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Strukt	urinis inovatyvaus elgesio darbe modeliavimas

Santrauka

Inovacijos � vienas svarbiausiu� progres¡ ir pl
etr¡ lemian£iu� veiksniu�, ta£iau, visu� pirma, reikia

ºmoniu� galin£iu� ir norin£iu� jas kurti. Siekiant skatinti darbuotoju� inovatyvu� elgesi�, svarbu atkreipti

d
emesi� i� inovatyvaus elgesio s¡sajas su asmens lygio faktoriais, kuriuos b	utu� galima stiprinti. �iame

darbe buvo tirtos inovatyvaus elgesio darbe (dom
ejimosi naujov
emis, id
eju� tyrin
ejimo ir k	urimo,

id
eju� i²bandymo ir i�vertinimo, paramos siekio ir id
eju� i�gyvendinimo) s¡sajos su profesiniu sa-

viveiksmingumu ir i�sitraukimu i� darb¡. Darbe taikytas strukt	urinis modeliavimas siekiant atrasti

geriausiai duomenims tinkanti� modeli� ir i�vertinti kintamu�ju� ry²ius. Taip pat, atliktos Monte Karlo

simuliacijos siekiant atrasti geriausiai modeliui tinkanti� i�vertini� ir i�vertinti pati� modeli�. Tyrimo

rezultatai atskleid
e, kad tiek didesnis profesinis saviveiksmingumas, tiek i�sitraukimas i� darb¡ siejasi

su stipriau i²reik²tu inovatyviu elgesiu darbe. I�sitraukimas i� darb¡ yra statisti²kai reik²mingas tarpi-

nis veiksnys tarp profesinio saviveiksmingumo ir inovatyvaus elgesio darbe. Galiausiai, dom
ejimasis

naujov
emis, id
eju� tyrin
ejimas ir k	urimas, id
eju� i²bandymas ir i�vertinimas ir id
eju� i�gyvendinimas �

reik²mingi latentinio inovatyvaus elgesio indikatoriai sukurtame modelyje.

Raktiniai ºodºiai : strukt	urinis modeliavimas, Monte Carlo simuliacijos, inovatyvus

elgesys darbe

Structural modelling of innovative work behaviour

Abstract

Innovations is an important factor for any progress and development, however, �rst, people, that

are able and willing to innovate, are necessary. Therefore, to have a more expressed innovative

work behaviour, it is important to research the relationships with its antecedents, personal factors,

which could be built up to strengthen the innovative work behaviour. The aim of this paper was

to investigate the relationships among innovative work behaviour (interest in novelty, exploration

and creation of ideas, idea testing and evaluation, search for support and idea implementation),

occupational self-e�cacy and work engagement. Structural equation modelling was applied to �nd

the best data �tting model and evaluate the relationships. In addition, Monte Carlo simulations

were performed to select the best estimator and evaluate the overall model. Results indicate that

occupational self-e�cacy and work engagement have a positive e�ect on innovative work behaviour.

Work engagement is a statistically signi�cant mediating factor between occupational self-e�cacy

and innovative work behaviour. Finally, interest in novelty, exploration and creation of ideas, idea

testing and evaluation, and idea implementation are strong indicators of innovative work behaviour

in the model.



Key words : structural equation modelling, Monte Carlo simulations, innovative work

behaviour

1 Introduction

Innovations is an important factor contributing to the progress and development in any

sector, be it social, education, science, medicine, economics, business or any other, see [40;

68; 69]. Especially now, when the resources are abundant as never before, the possibilities

to innovate form the technological side are almost endless, and at the same time, the com-

petition, especially for businesses, is really strong � only the ones that innovate, stand the

chance of being exceptional within the market. In addition, innovations are bene�cial at an

individual level as well and are associated with greater self-con�dence, communication and

personal growth. Therefore, it is a�ecting both, the general well-being of the society and

every one of us individually as well, see [70].

For the above reasons, naturally, people are looking on how to increase the amount of

innovations. It is people, who by acting creatively, are developing, adjusting, and imple-

menting new and innovative ideas. Therefore, to have more innovations, it is important to

strengthen the employee innovative work behaviour. Here, the academia and researchers,

play an important role, who are trying to indicate an underlying mechanism of innovative

work behaviour and it's antecedents, that could be built up to increase the innovative work

behaviour. Such research, dedicated to innovative behaviour, have been increasing in re-

cent years, see [70]. However, the research on the relationships among personal factors and

innovative work behaviour is still scarce, see [71].

In this paper, we will look into the relationships among individual level factors: profes-

sional self-e�cacy and work engagement, and innovative work behaviour. The two personal

factors are selected as both are motivational, their predictive relationships with work related

behaviour have been proven in research and also they can be strengthened to obtain better

outcomes at work, for example, see [47; 58, 60; 64; 72]. In addition, currently, it is not

clear how the combination of both a�ects innovative behaviour at work, see [73]. Identifying

the patterns, could provide a more complete picture of innovative work behaviour and the

possibilities to strengthen it in the workplace.

Therefore, the aim of this study is to investigate the relationships among the three fac-

tors: occupational self-e�cacy, work engagement and the latent factor � innovative work

behaviour.
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In the �rst part of the paper, we will look into the theoretical background of innovative

work behaviour, occupational self-e�cacy and work engagement and the research done relat-

ing to the relationships among them. Then we will cover the main theoretical concepts of the

applied statistical technique in the paper � structural equation modelling. The second part

of the paper will contain the practical application. We will start by the necessary assump-

tion testing prior the structural equation modelling, follow up with the discussion of applied

structural equation models to �nd the best data �tting model and evaluate the relationships,

and �nalise with the Monte Carlo study to evaluate and select the better suited estimator

for our data and evaluate the selected �nal model. A short discussion of the results and their

meaning will be found at the end of the paper.

2 Theoretical overview of innovative work behaviour, oc-

cupational self-e�cacy and work engagement

In this section we will �rst de�ne the main constructs modelled in this work and then discuss

the literature on the inter-relations between innovative behaviour, occupational self-e�cacy

and work engagement to better understand how the research �ts into the existing work on

this topic.

2.1 Innovative work behaviour

In this section we will try to de�ne innovative work behaviour and shortly discuss the research

relating to it.

Innovative work behaviour. Innovative work behaviour can be de�ned as intentional

extra-role behaviour with a goal to create and innovate, see [39; 28; 40]. By being an extra-

role behaviour, innovative work is done without any external request, instead, it is driven

by internal initiative and a wish to bring gains to the organisation, see [38].

The variety of the behaviours that are manifested during innovative behaviour process

varies between di�erent authors. For example, Kanter (1988) distinguished four types of

behaviour (idea generation, coalition creation, idea realisation and di�usion of the results,

and commercial use), Janssen (2000) � three (idea generation, sharing of the ideas with

supporters and idea realisation), and de Jong (2007) � four (search for opportunities, idea

generation, creation of coalitions and idea implementation). In this work, we will be us-

ing the most recent de�nition of the behaviours, created by Geleºinyt
e and Bagdºi	unien
e
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(2016), that include the largest number of innovative work behaviours: interest in novelty,

idea exploration and generation, idea testing and evaluation, search for support and idea

implementation.

Many conducted studies, exploring innovative work behaviour, measure it as a one-

dimensional observable construct, despite it being manifested by numerous behaviours. In

order to capture a more precise picture, this study will measure innovative work behaviour

as a latent construct consisting of �ve behaviours. As Patterson (2002) notes, due to the

variety of behaviours that are manifested during innovation at work, it is likely that di�erent

components of it will be a�ected by di�erent personality features. Therefore, it is important

to include all of them to the conducted research.

In order to strengthen innovative behaviour at work it is important to �rst de�ne and

explore the antecedents. The studied predictive factors can be grouped into four groups:

individual factors, group level factors, organisational factors and environmental factors. This

study focuses on two individual level factors: occupational self-e�cacy and work engagement,

that are described shortly below.

2.2 Occupational self-e�cacy and work engagement

In this section we will provide de�nitions of occupational self-e�cacy and work engagement.

Occupational self-e�cacy. Self-e�cacy consists of beliefs an employee has about his

or her ability to successfully complete a task, see [42]. It is one of the most important

constructs of Bandura's (2009) social-cognitive theory. According to the author, self-e�cacy

is a key factor for successful performance and one of the most in�uential factors on human

motivation. It not only a�ects whether the person will take upon a task, but also how

much e�ort will be put into completing it, despite the obstacles. Person's self-e�cacy can

di�er depending on the area, moreover, a person can have high self-e�cacy in only one area,

several or many areas and activities.

As self-e�cacy can vary depending on activity, it is important to measure the beliefs

about one's e�cacy related to the subject of the research. Therefore, in this work, since

we are investigating self-e�cacy as the predictor of work related innovative behaviour and

engagement, we will assess and model the occupational self-e�cacy � beliefs an employee

has about his or her ability to successfully complete a work related task, see [43].

Work engagement. Work engagement is contrary to burnout and can be described as a

positive emotional-motivational ful�lling, work-related state of mind that is characterized by
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vigour, dedication, and absorption, see [44]. According to Kahn (1990) it re�ects physical,

emotional and cognitive expression of self in tasks and the more employees are sure of their

physical, emotional and cognitive capabilities the more active the performance of the task is

and the more engagement is demonstrated.

Further, we will discuss the research that has been done related to the relationships

among the three variables.

2.3 Inter-relations between variables

In the following section, we will �rst discuss the research done regarding association between

self-e�cacy and innovative work behaviour, and between work engagement and innovative

work behaviour. Second, we will look at the role of work engagement and, �nally, we will

shortly discuss the limitations of the existing research regarding the topic.

Studies have con�rmed that the higher the self-e�cacy, the more a person will be engaged

in his work, for example, see [45, 46]. As for the relation between self-e�cacy and innovative

behaviour, it has been con�rmed that higher general self-e�cacy predicts stronger innovative

behaviour, see [47] and what is more, Hsiao et al. (2011) have con�rmed that the level of

teachers' self-e�cacy positively predicts idea generation, search for support and idea imple-

mentation. Other research also con�rm that self-e�cacy has close relationship with interest

in novelty, see [48], creative thinking, see [49] and new idea creation, see [50]. Therefore,

studies suggest that higher self-e�cacy is not only related to higher general innovative work

behaviour, but with the di�erent behaviours that it is manifested by as well. Positive as-

sociation between work engagement and innovative work behaviour were found as well, see

[51, 52], meaning that work engagement is important when predicting innovative behaviour

at work.

As we can see, several studies con�rm predictive relationships between self-e�cacy and

innovative work behaviour and work engagement and innovative work behaviour, however,

there are no studies investigating the interaction among those three variables. In the research

studying self-e�cacy and work engagement in the context of other extra-role behaviours,

work engagement often has a mediating role, for example, see [53]. According to the job

demands and resources theory (JD-R), work engagement is an important intermediate factor

between personal resources, such as optimism, self-worth or self-e�cacy, and positive out-

comes at work, for example, work related performance, organisational citizenship behaviour,

proactive behaviour, commitment to the organisation or innovative work behaviour, see [59;
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58; 54; 55; 56; 57].

Based on similar research and JD-R theory, we might expect work engagement to be a

mediating factor between self-e�cacy and innovative work behaviour as well, however, no

research has been done so far to con�rm it.

In addition, studies investigating the relations between self-e�cacy and work engagement

with innovative work behaviour, mainly explore general self-e�cacy as oppose to occupa-

tional, which might be more appropriate when predicting work related innovative behaviour.

Moreover, innovative work behaviour often is taken as a one-dimensional construct and the

e�ect to di�erent aspects of it remains unexplored, especially, with work engagement. In

addition, no research has been done on the association between idea testing and evaluation

and self-e�cacy.

In the following section a theoretical overview of structural equation modelling will be

presented to get a better understanding of the statistical technique.

3 Theoretical overview of structural equation modelling

Structural equation modelling (SEM) is a statistical modelling technique. It uses a concep-

tual model, derived from the theory, a path diagram and system of linked regression-style

equations to capture complex and dynamic relationships among observed and unobserved

variables. It can be de�ned as a multivariate analysis method consisting of studying the

direct and indirect relationships between variables. SEM has the aim to test if the model

constructed by researcher �ts the data, see [11].

In the following subsections we will discuss the terminology and structure of structural

equation models, model-�t indices, assumptions to be checked prior performing the structural

modelling, estimation methods, and mediation mechanism in the structural equation models.

3.1 Latent and observed variables

SEM model can have two types of variables: observable that are measured and re�ected by

data and latent variables, theoretical constructs that are not being observed.

For each latent factor each measured variable (or item) receives a weight that varies

between � 1 and + 1, called the �factor loading coe�cient� � λ. It de�nes the importance

of the latent factor for this variable. This means that the correlation between each pair of
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observed variables can be explained by their mutual association with the factor. Thus, the

partial correlation between any pair of variables is assumed to be zero, see [11].

A simple example of the one-factor structure is shown in �gure 1.

Figure 1: One-factor model.

Model in �gure 1 can be written as a system of regression-type equations:



Item1 = λ1F + ε1

Item2 = λ2F + ε2

Item3 = λ3F + ε3

Item4 = λ4F + ε4

Item5 = λ5F + ε5

. (1)

It can be assumed that the variance of each item is explained by two latent factors: one

common to all items � factor F, and the other speci�c to each of the item � factor ε. Speci�c

factor is a combination of item-speci�c variance and measurement error.

In the structural equation model the factor loading coe�cient (λ) of each item is esti-

mated. Rule of thumb is that λ >= 0.4 is su�cient to attribute the item as an indicator

of the factor. A square factor loading represents the portion of the item's variance that is

attributable to the latent factor � this is called the communality of the variable.

3.2 Components of SEM

Typical SEM model consists of two components. A measurement model, which describes

the relationships between observed variables and latent construct, they are hypothesized
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to measure and a structural model � describing the inter-relationships among constructs.

Therefore, structural equation model can be written by two equations (2), (3), see [20].

~y = Λ~η + ~ε, (2)

Equation (2) represents measurement model. Here, ~y is a vector of latent variable in-

dicators. Λ is a matrix of factor loadings, with dimensions p × k, p being the number of

indicators' factor loadings (λ), k � the number of latent variables. Λ matrix containing

factor loadings describes the relationships between the latent variable and its indicators. ~η

is a vector of latent variables, and ~ε a vector of measurement errors, their p x p covariance

matrix is noted as Θε.

~η = ΓX + ~ζ. (3)

Equation (3) represents structural model. Here ~η is a vector of latent variables, Γ � a

matrix of regression coe�cients describing the relationships between latent variables and

their predictors, X � a matrix of the predictors of the latent variables, and ~ζ is a vector of

disturbances associated with latent variables, explaining it's variance that is unexplained by

the predictors, the matrix of disturbances is marked as Ψζ .

3.3 Model �t

A matrix of factor loading products can be called a model-implied matrix (Σ), which repre-

sents the reproduced model implied covariances. The di�erence between observed covariances

(observed matrix S) and model implied covariance matrix (Σ), measures the overall �tting

of the model.

The �t of the model is assessed during an iterative process. It starts from an initial value

speci�ed automatically by the software and is re�ned in the process of successive iterations

by the selected estimation method (for more, see section 3.6). The re�nement stops when no

new value for each parameter is able to reduce the di�erence between observed and model

implied matrix, see [11].

The chi-square test indicates the statistical signi�cance of the model and indicates whether

the null hypothesis stating that observed and reproduced matrices are equal is admissible.

The chi-square value tends to increase with the discrepancy.

Chi-square is calculated as in equation (4)

10



χ2 = (N)Fmin, (4)

where N is the sample size and Fmin denotes minimum discrepancy obtained by the

estimation method used, see [11].

It is worth noting that the chi-square test requires multivariate normal data assumption

to be satis�ed, its violation might result in a perfectly good model being rejected.

Therefore, in addition to chi-square test, it is recommended to include other model �t

indices in the analysis. See the discussion on those in the following section.

3.4 Model-�t indices

SEM analysis requires indices to judge, how well the model �ts the data. There are numerous

indices in all packages to choose from.

Hu, Li-tze, and Peter M. Bentler (1998) suggested that one should report both, relative

and absolute indices of model �t. Absolute indices of model �t compare the �t of constructed

model to a perfect �tting model � RMSEA and SRMR are the most popular among those.

Relative indexes of model �t compare the �t of constructed model to the �t of the (worst

�tting) null model, where all covariances equal zero, for these, the recommendation is to

choose TLI or CFI indices. Indices mentioned above are the most commonly used in SEM

research.

The Root-Mean-Squared Error of Approximation (RMSEA; Browne & Cudeck, 1992)

scales F0 � the population minimum of the Maximum-Likelihood �tting function by the

model degrees of freedom. F0 de�ned as:

F0 = log|S| − log|Σ̂|+ tr(Σ̂S)− p. (5)

Here, S is the p × p population covariance matrix, Σ̂ � p × p model-implied covariance

matrix and p � the number of observed variables (more on the maximum likelihood function

in section 3.6.1.)

RMSEA is de�ned as:

RMSEA =
√

(F0/df). (6)

Here df denotes degrees of freedom. The lower values of RMSEA � indicate better �t.

However, it has been noted that RMSEA tends to penalize small samples, especially having

small number of df. SRMR and CFI are relatively sample size independent, which gives
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them more �exibility. For these reasons, further in this study, we will be using RMSEA in

addition with SRMR and CFI goodness of �t measures.

The Standardized-Root-Mean-Square Residual (SRMR) is a measure of the average dif-

ference between the standardized model-implied and population covariance matrix, it takes

values from 0 to 1. With SRMR, the lesser the deviation between model-implied and popu-

lation covariance, the lesser the value of SRMR. The �t is better when the value is close to

0, but the value equal or less than 0.8 indicate a good model �t, see [11].

Let sij be the sample covariances, σ̂ij � model implied covariances, sii and sjj � observed

standard deviations, and p � the number of observed variables. Then SRMR can be de�ned

as, see [74]:

SRMR =

√√√√2
∑p

i=1

∑i
j=1[

(sij−σ̂ij)

siisjj
]2

p(p+ 1)
. (7)

The Comparative Fit Index (CFI) is an incremental index expressing the proportionate

reduction of mis�t associated with hypothesized model in relation to the null-model (that

constrains all covariances to zero). CFI is calculated as in equation (8).

CFI =
1−max[(χ2

t − dft), 0]

max[(χ2
t − dft), (χ2

n − dfn), 0]
, (8)

• χ2
t - the chi-square value of the speci�ed and estimated theoretical model;

• df t - the degrees of freedom of the speci�ed and estimated theoretical model;

• χ2
n - the chi-square value of the baseline model ("null" model);

• dfn - the degrees of freedom of the baseline model ("null" model);

• max - indicates the use of the highest value, or even zero if this is the highest value.

According to Hu and Bentler (1998) a value CFI > 0.95 indicates a signi�cant increase

in the goodness-of-�t with respect to a null model, however the value CFI > 0.9 is still used

to judge, whether model is acceptable or not.

3.5 Assumptions

SEM is based on assumptions that ought to be met for researchers to trust the results.

Violating assumptions can produce biased results in terms of data-model �t, parameter

estimates and their associated signi�cance tests. These, in turn, might result in incorrect

decisions about the theory being tested. Therefore, it is important to check for assumptions

before proceeding with modelling in order to choose the most appropriate, producing least
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biased estimates, estimation method.

If all of the assumptions are met, the parameter estimates have three desirable prop-

erties: asymptotic unbiasedness (neither over nor under-estimate true parameters), consis-

tency (parameter estimate converges to population parameter as sample size increases), and

asymptotic e�ciency (smallest asymptotic variance of all consistent estimators), see [1].

Assumptions of the required sample size, distribution of the data, data type, missing data

and multicollinearity will be discussed in the following subsections.

3.5.1 Sample size

The importance of sample size, although widely discussed in the literature on structural

equation modelling (SEM), has not been widely recognized among applied SEM researchers.

It is important to pay attention to the necessary number of participants to be collected in

order to obtain an acceptable level of accuracy and statistical power of the estimates and

reliable goodness-of-�t indices. SEM requires su�ciently large sample size as application to

samples that are too small may bias the estimates. However, there are still no clear rules on

how to decide, how many participants are su�cient, see [11].

There are, however, several guidelines to refer to. Firstly, di�erent authors indicate

general number of minimum sample size as a reference, it ranges from 100 to 200 observations,

see [13, 14]. Second, there is a link between sample size and free parameters, it can vary

from 5 times more participants than free parameters in the model to 10 or, ideally, up to 20

times more. ML estimator can handle the smaller ratio, see [15, 16]. Other authors state

that the study should have at least 50 participants per variable, see [21], meanwhile, some �

that the ratio between sample size and item number sould be at least 20, see [14].

However, all of the above are only guidelines that are not �exible in terms of model

complexity, varying number of df, variables, free parameters, strength of the relationships

among the indicators, etc. Muthén and Muthén (2002) argue for the use of Monte Carlo

analysis, where sample size is estimated under various conditions. It allows taking into

account the statistical precision, power of individual parameter estimates and various data

conditions: non-normality, type of indicators (i.e., binary, categorical, and continuous), the

amount and patterns of missing data. Numerous sample datasets of parameters are generated

based on those known population parameters. Then this procedure is iterated a su�cient

number of times. The results are averaged for each parameter across the samples and are

compared to examine divergences (i.e., bias) between the population value and the sample
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averaged value, see [17]. According to Barrett (2007), Brown (2006), and McIntosh (2007),

the Monte Carlo approach is currently the best way to evaluate sample size in SEM.

Several criteria are used to determine a su�cient sample size. The �rst criterion is that

parameter and standard error biases do not exceed 10 percent for any parameter in the

model. The corresponding percent is calculated by subtracting the population parameter

value from the averaged parameter estimate value across replications and then divided by

population parameter estimate value.

The second criterion is that the standard error bias for the parameter for which power is

being assessed does not exceed 5 percent. Standard error bias is calculated in the same way

as parameter estimate bias, described above.

The third criterion is that coverage remains between 0.91 and 0.98. It gives the proportion

of replications for which the 95% con�dence interval contains the true parameter value.

Once these three conditions are satis�ed, the model power for the given sample size can

be determined. The value of 0.80 is a commonly accepted value for su�cient power, see [21].

As we already have data collected, a post-hoc Monte Carlo simulations will be produced

and a post-hoc model power for the given sample will be evaluated.

3.5.2 Normal distribution

Three indices of univariate and multivariate non-normality are typically used to evaluate the

distribution: univariate skew and kurtosis and multivariate kurtosis, see [1].

Skewness describes the symmetry of the distribution:

Skewness(Yi) =

∑N
i=1(Yi − Y )3/N

s3
, (9)

where Y is the mean, s is the standard deviation, and N is the number of data points.

If the skewness is between -0.5 and 0.5, the data is fairly symmetrical, between the

absolute values of 1 and 0.5, the data is moderately skewed and if the skewness is less than

the absolute value of 1, the data is highly skewed.

Kurtosis is the fourth standardized moment:

Kurtosis(Yi) =

∑N
i=1(Yi − Y )4/N

s4
, (10)

where Y is the mean of the variable, s is the standard deviation, and N is the number of

data points.

Ideally kurtosis value should be around 3.
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Studies examining the impact of univariate normality on maximum likelihood estimator

based results, suggest that problems arise, the type I error rate increases, when absolute

values of skewness >= 2 and kurtosis >= 7, are reached, see [1].

In SEM, the multivariate normality is of greater importance. Even when the marginal

distribution of each variable is univariate normal, it is possible that the variables are not mul-

tivariate normally distributed. To evaluate multivariate normality, Mardia (1970) developed

a measure of multivariate kurtosis and a test statistic for this measure.

bp =
1

n

∞∑
n=1

[(xi − x)′S−1(xi − x)]2, (11)

where x is a p × 1 vector of random variables and S is the biased sample covariance

matrix of x de�ned as:

S =
1

n

∞∑
n=1

[(xi − x)(xi − x)′]. (12)

The expected Mardia's kurtosis is p(p + 2) for a multivariate normal distribution of p

variables. It has been suggested that values greater than 5 could produce inaccurate results,

when used with ML estimator and would lead to chi-square and standard error biases, see

[11].

If variables are non-normal, and data transformations do not prove to be useful, then

estimators for non-normal continuous variables should be used.

There are three popular strategies used to accommodate non-normal data in SEM:

Satorra-Bentler (S-B) scaled chi-square and robust standard errors � for non-normal variables

and bigger samples; Yuan-Bentler chi-square (YB chi-square) for non-normal variables and

smaller samples, and diagonally weighted least squares (DWLS) estimation, for non-normal

categorical variables, see [1]. More on estimation methods is written in section 3.6.

3.5.3 Continuous data

One of the SEM assumptions is that data would be continuous, which is implied by multi-

variate normal distribution.

Studies have been conducted to look at the extent of bias when applying normal theory

estimator, such as maximum likelihood, to ordered categorical data, by comparing robust di-

agonally weighted least squares (DWLS) estimation, suitable for ordinal data, to unadjusted

maximum likelihood estimator, see [1].
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Beauducel and Herzberg (2006) when comparing the two estimators for two to six re-

sponse category data, found slightly higher robust DWLS-based TLI and CFI values and

lower RMSEA values when two- and three-category data were present (i.e., robust DWLS

performed better). This di�erence in estimators diminished for the CFI for �ve or six cat-

egories and actually reversed order for the TLI and RMSEA (i.e., ML performed better).

Studies conducted afterwards suggest to use unadjusted ML for �ve or more category data

and treat it as continuous, see [1], which is the case in this study.

3.5.4 Missing Data and Multicolinearity

Data used for structural equation modelling should not contain many missing values and

should have no multicollinearity, as both can have negative e�ect on the outcome.

The two main problems caused by missing data are bias and error. Bias refers to the

systematic over- or underestimation of a parameter (e.g., underestimated mean, correlation,

or regression coe�cient). Parameter estimation bias can be thought of as an external va-

lidity problem, because the biased estimates re�ect a di�erent population from the target

population the researcher intends to understand. Error refers to hypothesis testing errors of

inference, such as Type I error and Type II error, see [36].

In addition, if correlations within data reach close to the value of one, it might distort

the dependencies between variables and increase the Type II error rate, see [37].

3.5.5 Outliers and in�uential observations

For SEM, both univariate and multivariate outliers should be assessed. Univariate outliers

can be considered standardized cases that are outside the absolute value of 3.29. Univariate

outliers are easy to �nd by inspecting frequency distributions of z-score (e.g., |z| > 3.00

indicates an outlier). Multivariate outliers are of even more importance as they can easily

jeopardize �t indices, see [14].

Multivariate outliers can be identi�ed by using of Mahalanobis distance, see [26], which

is the distance of a data point from the calculated centroid of the other cases, where the

centroid is calculated as the intersection of the mean of the variables being assessed. Each

point is recognized as an X, Y combination and multivariate outliers lie a given distance

from the other cases. The distances are interpreted using a p < 0.001 and the corresponding

χ2 value with the degrees of freedom equal to the number of variables.

Although the outliers should be investigated carefully, unless outlying data point is a
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measurement or data error, it should not be removed without careful investigation of removal

impact on parameter estimates, overall model �t and residual matrix.

3.6 Estimation method

Model estimation involves �nding a value for each unknown (free) parameter in the speci�ed

model during an iterative procedure. Central to SEM is the choice of an estimation method

used to obtain such parameter estimates, standard errors, and �t indices. The objective of

the estimator is to iteratively render the discrepancy function between two matrices. The

major di�erence between the estimators is the manner in which the mathematical discrepancy

function is used to minimize deviations from the observed correlation matrix.

The choice of an estimator becomes even more important when dealing with non-normal

or categorical data. Di�erent estimators have been de�ned and recommended to be used

depending on the nature of data, although, the debate upon the performance is still open.

Two estimators: maximum likelihood and Yuan-Bentler chi-square will be discussed in the

following sections, being considered the most relevant to this study, keeping in mind the

nature of the data, discussed in more detail in section 4.5.

3.6.1 Normally distributed data: Maximum likelihood (ML) estimator

The two most common estimators used in SEM, given that all assumptions are met, are

ML and GLS. GLS has been found to produce overly optimistic �t indices and more biased

parameter estimates if model is misspeci�ed, therefore, ML has been recommended over

GLS, if all assumptions are met, see [1].

Commonly used version of the likelihood ratio statistic is de�ned in the following way:

TML = nFML(θ̂). (13)

Here nFML(θ̂) is the value of the discrepancy function evaluated at its minimizer θ̂.

FML(θ̂) = ln|Σ(θ̂)| − ln|S|+ tr(SΣ(θ̂)−1)− p, (14)

• tr is the trace matrix algebra function which sums diagonal elements;

• p � number of variables in the model;

• Σ is the model-implied population covariance matrix;

• S - sample covariance matrix.
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Parameters are estimated during an iterative process. The �nal set of parameters min-

imises the discrepancy between observed sample covariance matrix � S, and the model-

implied covariance matrix, calculated from the estimated model parameters � Σ(θ̂). When

applying SEM, we minimise the di�erences by adjusting model parameters θ.

The �t function in (14), that is minimised, will equal zero, if the model perfectly repro-

duces the elements in the sample covariance matrix. If the assumptions are met, the overall �t

between the data and the model can be expressed as a statistic TML = FML(N−1), where N

is the sample size. Statistic follows a central chi-square distribution with df = p(p+1)/2−q,

where q is the number of free parameters.

If the value is statistically signi�cant, T follows a non-central chi-square distribution,

and the hypothesis that the population covariance matrix equals the reproduced covariance

matrix calculated from the estimated model parameters, can be rejected and model can be

treated as misspeci�ed.

Studies have noted, that when all assumptions are satis�ed maximum likelihood estima-

tion is the most e�cient, providing the most accurate estimates. The bias increases as the

degree of non-normality increases and/or sample size decreases, see [24].

The problem is that often the modelled data collected from surveys do not follow a multi-

variate normal distribution. The e�ect of violating the assumption of non-normality can be

seen on chi-square, �t-indices and standard errors, while the parameter estimates are found

to be relatively accurate even under the non-normal distribution. Positive kurtosis in�ate

the chi-square statistic and attenuate standard errors, which might lead to an increased Type

I error rate (greater rate of rejecting a correctly speci�ed model than expected by chance).

Negative kurtosis attenuate the chi-square statistic and in�ate standard errors, which might

lead to an increased Type II error rate. In addition, as many �t indices are a function of

the obtained chi-square, these too can be a�ected by the same factors. It has been shown

that if non-normal data are paired with a small sample (<250), model �t indices (CFI, TLI

or RMSEA) might over-reject correctly speci�ed models, see [1, 2]. For example, in Hu et

al. (1992), ML estimator rejects a correct model with non-normally distributed data 97%,

which is substantially higher than the nominal rate 5%, see [11].
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3.6.2 Non-normal distribution of data and small sample size: Yuan-Bentler

estimator with robust standard errors (MLR)

When all assumptions are satis�ed maximum likelihood estimator is considered to be the

most e�cient and no other estimator can outperform it. However, when the data is non-

normal, the e�ciency of the ML estimator changes, it becomes less e�cient and the standard

errors are more biased. Therefore, with non-normal data, corrections are needed. Jöreskog

and Sörbom (1989) encouraged using Yuan-Bentler estimator when the sample is small and

data violates normality.

Yuan and Bentler (1998) created a robust maximum likelihood estimator that uses robust

standard errors computed from robust covariance matrix to describe the changed variability

of the ML estimator with non-normal data.

When a covariance matrix for maximum likelihood estimator can be written as:

nCov(θ̂) = A−1 = [−Hessian]−1 = [−∂F (θ̂)/(∂θ̂∂θ̂′)]−1. (15)

When using MLR standard errors are computed using a di�erent �sandwich� approach:

nCov(θ̂) = A−1BA−1 = A−1
0 B0A

−1
0 = C0, (16)

where

A0 = −
n∑
i=1

∂logLi

∂θ̂∂θ̂′
, (17)

is sample covariance matrix and B0 equal to the correction factor:

B0 = −
n∑
i=1

(
∂logLi

∂θ̂

)
×
(
∂logLi

∂θ̂

)′
. (18)

This way the computation of the robust covariance matrix of parameter estimates es-

sentially forms a "sandwich" or a triple product, where the sample covariance matrix of

parameter estimates is the "bread" that forms the outside of the computation, and the

correction is the "meat".

In addition, when having non-normally distributed data, the computation of the model

test statistic (TMLR) also requires a correction, as test statistic requires an accurate estimate

of the variability of parameter estimates. In case of non-normally distributed data, this

estimate is o� and the distribution of the statistic is no longer asymptotically χ2, and the
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nominal Type I error is not maintained. Therefore, the test statistic � χ2 is also made to be

robust to non-normality by scaling it by the correction factor:

TMLR = TML/c. (19)

The scaling factor c is usually computed by c = tr[M ], M here is:

M = C1(A1 − A1∆(∆′A1∆)−1∆′A1), (20)

where A1 and C1 are computed under the unrestricted (H1) model, and ∆ = ∂Σ̂

∂θ̂′

3.7 Mediation in SEM

In mediation, we consider an intermediate variable, called the mediator, that helps explain

how or why an independent variable in�uences an outcome.

The direct e�ect is the pathway from the exogenous variable to the outcome while control-

ling for the mediator. The indirect e�ect describes the pathway from the exogenous variable

to the outcome through the mediator. Finally, the total e�ect is the sum of the direct and

indirect e�ects of the exogenous variable on the outcome.

In order to test the signi�cance of the mediation e�ect in SEM a separate approach is

required. Preacher and Hayes (2008) approach, bootstrapping mediation, considered to be

a powerful method to detect mediation, is used the most. The method involves obtaining

con�dence intervals for indirect e�ects that are more able to adequately capture the skewed,

asymmetric nature of sampling distributions.

It involves taking multiple repeated samples with replacement from the data set in ques-

tion. For each bootstrapped sample, the structural equation model is re�t and estimates for

all the parameters are retained (including mediation). After collecting all the results, lower

and upper percentile values on each sorted set of values are determined. For a standard

95% CI, these values would represent the 2.5th and 97.5th percentile values. Bias-corrected

CIs, involve a slight adjustment of these percentile values depending on the proportion of

bootstrapped values that are less than or equal to the original sample value. According to

this approach, note that determining whether the resulting (1 - α)% CI for an indirect e�ect

does not contain 0 is equivalent to a two-sided, α � level hypothesis test for whether the

original sample value for that indirect e�ect signi�cantly di�ers from 0, see [29].

The next section will include the practical part of the thesis. We will start by setting
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the aim and hypothesis for the study based on literature review, describing the data and

the necessary assumption testing conducted prior the structural equation modelling. Then,

we will follow up with the discussion of applied structural equation models to �nd the best

data �tting model and evaluate the relationships and �nalise with the Monte Carlo study to

evaluate and select the better suited estimator for our model and data and �nally evaluate

the selected �nal model. A short discussion of the results and their meaning will be found

at the end of the paper.

4 Application

4.1 Aim and hypotheses of the study

Aim of this study was to investigate the relationships among innovative work behaviour,

occupational self-e�cacy and work engagement.

Hypotheses based on the literature review:

• Occupational self-e�cacy and work engagement have a positive e�ect on innovative

work behaviour.

• Work engagement acts as a mediating factor between occupational self-e�cacy and

innovative work behaviour.

• Interest in novelty, exploration and creation of ideas, idea testing and evaluation, search

for support and idea implementation are strong indicators of innovative work behaviour

in the mediation model.

4.2 Data

Data used in this paper was collected with a questionnaire constructed from demographic

questions such as gender, age, education, job position (managerial or non-managerial), work

experience in years. In addition to demographic questions, questions to measure the types of

innovative work behaviour (LIEDK, by Geleºinyt
e & Bagdºi	unien
e, 2016), occupational self-

e�cacy (Occupational Self-E�cacy Scale, by Schyns & Collani, 2002) and work engagement

(Utrecht Work Engagement Questionnaire, by Shaufeli et al., 2006) were included. All

questions were answered in a Likert type scale. LIEDK and occupational self-e�cacy from

1 to 5, work engagement from 0 to 6 (in calculations transformed to 1 to 7) � 1 being the

lowest, 5/7 being the highest evaluation. As questionnaires contain multiple questions for
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each variable, the average score was calculated to represent overall score of each variable for

each participant. Examples of the questions can be found in appendix A.

Only people, employed at the time of the survey, were asked to �ll in the questionnaire.

In total, 181 employees participated, out of which 76% were women, age varied from 20 to 59

with the average of 31 years, 89% of participants had university degree, 26% of respondents

were managers as oppose to having a non-managerial position.

Note that data was collected as a part of doctoral dissertation of Rasa Geleºinyt
e in

collaboration with assoc. prof. dr. Dalia Bagdºi	unien
e.

4.3 Software

Data analysis provided in this paper was produced with lavaan and simsem packages in R

for SEM analysis and structural equation simulation.

The choice was made considering the additional bene�ts of the package compared to

other softwares such as AMOS, Lisrel or Mplus, which are intuitive and quite easy to use

for the beginners, having drag and click interface and possibility to draw model instead of

write equations, but have computational disadvantages compared to R. R is an open source

program, it provides the possibility to extract standardized residuals that are essential to

diagnose mis�tting models and most importantly, accommodates the possibility to compute

robust standard errors that are not available in AMOS.

Therefore, all of the below computations were made using R software. The code can be

provided upon request.

4.4 Conceptual SEM model for innovative work behaviour, occu-

pational self-e�cacy and work engagement

Based on the literature reviewed in section 2, a theoretical model that will be used in the

analysis is displayed in �gure 2.

The one in �gure 2 and all the following charts and tables will include abbreviations for

the variables in order to make the reading less heavy:

NOVE stands for interest in novelty,

EXPL � exploration and creation of ideas,

TEST � idea testing and evaluation,

SUPP � search for support,

IMPL � implementation of ideas,
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Figure 2: Theoretical SEM model for innovative work behaviour.

IWB � innovative work behaviour,

WE � work engagement, and

OSE � occupational self-e�cacy

SEM models are best represented by path diagrams. A path diagram consists of nodes

representing the variables and arrows showing relations among these variables. By conven-

tion, in a path diagram, latent variables (e.g., IWB here) are represented by a circle or

ellipse and observed variables (e.g., OSE or NOVE) are represented by a rectangle or square.

Rectangles on the left of the chart are indicators of the latent variable. The rectangles on

the right are the predictors of the latent variable - innovative work behaviour.

Arrows are generally used to represent relationships among the variables. A single straight

arrow indicates a causal relation from the base of the arrow to the head of the arrow. For

the sake of convenience we drop unit weights for error terms in the path diagram.

The model constructed for this study is a partial mediation model in which observed

variable OSE is a regressor for the latent variable IWB. WE here acts as a mediator between

OSE and IWB. NOVE, EXPL, TEST, SUPP, and IMPL are the indicators of the latent

factor IWB.

The model can also be written in equations representing structural model, measurement

model and mediation. See equations (20), (21), (22), respectively.

IWB = γ1OSE + ζ1

IWB = γ2WE + ζ1

, (21)
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

NOV E = λ1IWB + ε1

EXPL = λ2IWB + ε2

TEST = λ3IWB + ε3

SUPP = λ4IWB + ε4

IMPL = λ5IWB + ε5

, (22)

{
xWE = γ3 × xOSE + δ1. . (23)

4.5 Descriptive statistics and diagnostics in SEM

Critical part, before proceeding with structural equation modelling, is data exploration and

identi�cation of any assumption violations in order to take respective actions during the

analysis and avoid biased estimates and incorrect inferences. Data used in this study contains

no missing values, no multicollinearity was detected and all variables were correlated (see

Appendix B and C). Other assumption testing, checking normality of variables and outlier

detection is described in more detail in the following sections.

4.5.1 Normal distribution

As discussed in section 3.5.2 normal data distribution is one of the SEM assumptions, which

may alter the choice of estimation method used later on in the analysis. Therefore, one of

the �rst steps in the analysis was the data normality investigation.

A univariate skewness and kurtosis and multivariate kurtosis were calculated (see tables

1 and 2). In addition, variable histograms were investigated (see �gure 3).

We have applied Shapiro-Wilk test to check for univariate normality. As all p-values are

less than 0.05, we can conclude that all variables do not have a normal distribution.

Looking at skewness values, it is clear that all variables have negative skew, where the

curve is shifted to the right. Almost all variables are fairly symmetrical, with the exception

of WE, NOVE and SUPP variables that are moderately skewed.

As for the kurtosis, we have both types of variables, with high and low kurtosis.

Figure 3 presents the distributions of all variables. It can be seen that none of the

variables follow the normal distribution, although they seem to be only slightly skewed.

For multivariate normality, Mardias test of normality was applied. The p-value of mul-

tivariate kurtosis statistic should be greater than 0.05. As can be seen in table 2, our data
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Table 1: Univariate normality

Variable
Univariate

skewness

Univariate

kurtosis
Shapiro-Wilk

Shapiro-Wilk

p-value

Univariate

normality

OSE -0.21 2.94 0.9411 <0.001 No

WE -0.73 2.80 0.9760 0.0033 No

NOVE -0.62 3.13 0.9706 7,00E-04 No

EXPL -0.39 3.47 0.9553 <0.001 No

TEST -0.36 3.25 0.9726 0.0012 No

SUPP -0.53 2.98 0.9481 <0.001 No

IMPL -0.39 2.85 0.9730 0.0014 No

Table 2: Multivariate normality

Multivariate normality statistic p-value Result

4.87 1.1307362144386e-06 NO

does not follow multivariate normal distribution.

With all of the above in mind, several transformations have been applied to the data in

order to achieve normal distribution and better model �t with ML estimator, such as log

or box-cox transformations. As neither provided improved results with ML estimator, the

decision was made to instead use di�erent estimator, which should be more e�cient with

non-normally distributed data.

As we can see univariate skewness and kurtosis and multivariate kurtosis indicate slight

non-normality of the data, and although is close to, it does not exceed the margins indicated

in the literature that might be a�ecting the e�ciency of the maximum likelihood estimator.

Univariate skewness and kurtosis are signi�cantly smaller than the indicated absolute values

of 2 and 7, respectively, and multivariate kurtosis is slightly below 5.

For this reason, when having non-traditional, marginal case, we will apply both, the ML

estimator, which is the most e�cient when all assumptions are satis�ed, and Yuan-Bentler

estimator with robust standard errors, which is more e�cient for non-normally distributed

data. We will then compare the standard error biases to choose the most e�cient estimator

for our data.
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Figure 3: Univariate histograms of observed variables.

4.5.2 Detection of Outliers and In�uential Observations

For the detection of possible univariate outliers, we looked which observations of standardized

variables are greater than absolute value of three. Only NOVE and EXPL variables had such

observations, for NOVE observation No.102 and for EXPL � No.36.

After calculating Mahalanobis distance (MD), we checked for extreme values higher than

the selected threshold of 8.5. Such value was selected by the 68�95�99.7 rule, see [27], by

multiplying the mean of the Mahalanobis Distance results by the extremeness degree k,

where k = 2.0 ∗ sd(MD). Two outlier observations No.94 and No.99 were detected.

We �tted the initial selected model (see section 4.4) with and without removing outliers.

No di�erence for model �t indices or parameter estimates were detected, therefore, the

decision was made to keep the outliers in the dataset.

4.6 In�uence of demographic variables in the model

As information on several demographic variables were collected during the data collection,

before proceeding to test the mediation model of innovative work behaviour, the regression

was performed to test the e�ect of demographic variables on the dependent variables. If

demographic variables are to be signi�cant in the regression, that would mean that they

should be treated as confounding variables and should be included in the SEM model to
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Table 3: Regressions with demographic variables

NOVE EXPL TEST SUPP IMPL

Standardized β Gender2 0.022 0.329 0.331 0.372 0.244

Age 0.008 0.009 -0.012 -0.019 -0.008

Education2 0.283 -0.109 0.035 0.199 0.420

Education3 -0.216 -0.373 -0.166 0.095 -0.893

Education4 -0.402 -0.404 -0.849 -0.774 -0.690

Education5 0.184 0.219 -0.503 0.048 -0.080

Experience_yrs -0.011 -0.016 0.009 0.033 0.006

Position2 -0.440 -0.413 -0.472 -0.605 -0.696

R2 0.11 0.14 0.12 0.14 0.17

F 2.58 3.4 2.97 3.5 4.5

p-value 0.01 0.001 0.004 0.001 0.000

*Note. Estimates with p<0.01 are in bold.

control for their e�ect on the mediation (they might enhance or suppress the e�ect of WE

as the mediator).

The results of the regressions for each dependent variable included in our SEM model

can be seen in table 3.

Here, gender2 represents males vs. females, education2 � higher non-university educa-

tion, education3 � vocational education, education4 � secondary education, education5 �

un�nished secondary education vs. higher university education, position2 � non-managers

vs. managers.

Checking R2, we can see that demographic variables explain a very small part of various

innovative work behaviours � from 10% to 17%. Although, a couple of variables, gender and

secondary education, are signi�cant predictors for some dependent variables, only position

has been a signi�cant predictor for all types of innovative work behaviours. All β coe�-

cients being negative indicate that non-managerial positions having employees express less

innovative work behaviour compared to managers. However, it is important to note that the

groups for di�erent demographic variables were unequal and quite small to have con�dence

in regression results. It may only be an indication of a possibility and should be explored

further in future works with bigger sample sizes. Currently, as demographic variables explain

a small part of the variance of the dependent variables and have unequal sizes, they will not

27



be used in our model.

4.7 Model estimation

In the following subsections we will discuss the model estimation process and the results of

model estimates and �t.

4.7.1 Initial model �t

We started by estimating the model described in section 4.4. with traditional ML estimator.

The initial model does not show a good �t with χ2 being 62.16 with p=0.000 and 13 df ,

meaning that the model does not �t the data well. The same conclusion is con�rmed by the

model �t indices: RMSEA=0.145 with p=0.000, CFI=0.92, SRMR=0.05.

We may hypothesize that the χ2 was in�ated and RMSEA, that has a straightforward

relation to the Maximum-Likelihood �tting function and df , penalised a correctly speci�ed

model due to a fair degree of non-normality present in the distribution of the data. To

test this, we applied Yuan-Bentler estimator, a maximum likelihood estimation with robust

standard errors and a scaled test statistic in order to account for the e�ect of non-normality

and looked at the changes in statistics and �t indices. However, even though, it corrected

the χ2 for ine�ciency of the ML estimator for non-normally distributed data to some degree,

producing χ2 = 54.19, the hypothesis that observed and reproduced matrices are equal was

still rejected, with p=0.000, indicating that the constructed model does not �t the data, in

addition, corrected RMSEA=0.132, that also indicates a poor model �t.

Looking at standardised residual covariation matrix (table 4), for relationships among

variables, we can see that the relationship between NOVE and WE is highly underestimated

and the one between SUPP and WE is overestimated. This fact raises serious doubts about

the overall �tting of the model.

Therefore, further modi�cations to these two relationships were made and the model was

once again evaluated.

4.7.2 Modi�cation and estimation of the model

In this section we will discuss the performed model modi�cation to obtain a better �t to

the data. In addition, we will evaluate the model-�t of the modi�ed model and discuss the

obtained parameters,

Model modi�cation. In order to compensate for the over and under estimation of
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Table 4: Standardised residual covariation matrix

NOVE EXPL TEST SUPP IMPL WE OSE

NOVE 0.000

EXPL 1.994 0.000

TEST -0.309 0.814 0.000

SUPP -1.993 -0.705 -0.271 0.000

IMPL 0.251 -1.352 -0.163 1.342 0.000

WE 3.024 0.830 -1.531 -2.493 1.007 0.000

OSE -1.769 0.460 0.589 1.038 -1.102 0.000 0.000

the two relations, we removed the SUPP variable as an indicator of IWB dependent latent

variable within the mediation, considering that WE is not a mediating variable for it and

there is only a direct relationship between OSE and SUPP, this way hopefully correcting

the overestimation of the relationship between SUPP and WE. In order to compensate for

underestimation of WE and NOVE relationship we included additional covariation between

them, assuming that the two share some bias not common with the other indicators of IWB.

See the graphical representation of the model in �gure 4.

Figure 4: Modi�ed model.

Model �t. The results show that model �t increased, with ML estimator χ2 = 13.95,

RMSEA=0.074, in addition, p-values for both were over 0.05, respectively 0.052 and 0.208,

meaning that the null hypothesis of model �t to the data was accepted. Applying Yuan-

Bentler estimator decreased χ2 to 12.93 with p=0.074 and RMSEA=0.068 with p=0.253,

which also indicates a good model �t to the data. SRMR and CFI indices were the same for

both estimators, respectively, 0.032 and 0.99, also indicating a good model �t.

Model parameter summary. Having a good �tting model, it is then important to have

a closer look at the standardized parameter estimates (see table 5 for reference). We can see
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that all of the estimates have p<0.05. We can also see that all std. estimates for indicators

satisfy the condition of minimum 0.4 to attribute it as an indicator of the latent factor and

even more so, each indicator is a relatively strong measure of IWB, with EXPL being the

most saturated (i.e., having the strongest factir loading) and NOVE being the least saturated.

All indicators have a big part of variance explained by the latent variable (communality),

NOVE having the smallest. In addition, it is visible that all of the regressors are positively

related to its' dependent variable. The variances section gives the error variances of the

endogenous variables.

Mediation. To test the mediation e�ect, bootstrapping mediation by Preacher & Hayes

(2008) was used (in more detail described in section 3.7). From the obtained results (see

table 6) it is evident that all indicated associations between dependent and independent

variables are signi�cant (p<0.05). Every increase in OSE by 1 results in 0.44 increase in

IWB, similarly every increase in WE by 1 results in 0.32 increase in IWB, and an increase

of 1 in OSE results in 0.38 increase in WE. In addition, by looking at signi�cant mediation

e�ect, we can say that increases in OSE were associated with increases in IWB indirectly

through increases in WE. Speci�cally, for every 0.38 unit increase in the association between

OSE and WE, there was a 0.121 increase in IWB. Importantly, a bias-corrected bootstrapped

con�dence interval with 10.000 samples was above zero � 95% CI [0.15, 0.54].

4.8 Comparison of estimators and overall model evaluation

In this study we estimated a model with two di�erent estimators: maximum likelihood and

Yuan-Bentler. The evaluation process of the performance of each estimator was conducted

along Muthén & Muthén (2002) guidelines, who argue that Monte Carlo method is the best

way to do such evaluation.

In Monte Carlo studies, data are generated from a population with calculated parameter

values. A large number of samples are drawn, a model is estimated for each sample and then

parameters are averaged over the samples.

The number of replications should be increased until stability of the results is achieved.

The value of the seed determines the starting point for the random draws of the samples.

More than one seed should be used, and the results for the di�erent seeds should be checked

for stability.

In this study, the number of replications started from 1000 and were increased until 10000.

The stability was reached at 5000 replications. Di�erent seeds provided identical results for
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Table 5: Model summary

Std.Est Std.Err p(>|z|) Communality

Indicators:

IWB=∼NOVE 0,642 0,042 0 0,412

IWB=∼EXPL 0,825 0,04 0 0,681

IWB=∼TEST 0,798 0,045 0 0,637

IWB=∼IMPL 0,818 0,048 0 0,669

Regressions:

IWB∼OSE 0,44 0,192 0

IWB∼WE 0,317 0,087 0

WE∼OSE 0,381 0,145 0

Covariances:

NOVE∼∼WE 0,286 0,049 0,001

Variances:

NOVE 0,511 0,038 0

EXPL 0,319 0,028 0

TEST 0,364 0,037 0

IMPL 0,33 0,041 0

WE 0,855 0,108 0

IWB 0,6

Mediation: 0,121 0,09 0,001

Table 6: Bootstrapping mediation results with bias-corrected CIs

Parameter Std.Est Std.Err P-value CI.lower CI.upper

IWB∼OSE (a) 0,440 0,192 0,000 0,741 1,492

IWB∼WE (c) 0,317 0,087 0,000 0,203 0,543

WE∼OSE (b) 0,381 0,145 0,000 0,538 1,106

Mediation (bc) 0,121 0,090 0,002 0,149 0,536
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the selected number of replications that implies the stability of results.

As MLR estimator uses standard error correction to accomodate for non-normal data,

standard error biases will be compared for the two estimators. Parameter estimate and

standard error bias, coverage, Type I error rate and power was used as a criteria for overall

model evaluation.

4.8.1 Comparison of estimators

Standard error bias. To compare models with di�erent estimators we evaluated the degree

of potential for standard error bias. We compared mean standard errors in the generated

data sets to the empirical standard errors for each parameter estimate, see equation (24).

RBSE =
SEest − SEemp

SEemp
. (24)

Here, SEemp is the true standard error value and SEest is the average estimated value of

the standard errors across all replications. Acceptable standard error estimates had to be

within 5% of the population standard error, see [21].

Results for comparison can be found in table 7. As it can be seen the relative standard

error bias is higher for MLR estimator and varies from 0 to 18% which is above the 5%

accepted norm. Most factor loadings tend to be downward biased meaning that they are on

average smaller than the empirical standard deviations of the associated parameter estimates.

Meanwhile, standard error bias for ML estimate seems to be within norms varying from 0

to 2.2%. Therefore, it seems that ML provides less biased standard error for the model with

given sample size.

When an estimator is more stable from sample to sample, one can have greater con�dence

that the parameter estimates obtained from a particular sample are fairly close to their

population values, therefore, in our case, ML is a more e�cient estimator.

The obtained results can be con�rmed by the study conducted by Nalbanto§lu-Y�lmaz(2019),

who evaluated the performance of both estimators for non-normal data for various sample

sizes. MLR estimator had biggest standard error bias, 10% for smallest sample (N=300)

and decreased with the increase of the sample size. As our sample size is even smaller than

mentioned in the study, the bias is even higher. The small standard error bias provided

by ML estimator could be explained by small data non-normality, that does not exceed

the margins indicated in the studies, beyond which it starts a�ecting the e�ciency of ML

estimator.
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Table 7: Standard error bias comparison

Parameter St. Error bias for ML St. Err. bias for MLR

IWB=∼NOVE 0,000 -0,176

IWB=∼EXPL 0,000 -0,149

IWB=∼TEST -0,022 -0,021

IWB=∼IMPL 0,000 0,000

IWB∼OSE 0,011 0,031

IWB∼WE 0,011 0,035

WE∼OSE -0,007 -0,039

Mediation 0,022 0,000

Considering all of the above we chose ML as the most e�cient estimator and will proceed

to evaluate the model with maximum likelihood estimator in the next section.

4.8.2 Model evaluation

As ML provides less biased standard error values, the following model evaluation is based on

the model estimated with maximum likelihood estimator. Parameter estimate bias, standard

error bias and coverage values are provided in Appendix D.

Parameter estimate bias. First, we evaluated the degree of bias in the parameter

estimates. Speci�cally, we examined the mean parameter estimates (i.e., factor loadings and

regressive paths) across simulations in comparison to the speci�ed population values. This

index of relative parameter bias (RBPE) was derived by subtracting the population value

from the mean estimated value and dividing by the population value, following Muthén and

Muthén (2002) as per equation (25)

RBPE =
θest − θemp

θemp
. (25)

Here, θemp is the true parameter value and θest is the average estimated value of the

parameter across all replications. Consistent with other references, we consider estimates to

be substantially biased if |RBPE| < 0.10, for example, see [32]. Parameter estimate bias in

this study is low and varies from 0 to 0.6% for di�erent parameters.

Coverage. Coverage gives the proportion of replications for which the 95% con�dence

interval contains the true parameter value. According to Muthén and Muthén (2002) cov-

erage between 91% and 98% is considered acceptable. Coverage for the model analysed
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varies from 93.8% to 94.8%, which is well within the norms, meaning that for above 90% of

replications 95% con�dence interval contained the true parameter value.

Type I error rate. Empirical Type I error at α = 0.05 is de�ned as the proportion

of converged replications that generated a p value less than 0.05, i.e. the proportion of

replications that were falsely evaluated as a misspeci�ed model. Type I error rate for ML

model is at 8.7%.

Model power. Once the bias and coverage conditions are satis�ed one can proceed to

estimate the power of the selected estimation method to reject null hypothesis when it is

false. As we saw previously, Type I error rate was well controlled, allowing for a power

examination.

To determine the model power, we compared a correct population model, for which we

do not wish to reject the null hypothesis of good model �t (the one described in 4.7.2) and

an incorrect population, for which we wish to reject the null hypothesis of good model �t. A

cut-o� was created from a correct population, and the data was created from the alternative

model that we wish to reject. Finally, we determined the proportion of replications simulated

from a model with serious misspeci�cation rejected by the cut-o�s (i.e., statistical power).

A commonly accepted value for su�cient power is above 0.8, see [21]. Investigating power

would help us evaluate whether the sample size is su�cient to yield enough con�dence about

the detection of signi�cant parameter values.

Our model with ML estimator has a strong power to detect a misspeci�ed model equal

to 91%. The graphs of model �t indices for both correctly speci�ed and misspeci�ed models

are provided in Appendix E. The red line indicates cut-o� values used based on correctly

speci�ed model.

As expected, we see the �t indices obtained from the data from the misspeci�ed model

indicating worse �t than the �t indices from the correct model. Hence, our model is able to

con�dently reject misspeci�ed model.

4.9 Discussion of the results

Having done the analysis on the relationships among innovative work behaviour, occupational

self-e�cacy and work engagement, it is safe to say that these three constructs are related.

Both occupational self-e�cacy and work engagement predict innovative work behaviour. It

has also been found that work engagement is a partial mediator between occupational self-

e�cacy and innovative work behaviour, meaning that there are not only direct predictive
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relationships among those three constructs, but also an indirect e�ect.

If we are to go into more details of our results, then �rst, our model shows that being

an employee with stronger beliefs about the ability to cope with work related tasks and

problems, is an important predictor of innovative work behaviour, which is indicated by

interest in novelty, exploration and creation of ideas, idea testing and evaluation and idea

implementation. This con�rms the research done by other authors about the relationship

between occupational self-e�cacy and one-dimensional innovative work behaviour, see [60]

and occupational self-e�cacy and idea creation, see [49] but also brings new knowledge about

the relationship between occupational self-e�cacy and more broad range of innovative work

behaviours, e.g. idea testing and evaluations, interest in novelty. Based on social-cognitive

theory, see [42], every person before setting a goal for themselves and working on achieving it,

�rst evaluates his or her ability of successfully reaching it and therefore is prone to choose and

dedicate their e�orts to the task that matches their evaluation of their own abilities. Based on

social-cognitive theory, we can assume that people with strong beliefs about their ability to

do work related tasks will be more con�dent about their abilities to innovate and, therefore,

more prone to expressing such behaviour by being more sure of successfully accomplishing

it in the organisation. In addition, employees with high occupational self-e�cacy are likely

to dedicate more e�ort, less likely to give up when faced with di�culties, hence more likely

to successfully reach the set goal, i.e. demonstrate innovative behaviour: will be interested

in novelty, create and explore ideas, test and evaluate them, and implement.

Second, work engagement did predict innovative work behaviour as well. These results

add to the research about the predictive relationship between work engagement and general

innovative work behaviour, see [52] but also shed new light on the predictive relationship

between work engagement and speci�c innovative work behaviour indicators. Work en-

gagement is de�ned as positive emotional-motivational work-related state of mind that is

characterized by high levels of energy and mental resilience while working, the willingness to

invest e�ort in one's work, persistence, sense of signi�cance, enthusiasm, inspiration, pride

and being fully concentrated, see [62]. These characteristics show a higher degree of con-

nection between the employee and his/her work and predict the organisational citizenship

behaviour, that although is not directly related to the o�cial job description, adds value

to the organisation, see [55]. Work engagement as a motivational state increases initiative

behaviour and people with high levels of initiative search and �nd new challenges, which by

itself promotes innovative work behaviour, see [63].

Third, work engagement was con�rmed to act as a partial mediator between occupational
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self-e�cacy and innovative work behaviour. Therefore, occupational self-e�cacy not only

directly predicts innovative work behaviour, but also through work engagement. The results

add to the research about the work engagement as an important factor between personal

resources and work related behaviour, for example, between proactive behaviour, re�ec-

tive behaviour and self-e�cacy and organisational citizenship behaviour and work-related

behaviour, see [53], between rest and proactive behaviour, see [64], between self-e�cacy,

con�dence, optimism and �nancial gain, see [57]. The results of current study add to the

existing research that work engagement acts as a mediator between occupational self-e�cacy

and innovative work behaviour as well. According to the JD-R theory (job demands and

resources), see [44], described motivational process, the resources that an employee has (in

this study it would be occupational-self-e�cacy) increases both, internal motivation by in-

creasing the wish for competence and autonomy, and external motivation to complete the

task by the increased belief about the ability to deal with job demands, see [65]. Both

external and internal motivation results in increased engagement at work, which in turn

results in positive outcomes as engaged people tend to demonstrate higher levels of energy,

enthusiasm, concentration and dedication, giving the resources to complete extra-role tasks.

The only indicator of innovative work behaviour that work engagement did not act as a

mediating factor for, was search for support. Meaning that it does not matter whether a

person with high occupational self-e�cacy will be highly engaged in his work or not engaged

at all, his/her search for support will not be a�ected by it. It might be hypothesized that

the association between variables requires an additional moderator, which when present in

the relationship makes work engagement a signi�cant mediator between occupational self-

e�cacy and the search of support. For example, some studies con�rm the importance of

emotional intelligence, see [66]. Emotional intelligence is related to the ability to regulate

emotions and recognise and evaluate emotions of others, which leads to more successful social

interactions, see [67]. Therefore, by being a predictor of work engagement it might also act

as a moderator between work engagement and search for support.

To sum up, the study con�rmed that occupational self-e�cacy and work engagement

predict innovative work behaviour, work engagement mediated the relationship between

occupational self-e�cacy and innovative work behaviour, and that all variables but one,

search for support variable, are indicators of innovative work behaviour in the mediation.

Meaning that organisations, which want to improve innovative work behaviour, could employ

a strategy to strengthen work engagement of the employees. In addition, strengthening

employee occupational self-e�cacy, would not only strengthen employee work engagement,
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but also innovative work behaviour, with employees being more interested in novelties, more

prone to idea creation and evaluation, idea testing and its' implementation. However, if the

support aspect of innovative work behaviour is wanted to be strengthened, other strategies

should be employed.

4.10 Limitations

We recognize there are limitations with the current study. It is important to understand them

in order to see how it may have impacted the results. First of all, the sample was collected

using questionnaire on the internet, therefore, there was an imbalance in di�erent groups

and sample was not representative of the population. Such results should not be generalised

to the population, but is rather an indication of a possibility. Another drawback of the

internet questionnaire is the lack of the presence of the researcher who might have answered

the questions and concerns. Even though the participants could have written a question via

email, it is not as convenient and they might have chosen to just �ll the questionnaire as per

their understanding, which might have been inaccurate.

5 Conclusions

Several conclusions can be made in the thesis.

Structural equation modelling revealed that �rst, occupational self-e�cacy and work

engagement have a positive e�ect on innovative work behaviour. Meaning that people with

strong beliefs about their ability to do work related tasks will be more con�dent about

their abilities to innovate and, therefore, more prone to expressing such behaviour in the

organization. They will be interested in novelty, will be likely to create and explore ideas

more, test and evaluate them and implement. Also, work engagement as a motivational state

increases initiative behaviour and people with high levels of initiative search and �nd new

challenges, which by itself promotes innovative work behaviour.

Second, work engagement acts as a mediating factor between occupational self-e�cacy

and innovative work behaviour. The resources that an employee has, i.e. higher occupational-

self-e�cacy, increases motivation, that results in an increased engagement at work, which

in turn results in positive outcomes as engaged people tend to demonstrate higher levels

of energy, dedication, enthusiasm, concentration and dedication, giving the resources to

complete extra-role tasks.
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Third, interest in novelty, exploration and creation of ideas, idea testing and evaluation,

and idea implementation are strong indicators of innovative work behaviour in the mediation

model, except for search for support. It infers that it does not matter whether the person

with high occupational self-e�cacy will be highly engaged in his work or not engaged at all,

his or her search for support will not be a�ected by it.

In addition, Monte Carlo simulations showed that maximum likelihood estimator is better

suited for our model, having smaller sample size and close to normal distribution, compared

to Yuan-Bentler estimator.

To sum up, it can be concluded that organisations, which want to improve innovative

work behaviour, could employ a strategy to strengthen work engagement of the employees or

strengthen occupational self-e�cacy, which would not only result in increased employee work

engagement, but also innovative work behaviour, with employees being more interested in

novelties, more prone to idea creation and evaluation, idea testing and its' implementation.
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7 Appendices

7.1 Appendix A

Figure 5: Examples of demographic questions.

Figure 6: An example of work engagement questionnaire.

Figure 7: An example of occupational self-e�cacy questionnaire.
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Figure 8: Examples of innovative work behaviour questionnaire.
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7.2 Appendix B

Table 8: Descriptive statistics for observed variables

Variable N Mean Median SD min max % Missing VIF

OSE 181 4.02 4.00 0.51 2.62 5 0 1.15

WE 181 5.34 5.44 1.09 2.22 7 0 1.15

NOVE 181 3.86 4.00 0.78 1.33 5 0

EXPL 181 3.58 3.60 0.77 1.20 5 0

TEST 181 3.35 3.25 0.85 1.00 5 0

SUPP 181 3.46 3.50 0.97 1.00 5 0

IMPL 181 3.33 3.40 0.92 1.00 5 0
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7.3 Appendix C
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Figure 9: Correlations

*Note. p<0.001 for all correlations.
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7.4 Appendix D

Table 9: Standardised estimate bias, standard error bias and coverage for ML estimator

Parameter Std. Est. Bias Std. Err. Bias Coverage

IWB=∼NOVE 0,002 0,000 0,939

IWB=∼EXPL 0,000 0,000 0,938

IWB=∼TEST -0,001 -0,022 0,940

IWB=∼IMPL 0,000 0,000 0,941

IWB∼OSE 0,002 0,011 0,943

IWB∼WE -0,006 0,011 0,948

WE∼OSE 0,003 -0,007 0,943

Mediation 0,000 0,022 0,943

51



7.5 Appendix E
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Figure 10: Power plots for model �t indices.
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