 2.4.

Before mentioned algorithms did not require variable selection. Therefore, the model for

such techniques was of a form:

RR
algorithm∼ dbal + age+ ctot+ cavg + al12m+RR.l12m+ nl12m+ LGDpre+ pl12m

+ iavg + colli+ dt1 + dt2 + ls1 + ls2.

3.2.1 Support Vector Machines

Support vector machines method for regression (SVRs) is implemented in statistical soft-

ware’s R package "e1071". Two different kernels were applied: radial and sigmoid.

Firstly, to implement the SVR, parameters for each kernel had to be tuned using 10-

fold cross validation. Shortly, according to [14], "k-fold cross validation involves randomly

dividing the set of observations into k approximately equal groups. The first fold is treated

as a validation set, and the method with selected tuning parameters is fit on the remaining

k-1 folds. Then, MSE1 is calculated on the observations in the held-out fold. This procedure

is repeated k times. Each time, a different group of observations is treated as a validation

set. This process results in k estimates of the test error, MSE1, MSE2,..., MSEk. The

k-fold CV estimate is computed by averaging these values. The final parameters are chosen

the ones that achieve the lowest averaged MSE". Using 10-fold cross validation, the best

performance in terms of the smallest mean squared error was reached with the parameters

indicated in table 3.2. Cost parameter refers to the weight for penalizing the "soft margin",

or to errors on the training points. Another parameter γ defines the influence of a single

training observation.

Two SVRs with different kernels were formed with best parameters for radial and sigmoid

kernels. Then unseen test data was used for prediction with these models. Table 3.3 presents

that better goodness-of-fit metrics results are achieved with radial kernel SVM.

31

Type Tuned hyperparameters

Radial cost=0.12, γ = 0.1

Sigmoid cost=1, γ = 3

Table 3.2: Tuned hyperparameters for radial and sigmoid SVMs at one-stage model.

Type RMSE MAE R2

Radial 0.22 0.08 4.60%

Sigmoid 0.25 0.09 4.33%

Table 3.3: Goodness-of-fit metrics of radial and sigmoid SVMs at a one-stage model.

3.2.2 Random Forests

Random forest algorithm (RF) has its own library implemented in R package "randomForest".

Two parameters had to be tuned in order to reach the most accurate results: number of

variables taken at each split (mtry) and number of trees (ntree).

Firstly, mtry parameter was tuned by searching for the optimal value (with respect to

out-of-bag error estimate). Out-of-bag (OOB) is the mean prediction error on each training

sample xi, using only the trees that did not have (xi) in their bootstrap sample. Then,

tuned mtry value was used to build a RF model with sample 1000 trees, which in addition

provided results on OOB error in ntree ∈ [0, 1000].

Tuning results are presented in figure 3.2. Here it can be observed that the best results

were achieved by taking 3 variables at each split. This was not quite expected, as in 2.1.2 it

was showed that recommended number of variables was n =
√

(p), p - number of predictors.

In this case, recommended value mtry =
√

15 ≈ 3.8 ≈ 4, but the tuning revealed that the

value should be 3.

The graph 3.3 shows that there is a significant drop in MSE until number of trees reaches

around 100, then the error is quite stable up to 1000 trees. Extracting the smallest MSE

value of ntree, the most optimal number of trees was 995. Overall, the number of trees was

not decreased and ntree=1000 in the final one-stage RF model.

32

Figure 3.2: OOB error change with increasing number of variables mtry.

Type RMSE MAE R2

RF 0.21 0.10 9.11%

Table 3.4: Goodness-of-fit metrics results of random forests regression for the one-stage

model.

The figure 3.4 demonstrates variable importance, calculated in the following way: the

MSE is computed on the out-of-bag data for each tree, and then the same computed after

permuting a variable. The differences between the two are averaged and normalized by the

standard error. According to the graph, the most important variable in RF is "age", followed

by "dbal" and "dt1", "dt2". Table 3.4 presents prediction results on test data.

3.2.3 K-Nearest Neighbors

K-nearest neighbors (KNN) algorithm is implemented R package "caret".

The number of nearest neighbors - K had to be tuned. Using a loop, 40 different KNN

models were built with K ∈ [1, 40].

The graph 3.5 displays how goodness-of-fit metrics change with regards to changing K

value. RMSE drops significantly when K increases in interval K ∈ [1, 10] and then slightly

decreases until K = 40. In addition to this, MAE value goes down until K = 3, then rise

33

Figure 3.3: MSE change with increasing number of trees.

Type RMSE MAE R2

KNN 0.211 0.096 7.51%

Table 3.5: Goodness-of-fit metrics of KNN regession for the one-stage model.

marginally until about K = 22 when the value starts to decline steadily again. The increase

in K value has only positive impact on R2 value, which increases when K value grows.

Overall, the higher the K value, the better the R2 and RMSE values are achieved. For

this reason, for the final KNN model K value was chosen K = 35, as from this value MAE

started increasing again. Table 3.5 shows prediction results on test data.

3.2.4 Artificial Neural Networks

Artificial neural network (ANN) with one hidden layer was used. The method is included

in R package "nnet". In addition, library "NeuralNetTools" was used for ANN visualisa-

tion. Before implemented, decay parameter had to be tuned. Decay defines the decay of

weights, which both helps the optimization process and avoid over-fitting the training data.

In addition, chosen number of neurons was 10.

To tune decay parameter a loop was constructed creating 10 different ANNs with changing

10 different decay values ∈ [0.001, 0.01].

34

Figure 3.4: RF variable importance by %IncMSE.

Figure 3.5: One-stage KNN goodness-of-fit metrics when K ∈ [1, 40].

3.6 set of graphs reveals that metrics fluctuates in the interval of decays and both RMSE

and R2 seems to achieve their best results when decay is 0.009. For this reason, final ANN

was built with decay value of 0.009. Table 3.6 summarises used ANNs characteristics.

The plot 3.7 shows connections between input, neurons and output. Depending on weight

value a different color to line is applied. Positive weights between layers are drawn as black

lines and negative weights as grey lines. Also, line thickness is in proportion to relative

Type Activation function Number of neurons Decay set Tuned decay

ANN logistic 10 [0.001,...,0.01] 0.009

Table 3.6: ANN’s used characteristics in one-stage model.

35

Figure 3.6: One-stage ANN goodness-of-fit metrics when decay ∈ [0.001, 0.01]

Type RMSE MAE R2

ANN 0.21 0.10 8.94%

Table 3.7: Goodness-of-fit metrics of ANN used in one-stage model.

magnitude of each weight. It can be concluded that various types of weights are assigned to

all variables. It is difficult to identify variables, where connections are the strongest or the

weakest. However, it can be observed that "dbal" mostly has negative weights, which can be

interpreted as the higher the "dbal" value, the lower the RR.

The graph 3.8 shows variable importance of the ANN using Garson’s algorithm [5], which

works in the following way: "for each input node, all weights connecting an input through the

hidden layer to the response variable are identified and returns a list of all weights specific to

each input variable. Summed products of the connections for each input node are then scaled

relative to all other inputs. A value for each input node indicates relative importance from

zero to one". The figure shows that "age" is the most important variable, also pre-collection

variables "LGDpre", "RR.l12m" and "nl12m" are significant in the ANN. Additionally, the

table 3.7 presents model results on test data.

3.2.5 Extreme Gradient Boosting

Extreme gradient boosting (XGBoost) is implemented in R package "xgboost".

Before building the model, the following parameters presented in table 3.8 were tuned

using 5-fold cross validation. With the tuned parameters, model was run incorporating

all available variables. The graph 3.9 presents the most important variables - fractional

36

Figure 3.7: Visualisation of the ANN with 1 layer and 10 neurons in a one-stage model.

contribution of each feature to the model based on the total gain of this feature’s splits.

Higher percentage means a more important predictive feature. The figure shows that the

most important variable is "dbal", followed by "ls1" and "ctot".

Table 3.9 presents goodness-of-fit metrics on tried method.

3.3 Two-stage models

Due to high inflation at 0, it is common to use a two-stage approach to model recovery rates.

Firstly, observations are classified into RR = 0 and RR > 0. Secondly, regression algorithms

are applied to model RR > 0. This way of modelling is used under the assumption that

recovery rates equal to 0 have not been serviced yet, meaning that no actions are taken yet

to start the collection process, or the collection process has been unsuccessful. Therefore,

such cases need to be treated differently.

37

Figure 3.8: ANN variable importance plot in one-stage model.

Parameter Definition Tuned value

η Controls learning rate, prevents overfit 0.4

maxDepth Maximum tree depth 4

nround Number of boosting iterations 25

subsample Prevents overfit 0.5

colsampleBytree Subsample ratio of columns 0.9

Table 3.8: Tuned parameters for XGBoost algorithms in a one-stage model.

In this Master’s thesis, random forests and binary logistic classification methods were

implemented as the first stage. For the second stage, regression algorithms applied in 3.2

were also applied here. Eventually, built models were evaluated in terms of their RMSE,

MAE and R2, defined in subsection 2.4.

3.3.1 Classification. Binary Logistic Regression

Binary logistic regression had the following form:

RR ∼ dbal + age+ ctot+ cavg + al12m+RR.l12m+ nl12m+ LGDpre+ pl12m

+ iavg + colli+ dt1 + dt2 + ls1 + ls2,

38

Figure 3.9: Feature importance graph of XGBoost in a one-stage model.

Type RMSE MAE R2

XGBoost 0.20 0.10 9.07%

Table 3.9: Goodness-of-fit metrics of XGBoost used in one-stage model.

here binomial family and logit link function were used. RR obtained binary values 0 or 1,

with value 1 meaning recovery rates were more than zero.

The following variables were excluded as not statistically significant, when p < 0.05:

"al12m", "ctot", "cavg", "dt1", "dt2" and "colli". The final model equation:

P (Y = 1)
P (Y = 0) = −0.64 + 1.50pl12m− 0.39iavg − 0.15ls1 + 1.18ls2 + 0.26dbal

− 2.19age− 3.51RR.l12m− 1.52LGDpre+ 4.66RR.l12m.
(3.1)

Model assessment

Omnibus test

Omnibus test compares whether addition of variables perform better than model with

no variables.

Firstly, a model of the following form was run:

RR ∼ 1. (3.2)

39

Analysis of Deviance Table

Model Residuals Df Residuals Deviance Df Deviance Pr(>Chi)

3.1 88799 46081

3.2 88808 54776 -9 -8694.4 < 2.2e-16

Table 3.10: Binary logistic regression Omnibus test’s results.

Omnibus test was performed in Anova Chi-squared test between 3.1 and 3.2 models.

Results in table 3.10 show that the addition of variables has advantage over model with no

variables, when p < 0.05.

Negelkerke’s R-squared

Chosen pseudo R-squared statistic Negelkerke’s R2 was equal to 0.203, which just ex-

ceeded the desired threshold of 0.2. This statistic showed that the logistic model explained

about 20% of fluctuations in recovery rate variable.

Cook’s distance

Observations having large residuals or high leverage may distort the outcome and accu-

racy of a regression. Cook’s distance measures the effect of deleting a given observation.

Figure 3.10: Cook’s points of the binary logistic regression.

In figure 3.10 the grey line shows 4
n

where n is the number of all points. Above this

line the points were influential, which were 5134 points. These points altered the regression

results significantly when not present in the data set.

40

Wald’s test

Wald’s test was performed in Anova test type "II". The table 5.3 in the Appendix 6

presents that all the variables are significant when p < 0.05.

Odd’s ratio

Odds ratio for a given variable Xi can be defined as the following:

Odds(Xi) = eβi ,

here βi is the estimated coefficient near the variable Xi. The table 5.4 in the Appendix 7

displays odds ratios for significant variables of the regression. The interpretation of odds

ratio is the following: an increase of 1 in the given variable changes the log ratio by given

odds ratio numeric value. Odds ratios exceeding 1 means the more variable increases, the

likely the recovery rate is RR = 1. Such variables included: "pl12m", "ls2", "dbal" and

"nl12m". On the contrary, odds ratio values lower than 1 indicates that the increase of 1 has

a negative impact on recovery rate and it is more likely the recovery rate is equal to 0. Such

variables were: "iavg", "ls1", "age", "RR.l12m" and "LGDpre".

Forecasting

Forecasting was done on test data. Since the data was imbalanced, to achieve the best

forecasting results it was needed to change the default forecasting threshold of 0.5 to 0.15.

Table 3.11 presents classification results. Although unserviced observations were classified

sufficiently well with 93% correct predictions, serviced cases were classified rather poorly,

with only 37% of accuracy. It was possible to achieve better classification results, so that

every class would be classified at least 50% accurately, however, it was not done on purpose.

By increasing classification accuracy for serviced cases, the accuracy for unserviced observa-

tions decreased significantly, which resulted in overestimation as more cases were assumed

as having RR > 0. Therefore, higher total portfolio recovery rate was assumed.

Overall, binary logistic regression was not suitable to be used to classify recovery rates

for a couple of reasons. First and foremost, the data violated the requirement that lower

class should consist of at least 20% of data [10]. Second, even with classification threshold

changed, still the predictions were not correct for at least 50% of each data class for test

data. For these reasons, binary logistic classification was not further used in the analysis.

41

Prediction

Unserviced Serviced

Actual Unserviced 93% 7%

Serviced 63% 37%

Table 3.11: Binary logistic classification table of test data. Overall accuracy: 87%.

3.3.2 Classification. Random Forests

Random forests method has advantage over binary logistic regression that it does not have

any requirements for the data and no additional tests should be applied to measure model

goodness-of-fit. Therefore, even if not possible to obtain good classification results, random

forests still can be used.

To build a random forest model for classification, mtry was tuned to be 2. Number of

trees ntree was chosen to be 1000. Predictions were made using a majority voting rule for

a certain class of each decision tree [14]. The model with mtry = 2 and ntree = 1000 was

created, additionally inputting class weights to deal with imbalanced data. The optimal

values of weights were chosen RR = 0 : 0.64 and RR > 0 : 0.36. With these inputs,

random forests assumed that 36% of the data should be of class RR > 0, and 64% should

be RR = 0. Classification results on test data are presented in table 3.12. Similarly to

binary logistic regression classification, the unserviced cases were classified sufficiently well

with 91% accuracy, but serviced case classification was quite poor - 43% accuracy. Overall

accuracy was 87%.

All in all, random forest algorithm classified test data poorly, but slightly better than

binary logistic regression. However, this method does not have any requirements to be met,

so it can be used for further analysis. Eventually, good classification of unserviced cases is

of greater importance than serviced, as large number of misclassified RR = 0 can lead to

overestimation of the portfolio.

42

Prediction

Unserviced Serviced

Actual Unserviced 91% 9%

Serviced 57% 43%

Table 3.12: Random forest classification table of test data. Overall accuracy: 87%.

Type Tuned hyperparameters

Radial cost=0.2, γ = 0.1

Sigmoid cost=0.002, γ = 0.01

Table 3.13: Tuned hyperparameters for radial and sigmoid SVMs at a two-stage model.

3.3.3 Regression

A variety of regression algorithms used in 3.2 was also implemented for the second stage

regression modelling. Steps to obtain good parameter estimations and overall models were

followed similarly to one-stage models.

Support Vector Machines

To implement SVMs with radial and sigmoid kernels, specific parameters had to be tuned

with 10-fold cross validation, showed in table 3.13.

2 SVRs with different kernels were formed with the best parameters for radial and sigmoid

kernels. Then test data was used for prediction with these models. Table 3.14 presents that

better overall goodness-of-fit metrics results are achieved with radial kernel SVM.

Random Forests

Firstly, mtry parameter was tuned by searching for the optimal value with respect to out-of-

bag error estimate. Then, tuned mtry value was used to build a random forests regression

with sample 1000 trees, which in addition provided results on out-of-bag error in ntree

43

Type RMSE MAE R2

Radial 0.26 0.08 4.68%

Sigmoid 0.27 0.09 4.51%

Table 3.14: Goodness-of-fit metrics of radial and sigmoid SVMs at a two-stage model.

∈ [0, 1000].

Figure 3.11: OBB error change with increasing number of variables mtry in two-stage model.

The figure 3.11 shows that the optimal number of variables is 4. The random forest

regression was built with ntree = 1000 and mtry = 4.

In the graph 3.12 it is presented that the MSE starts to stabilize when number of trees

reaches around 125. The lowest MSE is achieved when ntree = 603. Therefore, the model

was adjusted to be of 603 decision trees.

The graph 3.13 displays variable importance in the random forest created. The top 3

most important variables are "dbal", "ls1" and "LGDpre". The overall results on predicting

with test data starting with classification and then applying random forests are shown in

table 3.15.

K-Nearest Neighbors

The number of nearest neighbors - K had to be tuned. Using a loop, 40 different KNN

models were created with K ∈ [1, 40]. The graph 3.14 shows how goodness-of-fit metrics

44

Figure 3.12: MSE change with increasing number of trees in a two-stage model.

Figure 3.13: Random forests regression in two-stage model variable importance by %IncMSE.

change with regards to changing K value. While RMSE and R2 improves over the interval,

MAE reaches its lowest point at around K = 10, then starts to increase. K was chosen to

be 30, since sufficiently good metric values were achieved at this point.

Table 3.16 presents goodness-of-fit metrics for the model built after classification task.

Artificial Neural Networks

Similarly as in one-stage model, one-layer artificial neural network with 10 neurons was used

for regression. Furthermore, decay parameter responsible for optimization should be tuned

in chosen range ∈ [0.001, 0.01]. To implement this, a loop of 10 different neural networks

45

Type RMSE MAE R2

RF 0.24 0.08 4.94%

Table 3.15: Goodness-of-fit metrics for random forests regression in two-stage model.

Figure 3.14: Goodness-of-fit metrics of K-nearest neighbors in two-stage model, when K

∈ [1, 40].

was created and their goodness-of-fit metrics were compared.

The graph 3.15 demonstrates how goodness-of-fit on classified test data metrics change

over the given decay interval. It can be observed that amplitudes of RMSE and MAE are

quite small, meaning they do not change significantly over the interval. For this reason, the

decay was chosen according to the highest R2 value. The best R2 value was reached when

decay was 0.001, therefore this value was chosen for the final ANN model.

The plot 3.16 demonstrates neural network’s connections between inputs, hidden neuron

layer and output. The lines symbolize connections strength (weight) - the wider the line the

stronger the connection (higher weight). Moreover, grey colour represents negative weight,

while black - positive. It can be observed that the strongest negative weights are assigned

to "dbal". The weakest negative weights are assigned to "dt1". It is difficult to identify the

strongest positive connections, as there are many similar, but one of the strongest could be

Type RMSE MAE R2

KNN 0.25 0.08 4.83%

Table 3.16: Goodness-of-fit metrics for K-nearest neighbors regression in two-stage model.

46

Figure 3.15: Goodness-of-fit metrics of ANN in two-stage model when decay ranges in

[0.001, 0.01].

Type RMSE MAE R2

ANN 0.24 0.08 4.88%

Table 3.17: Goodness-of-fit metrics for ANN regression in two-stage model.

"RR.l12m" and "nl12m".

The graph 3.17 presents variable importance plot. It can be observed that the most

important variable is "dbal", then follows "RR.l12m", "pl12m" and "age". Table 3.17 presents

goodness-of-fit metrics for two-stage ANN model, combining the results of classification and

regression tasks.

Extreme Gradient Boosting

To implement XGBoost algorithm, specific parameters had to be tuned. The table 3.18

displays tuned parameters.

With the tuned parameters, model was run incorporating all available variables. The

graph 3.18 presents the most important variables - fractional contribution of each feature to

the model based on the total gain of this feature’s splits. Higher percentage means a more

important predictive feature. The figure shows that the most important variable is "dbal",

followed by "ls1" and "RR.l12m".

Table 3.19 presents goodness-of-fit metrics on tried method, combining classification to-

gether with regression.

47

Figure 3.16: ANN plot in a two-stage model.

3.3.4 Inflated Beta Regression

0 and 1 inflation of beta distribution is implemented in R package "gamlss". This package

allows modelling beta regression with inflation at 0 and 1, which is indicated as BEINF in

the library. This distribution is described in 2.2.5.

First, a model without covariates was created having a form 3.2, introduced in binary lo-

gistic regression implementation section. Summary of the model for the randomised quantile

residuals is the following:

• Mean: -0.00209956,

• Variance: 1.009411.

Mean is extremely close to 0 and variance is close to 1 as well, which supports BEINF

distribution suitability to model recovery rates. Additionally, figure 3.19 presents normalized

48

Figure 3.17: ANN variable importance plot in a two-stage model.

Parameter Definition Tuned value

η Controls learning rate, prevents overfit 0.3

maxDepth Maximum tree depth 5

nround Number of boosting iterations 25

subsample Prevents overfit 0.5

colsampleBytree subsample ratio of columns 0.5

Table 3.18: Tuned parameters for XGBoost algorithms at a two-stage model.

quantile residuals in which it can be concluded that residuals are not distributed uniformly

and variances are not equal (graphs Against Fitted Values and Against Index). However,

Density Estimate graph suggests similar to normal distribution and Normal Q-Q Plot shows

that quantiles are quite evenly distributed on the red line, with some exceptions. Overall,

relying on graphs, BEINF distribution has potential to sufficiently describe recovery rate

distribution, but needs further investigation.

Second, stepGAIC procedure was applied to select modelling variables for each parameter

ν, σ, τ and µ, that were statistically significant. Then, a final model equations could be

written. Below are represented modelled parameters with their link functions and selected

variables together with outputted coefficients:

• log(ν) ∼ 1.38 - 2.95pl12m + 1.89age - 0.58ls2 - 0.75dt1 + 1.90RR.l12m + 1.19LGDpre

49

Figure 3.18: Feature importance graph of XGBoost in a two-stage model.

Type RMSE MAE R2

XGBoost 0.24 0.08 5.02%

Table 3.19: Goodness-of-fit metrics of XGBoost used in a two-stage model.

+ 1.29ls1 + 0.77iavg - 1.08dbal,

• logit(σ) ∼ -0.002 - 0.49RR.l12m + 0.15pl12m + 0.22ls1 + 0.19LGDpre + 0.15ls2 -

0.11nl12m,

• log(τ) ∼ -1.93 - 2.32nl12m + 2.17ls1 - 2.43dbal + 0.85dt1 - 0.74LGDpre - 1.26pl12m

+ 0.08RR.l12m,

• logit(µ) ∼ -2.86 - 0.20pl12m - 0.01iavg + 0.08colli + 3.11dt1 + 2.94dt2 + 0.83ls1 +

0.21ls2 + 4.12al12m - 0.10dbal - 0.56age - 0.25RR.l12m - 0.99LGDpre - 15.67ctot +

0.15nl12m.

Formed model produces the following outputs on residuals:

• Mean: 0.005020332,

• Variance: 0.9978642.

50

Figure 3.19: Normalized quantile residuals for a fitted BEINF model with no variables.

Again, the mean is near zero, as well as variance is close to 1. Figure 3.20 presents

four graphs describing residuals. Top two graphs show that residuals are not uniformly

distributed among 0 and variances are not equal. However, Density estimate plot indicates

normal distribution and Normal Q-Q plot shows that quantiles are distributed among the

red line, which is the desired result.

Further investigation on residuals was continued by analyzing so called Warm plot, which

provides visual interpretations about model residuals. Ideally, residuals should be distributed

around 0 and between two curved dotted lines. Graph 3.21 shows that residual values are

around zero. Even though some residuals crosses the dotted lines, overall the Warm plot

shows acceptable results.

Overall, although BEINF did not fit recovery rate distribution perfectly, prediction accu-

racy was still tested. Given the test data, model made predictions to each of new observations

on parameter set (τ , µ, ν, σ). Then, the expected value was calculated using formula 2.9.

Results are presented in the table 3.20.

51

Figure 3.20: Normalized quantile residuals for BEINF model with significant variables.

Type RMSE MAE R2

BEINF 0.21 0.10 6.07%

Table 3.20: Goodness-of-fit metrics of inflated beta regression.

3.4 Models evaluation

The overall both one-stage and two-stage models goodness-of-fit characteristics can be sum-

marised into the following table 3.21, which is split into two parts. The upper part of the table

presents one-stage modeling results, and the lower part shows combined results of two-stage

models. Both parts were constructed in descending order of R2. Among one-stage methods,

all of the models performed very similarly in terms of RMSE, MAE and R2. The best per-

forming model was RF, resulting in R2=9.11%, and XGB was very close with R2=9.07%.

ANN produced considerably good results as well with R2=8.94%. KNN and both radial

and sigmoid kernels SVMs performed low. As far as two-stage models are concerned, it can

be also observed that models performed very similarly in terms of goodness-of-fit metrics

with some variations. In terms of R2 it can be concluded that BEINF model was the best

among other two-stage approaches having R2=6.07%. The second and the third best were

52

Figure 3.21: Worm plot for the inflated beta regression model.

RF&XGB and RF&RF, tree based approaches that ended up reaching similar R2. Also,

RF&ANN was not far from tree based methods with R2=4.88%. Once again, KNNs and

both SVMs performed worse than others.

All in all, one-stage models outperformed two-stage approaches, especially in terms of

coefficient of determination - R2. The best model was one-stage RF. Close in performance

goodness were XGB and ANNs.

3.5 Ensemble. Stacking

To implement ensemble stacking method, training data was randomly split in half to obtain

two sets: ensemble-train and ensemble-validate, which is shown in table 3.22. Ensemble-train

set was used for training first-level learners: random forests, artificial neural networks and

XGBoost. Then, ensemble-validate set was used for predictions on first-level algorithms.

These predictions were used to train a meta-learner.

Firstly, first-level learners were built: random forests, artificial neural networks and ex-

53

Type RMSE MAE R2

RF 0.21 0.10 9.11%

XGB 0.20 0.10 9.07%

ANN 0.21 0.10 8.94%

KNN 0.21 0.10 7.51%

SVM-r 0.22 0.08 4.60%

SVM-s 0.25 0.09 4.33%

BEINF 0.21 0.10 6.07%

RF and XGB 0.24 0.08 5.02%

RF and RF 0.24 0.08 4.94%

RF and ANN 0.25 0.08 4.88%

RF and KNN 0.24 0.08 4.83%

RF and SVM-r 0.26 0.08 4.68%

RF and SVM-s 0.27 0.09 4.51%

Table 3.21: Overall goodness-of-fit metrics.

Type Number of debts Mean SD Min Max

Ensemble-train 44,404 0.06 0.219 0 1

Ensemble-validate 44,405 0.06 0.218 0 1

Table 3.22: Training data split into ensemble− train and ensemble− validate for stacking.

54

Meta-learner RMSE MAE R2

XGB 0.21 0.10 9.30%

ANN 0.21 0.10 9.30%

RF 0.22 0.10 4.83%

Table 3.23: Goodness-of-fit metrics results with different meta-learners.

treme gradient boosting. These methods were chosen due to good performance in one-stage

modelling as compared with goodness-of-fit characteristics. Corresponding parameters were

newly selected using the same techniques as previously.

Secondly, first-level models were used to predict ensemble−validate data set RRs. Then,

obtained predicted values were gathered into one data set and inputted into meta− learner.

Here the predicted values were treated as predictors. In order to be able to predict on the

meta-learner, test data had to be used to predict values from these 3 first-level models. Table

3.23 presents results on different meta-learners. It is showed that the best meta-learners are

XGB and ANN, resulting in the lowest MAE, RMSE and both reaching the highest R2=9.3%.

However, as compared to RF used in one-stage approach, where R2=9.11%, the improvement

on one-stage RF of ensemble stacking was minor, improving R2 by only 0.19%.

3.6 Monthly forecast

Timely forecast is not a very popular concern among RR or LGD related publications. In

[12], authors built models for different periods - 12, 24, 36, 48 months. In this Master’s

thesis, it was sought to build models even on shorter period of time - on a monthly basis.

Monthly forecast was implemented using one-stage model RF:

1) One-stage RF was the best model in terms of goodness-of-fit metrics and outperformed

other one-stage and two-stage approaches.

2) Even though ensemble stacking produced slightly better results than one-stage RF, en-

semble stacking required a number of additional time-consuming computations. Given

55

Type RMSE MAE R2

RF monthly 0.03 0.001 0.12%

Table 3.24: Average goodness-of-fit metrics for RF regression in a monthly model.

that the stacking did not outperform one-stage RF significantly, it was not used as the

best method for building monthly models.

The algorithm to build monthly models was the following: a loop of random forests with

i ∈ [1, n], n=28 iterations corresponding to the number of months to predict was run. In

the same loop, predictions were made on test data and stored in a list. The procedure can

be written as:

1. Run model: RRi
RF∼ dbal+age+ ctot+ cavg+al12m+RR.l12m+nl12m+LGDpre+

pl12m+ iavg + colli+ dt1 + dt2 + ls1 + ls2;

2. Predict: Pri
predict∼ test_data;

3. Store predictions: list(Pr1,...,Prn),

here i ∈ [1, 28].

Average goodness-of-fit metrics are represented in table 3.24. The table presents that

RMSE and MAE are quite small and the R2 is also very low which indicates inappropriate

model. The predicted values of test data are plotted as a curve together with the actual

monthly RR curve in figure 3.22. Visually, the difference between actual and predicted curve

is minor and the actual trend is maintained in the forecast. The explanation could be the

following: even though debt-by-debt predictions were poor, the total portfolio recovery rate

levels could be predicted sufficiently well.

56

Figure 3.22: Predicted monthly recovery rates versus actual.

57

Chapter 4

Conclusions

Overall, certain conclusions can be drawn from the Master’s thesis. Firstly, concerning the

one-stage approach, some differences in goodness-of-fit metrics RMSE and MAE between

the models were observed. The differences in R2 was indicated as well, especially between

the best and the worst methods. The best model was random forests, achieving RMSE

of 0.21, MAE 0.10 and R2 = 9.11%. Regarding the two-stage approach, similarly, some

differences were indicated in RMSE and MAE and R2. The best two-stage model was beta

zero and one inflated model with RMSE equal to 0.21, MAE 0.10 and R2 = 6.07%. It

can be concluded that one-stage models outperform two-stage approaches and separation

of zeros was not required. Secondly, it is observed that the best two performing models as

compared to goodness-of-fit metrics were tree-based. Thirdly, significant variables identified

by the best models were balance at default, age of debt, legal status, debtor type and total

pre-acquisition collections. Then, it was showed that ensemble stacking technique surpassed

other one-stage models marginally. Lastly, monthly forecasting model was implemented with

a loop of random forests.

58

Chapter 5

Bibliography

[1] Basel II,

https://www.investopedia.com/terms/b/baselii.asp.

[2] Basel Committee on Banking Supervision. International Convergence of Capital Measure-

ment and Capital Standards A Revised Framework. Bank for International Settlements.

2005

[3] Bellotti, A., Gambetti, P., Brigo, D., Vrins, F. Forecasting recovery rates on non-

performing loans with machine learning Conference: Credit Scoring and Credit Control

XVI. Edinburgh, 2019.

[4] Bellotti, T., Crook, J. Loss given default models incorporating macroeconomic variables

for credit cards. International Journal of Forecasting. 28 (2012), 171–182.

[5] Beck, M. NeuralNetTools: Visualization and Analysis Tools for Neural Networks. Journal

of Statistical Software. 85(11) (2018).

[6] Calabrese, R., Zenga, M. Bank loan recovery rates: Measuring and nonparametric density

estimation. Journal of Banking and Finance, 34(5) (2010), 903-911.

[7] Calabrese, R. Predicting bank loan recovery rates with a mixed continuous-discrete

model. Applied Stochastic Models in Business and Industry, 30 (2012), 99-114.

59

[8] Chen, T., Guestrin, C. XGBoost: A Scalable Tree Boosting System. Proceedings of the

22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,

New York, 2016, Association for Computing Machinery, 785–794.

[9] Cortes, C., Vapnik, V. Support Vector Networks. Machine Learning 20 (1995), 273-297.

[10] Čekanavičius, V. MULTIVARIATE STATISTICAL ANALYSIS. Lecture notes. Vilnius

2019, 38-40.

[11] Čekanavičius, V. 5 SPSS GLM E 2018. Vilnius 2018, 1-3.

[12] Dermine, J., Neto de Carvalho, C. Bank loan losses-given-default: A case study. Journal

of Banking and Finance, 30 (2006), 1219–1243.

[13] Ye, H., Bellotti, A. Modelling Recovery Rates for Non-Performing Loans. Risks, 7(1)

(2019), 19.

[14] James, G., Witten, D., Hastie, T., Tibshirani, R. An introduction to statistical learning

with applications in R. 2005, Springer, 39-42, 317-321.

[15] Kriesel, D. A Brief Introduction to Neural Networks. 2007, e-book available at

http://www.dkriesel.com, 33-38.

[16] Loterman, G., Brown, I., Martens, D., Mues, C., Baesens, B. Benchmarking regres-

sion algorithms for loss given default modeling. International Journal of Forecasting. 28

(2012), 161–170.

[17] Non-performing loan,

https://www.investopedia.com/terms/l/loan.asp.

[18] Ospina, R., Ferrari, S. Inflated beta distributions. Statistical papers. 51(1) (2007).

[19] Oliveira Jr, M., Louzada, F., Pereira, G., Moreira, F., Calabrese, R. Inflated mixture

models: Applications to multimodality in loss given default. SSRN Electronic Journal. 8

(2015).

60

[20] Qi, M., Zhao, X. Comparison of modeling methods for Loss Given Default. Journal of

Banking and Finance. 35 (2011), 2842–2855.

[21] Rigby, B., Stasinopoulos, M. A flexible regression approach using GAMLSS in R. 2010,

e-book available at

http://www.gamlss.com/wp-content/uploads/2013/01/book-2010-Athens1.pdf,

215-216.

[22] Trafalis, T., Ince, H. Support vector machine for regression and applications to financial

forecasting. Conference paper 2000.

[23] Zhou, Z. Ensemble methods. Foundations and algorithms. 2012, CRC Press, Taylor

Francis Group, LLC, 83-86.

61

Appendix 1

Name Type Definition

Account level

acc.id factor unique debt ID

dbal numeric debt amount at default

abal numeric debt amount at purchase

age numeric months from default to acquisition

dt factor debtor type: "1", "2", "3"

ls factor legal.status: "1", "2", "3"

Payment level

acc.id factor unique debt ID

pmt.amt numeric amount paid

pmt.dt date date when the payment was made

Table 5.1: Debt data given variables.

62

Appendix 2

Name Type Definition

RR numeric ratio of collections post purchase with purchased debt amount

ctot numeric paid total until purchase

cavg numeric average payment total

al12m numeric average payment in last 12 months

RR.l12m numeric recovery rate l12m

LGDpre numeric loss given default until purchase

pl12m binary "1" - paid last 12M, "0" - opposite

nl12m binary number of payments last 12M until purchase.

iavg binary "1" - average last 12M payment increased, "0" - opposite

colli binary "1" - sum of payments last 12M higher than before, "0" - opposite

Table 5.2: Debt data created variables.

63

Appendix 3

Figure 5.1: Default balance distribution with and without outliers.

64

Appendix 4

Figure 5.2: Debt Age distribution with and without outliers.

65

Appendix 5

Figure 5.3: Correlation plot of the variables.

66

Appendix 6

Analysis of Deviance Table (Type II tests)

Response: RR

Variable Df Chisq Pr(>Chisq)

pl12m 1 609.373 < 2.2e-16

iavg 1 38.138 6.591e-10

ls1 1 4.709 0.03001

ls2 1 232.917 < 2.2e-16

dbal 1 18.116 2.079e-05

age 1 753.604 < 2.2e-16

RR.l12m 1 462.024 < 2.2e-1

LGDpre 1 424.356 < 2.2e-16

nl12m 1 827.530 < 2.2e-16

Table 5.3: Logistic regression: Wald test.

67

Appendix 7

Variable Odds ratio

pl12m 4.48

iavg 0.68

ls1 0.86

ls2 3.25

dbal 1.29

age 0.11

RR.l12m 0.03

LGDpre 0.22

nl12m 105.57

Table 5.4: Logistic regression: odds ratios for significant variables.

68

Appendix 8

R codes

data structuring packages:

library(dplyr); library(tidyr); library(scales); library(lubridate);

plotting packages:

library(ggplot2); library(corrplot);

regression and classification algorithms packages:

library(caret); library(randomForest); library(mlbench);

library(e1071); library(rpart); library(stats);

library(aod); library(nnet); library(NeuralNetTools);

library(gamlss); library(gamlss.inf); library(xgboost)

data structuring and normalization

Total_population <- Accounts%>%select(Acq.Balance, Debt.Age, Def.Balance,

Debtor.Type, Legal.Status, Coll.Tot,Avg.Pmt.L12M, Liq.L12M, N.Pmts.L12M,

Payer.L12M, Balance.rng,RR, LGD_pre, Avg.Pmt.before.L12M, Coll.before.L12M,

Coll.L12M)%>% mutate(Debtor.Type = as.factor(Debtor.Type),

Legal.Status = as.factor(Legal.Status),

Avg.Pmt.increased = ifelse(Avg.Pmt.before.L12M<Avg.Pmt.L12M, 1, 0),

Coll.increased = ifelse(Coll.before.L12M<Coll.L12M, 1, 0),

Payer.L12M = Payer.L12M

)%>%

select(RR, Def.Balance, Debtor.Type, Debt.Age, Legal.Status, Coll.Tot,

Coll.L12M, Avg.Pmt.L12M, Liq.L12M, N.Pmts.L12M, Payer.L12M, LGD_pre,

69

Avg.Pmt.increased, Coll.increased)

outlier detection

outlierKD(Total_population, Def.Balance)

outlierKD(Total_population, Debt.Age)

correlation

corrplot(cor(Total_population,method = "spearman"),sig.level = 0.01,)

split into test and train

smp_size <- floor(0.75 * nrow(Total_population))

train_ind <- sample(seq_len(nrow(Total_population)), size = smp_size)

train <- Total_population[train_ind,]

test <- Total_population[-train_ind,]

train_non_factors <- train%>%select(-RR,-Debtor.Type,-Legal.Status,-Payer.L12M,

-Avg.Pmt.increased,-Coll.increased)

train_factors <- train%>%select(RR,Debtor.Type,Legal.Status,Payer.L12M,

Avg.Pmt.increased,Coll.increased)

maxmindf <- as.data.frame(lapply(train_non_factors, normalize))

maxmindf <-bind_cols(maxmindf,train_factors)

test_non_factors <- test%>%select(-Debtor.Type,-Legal.Status,

-Payer.L12M,-Avg.Pmt.increased,-Coll.increased)

test_factors <- test%>%select(Debtor.Type,Legal.Status,

Payer.L12M,Avg.Pmt.increased,Coll.increased)

maxmindf_test <- as.data.frame(lapply(test_non_factors, normalize))

maxmindf_test <-bind_cols(maxmindf_test,test_factors)

cl_maxmindf<-maxmindf%>%mutate(RR_0_1 = ifelse(RR>0,1,0),

RR_others = ifelse(RR==0 | RR==1, 1, 0))%>%

mutate(RR1 = ifelse(RR=="1", 1, 0),Payer.L12M = as.factor(Payer.L12M),

Avg.Pmt.increased = as.factor(Avg.Pmt.increased),

Coll.increased = as.factor(Coll.increased))%>%

select(-RR_others, -RR1,-RR_0_1)

cl_maxmindf_test<-maxmindf_test%>%mutate(RR_0_1 = ifelse(RR>0,1,0),

70

RR_others = ifelse(RR==0 | RR==1, 1, 0))%>%mutate(RR1 =

ifelse(RR=="1", 1, 0),Payer.L12M = as.factor(Payer.L12M),

Avg.Pmt.increased = as.factor(Avg.Pmt.increased),

Coll.increased = as.factor(Coll.increased))%>%

select(-RR_others, -RR1,-RR_0_1)

cl_maxmindf.v2 <-cl_maxmindf%>%mutate(RR=ifelse(RR==1,1,RR))%>%

mutate(RR=round(RR,2))

cl_maxmindf_test.v2 <-cl_maxmindf_test%>%mutate(RR=ifelse(RR==1,1,RR))

mutate(RR=round(RR,2))

One-stage

SVM

tune.out.3=tune(svm ,RR~.,data=cl_maxmindf.v3.v2 ,kernel ="radial",

ranges =list(gamma = seq(0.1,2,length=5), cost=seq(0.12,1,length=5)))

tune.out.4=tune(svm ,RR~,data=cl_maxmindf.v3.v2 ,kernel ="sigmoid",

ranges =list(nu = seq(1,5,length=5), cost=seq(0.01,1,length=5)))

SVM.all.radial <- svm(RR ~ ., data = cl_maxmindf.v3.v2, kernel = "radial",

cost=0.12, gamma=0.1)

SVM.all.sigmoid <- svm(RR ~ ., data = cl_maxmindf.v3.v2, kernel = "sigmoid",

cost=1, nu=3)

pre_SVM.radial <- predict(SVM.all.radial,pre.test)%>%

as.data.frame()%>%rename(Pr=".")

pre_SVM.sigmoid <- predict(SVM.all.sigmoid,pre.test)%>%

as.data.frame()%>%rename(Pr=".")

RMSE(pre_SVM.radial$Pr, cl_maxmindf.v3.v2.test$RR)

MAE(pre_SVM.radial$Pr, cl_maxmindf.v3.v2.test$RR)

R2(pre_SVM.radial$Pr, cl_maxmindf.v3.v2.test$RR)*100

RMSE(pre_SVM.sigmoid$Pr, cl_maxmindf.v3.v2.test$RR)

MAE(pre_SVM.sigmoid$Pr, cl_maxmindf.v3.v2.test$RR)

71

R2(pre_SVM.sigmoid$Pr, cl_maxmindf.v3.v2.test$RR)*100

Random forests

pre.RFAll <- cl_maxmindf.v3.v2[,-1]

res.RFAll <- cl_maxmindf.v3.v2[,1]

tune.RF.All <- tuneRF(x=pre.RFAll, y=res.RFAll, mtryStart = 2, ntreeTry = 1000,

stepFactor = 1.5,improve=1e-5,plot = TRUE,trace = TRUE)

rfAlltune <- randomForest(x=pre.RFAll, y=res.RFAll, mtry=3,

ntree = 1000, importance=TRUE)

RMSE(pr.AllRF, cl_maxmindf.v3.v2.test$RR)

MAE(pr.AllRF, cl_maxmindf.v3.v2.test$RR)

R2(pr.AllRF, cl_maxmindf.v3.v2.test$RR)*100

prRFall<-pr.AllRF%>%as.data.frame()%>%rename(RR=".")%>%

mutate(Type=paste("Predicted"))

K-nearest neigbors

#tune the K

pre.RFAll <- cl_maxmindf.v3.v2[,-1]

res.RFAll <- cl_maxmindf.v3.v2[,1]

pre.test <- cl_maxmindf.v3.v2.test[,-1]

knn.list <- list()

n<-40

for (i in 1:n) {

fit_knn_All = knnreg(x = pre.RFAll, y = res.RFAll, k=i)

knn.list[[i]]<-fit_knn_All

rm(fit_knn_All)}

knn.list.pr <- list()

for (i in 1:n) {

pr.Allknn = predict(knn.list[[i]],newdata = pre.test)

knn.list.pr[[i]]<-pr.Allknn

72

rm(pr.Allknn)}

knn.list.r2 <- list()

for (i in 1:n) {

pr.Allknn = R2(knn.list.pr[[i]], cl_maxmindf.v3.v2.test$RR)*100

knn.list.r2[[i]]<-pr.Allknn

rm(pr.Allknn)}

knn.list.rmse <- list()

for (i in 1:n) {

pr.Allknn = RMSE(knn.list.pr[[i]], cl_maxmindf.v3.v2.test$RR)

knn.list.rmse[[i]]<-pr.Allknn

rm(pr.Allknn)}

knn.list.mae <- list()

for (i in 1:n) {

pr.Allknn = MAE(knn.list.pr[[i]], cl_maxmindf.v3.v2.test$RR)

knn.list.mae[[i]]<-pr.Allknn

rm(pr.Allknn)}

RMSE(knn.list.pr[[35]], cl_maxmindf.v3.v2.test$RR)

MAE(knn.list.pr[[35]], cl_maxmindf.v3.v2.test$RR)

R2(knn.list.pr[[35]], cl_maxmindf.v3.v2.test$RR)*100

Neural networks

list.nn<-list()

k<-10

size.seq <- seq(1,k,1)

decay.seq <-as.list(seq(0.001,0.01,0.001))

for (i in 1:k) {

nn.All <- nnet(RR ~ ., data=cl_maxmindf.v3.v2, size=10, decay=decay.seq[[i]])

list.nn[[i]]<-nn.All

rm(nn.All)}

73

list.nn.pr<-list()

size.seq <- seq(1,k,1)

#decay.seq <-as.list(seq(0.1,)

for (i in 1:k) {

nn.All <- predict(list.nn[[i]], cl_maxmindf.v3.v2.test)

list.nn.pr[[i]]<-nn.All

rm(nn.All)}

knn.list.ann.r2 <- list()

for (i in 1:n) {

pr.Allnn = R2(list.nn.pr[[i]], cl_maxmindf.v3.v2.test$RR)*100

knn.list.ann.r2[[i]]<-pr.Allnn

rm(pr.Allnn)}

knn.list.ann.rmse <- list()

for (i in 1:n) {

pr.Allnn = RMSE(list.nn.pr[[i]], cl_maxmindf.v3.v2.test$RR)

knn.list.ann.rmse[[i]]<-pr.Allnn

rm(pr.Allnn)}

knn.list.ann.mae <- list()

for (i in 1:n) {

pr.Allnn = MAE(list.nn.pr[[i]], cl_maxmindf.v3.v2.test$RR)

knn.list.ann.mae[[i]]<-pr.Allnn

rm(pr.Allnn)}

Beta zero and one inflated regression

m.gam.All <- gamlss(RR~pl12m+iavg+ colli+dt1+dt2+ls1+ls2+al12m+dbal+

age+RR.l12m+LGDpre+ctot+cavg+nl12m,

sigma.formula = ~pl12m+iavg+ colli+dt1+dt2+ls1+ls2+al12m+dbal+

age+RR.l12m+LGDpre+ctot+cavg+nl12m,

nu.formula = ~pl12m+iavg+ colli+dt1+dt2+ls1+ls2+al12m+dbal+

age+RR.l12m+LGDpre+ctot+cavg+nl12m,

74

tau.formula = ~pl12m+iavg+ colli+dt1+dt2+ls1+ls2+al12m+dbal+

age+RR.l12m+LGDpre+ctot+cavg+nl12m,

data = cl_maxmindf.v3.v2, family=BEINF)

m.gam.All <- gamlss(RR~1,data = cl_maxmindf.v3.v2, family=BEINF)

variable selection

step_analysis <- stepGAICAll.A(m.gam.All,scope=list(lower=~1,upper=~pl12m+iavg+

colli+dt1+dt2+ls1+ls2+al12m+dbal+age+RR.l12m+LGDpre+ctot+cavg+nl12m))

model with important variables

m.gam<-gamlss(RR~pl12m+iavg+ colli+dt1+dt2+ls1+ls2+al12m+dbal+

age+RR.l12m+LGDpre+ctot+cavg+nl12m,sigma.formula = ~

RR.l12m+pl12m+ls1+LGDpre+ls2+nl12m, nu.formula =

~pl12m+age+ls2+pl12m+dt1+RR.l12m+LGDpre+ls1+iavg+dbal,tau.formula = ~

nl12m+ls1+dbal+dt1+LGDpre+pl12m+RR.l12m , mu.formula =

~ls1+LGDpre+age+pl12m+dt1+ctot+ls2,data = cl_maxmindf.v3.v2, family=BEINF)

pr.All.a <- predictAll(m.gam, newdata = cl_maxmindf.v3.v2.test,

type="response")%>%as.data.frame()

mean.pr.1 <- pr.All.a%>%mutate(mean.all = (tau+mu)/(1+nu+tau))

prbetaall<-mean.pr.1$mean.all%>%as.data.frame()%>%rename(RR=".")%>%

mutate(Type=paste("Predicted"))%>%

RMSE(mean.pr.1$mean.all, cl_maxmindf.v3.v2.test$RR)

MAE(mean.pr.1$mean.all, cl_maxmindf.v3.v2.test$RR)

R2(mean.pr.1$mean.all, cl_maxmindf.v3.v2.test$RR)*100

XGboost

cl_maxmindf_0_1 <-cl_maxmindf.v3.v2

cl_maxmindf_test_0_1 <-cl_maxmindf.v3.v2.test

X_train = xgb.DMatrix(as.matrix(cl_maxmindf.v3.v2 %>% select(-RR)))

75

y_train = cl_maxmindf.v3.v2$RR

X_test = xgb.DMatrix(as.matrix(cl_maxmindf.v3.v2.test %>% select(-RR)))

y_test = cl_maxmindf.v3.v2.test$RR

xgb_trcontrol = trainControl(method = "cv",number = 5, allowParallel = TRUE,

verboseIter = TRUE, returnData = FALSE

)

xgbGrid <- expand.grid(nrounds = c(50,100,200),max_depth = c(3,4,10, 15, 20,

25),colsample_bytree = seq(0.5, 0.9, length.out = 5),

eta = c(0.1, 0.2, 0.3, 0.4, 0.5),gamma=0, min_child_weight = 1,

subsample = c(0.1,0.3,0.5,0.6))

xgb_model = train(X_train, y_train,trControl = xgb_trcontrol,

tuneGrid = xgbGrid,method = "xgbTree")

xgb <- xgboost(data = data.matrix(cl_maxmindf.v3.v2[,-1]), label =

cl_maxmindf.v3.v2$RR, eta = 0.3, max_depth = 4, nround=25, subsample = 0.5,

colsample_bytree = 0.5, eval_metric = "rmse")

pr.xg <-predict(xgb,X_test)

RMSE(pr.xg, cl_maxmindf.v3.v2.test$RR)

MAE(pr.xg, cl_maxmindf.v3.v2.test$RR)

R2(pr.xg, cl_maxmindf.v3.v2.test$RR)*100

names <- dimnames(data.matrix(cl_maxmindf.v3.v2[,-1]))[[2]]

importance_matrix <- xgb.importance(names, model = xgb)

two-stage

cl_maxmindf_0_1 <-cl_maxmindf.v3.v2%>%mutate(RR=ifelse(RR==0,0,1))

cl_maxmindf_test_0_1 <-cl_maxmindf.v3.v2.test%>%mutate(RR=ifelse(RR==0,0,1))

log_0_1 <- glm(RR ~ .,data = cl_maxmindf_0_1, family = binomial(link = "logit"))

summary(log_0_1)

dropping variables

cl_maxmindf_0_1 <-cl_maxmindf.v3.v2%>%mutate(RR=ifelse(RR==0,0,1))%>%

76

select(RR)#select(-Debt.Age, -Debtor.Type)%>%

log_0_1 <- glm(RR ~ .,data = cl_maxmindf_0_1%>%select(-al12m,-ctot,

-cavg, -dt1,-dt2,-colli), family = binomial(link = "logit"))

summary(log_0_1)

Testing on test data

Confusion table :

RR <- data.table(RR_0_1 = predict(log_0_1, cl_maxmindf_test_0_1,

type=’response’)) %>%

.[, RR := as.factor(ifelse(RR_0_1<0.15, ’0’, ’1’))]

cl_maxmindf_test_char<-cl_maxmindf_test_0_1%>%mutate(RR_0_1 =

as.factor(ifelse(RR>0, "1", "0")))

confusion <- confusionMatrix(table(Actual = cl_maxmindf_test_char$RR_0_1,

Prediction = RR$RR))

confusion$table

prop.table(confusion$table, margin = 1)*100

confusion$overall[’Accuracy’]

model_null <- glm(RR ~ 1, data = cl_maxmindf_0_1, family = ’binomial’)

anova(log_0_1, model_null, test = "Chisq")

Negelkerke’s R squared

PseudoR2(log_0_1)

cook_points <- cooks.distance(log_0_1)

influantial_points <- (cook_points>stat) %>% which()

influantial_points %>% length()

Anova(log_0_1, type="II", test="Wald")

coefs <- coef(log_0_1)

exp(coefs)

random forests

cl_maxmindf_0_1 <-cl_maxmindf.v3.v2%>%mutate(RR=as.factor(ifelse(RR==0,"0","1"))

cl_maxmindf_test_0_1 <-cl_maxmindf.v3.v2.test%>%mutate(RR=as.factor

77

(ifelse(RR==0,"0","1")))

x=cl_maxmindf_0_1[,-1]

y=cl_maxmindf_0_1[,1]

tune.RF.All2 <- tuneRF(x=x, y=y, mtryStart = 2, ntree = 1000, stepFactor =

1.5,improve=1e-5,plot = TRUE, trace = TRUE)

rfAlltune.2 <- randomForest(x=x, y=y, mtry=2, ntree = 1000, importance=TRUE)

varimp1<-varImp(rfAlltune.2)%>%as.data.frame()

varimp1$varnames <- rownames(varimp1)

varimp1<-varimp1%>%rename(Overall=‘0‘)

pr.AllRF2 <- predict(rfAlltune,newdata = pre.test)

rf.cl <- randomForest(RR~. , data = cl_maxmindf_0_1, mtry=2,

importance=TRUE, ntree=1000,

#cutoff=c(1/6,1/4),

classwt=c("1"=0.36,"0"=0.64))

redict.rf <- predict(rf.cl, cl_maxmindf_test_0_1)%>%as.data.frame()

predict.krf<-cbind(redict.rf, cl_maxmindf_test_0_1)%>%rename(pr.0 = ’.’)

tbl2 <- prop.table(table(predict.krf$RR,

predict.krf$pr.0), margin=1)*100

confusion2 <- confusionMatrix(table(predict.krf$RR,

predict.krf$pr.0))

confusion2$table

confusion2$overall[’Accuracy’]

cl_maxmindf_test_pred_1<- predict.krf%>%filter(pr.0 ==1)

second stage. regression.

cl_maxmindf.v2_1 <-cl_maxmindf.v3.v2%>%filter(RR>0)

loan.ids <- t

cl_maxmindf_test_pred_0 <-

cl_maxmindf.v3.v2.test%>%cbind(predict.krf%>%select(pr.0))%>%

bind_cols(loan.ids)%>%

78

filter(pr.0==’0’)%>%select(-pr.0)

cl_maxmindf_test_pred_1 <-

cl_maxmindf.v3.v2.test%>%cbind(predict.krf%>%select(pr.0))%>%

bind_cols(loan.ids)%>%

filter(pr.0==’1’)%>%select(-pr.0)

vv<-cl_maxmindf_test_pred_1%>%mutate(cfs=RR*Def.Balance)

vv2<-cl_maxmindf_test_pred_0%>%mutate(cfs=RR*Def.Balance)

prediction for non0s

pre.RF_0_1 <- cl_maxmindf.v2_1[,-1]

res.RFAll_0_1 <- cl_maxmindf.v2_1[,1]

tune.RF_1 <- tuneRF(x=pre.RF_0_1, y=res.RFAll_0_1,

mtryStart = 2, ntreeTry =1000, stepFactor = 1.5,improve=1e-5,

plot = TRUE, trace = TRUE)

rfAlltune_1 <- randomForest(x=pre.RF_0_1, y=res.RFAll_0_1,

mtry=6, ntree = 1000,importance=TRUE)

varimp1<-varImp(rfAlltune_1)%>%as.data.frame()

varimp1$varnames <- rownames(varimp1)

pre.test <- cl_maxmindf_test_pred_1[,c(-1,-17)]

pr.AllRF <- predict(rfAlltune_1,newdata = pre.test)

RMSE(pr.AllRF, cl_maxmindf_test_pred_1$RR)

MAE(pr.AllRF, cl_maxmindf_test_pred_1$RR)

R2(pr.AllRF, cl_maxmindf_test_pred_1$RR)*100

error.check <- plot.data%>%filter(Type=="Predicted")%>%select(RR)

error.check2 <- plot.data%>%filter(Type=="Actual")%>%select(RR)

RMSE(error.check$RR, error.check2$RR)

MAE(error.check$RR, error.check2$RR)

R2(error.check$RR, error.check2$RR)*100

KNN

pre.RF_0_1 <- cl_maxmindf.v2_1[,-1]

res.RFAll_0_1 <- cl_maxmindf.v2_1[,1]

79

pre.test <- cl_maxmindf_test_pred_1[,-1]

knn.list <- list()

n<-40

for (i in 1:n) {

fit_knn_All = knnreg(x = pre.RF_0_1, y = res.RFAll_0_1, k=i)

knn.list[[i]]<-fit_knn_All

rm(fit_knn_All)}

knn.list.pr <- list()

for (i in 1:n) {

pr.Allknn = predict(knn.list[[i]],newdata = pre.test[,-16])

knn.list.pr[[i]]<-pr.Allknn

rm(pr.Allknn)}

knn.list.r2 <- list()

for (i in 1:n) {

pr.Allknn = R2(knn.list.pr[[i]], pre.test$RR)*100

knn.list.r2[[i]]<-pr.Allknn

rm(pr.Allknn)}

knn.list.rmse <- list()

for (i in 1:n) {

pr.Allknn = RMSE(knn.list.pr[[i]], pre.test$RR)

knn.list.rmse[[i]]<-pr.Allknn

rm(pr.Allknn)}

knn.list.mae <- list()

for (i in 1:n) {

pr.Allknn = MAE(knn.list.pr[[i]], pre.test$RR)

knn.list.mae[[i]]<-pr.Allknn

rm(pr.Allknn)}

knn.list.PT <- list()

for (i in 1:n) {

80

prknnall<-knn.list.pr[[i]]%>%as.data.frame()

plot.data2<-cl_maxmindf_test_pred_1%>%select(RR,

Acq.Balance)%>%bind_cols(prknnall)%>%rename(Pr=".")%>%

bind_rows(cl_maxmindf_test_pred_0%>%select(RR, Acq.Balance)%>%mutate(Pr=0))

pr.Allknn = predict(knn.list[[30]],newdata = pre.test[,-16])

pr.Allknn<-pr.Allknn%>%as.data.frame()%>%rename(Pr=".")%>%

mutate(Type=paste("Predicted"))%>%

bind_cols(cl_maxmindf_test_pred_1%>%select(Acq.Balance,RR))%>%

bind_rows(cl_maxmindf_test_pred_0%>%mutate(Type=paste("Predicted"),

Pr=0)%>%select(RR,Pr,Type,Acq.Balance))

true.1 <-pr.Allknn%>%select(RR)%>%mutate(Type="Actual")

pred.1 <-pr.Allknn%>%select(Pr)%>%mutate(Type="Predicted",RR=Pr)

error.check <- plot.data%>%filter(Type=="Predicted")%>%select(RR)

error.check2 <- plot.data%>%filter(Type=="Actual")%>%select(RR)

RMSE(error.check$RR, error.check2$RR)

MAE(error.check$RR, error.check2$RR)

R2(error.check$RR, error.check2$RR)*100

neural networks

list.nn<-list()

k<-10

size.seq <- seq(1,k,1)

decay.seq <-as.list(seq(0.001,0.01,0.001))

for (i in 1:k) {

nn.All <- nnet(RR ~ ., data=cl_maxmindf.v2_1, size=10, decay=decay.seq[[i]])

list.nn[[i]]<-nn.All

rm(nn.All)}

list.nn.pr<-list()

size.seq <- seq(1,k,1)

81

#decay.seq <-as.list(seq(0.1,)

for (i in 1:k) {

nn.All <- predict(list.nn[[i]], pre.test)

list.nn.pr[[i]]<-nn.All

rm(nn.All)}

knn.list.ann.r2 <- list()

n<-k

for (i in 1:n) {

pr.Allnn = R2(list.nn.pr[[i]], pre.test$RR)*100

knn.list.ann.r2[[i]]<-pr.Allnn

rm(pr.Allnn)}

knn.list.ann.rmse <- list()

for (i in 1:n) {

pr.Allnn = RMSE(list.nn.pr[[i]], cl_maxmindf_test_pred_1$RR)

knn.list.ann.rmse[[i]]<-pr.Allnn

rm(pr.Allnn)}

knn.list.ann.mae <- list()

for (i in 1:n) {

pr.Allnn = MAE(list.nn.pr[[i]], cl_maxmindf_test_pred_1$RR)

knn.list.ann.mae[[i]]<-pr.Allnn

rm(pr.Allnn)}

pr.Allnn = predict(list.nn[[1]],newdata = pre.test[,-16])

error.check <- plot.data%>%filter(Type=="Predicted")%>%select(RR)

error.check2 <- plot.data%>%filter(Type=="Actual")%>%select(RR)

RMSE(error.check$RR, error.check2$RR)

MAE(error.check$RR, error.check2$RR)

R2(error.check$RR, error.check2$RR)*100

plotnet(list.nn[[3]])

variable importance plot

g2<-garson(list.nn[[1]])

82

#SVMs

SVM.2 <- svm(RR ~ ., data = cl_maxmindf.v2_1, kernel = "radial",

cost=0.2, gamma=0.1)

SVM.22 <- svm(RR ~ ., data = cl_maxmindf.v2_1, kernel = "sigmoid",

cost=0.002, nu=0.01)

pre_SVM.test <- predict(SVM.2,

cl_maxmindf_test_pred_1[,2:16])%>%as.data.frame()%>%rename(Pr=".")

pre_SVM.test2 <- predict(SVM.22,

cl_maxmindf_test_pred_1[,2:16])%>%as.data.frame()%>%rename(Pr=".")

prnsvm<-pre_SVM.test%>%mutate(Type=paste("Predicted"))%>%

bind_cols(cl_maxmindf_test_pred_1%>%select(Acq.Balance,RR))%>%

bind_rows(cl_maxmindf_test_pred_0%>%mutate(Type=paste("Predicted"),

Pr=0)%>%select(RR,Pr,Type,Acq.Balance))

true.1 <-prnsvm%>%select(RR)%>%mutate(Type="Actual")

pred.1 <-prnsvm%>%select(Pr)%>%mutate(Type="Predicted",RR=Pr)

error.check <- plot.data%>%filter(Type=="Predicted")%>%select(RR)

error.check2 <- plot.data%>%filter(Type=="Actual")%>%select(RR)

RMSE(error.check$RR, error.check2$RR)

MAE(error.check$RR, error.check2$RR)

R2(error.check$RR, error.check2$RR)*100

xgboost

xgb.2 <- xgboost(data = data.matrix(cl_maxmindf.v2_1[,-1]),

label = cl_maxmindf.v2_1$RR, eta = 0.3, max_depth = 5, nround=25,

subsample = 0.5,colsample_bytree = 0.5,val_metric = "rmse",

objective = "reg:linear")

pre_xgb.test <- predict(xgb.2,xgb.DMatrix(as.matrix(

cl_maxmindf_test_pred_1[,2:16])))%>%as.data.frame()%>%rename(Pr=".")

prnxgb<-pre_xgb.test%>%mutate(Type=paste("Predicted"))%>%

bind_cols(cl_maxmindf_test_pred_1%>%select(Acq.Balance,RR))%>%

83

bind_rows(cl_maxmindf_test_pred_0%>%mutate(Type=paste("Predicted"),

Pr=0)%>%select(RR,Pr,Type,Acq.Balance))

error.check <- plot.data%>%filter(Type=="Predicted")%>%select(RR)

error.check2 <- plot.data%>%filter(Type=="Actual")%>%select(RR)

RMSE(error.check$RR, error.check2$RR)

MAE(error.check$RR, error.check2$RR)

R2(error.check$RR, error.check2$RR)*100

x2<-xgb.importance(names, model = xgb.2)

x2<-xgb.plot.importance(importance_matrix[1:10,])

ensemble

s_size2 <- floor(0.5 * nrow(cl_maxmindf.v3.v2))

t_ind2 <- sample(seq_len(nrow(cl_maxmindf.v3.v2)), size = s_size2)

train.ensemble<-cl_maxmindf.v3.v2[t_ind2,]

test.ensemble <- cl_maxmindf.v3.v2[-t_ind2,]

x.test <- test.ensemble[,-1]

x2<-train.ensemble[,-1]

y2<-train.ensemble[,1]

rf.ensemble <- randomForest(x=x2, y=y2, mtry=3, ntree = 800, importance=TRUE)

nnet.ensemble <- nnet(RR~., train.ensemble, size=10, decay=0.003)

knn.ensemble <- knnreg(x = x2, y = y2, k=35)

xgb_trcontrol = trainControl(method = "cv",number = 5,allowParallel = TRUE,

verboseIter = TRUE, returnData = FALSE)

xgbGrid <- expand.grid(nrounds = c(50,25),max_depth = c(3,4,10),

colsample_bytree = seq(0.5, 0.9, length.out = 5),eta = c(0.01, 0.1, 0.3),

gamma=0,min_child_weight = 1,subsample = c(0.1,0.2,0.5))

xgb_model = train(

data.matrix(train.ensemble[,-1]), train.ensemble$RR,

trControl = xgb_trcontrol, tuneGrid = xgbGrid,method = "xgbTree")

knn.ensemble <- xgboost(data = data.matrix(train.ensemble[,-1]),

84

label = train.ensemble$RR, eta = 0.1,max_depth = 3, nround=50,

subsample = 0.5,colsample_bytree = 0.8,

eval_metric = "rmse", objective = "reg:linear")

predictions

rf.ensemble.pred <- predict(rf.ensemble, newdata = x.test)

nnet.ensemble.pred <- predict(nnet.ensemble, newdata = x.test)

knn.ensemble.pred <- predict(knn.ensemble, newdata = as.matrix(x.test))

predDF.ensemb <- data.frame(rf.ensemble.pred,

nnet.ensemble.pred,

knn.ensemble.pred,

RR = test.ensemble$RR)

x3<-predDF.ensemb[,-4]

y3<-predDF.ensemb[,4]

modelStack.ensemble<-randomForest(x=x3, y=y3, mtry=2, ntree = 800,

importance=TRUE)

as.matrix(cl_maxmindf.v3.v2.test[,-1]))

predDF.ensemb.test <- data.frame(rf.ensemble.test,

nnet.ensemble.test,

knn.ensemble.test,

RR = cl_maxmindf.v3.v2.test$RR)%>%

rename(rf.ensemble.pred=rf.ensemble.test,

nnet.ensemble.pred=nnet.ensemble.test,

knn.ensemble.pred=knn.ensemble.test)

combPred.ens <- predict(modelStack.ensemble, as.matrix(predDF.ensemb.test[,-4]))

R2(combPred.ens,cl_maxmindf.v3.v2.test$RR)*100

RMSE(combPred.ens,cl_maxmindf.v3.v2.test$RR)

MAE(combPred.ens,cl_maxmindf.v3.v2.test$RR)

#monthly forecast

85

A<-Accounts[train_ind,]

B<-Accounts[-train_ind,]

loop.train<-cl_maxmindf.v3.v2%>%select(-RR)%>%bind_cols(A[,37:64]%>%

mutate_if(is.numeric, ~round(., 2)))

loop.test<-cl_maxmindf.v3.v2.test%>%select(-RR)%>%bind_cols(B[,37:64]%>%

mutate_if(is.numeric, ~round(., 2)))

predictors for tests

loop.test.predictors <- loop.test[,1:15]

list_predict <- list()

tune.out <- list()

for (i in 1:28) {

list_model <- list()

y = loop.train[,15+i]#%>%as.data.frame()%>%rename(M=".")

x = loop.train[,c(1:15)]

list_model[[i]] <- randomForest(x=x, y=y, mtry=3, ntree=500)

list_predict[[i]] <- predict(list_model[[i]], loop.test.predictors)

rm(list_model)}

predict_total <- as.data.frame(bind_cols(list_predict))%>%

bind_cols(as.data.frame(loop.test[,c(16:43)]))%>%

mutate_if(is.numeric, ~round(., 2))%>%

bind_cols(t%>%select(Acq.Balance))%>%rename(Def.Balance=Acq.Balance)%>%

summarise(

FC_1 = sum(V1*Def.Balance)/sum(t$Acq.Balance),

...

FC_28 = sum(V28*Def.Balance)/sum(t$Acq.Balance),

Act_1 = sum(M1*Def.Balance)/sum(t$Acq.Balance),

...

Act_28 = sum(M28*Def.Balance)/sum(t$Acq.Balance))%>%as.data.frame()

	Introduction
	Methodology
	Classification
	Binary Logistic Regression
	Random Forests

	Regression
	Support Vector Machines
	Random Forests
	K-Nearest Neighbours
	Artificial Neural Networks
	Inflated Beta Regression
	Extreme Gradient Boosting

	Ensemble. Stacking
	Goodness-of-fit metrics

	Implementation
	Data overview
	One-stage models
	Support Vector Machines
	Random Forests
	K-Nearest Neighbors
	Artificial Neural Networks
	Extreme Gradient Boosting

	Two-stage models
	Classification. Binary Logistic Regression
	Classification. Random Forests
	Regression
	Inflated Beta Regression

	Models evaluation
	Ensemble. Stacking
	Monthly forecast

	Conclusions
	Bibliography

