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Lietuvos mokestinio efektyvumo tyrimas naudojantis paneliniais

duomenimis

Santrauka

Neseniai vykusios ekonomin
es suirut
es parod
e, jog �skalinis sektorius gali b	uti naudingas i�rankis

valstyb
es stabilumui garantuoti. Siekis subalansuoti biudºet¡ skatina vyriausybes taikyti mokes£iu�

didinim¡ arba i²laidu� maºinim¡. Susiklos£iusi situacija reikalauja gilesnio mokestinio potencialo

suvokimo ir analiz
es, nes ji� ºinant, b	utu� galima sp¦sti, ar ²aliai galima didinti mokes£ius be ºalos.

�iame darbe, naudojant panelinius duomenis, tiriamas Lietuvos mokestinis efektyvumas. Tikslui

i�gyvendinti yra naudojamas laiko eilu£iu� klasterizavimas, impulso atsako analiz
e bei dinaminiai pan-

eliniai modeliai. Tyrimo rezultatai parod
e, kad Lietuvos ºem
es 	ukio bei uºsieno prekybos sektoriai

yra atitinkamai maºesni ir didesni, lyginant su kitomis valstyb
emis, turin£iomis pana²u� mokestini�

lygi�. Impulso atsako analiz
e atskleid
e, jog makreokonominiai kintamieji nevienodai veikia skirtingu�

pajamu� valstybiu� grupes. Galiausiai, �ksuotu� efektu� dynaminis panelinis modelis parod
e, jog Li-

etuva yra labiau nutolusi nuo savo moekstinio potencialo nei didºioji dauguma valstybiu�.

Raktiniai ºodºiai: Dinaminiai paneliniai modeliai, impulso atsako analiz
e, mokes£iu�

potencialas.

The analysis of Lithuania's tax e�ciency using panel data

Abstract

Recent economic turmoil has showed that the �scal sector can be a useful tool in providing stability

for a country. The need for a balanced budget has led governments imposing tax increases and

various spending cuts. This calls for an inquiry into the analysis of tax potential, as having a

position on the matter would shed light on how much a country can increase their taxes without

causing harm. This thesis aims to analyze Lithuania's tax e�ciency by using cross sectional data.

To achieve this task, time series clustering, impulse response analysis and dynamic panel modeling

is carried out. The results show that Lithuania's agricultural and foreign trade sectors are smaller

and larger respectively, compared to other countries, that have a similar taxation level as Lithuania.

Impulse response analysis showed that the macroeconomic determinants have di�erent e�ects in

di�erent income country groups. Lastly, the �xed e�ects dynamic panel data model revealed that

Lithuania is further away from it's tax potential than most of the countries.

Key words : Dynamic panel data model, impulse response analysis, tax potential.



1 Introduction

One of the key factors in robust economic growth is an e�ective tax system. Fiscal policy

itself plays a major role in wealth redistribution, economic stability and welfare. It also

acts a prominent determinant in investment, both internally and externally because a well

balanced tax system can be a directional guide to a countries residential investors as well as

attract foreign investments by acting as a tax haven. Besides these and other areas a�ected,

the �scal sector plays a role in determining the perception of the government in the position

of its tax payer.

In recent years, the global economy has endured several shocks, which caused great tur-

moil throughout major countries. One of those shocks - the Eurozone crisis of 2012 - showed

that an unbalanced �scal system can cause severe damage to a country's �nancial structure

and, due to deep interconnections between nations, become a heavy toll on its partners.

The aftermath of these events led countries to accumulate high debts which in turn now

forces them to increase their taxes. Now one can see, that multilateral institutions often

are o�ering their help to developing or developed countries to ensure a coherent and well

harmonized tax system.

Given all these reasons, a natural need for an evaluation of a country's tax system comes

into demand. Having a position on the matter would allow a country to impose �scal

changes more e�ciently. It is common sense, that countries who want implement new taxes

or increase the rates of existing ones, should �rst analyze how much their revenue or rates

are far from their potential. So if a country would have the need to increase their budget

while being very close to their taxable limit, increasing taxes could possibly work in a reverse

way, as the La�er curve dictates. This would in turn lead to the search for other sources of

income for the state. Alternately, if, after a tax rise, budget revenues would not increase,

and the country would be far from its taxable potential, this would indicate that, possibly,

the state's administration is doing a poor job in tax collection or the taxpayers are unwilling

to pay for some reason.

In order to quantitatively estimate a country's tax potential, two concepts have to be

introduced: tax e�ort and tax capacity. Tax capacity is the maximum limit of the tax

revenues that can be collected in a country, which is usually calculated by using econometric

models. Tax e�ort is the ratio between actual tax revenues and tax capacity. This metric

allows to see how distant a country is from its taxable potential, or in other words - how

e�ciently it collects its revenue.
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Of course, for a better understanding of tax e�ort, merely calculating this ratio for a

country is not enough. One could evaluate tax e�orts of a broad range of countries and

then compare the results together. If a country's tax e�ort would be di�erent from simi-

lar countries, this could indicate that, perhaps, there are some issues with the state's tax

administration system. Furthermore, having this information would allow to grade the tax

e�ort by knowing what is a relatively small or high value.

Having all this said, this thesis aims to analyze Lithuania's tax e�ciency as well as

estimate and compare its tax e�ort by using cross sectional data and econometric modeling.

To do this, several tasks are set. First, time series clustering is employed in order to assess

Lithuania's position among other countries. Second, panel vector autoregressive modeling is

used and impulse response functions are analyzed on di�erent income country groups, which

has not been done before. Lastly, a new type of dynamic �xed e�ects panel data model is

�tted in order to estimate tax capacity and e�ort.

The �rst part of the thesis provides theoretical background for the standard and dynamic

�xed e�ects panel data models. Then, the panel vector autoregression is introduced alongside

with panel Granger causality and unit root tests. Next, empirical works in the determination

of tax revenue factors and tax e�ort estimates are provided. The theoretical section ends

with discrete time series and functional principal component score clustering techniques.

The second part of the thesis gives the results from time series clustering. Then, impulse

response functions from panel vector autoregression models are presented. Lastly, dynamic

�xed e�ects panel data modeling is carried out which gives tax e�ort and tax capacity for

all analyzed countries.

The methods used in this thesis expand previously done researches which estimated tax

capacity using panel data. Usually static panel data models are employed for this task. By

using impulse response analysis and the dynamic �xed e�ects panel data approach, we add

more information to the model and account for heterogeneous variable e�ects in di�erent

income groups.
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2 Theoretical background

2.1 Panel data model framework

2.1.1 Panel data model

Before beginning the analysis of tax capacity and tax e�ort, panel data modeling has to be

introduced. The standard panel data model has the following form (Wooldridge 2010):

yit = β′xit + α∗i + εit (1)

where xit is an independent variable, εit is the error term, α∗i is the unobserved e�ect,

i = 1, 2, ..., N is the number of objects analyzed and t = 1, 2, ..., T is the time periods. Fixed

e�ects is included because it is possible that by modeling some process, which requires a

panel data approach, some variables will be omitted, thus the unobserved e�ect deals with

this problem.

Usually, α∗i can be treated as a random or �xed e�ect. The main di�erence between

these two terms is that if the unobserved e�ect is understood as random, then E(α∗i |xi) = 0

holds, where in a �xed e�ects model, it does not. This simply means that in a �xed e�ects

framework, the unobserved e�ect is allowed to be correlated with other independent variables,

whereas in a random e�ects approach it does not.

The latter assumption is very strict and in real life situations, the unobserved e�ect is

likely to be correlated with other regressors, thus �xed e�ects is usually used. While testing

for a �xed or random model speci�cation can be done by tests (e.g. the Hausman test),

Clark and Linzer (2012) state that in most applications, the true correlation between the

covariates and the unobserved e�ects is not exactly zero. Thus failing to reject the null (if

rejected - �xed e�ects are used) is most likely not because the true correlation is zero, but

because the test does not have su�cient statistical power to identify departures from te null.

In order for the estimates of (1) to be valid, the following assumption must hold:

E(x′itεit) = 0 ∀ t (2)

This means that the error term and the explanatory variables are not contemporaneously

correlated. This assumption does not impose strict exogeneity. We now move on the an

expansion of the standard panel model - the dynamic panel �xed e�ects data model.
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2.1.2 Dynamic �xed e�ects panel data model

A lot of economic relationships have a dynamic nature. One of the advantages of panel data

is that they allow the user to understand the dynamics of adjustment. These dynamic rela-

tionships are usually modeled by including a lagged dependent variable among the regressors

(Baltagi, 2002):

yit = γyi,t−1 + β′xit + α∗i + εit (3)

where i = 1, ..., N , t = 1, ..., T , α∗i are �xed e�ect, εit is the error term with E(εit) = 0,

and E(εitεjs) = σ2
ε if i = j, t = s and E(εitεjs) = 0 otherwise.

Since it is usually assumed that there will always be omitted information, dynamic panel

data models include a �xed e�ect. If the lagged dependent variable in (3) appears as ex-

planatory, exogeneity no longer holds. The �xed e�ects and the �rst di�erences estimators

rely on this condition, thus the standard estimation methods (OLS or its alternatives) can

fail. This problem is also know as the Nickell Bias. For example, demeaning the dynamic

process (3) with only the lagged dependent variable in order to account for �xed e�ects leads

to:

yit − ȳi. = γ(yit−1 − ȳi.−1) + (εit − εi.) (4)

Nickell (1981) shows that (4) creates a correlation between the regressor and the error

which results in a bias. This bias arises when the data is quite short, meaning a relatively

small T. Nickell in 1981 provided analytical expressions of the bias, that have been previously

documented in Nerlove (1967,1971). Due to this bias, an alternative method of estimation

must be used.

One of these alternatives is the use of instruments. Let Z denote a N ×H matrix. An

instrument, or instrumental variables Z, must satisfy these two properties:

E(ε|Z) = 0

E(xjkzjh) 6= 0
(5)

for h ∈ 1, ..., H and k ∈ 1, ..., K. This means that the instruments are correlated with

the independent variables X and exogenous to the error term.

Using instrumental variables, Arellano and Bond (1991) proposed a method, called the

Generalized method of moments (GMM) in order to estimate β and γ from (3).

This method takes on the following assumptions from (3) about the error and �xed e�ects
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terms:

E(εit) = 0, E(α∗i ) = 0

E(εitεjs) = σ2
ε if j = i and t = s, 0 otherwise

E(α∗iα
∗
j ) = σ2

α if j = i , 0 otherwise

E(α∗ixit) = 0

(6)

The GMM approach is based on a model in �rst di�erences in order remove the individual

e�ects of α∗i :

(yit − yi,t−1) = γ(yi,t−1 − yi,t−2) + β′(xit − xi,t−1) + εit − εi,t−1 (7)

It can be noticed, that all the lagged variables yi,t−2−j ∀ j ≤ 0, satisfy both exogeneity

and relevance properties:

E(yi,t−2−j(yi,t−1 − yi,t−2)) = 0

E(yi,t−2−j(εi,t − εi,t−1)) = 0
(8)

This means that they are all legitimate instruments for yi,t−1 − yi,t−2, meaning that lags

of the dependent variable can be used as instruments.

Next, the m + 1 conditions E(yi,t−2−j(εi,t − εi,t−1)) = 0 for j = 0, ...,m can be used to

estimate β, γ from (3).

Assuming, that E(x′itεis) = 0 ∀ (t, s), for each period, the moment conditions can be

expressed as:

E(qi,t∆εit) = 0, t = 2, ..., T

qi,t = (yi0, yi0, ..., yi0, x
′
i)
′

(9)

where x′i = (x′i1, ..., x
′
iT ), ∆ = (1− L) and L denotes the lag operator.

A problem arises with the instrumental variable approach. If the correlation between the

explanatory and instrumental variables is small, then these instruments are called weak. To

solve this problem, Blundell and Bond (2000) proposed an estimation method called system

GMM. It uses moment conditions in both level and in �rst di�erences:

E(yi,t−s∆εit) = 0, E(xi,t−s∆εit) = 0

E(∆yi,t−s(α
∗
i + εit)) = 0, E(∆xi,t−s(α

∗
i + εit)) = 0

(10)

GMM and system GMM estimates use instruments which are usually lags of the depen-

dent variable. The Sargan's test for over-identifying restrictions was suggested by Arellano

and Bond (1991) in order to check the validity of the instruments. The test statistic is given

by:
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m = ∆ε̂′Z

[
N∑
i=1

Z ′i(∆ε̂i)(∆ε̂i)
′Zi

]−1

Zi(∆ε̂) ∼ χ2
p−K−1 (11)

Where Z is the instrument matrix, ε is the error term, p is the number of columns of Z.

Under the null hypothesis, the instruments are valid.

Both methods (GMM and system GMM) are considered to be a far better alternative than

the standard OLS estimation when evaluating dynamic models. Nevertheless, this approach

has met some criticism. According to Behr (2003) GMM type estimators are ine�cient.

Furthermore this approach imposes assumptions about the appropriateness of past values

of the dependent variable which are used as instruments for estimation. These assumptions

may or may be not valid.

Lancaster (2002) proposes a new type of dynamic �xed e�ects panel data modeling ap-

proach by suggesting a conditional likelihood estimator that can analytically compute the

conditional probability distributions of the variables at hand and does not require instrumen-

tal variables. Hsiao (2014) and Hsiao et al. (2002) has shown that this approach performs

better than GMM estimators.

Suppose that the �xed e�ects can be re-parameterized so that the likelihood function for

the data for a single case factors looks like this:

li(α
∗
i , γ, β, σ

2) = li1(α∗i )li2(γ, β, σ2) (12)

Where li1 and li2 are likelihood functions. If the parameters α∗i and (γ, β, σ2) are also

variation independent, they are orthogonal. If it can be said that
∏
li2 is the product of li2

for all observations, in Lancaster (2002) it can be shown that the application of maximum

likelihood to
∏
li2 gives consistent estimates of (γ, β, σ2) as N →∞ for any T ≥ 2.

However, not all likelihoods can be transformed in such a way that the parameters become

orthogonal. It is possible to reparametrize the �xed e�ects so that they are information

orthogonal. Denoting the log likelihood for the data for observation i as Li, then the �xed

e�ects are information orthogonal to, for example, β if the following condition holds true:

E

(
δLi
δα∗i δβ

)
= 0 (13)

From (13) it can be understood, that if the slope of the log likelihood with respect to α∗i

is independent of the slope of the log likelihood with respect to β, then α∗i is information

orthogonal to β. If it is possible to perform such a transformation that this condition is

met, then it may be possible to place priors on the parameters and integrate out the �xed
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e�ects. Flat priors are used for the α∗i and the remaining parameters. This is essentially a

Bayesian estimation technique. With such a framework, marginal posteriors for the remain-

ing parameters are obtained. Then Monte Carlo methods can be used to sample values from

the marginal posterior to produce estimates and credible intervals for the parameters.

The posterior densities are obtained as follows. Denote Xi,t, yi,t and yi,t−1 in vector terms

Xi, yi and yi−. The appropriate reparametrization of the �xed e�ects, forming uniform priors

on γ, β, σ2 and integrating out the �xed e�ects results in the following posterior density

function:

p(γ, β, σ2|data) ∝ σBexp

{
N

T

T−1∑
t=1

(
T − t
t

γt

)
− 1

2σ2

N∑
i=1

(A− βXi)
′H(A− βXi)

}
(14)

where A = yi−γyi−, B = −(N(T −1)−2) and H is de�ned as an operator that subtracts

the mean. For example, if

ωi = yi − ρyi − β1Xi (15)

then H(ωi) ≡ ωi − ω̄i.

Sampling from this posterior, gives the distributions of estimates for the parameters

γ, β, σ2. First, β must be integrated out of (14). After doing so, the following density is

achieved:

p(γ, σ2|data) ∝ σBexp

{
N

T

T−1∑
t=1

(
T − t
t

γt

)}

exp

{
− 1

2σ2

(( N∑
i=1

(Xi)
′H(A)

)′( N∑
i=1

(Xi)
′H(Xi)

)( N∑
i=1

(Xi)
′H(A)

))} (16)

Next, σ2 is integrated out of (16) giving the marginal posterior density p(γ|data) ∝:

exp

{
N
T

∑T−1
i=1

(
T−t
t
γt

)}
(

(A)′H(A)−
(∑N

i=1(Xi)′H(A)
)′(∑N

i=1(Xi)′H(Xi)
)−1(∑N

i=1(Xi)′H(A
))C

(17)

where C =
(
N(T−1)−K

2

)
.

Now, sampling from (17) gives γ, then given γ sample 1/σ2 from (16). Lastly, given γ

and 1/σ2 sample β from (14). The medians of these samples are the estimated parameters.

Pickup et al. (2017) using data simulations showed that the GMM estimator is a large

improvement compared to OLS, but the orthogonal reparametrization approach perform as
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well as the GMM or even better. This model evaluation approach is also attractive because

it provides the distributions of each β and γ parameters which are then used for signi�cance

hypothesis testing. Also, no instruments are necessary for the evaluation of the model.

Next, the panel vector autoregression model is introduced.

2.1.3 Panel vector auto regression model

In order to have a better understanding in the relationships between variables in a dynamic

system, a panel vector auto regression (PVAR) can be used, which is an expansion of the

standard dynamic panel data model. The very �rst PVAR was introduced by Holtz-Eakin et

al. (1988). In time, it has been extended to use p lags of m endogenous, k predetermined and

n strictly exogenous variables. With this in regard, the PVAR model takes on the following

form:

yi,t =

p∑
l=1

Alyi,t−l + Bxi,t + Csi,t + εi,t (18)

where yi,t−l are lagged endogenous variables, xi,t are predetermined variables, si,t are

exogenous variables.

The disturbances εi,t are independently and identically distributed (i.i.d.) for all i and t

with E[εi,t] = 0 and V ar[εi,t] = Σε. Σε is a positive semi-de�nite matrix. It is also assumed,

that all unit roots of A in (18) fall inside the unit circle to assure co-variance stationarity

(stability condition), which is done by inspecting the eigenvalues of an estimated model.

It becomes clear, that a PVAR model is hence a combination of a single equation dynamic

panel model and a PVAR model.

Before evaluating the model, a transformation of �rst di�erence or the forward orthogonal

transformation is to be used:

∆∗yi,t =

p∑
l=1

Al∆
∗yi,t−l + B∆∗xi,t + C∆∗si,t + ∆∗εi,t (19)

Here ∆∗ is the �rst di�erence or the forward orthogonal transformation. The former

exists for t ∈ {p + 2, ..., T} and the latter - for t ∈ {p + 1, ..., T − 1}. The set of indexes,

for which the transformation exists is denoted by T∆∗ . These two transformations can be

summed up in the following way: the �rst di�erence transformation subtracts the previous

value from the current value and the forward orthogonal deviation transformation subtracts

the average of all available future observations from the current value. While �rst di�erence

drops the �rst observation on each individual in the panel, forward orthogonal deviations

drops the last observation for each individual.
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Below are the moment conditions are provided, which are necessary for the model to be

estimated via GMM, which was discussed previously. These are slightly di�erent, due to the

multi-equation model structure.

E[∆∗εi,ty
T
i,j] = 0 j ∈ {1, ..., T − 2} and t ∈ T∆∗ ,

E[∆∗εi,tx
T
i,j] = 0 j ∈ {1, ..., T − 1} and t ∈ T∆∗ ,

E[∆∗εi,t∆
∗sTi,j] = 0 t ∈ T∆∗

(20)

Additional moment conditions can be constructed when imposing the following assump-

tion on the structure of the process. These assumptions are su�cient enough for the system

GMM estimator.

E[εi,t(yi,t−1 − yi,t−2)T ] = 0 t ∈ {3, 4..., T}

E[εi,t(xi,t−1 − xi,t−1)T ] = 0 t ∈ {2, 3..., T}

E[εi,ts
T
i,t] = 0 t ∈ {2, 3..., T}

(21)

According to Blundell and Bond (1998), this assumption is clearly satis�ed in a stationary

PVAR model.

Like the single equation system GMM dynamic panel model, the PVAR also uses lags

of the dependent (in this case the endogenous) variable for estimation. Blundell and Bond

(1998) also argue that the system GMM estimator performs better than the GMM estimator

because the additional instruments remain good predictors for the endogenous variables in

this model even when the series are very persistent.

Having evaluated the model, one can use impulse response functions (IRF) in order to

have a better understanding of the process at hand.

IRF analysis is used in order to understand, how one endogenous variable responds to an

impulse of another endogenous variable. To achieve this, the PVMA-X (panel vector moving

average representation with exogenous variables) of a PVAR-X(1) process is used:

yi,t =

(
∞∑
j=0

Aj−1[BC]

)xi,t−j

si,t−j

+

(
∞∑
j=0

Aj

)
[εi,t−j] (22)

Both predetermined and strictly exogenous variables are treated all the same. From here,

we can derive the impulse response function:

IRF (k, r) =
δyi,t+k
δ(εi,t)r

= Aker (23)

where k is the number of periods after the shock to the rth component of εi,t with er

being a vector with a 1 in the rth column and 0 otherwise.
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Let Σε be the covariance matrix of εt. It is quite common for the o� diagonal elements

of this matrix to be di�erent from 0, which leads to the fact that shocks across the m

equations are not independent of each other. This in turn means that the parameters of the

PVAR model have to be altered in such that the responses to the "independent" shocks are

transferred through the PVAR system accordingly.

Because of the assumption that Σε is a symmetric positive semi-de�nite matrix, there

exists a unique Cholesky decomposition such that Σε = PPT , where P is a lower triangular

matrix. If one de�nes Θk = AKP and ui,t = P−1εi,t we obtain the orthogonal impulse

response function:

OIRF (k, r) =
δyi,t+k
δ(ui,t)r

= Θker (24)

As stated in Lutkepohl (2007), the Cholesky decomposition depends on the ordering of

the variables and thus has been criticized. Pesaran and Shin (1998) proposed an alternative

to OIRF. Instead of shocking all elements of εi,t they chose to shock only one element, say the

rth and integrate out the e�ects of other shocks using the historically observed distribution

of errors, so we have:

GIRF (k, r,Σε) = E[yi,t+k|εi,t,r = δr,Σε]− E[yi,t+k|Σε] (25)

By setting δr =
√

Σε,r,r the generalized impulse response function is obtained:

GIRF (k, r,Σε) = AkΣε(σr,r)
−1/2 (26)

where σr,r is the rth diagonal element of Σε.

Using IRF can give valuable information into the dynamic relationships of the variables

at hand. Usually, before implementing PVAR modeling, the Granger causality test are

performed in order to see, if a time series causes another time series.

2.1.4 Panel Granger causality

In order to test whether a time series has an e�ect on the forecasts of another time series, one

can perform the Granger causality test. In 1969 Granger proposed this test for univariate

time series. It is said, that y causes x if the inclusion of y as a regressor in x improves the

forecast of x.

In 2012, Dumitrescu and Hurlin expanded Grangers framework and modi�ed the test to

be able to detect causal relationships in panel data. Let x and y be stationary processes.

The underlying regression writes as follows:

yit = δi +
K∑
k=1

γikyi,t−k +
K∑
k=1

βikxi,t−k + εit (27)
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Note that the coe�cients are allowed to di�er across individuals. The test's null hypoth-

esis is de�ned as:

H0 : γi1 = ... = γiK = 0 ∀ i = 1, ..., N (28)

(28) corresponds to the absence of causality of all individuals in the panel.

The alternative hypothesis of the test states that there can be causality for some individ-

uals but not necessarily for all:

H1 :γi1 = ... = γiK = 0 ∀ i = 1, ..., N1

γi1 6= 0 or ... or γiK 6= 0 ∀ i = N1 + 1, ..., N
(29)

Granger causality is usually done before constructing VAR models, as a complementary

analysis.

2.1.5 Panel unit root test

It is well known, that some time series models, usually in forms of autoregression, require

the process to be stationary. A time series is said to be stationary if its mean and variance

does not change over time. To test if a process is stationary or not, unit root test can be

performed. A time series is said to have a unit root if it is not stationary. The �rst well

known unit root test was constructed for univariate time series by Dickey and Fuller in 1984,

but a few decades later, other academics introduced unit root test for panel data.

Kleiber and Lupi (2011) denote a series having a unit root with I(1). Thus a series

without unit roots is I(0). Naturally, the null hypothesis of a panel unit root test states that

all of the series are I(1). The alternatives are split into two: HA
1 : all series are I(0) and

HB
1 : at least one series is I(0). In practice, test that consider HA

1 are less �exible due to

a more strict alternative.

The test can be conducted in two approaches - through t ratios or p values. If the former

is chosen, then consider the following process:

∆yit = µi + ρiyi,t−1 +

ki∑
j=1

φi,j∆yi,t−j + εit (30)

Here εit is independent and identically distributed (i.i.d) with E(εit) = 0, E(ε2it) = σ2
i <

∞, E(ε4it) <∞. Under the null, H0 : ρi = 0 ∀ i.

(30) can be rewritten:

∆yi = ρiyi,−1 + Υiγi + εi (31)

where ∆yi = (∆yi,ki+2, ...,∆yi,T )′, yi,−1 = (yi,ki+1, ..., yi,T−1)′, Υi = (i,∆yi,−1, ...,∆yi,−ki
)′,

i = (1, ..., 1)′, γi = (µi, φi,1, ..., φi,ki) and εi = (εi,ki+2, ..., εi,T ).
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The tests based on the t ratios are panel extensions of the standard Augmented Dickey-

Fuller test either pooling the units (equations) before computing a pooled test statistic, or

averaging the individual test statistics in order to obtain a group-mean test. In the latter

case we implicitly refer to the alternative hypothesis HA
1 , in the former to HB

1 .

For example, Im et al. (2003) developed a mean-group test based on (30) and assuming

that εi,t ∼ N(0, σ2
i ):

t̂i =
ρ̂i[

σ̂i
2
(
y′i,−1MΥi

yi,−1

)−1
]1/2

(32)

where ρ̂i is the OLS estimator of ρi in (30), MΥi
= IT −Υi(Υ

′
iΥi)

−1Υ′i and σ̂i
2 =

1
T−ki−1

(MΥi
∆yi−ρ̂iMΥi

∆yi−1)′(MΥi
∆yi−ρ̂iMΥi

∆yi−1).

Other researchers like Levin et al. (2002), have also provided t ratios which take on a

similar form.

Tests conducted on p values and p values combinations have been proposed by Maddala

and Wu (1999) and Choi (2001). The tests have an alternative hypothesis of HB
1 . They

are based on the idea that the p values from N independent Augmented Dickey-Fuller tests

can easily be combined to obtain a test on the joint hypothesis concerning all the N units.

Both papers highlight that under the null the p values pi are independent U(0,1) variables so

that −2logpi ∼ χ2(2). This leads to the facts that for �xed N , as T → ∞, under the null

hypothesis:

P = −2
N∑
i=1

logpi
d−→ χ2(2N) (33)

There are other forms of both t and p type test, but they follow the same ideas and thus

are not presented. Panel unit root tests are a necessary tool in order to ensure that the data

used in models that required stationary meet this condition.

2.1.6 Data imputation

The data used in this thesis contains missing values thus in order not to lose information,

time series imputing methods are employed.

Mainly, time series imputation methods are divided into two groups: those who deal

with multivariate data, and those who deal with univariate data. The former employs inter-

attribute correlations, meaning that missing values are imputed by taking into account infor-

mation from other variables. Univariate time series imputation takes into account inter-time

correlations, which means that each process is treated individually, and imputation is done

taking into account the structure and inertia (autocorrelation) of the series. Moritz et al.
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(2015) conducted an analysis which measured di�erent imputation algorithms (multivariate

and univariate). Their work showed that a univariate time series approach performed at

least as good or even better then the multivariate framework.

This thesis uses univiariate time series imputation. This approach is chosen in accordance

with Mortizz et al. (2015) and due to the fact that using multivariate imputation provided

questionable results.

Elissavet (2017) conducted an analysis of a wide range of methods which are used in deal-

ing with missing data in univariate time series. The analysis showed that structural models

using Kalman smoothing provided the best results. Thus this thesis employs structural

modeling with Kalman smoothing.

Structural time series models are based on a decomposition of the process into a number

of components. The simplest model is the local level model, which has and underlying level

µt, which evolves by:

µt+1 = µt + ξt, ξt ∼ N(0, σ2
ξ ) (34)

Then the process of such model is de�ned as:

xt = µt + εt, εt ∼ N(0, σ2
ε ) (35)

The local linear trend model has the same speci�cation as before, with an added time

varying slope in the dynamics of µt, de�ned by:

µt+1 = µt + νt + ξt, ξt ∼ N(0, σ2
ξ )

νt+1 = νt + ζt, ζt ∼ N(0, σ2
ζ )

(36)

Lastly, the basic structural model is de�ned as local linear trend model with a seasonal

component γt:

xt = µt + γt + εt, εt ∼ N(0, σ2
ε ) (37)

where the seasonal component has dynamics:

γt+1 = −γt + ...+ γt−s+2 + ωt, ωt ∼ N(0, σ2
ω) (38)

After �tting a selected model, Kalman smoothing is carried out. The objective of this is

to estimate the vector at, given the entire sample of Xn. Here, at is called the state vector

and is de�ned:

at = (µt, νt, γt)
T (39)

at varies depending on the model at hand. The conditional distribution of at|Xn is

considered to be normal N(ât, Vt), where ât = E(at|Xn) and Vt = V ar(at|Xn). ât is called
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the smoothed state, Vt is the smoothed state variance, and the process of estimating â1, ..., ân

is state smoothing.

We now move on to empirical research on the determinants of tax to GDP and tax e�ort.

2.2 Empirical �ndings

2.2.1 Macroeconomic factors determining tax to GDP

Gupta (2007) analyzed the determinants of tax revenue in developing countries. The author

used a panel of 105 countries over the past 25 years and various panel data models in order

to �nd the most signi�cant variables in determining the tax to GDP ratio. By employing

�xed and random e�ects models, Gupta found out that agricultural share in GDP has a

strong negative relationship with tax to GDP. The author suggested that this is possibly

due to the fact that agricultural goods are usually quite hard to tax. Log per capita GDP

was signi�cantly positive in both models which is logical, because as income increases, tax

collection also tends to increase. Next, trade openness (import share of GDP) showed a

mild and positive impact on revenue. This could be due to the fact that trade-related

taxes are easier to impose because of higher control at posts at which the goods enter

of exit the country. Foreign aid appeared to have a weak and positive e�ect, probably

because of if foreign aid comes primarily in the form of loans then the burden of future

loan repayments may induce policymakers to mobilize higher revenues. Institutional factors

capturing government stability, corruption, law and order showed quite mixed e�ects, the

most important being corruption with a negative e�ect. Gupta also used a dynamic panel

model by including lagged tax to GDP ratio and found out that agriculture and import share

and log GDP per capita proved to be signi�cant although had smaller e�ects.

Castro and Ramirez (2014) also used both static and dynamic panel data models in

an e�ort to estimate the e�ects of economic, structural, institutional and social factors on

tax revenue. They used a panel of 34 OECD countries over a period of 11 years (2001-

2011). According to the results, GDP per capita had a positive e�ect, trade volume (sum

of imports and exports) was not signi�cant, FDI (foreign direct investments) relative to

gross �xed capital formation and agricultural share had a negative e�ect. Institutional

variables like civil liberties and political rights had a positive e�ect, but only the former was

signi�cant. Child mortality rates and education were not statistically signi�cant while life

expectancy was. Castro, Ramirez (2014) explained that the insigni�cance of trade volume

can be explained by fact that OECD economies are open and have reduced import taxes
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gradually. The sign of FDI variable is explained by that the creation of government incentives

to attract foreign investment reduces the potential to collect taxes. The insigni�cance of child

mortality and education states that social factors are not robust determinants of tax revenue.

Dynamic panel data models showed that tax revenue in middle income countries depend less

on its lagged values than high income countries, which indicates that the roll of economic,

institutional, social and structural factors are more important to determine current values

of tax revenue in the middle income countries.

Dioda (2012) analyzed the determinants of tax revenue to GDP in Latin America and

The Caribbean (a total of 32 countries) from 1990 to 2009. The author used a random e�ects

panel regression and found out that GDP per capita and trade openness (sum of imports

and exports) have a positive e�ect on tax revenue. The share of agriculture over GDP and

size of shadow economy were both statistically signi�cant but had a negative e�ect on tax

to GDP ratio. GDP per capita growth rate and lagged �scal de�cit were almost always not

signi�cant. The level of education, female labor force and population density have a positive

and signi�cant impact on tax ratio. Such political variables as higher degree of civil liberties

and more political stability are associated with higher tax to GDP ratio. The author found

that the structure of taxation does not diverge signi�cantly among the regions analyzed.

Basheer, Ahmad, Hassan (2018) examined the impact of economic and �nancial factors

on tax revenue of Bahrain and Oman from 1990 to 2010 by using a static panel data model.

The authors concluded that GDP growth, bank capital to asset ratio, risk premium on

lending, foreign direct investment, net in�ow and Cash surplus have the largest impact on

tax revenues. Financial variables seemed to have a lower e�ect, than economic variables.

Bank capital asset ratio and risk premium on lending had a negative, and all other mentioned

variables � a positive e�ect on tax revenue.

Morrisey et al (2016) used variuos static panel data models and analyzed the tax revenue

to GDP of 152 countries from 1980 to 2010. They showed that mineral and fuel exports

have a positive e�ect on revenue and have a quite consistent outcome on taxes in various

panel models. Manufacturing exports and agricultural share of GDP have negative signs but

are not consistently signi�cant. The contribution of imports is very small and together with

agricultural share of GDP not consistent throughout. In all models, GDP per capita had

a signi�cant and positive outcome to tax to GDP. By splitting the sample into two groups

- high/low income, democracy/non-democracy, resource-rich/non-resource-rich the authors

concluded that mineral exports as well as imports tend to act di�erent (have di�erent sign)

among these groups. Manufacturing exports tend to have a more negative e�ect in low
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income countries and democracies, which the authors found quite unusual.

Andreoni (2019) examined the determinants of environmental tax revenue in 25 European

union member states from 2004 to 2016. The author used index decomposition techniques.

The main results show just 5 of the 25 Member States have moved toward a more sustain-

able system. In particular, Italy, Greece, Slovenia, Estonia and Latvia have been the only

countries to increase the role of taxation rates and regulations and to reduce the relative

contribution that economic factors have played in the generation of the revenue collected.

For all the other Member States, economic growth and structural change e�ect have been

the main drivers of environmental tax revenue variations.

This analysis shows that the main variables that are signi�cant to tax revenue are GDP

per capita, which acts as a revenue proxy, agricultural share to GDP and trade openness

(sum of imports and exports). Authors also include some variables to represent institutional

sector e�ciency, like bureaucracy indexes and etc. Finally, population (workforce share in

total population or its growth rate) is also included. It can also be noted, that panel data

modeling is the usual tool for the analysis.

2.2.2 Implemented models for tax e�ort

There exists a quite a few papers, concerning the evaluation of tax e�ort and tax capacity.

Usually, a very similar methodology is used like in the determination of factors that in�uence

tax revenue. In essence, the same panel data modeling is used for the task of tax e�ort and

capacity evaluation.

Minh Le et al. (2012) used a static panel data model of 110 countries in order to estimate

the aforementioned criterion. OLS was used to �nd the model parameters, meaning that a

simple, pooled regression was implemented. The authors used GDP per capita, demography

(population growth rate or age dependency rate), trade openness (sum of exports and imports

as a percentage of GDP), agricultural value added, governance quality (bureaucracy quality

or corruption index) as the independent variables to model tax capacity. They also included

regional and time dummies. The variables were chosen by reviewing literature that discusses

the determinants of of tax collection. After performing some robustness checks, the authors

used coe�cients of the evaluated model to forecast the tax to GDP ratio and thus calculated

tax e�ort. They then grouped countries by the results and gave insights into what actions

should be taken by each group to bene�t.

Eltony (2002) analyzed tax e�ort in a panel of 16 Arab countries in a period of 1994-
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2000. The author used share of agriculture, share of mining, share of manufacturing, share of

exports, share of imports, share of foreign debt (all in share of GDP) and per capital income.

A static �xed panel e�ects model was estimated, because the author was interested in making

inferences conditional on the e�ects that are in the sample. Eltony (2002) concluded, that

the most important variables are income, share of manufacturing and share of agriculture.

Also, by calculating the tax e�ort for each country in every year, the author noticed that

some of the countries signi�cantly increased their tax e�ort, while others decreased it.

Piancastelli (2001) also used a static panel of 75 countries with a yearly period from

1985 to 1995. The author employed GDP per capita and the shares of trade, agricultural,

industrial and services sectors in GDP as variables for the panel data model. The static

panel model was estimated with �xed, random and no e�ects. The results showed that

including random or �xed e�ects signi�cantly increases the quality fo the model. Tax e�ort

was calculated by taking the coe�cients and predicting the tax to GDP ratio. By grouping

countries into 3 groups in terms of income, Piancastelli showed that as a country's income

level increases, its tax e�ort also tends to be higher.

The approach by estimating random and �xed e�ects static panel data regression has

also been used by Davoodi and Grigorian (2007). The authors used a panel of 141 countries

through a period of 1990-2004 in an attempt to estimate Armenia's tax e�ort. Amongst

the more exotic variables, used in the regression, were a dummy variable for fuel exporters

and the share of urban population in a country's total population. The oil variable was

included because countries that export oil are more likely to generate higher tax revenues.

Urban variable represents the demand for public services, as the authors postulated that

residents, living in the city, create a need for public services. The results showed that

random e�ects regression was a more solid choice, because it explained more of the tax-to-

GDP ratio variance. The authors concluded, that the country's tax e�ort falls short of its

potential by about 6.5 percent of GDP and that the improvements in institutions as well as

policy measures designed to reduce the size of the shadow economy are prominent factors in

increasing tax performance.

Pessino and Fenochietto (2010) expanded the panel data approach by mixing it with a

stochastic frontier framework. The data was composed of 96 countries and a yearly period

from 1991 to 2006. The variables used were: GDP per capital, sum of imports and exports as

percent of GDP, consumer price index, public expenditure on education, agricultural value

added, GINI and corruption indexes. The authors concluded, that most European countries

with high GDP per capital and education, open economies and low in�ation are near their
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tax capacity.

Stochastic frontier analysis integrated with panel data was also used by Garg, Goayl, Pal

(2017) and Valles-Gimenez, Zarate-Marco (2017) in order to estimate tax e�ort in Indian

states and Spanish municipalities respectively. The former found out that higher income is

correlated with larger tax capacity. They also noticed that the disparity in tax e�ort between

states is widening in time. The latter was able to conclude that Spanish municipalities are

nearing their full tax potential and maybe some intervention is needed.

In a quite new approach, Dalamagas et al. (2019) used the assumptions of the Arrow-

Debreu to analytically �nd tax capacity. By using a Lagrangian framework, the authors

concluded that it is equal to GDP minus consumption. The tax e�ort is then the ration

between actual tax revenue and the tax capacity. After calculating the tax e�ort, the authors

then performed a correlation analysis between approaches in panel data models and showed

that their results highly correlated with those obtained from econometric modeling.

A natural question of whether there exists an optimal value for tax e�ort arises, which

would give further insight into a countries tax system. Mahdavi and Westerlund (2018)

analyzed 48 states of the US over a period of 1981-2013 in order to �nd convergence in

tax capacity or tax e�ort. The authors used a Bootstrap sequential quantile test (BSQT)

of unit root. They found that neither tax capacity nor tax e�ort of the state-local (and

state) government units showed any sign of convergence in terms of narrowing of the gaps.

However, there was evidence of partial e�ort convergence only when own-source revenue was

more broadly de�ned to include non-tax revenue items beyond charges and fees.

Finally, one can understand, that the estimation of a countries tax e�ort mainly falls on

two keystones: variable selection and model structure. First, it is obvious that including

or not a single variable can lead to severe changes in the models' coe�cients. Although, as

was seen before, there exists some literature on the fundamental factors that determine tax

revenue it is not clearly determined, which variables should one choose. Second, primarily

static panel models are used. This asks for the implementation of dynamic panel models for

tax e�ort evaluation as it is possible that these models would give more information to the

model. It should be noted that these models do not aim to best �t the model to the data, but

to capture the general tendencies of tax revenue by using macroeconomic and institutional

determinants. Lastly, it should be noted, that tax capacity is calculated by taking the �tted

values of the model for tax revenue.

A table is provided in appendix E which is taken from Atsan (2017) which summarizes a

large number of research done in the analysis of tax e�ort. The table shows the dependent
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(second row) and independent variables used in panel models. It can be seen, that the most

frequent are trade openness, agriculture, GDP per capita and population growth.

Next, time series clustering is introduced as this approach can shed more light about a

country's tax dynamic.

2.3 Time series clustering

In the case where there exists multiple time series objects, one can implement time series

clustering to have a better understanding about the analyzing systems in hand. As the size

of data generating processes increase, this method becomes more involved in data analysis

techniques. The area of time series clustering is quite broad: bio medicine, computational

biology, electronic manufacturing, physics, seismology and even speech recognition. Also,

the �eld of econometrics has also bene�ted from this method. For example, according to

Focardi and Fabozzi (2004), clustering of economic and �nancial time series includes the

following areas of application:

• identifying ares of sectors for policy-making purposes;

• identifying structural similarities in economic processes for economic forecasting;

• identifying stable dependencies for risk and investment management.

Augustynski and Laskos-Grabowski (2018) suggest that one of the most valuable advan-

tages of time series clustering is the identi�cation of structural similarities at di�erent points

in time and space.

Since this thesis deals with a large number of countries over a period of time, time series

analysis can be implemented. This is done with an incentive to have a better understanding

on how tax to GDP can be grouped and what characteristics these groups have. Two

approaches are implemented for time series clustering: by working with discrete values and

functions.

It should be noted, that time series clustering acts as a descriptive statistics approach to

the data. Its main goal is to see where Lithuania stands among other countries.

2.3.1 Discrete time series clustering

One of the main parameters in discrete time series clustering is the dissimilarity measure.

Various analysis software programs o�er a broad range of distance functions which may often

lead to di�erent results.

According to Lin and Li (2009) and Corduas (2010) all dissimilarity measures can be
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grouped to two categories: shape and structure based. The former is aimed for the compar-

ison the geometric pro�les of the series, or alternatively, representations of them designed to

reduce the dimension of the problem. This leads to fact that that shape-based dissimilarities

are mainly dominated by local comparisons. Structure-based dissimilarity is focused at com-

paring the underlying dependence structures of a process. Higher level dynamic structures

describing the global performance of the series must be captured and compared in this case.

As the interest leans towards shape-based dissimilarity, standard distances (for example

Lp type) or complexity-based measures (for example CID dissimilarity) can give acceptable

outcomes, although sometimes measures invariant to speci�c distortions of the data could

be required. For example, time series that have di�erent scales will require previous nor-

malization to cancel di�erences in amplitude and then match well similar shapes. In fact,

conventional metrics like Minkowski, DTW or Frechet distances can lead to common misun-

derstandings unless the processes at hand are recorded in the same units (Rakthanmanon et

al. 2012).

In this thesis shape-based distances, provided below in table 1, will be used because the

data in hand is quite short in length and without any anomalous values (outliers).

Distance Formula Summary

Euclidean d(XT , YT ) =

(∑T
t=1(Xt − Yt)2

)1/2
"Ordinary" (i.e.straight-line)

distance between two points

Frechet d(XT , YT ) = minr∈M

(
maxi=1,,,m |Xai − Ybi|

)
Takes into account the location

and ordering of the points

DTW d(XT , YT ) = minr∈M

(∑
i=1,...,m |Xai − Ybi|

)
Similar to Frechet's distance

CID dCID(XT , YT ) = CF (XT , YT ) · d(XT , YT )

Calculates a correction of the

Euclidean distance based on the

complexity estimation of the series

COR dCOR,1(XT , YT ) =
√

2(1− COR(XT , YT ))
Uses Pearson's correlation coe�cient

as a distance between two points

CORT dCORT (XT , YT ) = φ[CORT (XT , YT )] · d(XT , YT )
Uses temporal correlation coe�cient

as a distance between two points

Table 1: Metrics used in discrete time series clustering

Summing up Montero and Vilar (2014) conclude that shaped-based distances work well

with short time series but they can fail by working with long sequences. This can be especially

probable when a high amount of noise or anomalous records are present. In these situations,
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a structure-based dissimilarity aimed to compare global underlying structures can be more

appropriate.

A more thorough inquiry into each distance is provided in appendix A. Next, we introduce

the concept of functional data.

2.3.2 Functional data and data smoothing

Usually data analysis is performed on data which contains a set of observations, meaning

that the information is discrete. If functional data analysis is carried out, the observed data

are depicted as a function, which means that the data is continuous. If, for example, in a

discrete framework one deals with time series, then in a functional data framework, this time

series becomes a function, or curve, which is then treated as a single functional entity. The

continuum of a function is often time.

By "transforming" the data from discrete observations to a function, one tries to capture

the general tendency of the data, rather than �tting a curve that completely �ts the process

at hand. For example, the tax to GDP data for each country can and possibly is with

some level of measurement error. While countries try to be precise in gathering their tax

data, it is quite common to make mistakes, miscalculations ir the process of information

aggregation, approximation and etc. To account for this measurement error, one can try to

capture the general tendency of the data, which can be done by functional data. The notion

of continuum in tax data also has a meaning, as taxes are payed every day or even hour,

they are just aggregated yearly, which also holds true for GDP.

The �rst step to perform functional data analysis is to smooth discrete data points. Let

t be a one-dimensional argument which can be referred as time. Functions of t are observed

over a discrete grid t1, .., tj at sampling values tj, which may or may not be equally spaced.

For a functional datum to be created, a basis needs to be speci�ed. This basis is a linear

combination of functions which de�nes the functional object. A functional observation Xi is

de�ned by:

XI(t) ≈
K∑
k=1

cikφk(t), ∀t ∈ T (40)

where φk(t) is the k
th basis function of the expansion and cik is the corresponding coe�-

cient. As mentioned before, the data usually contains observational errors that are superim-

posed on the underlying process. In reality, one often meets a scenario which involves N pro-

cesses being observed at the same time. Let y be a vector of N functional y = [y1, ...,yN]T ,
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where each functional data are written as:

Yij = Xi(tj) + εij (41)

where 1 ≤ j ≤ J, 1 ≤ i ≤ N and εij is the error term with 0 mean and variance σ2
i .

Although there exits several bases for functional data, this thesis employs the Fourier

basis, which takes on the following form:

φ0(t) =
1√
|T |

, φ2r−1(t) =
sin(rωt)√
|T | /2

, φ2r(t) =
cos(rωt)√
|T | /2

(42)

where r = 1, ..., K−1
2

with K being the number of basis functions. Note that this number

must be odd. The frequency ω determines the period and the length of the interval |T | =

2π/ω.

(42) can also have a penalty parameter λ which acts as a smoothing instrument, meaning

that as λ increases, the smoothness of the functional datum also increases.

The Fourier basis was chosen because during practical applications in the thesis, other

bases gave unusable results. This can be due to the fact that the data used in this thesis is

quite short, as each series has only 16 observations.

2.3.3 Functional principal components and score clustering

Functional principal components (FPCA) is a useful tool for functional data analysis. In

essence, FPCA does not deviate much from regular principal component anaysis. Ramsay

and Silverman (2002) state that in functional context, every principal component is speci�ed

by a principal component weight function ξ(t). These functions are de�ned over the same

range of t as the functional object. The principal component scores of an individual process

are then de�ned:

zi =

∫
ξ(t)Xi(t)dt (43)

Next, the �rst principal component ξ1(t) is found by maximizing the variance of the �rst

principal component scores
∑N

i=1 z
2
i1 subject to the constraint:∫

ξ(t)2dt = 1 (44)

The second, third and higher order principal components are de�ned in the same approach

as the �rst component, but with additional constraints. The second principal function ξ2(t)

are subject to the constraint (44) and:∫
ξ2(t)ξ1(t)dt = 0 (45)
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In general, for the jth component, additional constraints take the following form:∫
ξj(t)ξ1(t)dt =

∫
ξj(t)ξ2(t)dt = ...

∫
ξj(t)ξj−1(t)dt = 0 (46)

Note, that (46) ensures orthogonality between the components. In tax time series context,

the �rst principal component, which explains the largest amount of variance, can capture

the underlying trend of all the analyzed countries. This gives insight into the dynamics of

global taxation variation.

The scores calculated in FPCA can also be used for clustering. Since every process

or individual has a score, they (the individuals) can be represented by the score of each

component. If the �rst 2 or 3 components explain a su�cient amount of variation, these

scores can be plotted on a 2D or 3D domain in order detect outliers or to have a better

understanding of the data at hand. Naturally, these scores can be clustered with classical

clustering algorithms like hierarchical or k-means. This practice has been used by Shang

(2014), Illian et al. (2009), Suyundykov et al. (2010) and others.

It is noteworthy, that there exist other functional data object clustering methods. Usually,

these approaches are quite computationally expensive. Jacques et. al (2014) conducted a

survey of clustering methods for functional data and showed that working with FPCA scores

provided at least as good or better results than other frameworks.

3 Application results

3.1 Used data

The data used in this thesis is gathered from the World Bank database from years 2002 to

2017. The taxation variable is represented by the tax revenue to GDP ratio. Tax revenue

refers to compulsory transfers to the central government for public purposes. Certain com-

pulsory transfers such as �nes, penalties, and most social security contributions are excluded.

Refunds and corrections of erroneously collected tax revenue are treated as negative revenue.

The independent variables are trade openness (sum of imports and exports ratio with

GDP), agriculture (agriculture, forestry, and �shing, value added to GDP), �nal consumption

expenditure (private and general government consumption ratio to GDP), GDP per capita,

age dependency ratio (people younger than 15 or older than 64 ratio to people aged between

15-64), corruption index (calculated by the World Bank, spans from -2.5 and 2.5, higher

value indicates less corruption). The corruption index is "lifted" by 2.5 (add 2.5 to every

observation) in order to avoid negative values.
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These variables will be referenced as TAX, TRADE, AGR, CONS, GDPPC, POP and

CORRU henceforth. The independent variables were chosen in accordance with empirical

�ndings in subsection 2.2 and appendix E. Among the most popular independent variables

(TRADE, AGR, GDPPC and POP) we add CORRU as a institutional proxy and CONS

because it is known that a lot of tax income comes from indirect taxes (for example the value

added tax).

As mentioned before, almost every variable contains missing values:

Percent of missing values

TAX AGR TRADE GDPPC CONS POP CORR

5% 1.51% 0.96% 0.41% 1.47% 0% 0.41%

Table 2: Percentage of missing values

As can be seen, the taxation variable has the largest percent of missing values. A struc-

tural model is �tted for every variable with Kalman smoothing. Since the data is yearly and

quite short, the issue of seasonality becomes irrelevant, thus a local linear trend model is

chosen. Only time series with no more than 5 missing values (per country) are imputed. This

is done so that the series as a whole would have around 30% of its values missing and not

more, so as not to include a large amount of error. After the imputation, the data contains

99 countries, which makes the total data set 1584 observations long.

Since the data covers the period of the 2008-2009 �nancial crisis, in further modeling this

information must be accounted for. The following table shows how much negative values

(from logged di�erences) appear in each year in the TAX variable:

Year Count of negative values Year Count of negative values Year Count of negative values

2003 39 2008 50 2013 36

2004 27 2009 68 2014 40

2005 22 2010 44 2015 35

2006 26 2011 32 2016 41

2007 36 2012 36 2017 31

Table 3: Negative values in TAX by year

It can be seen, that the year 2009 contains the largest amount of negatives values. There-

fore the inclusion of a time dummy variable in future modeling will be necessary.

Next, the results from discrete and functional clustering are provided. It should also

be noted, that the results in every section emphasize not only Lithuania, but its neighbors
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(Latvia, Estonia and Poland) also. This is done in order to have a reference point.

All calculations further in this thesis are done with the statistical software program R

and can be provided upon request.

3.2 Clustering

In order to have a better understanding about Lithuania's position among other countries,

we perform time series clustering. This information is useful in order to have a "bigger

picture" perspective about the data at hand. Since we are dealing with a large number of

variables and countries, visualization becomes quite hard and thus clustering is a more useful

tool.

The clustering for discrete time series is done in the following principle:

1. Use the variable TAX and calculate the distance matrices with each of the 6 shape-

based dissimilarity measures;

2. Use hierarchical clustering (4 clusters) on each metric with Ward's linkage;

3. Calculate the mean values of all 7 variables for each cluster. We can think of the results

as cluster centers;

4. Divide Lithuania's, Latvia's, Estonia's and Poland's mean value of the variables (from

the vector containing years 2002-2017) from the cluster mean value to which each

country belongs. The results give following information: how much each country's

mean constitutes of its cluster's mean (for every variable). Lithuania, Latvia, Estonia

and Poland are chosen because of their economic similarities;

5. Repeat step 4 for each metric and then calculate the mean for each country from all

the metrics.

Hierarchical clustering was chosen because it provides reproducible results and requires

fewer assumptions about the data. The main idea behind these calculations is to see, how

much each country di�ers (if it does) from its cluster. If the value in step 5 is close to 1

for a particular variable, then this means that a country is in the center of its cluster in

that particular variable. With this information, one can have an understanding, how similar

countries (in the context of tax revenue) look with respect the macroeconomic forces that

govern them.

The dendogram from discrete time series clustering can be shown with the Euclidean

distance metric in order to see the number of clusters possible (�gure 1). It should be noted,

that for both FPCA and discrete time series approach these dendograms looked very similar,
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Figure 1: Dendogram from discrete time series clustering with Euclidean metric

thus they are not shown in this thesis.

As seen from �gure 1, cutting the tree at the height of about 170, provides 4 clusters. 4

groups of countries seems logical as usually various development indexes (OECD or World

Bank) divide countries into 3 or 4 groups. Choosing less than that would defeat the purpose

of clustering. This is why 4 clusters were chosen.

Functional data clustering is also performed. As mentioned before, smoothing the data

can help avoid measurement errors which in turn can lead to better quality results.

The algorithm is quite similar for functional data but not the same:

1. Smooth the data using the Fourier basis;

2. Perform FPCA on TAX for all of the 99 countries;

3. Cluster (hierarchical, Ward's method, 4 clusters) the scores from a number of principal
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components, that explain at least 90% of variation. Here, the standard distances are

chosen (Euclidean, Minkowski, Maximum, Canberra, Manhattan);

4. Repeat steps 3, 4, 5 from the algorithm for discrete data.

Before providing the results, the "side" results from functional smoothing are shown as

they give quite interesting observations. Each TAX time series is smoothed with the Fourier

basis using 11 basis functions and imposing a penalty of λ = 0.001. The picture below shows

Lithuania's TAX fact, it's smoothed version and the �rst component of all 99 countries.
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Figure 2: Results from smoothing

As can be seen, from �gure 2, the smoothed version of Lithuania's TAX captures the

general tendency of it's fact quite good. In the end one can observe that the smoothed version

has a little spike. These "curls" or "turns" are usually seen in data, that are smoothed with

the Fourier basis, as this basis uses sines and cosines. What is more interesting, the �rst

component, which accounts for 89% of total variation of all countries, is quite similar to

Lithuania's smoothed TAX curve. This means that the general tendency of TAX in all 99

countries exhibits similar movement as Lithuania.

By plotting the scores of the �rst two components (which account for 96.6 % of all

variation) on a 2 dimensional surface, one can see how all the countries are scattered in the
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context of TAX.
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Figure 3: First two component plot

Several things can be observed from this �gure 3. First,there are visible clusters, which

gives further incentive to perform cluster analysis. Second, aberrations can be identi�ed,

as Cyprus, Malta, Kuwait or even Denmark appear to be further (some especially further)

from the rest of the countries. It should be noted, that these cases are outliers in the context

of TAX tendency, meaning that the dynamics of the variable of these countries di�ers from

others. It is well known, that for example, Malta or Cyprus has been a tax haven for investors

and businesses for some time, which might explain their departure from the rest of the world.

Next, the information to which cluster each country was assigned is provided below:

LTU LVA EST POL

EUCL 2 3 3 2

CORT 2 3 3 2

FRECHET 3 3 3 2

DTWARP 2 4 4 2

COR 2 1 1 4

CID 3 2 2 3

Table 4: Results from discrete time series clustering
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As seen in table 4, in most of the distances, Lithuania and Poland are separated from

Latvia and Estonia. Only the Frechet and Correlation distances provide di�erent results.

Next, the same results for FPCA scores is shown. The results in table 5 show, that every

metric separates Lithuania and Poland from Estonia and Latvia.

LTU LVA EST POL

EUCL 2 4 4 2

MAX 2 4 4 2

MANH 2 4 4 2

CANB 2 3 3 2

MINK 2 4 4 2

Table 5: Results from FPCA score clustering

In order to see, if these results are good or bad, TAX is shown for each of the 4 countries:
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Figure 4: TAX dynamics of Lithuania, Estonia, Latvia and Poland

It is quite clear from �gure 4 that indeed Poland and Lithuania have similar dynamics.

After the crisis, a divergence can be seen with Estonia and Latvia rising greatly upwards.

This means that cases, where these countries are separated give plausible results. Tables 4

and 5 show that both methods perform good, but the FPCA score clustering gives better

results.

The results of the clustering can be visualized in �gure 5. Here the clustered FPCA scores

(with the Euclidean metric) are presented. Each color represents one of the 4 clusters. It
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appears that the green cluster is somewhat further from the blue one, and both black and

red clusters have thick cluster centers.
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Figure 5: FPCA clustering results with Euclidean metric

Lastly, the results from both discrete and FPCA clustering are shown in table 6.

Discrete time series

TAX AGR GDPPC TRADE CORRU POP CONS

LTU 1.03 0.53 1.10 1.36 1.12 0.90 1.04

LVA 1.02 0.77 0.56 1.10 0.86 0.92 1.00

EST 0.97 0.63 0.72 1.48 1.14 0.94 0.90

POL 1.04 0.31 1.23 0.86 1.25 0.78 1.00

Table 6: Results from discrete time series

Discrete time series clustering shows that AGR and TRADE variable means are not in

the centers of their clusters. This means that countries, that achieve a similar dynamic and

level of taxation, usually have a higher agricultural sector. The inverse situation is seen

for trading, as Lithuania is around 36% higher than other countries with similar level of

TAX. What is more interesting, that the TAX value stands at 1.03 which would indicate the

Lithuania is in the middle of the cluster across all metrics. CORRU in Lithuania, Poland and
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Estonia are larger than 1, which means that countries in each country cluster have higher

corruption.

Since it is known from empirical research that agriculture has a negative and trade open-

ness - a positive e�ect on tax, it would seem that by being the lower position (AGR) and

higher (TRADE) should boost Lithuania's position above 1 in the TAX variable. A possible

explanation for this is that these sectors are not e�ciently used taxwise. Also it is possible

that after the crisis, the TAX drop is not natural in the sense of macroeconomics; perhaps

Lithuania's �scal policy agents tried to cope with the crisis and imposed new regulations

and etc., which had this e�ect. Appendices H and I provide cluster centers for discrete and

FCPA score clustering. It can be seen that clusters, who have a higher TAX tend to have a

smaller AGR and higher TRADE.

Other variables of Lithuania seem (POP, GDPPC and CONS) seem to be near the center

of their clusters. The large di�erence between Latvia's and Lithuania's GDPPC value means

that Latvia reached its TAX level with a substantially lower GDPPC, which also reinforces

the theory that perhaps after the crisis, TAX acts not entirely governed by macroeconomic

factors.

Looking at table 7 it is clear that FPCA approach gives very similar results. Of course,

to some extent the values di�er, but the main observation remains essentially the same -

both AGR and TRADE remain lower and higher respectively. Of course, lower AGR values

are also visible for other neighbors.

Functional time series

TAX AGR GDPPC TRADE CORRU POP CONS

LTU 1.11 0.45 1.22 1.39 1.19 0.89 1.04

LVA 1.00 0.71 0.65 1.10 0.88 0.95 0.99

EST 0.95 0.58 0.84 1.48 1.17 0.96 0.88

POL 1.15 0.27 1.26 0.95 1.34 0.75 1.00

Table 7: Results from FPCA scores

The results can also be plotted in a radar chart for visual aid. The results from table

7 are used to form a radar plot which is provided below. The values are given ir percents,

meaning that 100 is equal to 1 from table 7.

Looking at the �gure 6, it is clear that no country reaches its center in AGR. The countries

also are quite widely distributed in GDPPC and TRADE and close to one another in POP,

CONS and TAX. The overall shapes of each neighbor are di�erent indicating that between
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each country, they are somewhat unique.

Figure 6: TAX dynamics of Lithuania, Estonia, Latvia and Poland

Next the results from a PVAR model and IRF are presented.

3.3 Impulse response functions

As mentioned in the literature overview, authors usually are uni�ed when determining the

e�ect of independent variables to TAX. Generally, GDPPC, TRADE, CONS have a positive

e�ect and POP, AGR have negative e�ects. Increasing institutional quality has also a positive

outcome.

It is interesting to see, how these e�ects vary in countries with di�erent income levels.

Since in general higher income countries are associated with more developed economies, tax

systems and etc., perhaps the e�ects of macroeconomic factors act di�erent. As seen in the

literature overview, usually researchers evaluate models for all countries and then analyze

their model coe�cients. Papers on di�erent country groups are di�cult to �nd, so the

question remains with large amount of potential research. Since the software for a PVAR
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model has just recently been developed, implementing the model on the data at hand and

giving further insights into the subject becomes a possibility.

Before implementing the IRF analysis, panel unit root and panel Granger causality tests

are performed. Below, various unit root tests and their p values are shown. The tests are

performed on logged data.

Undi�erenced

Levinlin Madwu PM Logit Invnormal

TAX 1 1 1 1 1

CONS 0.09 0.98 098 1 1

AGR 0 0 0 0 0

TRADE 0.99 1 1 1 1

GDPPC 1 1 1 1 1

CORRU 0 0.07 0.07 0.08 0.09

POP 1 0 0 1 1

Table 8: P values of various panel unit root test results

Various test show that most of the variables have a unit root. It would also seem that

AGR and CORRU do not have a unit root. Also, two tests show that POP is I(0). Next,

we di�erence each variable and perform the tests again:

Di�erenced

Levinlin Madwu PM Logit Invnormal

TAX 0 0 0 0 0

CONS 0 0 0 0 0

AGR 0 0 0 0 0

TRADE 0 0 0 0 0

GDPPC 0 0 0 0 0

CORRU 0 0 0 0 0

POP 0 0 0 0 0

Table 9: P values of various panel unit root test results

Since all the p values are 0, the null is rejected in the favor of the alternative, meaning

that all variables are I(0) after the di�erentiation. It is noteworthy that if a model would

require variables to be stationary, then AGR, CORRU and maybe POP would not require

di�erentiating, but in order to work with the same units of measure (logged di�erences can

be thought as growth rates) performing this transformation would not be inexpedient.
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Next, Granger causality for each variable with TAX is conducted in order to see if each

variable Granger causes TAX. The test is performed by including lags until the test shows

that a variable causes TAX. The data is in logged di�erences because the procedure requires

the data to be stationary. The results are provided below:

Variable GDPPC AGR TRADE CONS POP CORRU

First signi�cant lag 3 1 1 3 1 1

Table 10: First signi�cant lag in Granger causality test

All variables except GDPPC and CONS Granger cause in the �rst lag. This does not

necessarily means that when constructing a PVAR model, these number of lags will be used;

the test merely shows that the macroeconomic and institutional factors have and e�ect on

TAX and that PVAR modeling is viable, which follows next.

All 99 countries are divided into 3 groups. This is done by calculating each country's

mean GDPPC for 2002 - 2017. Then, the vector of 99 means is cut in 3 parts by the 33

and 66 percentiles (Lithuania belongs to the second group). Then, for each of the 3 groups,

a PVAR model was �tted. Since the inclusion of more than 3 variables in the model gave

unstable results, a pairwise analysis was done, meaning that for each group a total of 6

models were estimated: a model with TAX and AGR, with TAX and TRADE and so on.

Because the information criterion (provided in Appendix B) showed lowest values for a

PVAR(1) model, only one lag was included for all models. Also, system GMM estimation

provided usually unstable models, so GMM was used with forward orthogonal deviation

transformation. Lags (2,3,4,5) of the dependent variable are used as instruments for estima-

tion. Up to 5 lags are used because including more caused errors/warnings in the program.

A dummy exogenous variable was also used for the crisis in the year 2009. All variables

are used in logs. The eigenvalues of each model (for stability diagnostics) are provided in

appendix J. Below an example PVAR(1) model for AGR is provided:

∆∗ln(TAXi,t) = α1∆∗ln(TAXi,t−1) + β1∆∗ln(AGRi,t−1) + γ1CRISIS + εi,t

∆∗ln(AGRi,t) = α2∆∗ln(AGRi,t−1) + β2∆∗ln(TAXi,t−1) + γ2CRISIS + εi,t

(47)

Next, the GIRF results with 95 % con�dence interval from bootstrap 100 runs are shown

for TRADE. The dynamics of the shock is shown though a total of 8 years, meaning that if

a positive shock in TRADE (or any other variable) happens at t− 1, these plots show how

TAX responds for the next 8 years from t− 1.

As can be seen from �gure 7, for the lowest income groups, the response from a shock in
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Figure 7: Response of TAX from a shock in TRADE

TRADE has a generally positive e�ect on TAX. Since the con�dence interval bands do not

cover up 0 until the 8 lag, these shocks are signi�cant. Since forward orthogonal deviations

transformation was used, the quantitative evaluation of these shocks becomes somewhat

clouded. Also, it is known, that some software packages measure shocks in standard devia-

tions of the errors. Despite this, it is clear, that as the income level of countries increases,

the e�ect becomes insigni�cant, as the con�dence intervals in the third group cover up 0.

Since it is known that higher developed countries become more intertwined economically

(for example more trading between one another as in the EU), the decrease in TRADE as

income rises has a logical interpretation. Countries that trade with each other intensively

usually lower export or import tari�s for the good to be cheaper thus boosting demand. This

in turn lowers tax income which explains the 0 e�ect of a TRADE shock in the third group.

Next, the AGR shocks are shown in �gure 8:

AGR on TAX, 1st group AGR on TAX, 2nd group AGR on TAX, 3rd group

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

−0.02

−0.01

0.00
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steps

GIRF and 95% confidence bands

Generalized impulse response function

Figure 8: Response of TAX from a shock in AGR
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The situation is quite similar to TRADE, because as income rises, the shocks become

positive from negative. The con�dence intervals show that in general all responses are

signi�cant. As Minh Le et al. (2012) states, the negative e�ect of AGR can be explained due

to the fact that agricultural goods are harder to tax. It is possible, that as a country develops,

the e�ectiveness of its tax system becomes better, meaning improved tax collection, more

e�ective tari�s and etc. This could transpire to the taxation of agricultural goods, which

would lead to a situation where the sector no longer poses as a burden to a country's tax

system. It is possible, that higher income countries actually have bene�ts from the increase

of agriculture.

The GDPPC shocks on TAX can be seen below:

GDPPC on TAX, 1st group GDPPC on TAX, 2nd group GDPPC on TAX, 3rd group

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
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Generalized impulse response function

Figure 9: Response of TAX from a shock in GDPPC

From �gure 9 it can be seen that a positive shock in GDPPC leads to a decrease in TAX

at the highest income group. This is in fact the opposite of what can be expected, as GDPPC

can in interpreted as income, thus their increase should rise tax revenue. In other groups,

the shock is positive at �rst, but in later periods it converges towards 0. A negative response

in the third group can be due to the fact in high income countries, possibly a large amount

of income is concentrated in a small number of companies. When their income increases, due

to ine�ective progressive taxes, the budget might not increase by a proportional amount.

Below in �gure 10 the results from a positive shock in CONS are displayed. Generally,

consumption should have a positive e�ect as usually goods are taxed with a value added tax

or something similar, thus consuming more should lead to higher TAX. In the �rst group,

however, the response is 0 throughout all periods. A possible interpretation for this is that

lower income countries might have an e�ective tax system which could cause such a reaction.

The shocks in the third group causes a positive response. The main conundrum appears in
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the second group, where in the �rst lag we can see a positive reaction but it becomes negative

in later moments. Perhaps the second group has a sizable shadow economy in which goods

or services are bought but not taxed. The last group provides logical results, as a positive

shock in CONS gives a positive response in TAX.

CONS on TAX, 1st group CONS on TAX, 2nd group CONS on TAX, 3rd group

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

−0.02
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0.02

steps

GIRF and 95% confidence bands

Generalized impulse response function

Figure 10: Response of TAX from a shock in CONS

Looking at TAX responses to POP shocks in �gure 11, very large con�dence intervals

can be seen (probably due to the eigenvalues being close to 1). The shocks tend to be-

come less negative going from the �rst group to the last, which coincides with AGR and

TRADE results. This would mean that as the tax system improves with income and general

development, the problem of administrating taxes of a large workforce no longer is an issue.

POP on TAX, 1st group POP on TAX, 2nd group POP on TAX, 3rd group
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Figure 11: Response of TAX from a shock in POP

Lastly, CORRU shocks are presented below in �gure 12. Shocks in the �rst two groups

can be regarded as not signi�cant due to con�dence intervals covering 0. The third group
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exhibits a negative reaction from the second period. Since two groups do not respond to

CORRU shocks, it is a possibility that the index might not have an e�ect on TAX.

CORRU on TAX, 1st group CORRU on TAX, 2nd group CORRU on TAX, 3rd group

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
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−0.01

0.00

0.01

steps

GIRF and 95% confidence bands

Generalized impulse response function

Figure 12: Response of TAX from a shock in CORRU

The results of IRF analysis show that the variables have a di�erent e�ect in each income

group. This information has to be accounted for in further modeling. Since Lithuania

belongs to the second group, it would appear that the country is in a transition phase. It

is possible that as Lithuania develops to a high income country, the e�ects of the factors at

hand will have a di�erent outcome and create new challenges.

3.4 Dynamic panel data modeling

As mentioned before, a dynamic panel data model is one that includes a lagged dependent

(or independent) variable. In inclusion of this information enriches the model by capturing

the dynamics of the variables at hand. The lagged dependent variable can also encompass

information that a�ects the dependent variable but has has been excluded.

In this section dynamic panel data models are implemented. These models are estimated

in two approaches: the system GMM and the orthogonal reparametrization, proposed by

Lancaster (2002). The latter will be called MLE (maximum likelihood) henceforth. The

regular GMM is not implemented because it gave poorer results than system GMM, therefore

it was excluded. Since IRF analysis showed that variables e�ect the dependent variable

di�erently in each income group, the dynamic models have a �xed e�ect included in them.

This will account for group e�ects as well as other not included variables in the analysis.

Also, the data is in logged di�erences, because when estimation was done on only logged

data, the lagged dependent variable coe�cient reached nearly 1, indicating non stationarity.
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For each estimation method, the lag selection is a bit di�erent. Since the system GMM

approach does not have a formal method for lag selection, the initial model consists of the

lag of the dependent variable with independent variables not lagged. A crisis dummy for

2009 is also included. In this model, AGR and CORRU were not signi�cant, so their �rst

lags were included, but were insigni�cant also. Second lags were not tested, because this

would mean that the present TAX is determined by AGR and CORRU from 2 years behind

which is very unlikely. Thus the initial model is chosen. Like in the PVAR model, lags from

second to �fth of the dependent variable are used as instruments for estimation. Appendix

L provides the estimated models with Sargan's test p values.

For the MLE estimation, the deviance information criterion (DIC) is used of lag selection.

Once again, the initial model is the same as for the system GMM. AGR and CORRU were

also insigni�cant, so their �rst lags were included and the DIC was calculated in order to see,

which model is the best suited for the data. Once again, the initial model was best suited

for the data. Appendix K provides the estimated models with DIC values.

Thus, in both the MLE and system GMM approach, the following model is estimated:

∆ln(TAXi,t) =γ∆ln(TAXi,t−1) + β1∆ln(AGRi,t) + β2∆ln(TRADEi,t)+

β3∆ln(GDPPCi,t) + β4∆ln(CONSi,t) + β5∆ln(POPi,t)+

β6∆ln(CORRUi,t) + φCRISIS + α∗i + εi,t

(48)

Of course, the �xed e�ect is "removed" in the estimation process. The estimated coe�-

cients for both models are presented below:

MLE System GMM Signi�cant?

TAX lag -0.095 -0.094 YES_YES

CONS 0.193 0.168 YES_YES

AGR 0.013 0.011 NO_NO

TRADE 0.082 0.104 YES_YES

GDPPC 0.329 0.271 YES_YES

CORRU 0.012 0.015 NO_NO

POP -0.394 -0.441 YES_YES

CRISIS -0.04 -0.04 YES_YES

Table 11: Model coe�cient estimates and signi�cance at α = 0.95

From table 11 it can be seen that the estimates of each variable are somewhat similar.

POP, lag of TAX and CRISIS have negative values. The results obtained do not di�er

42



from previous researches. Although insigni�cant, AGR and CORRU are kept in the models

because they carry some sort of information about the corruption and agricultural sector in

countries, which makes the model more realistic.

Having evaluated both models, the TAX potential can be calculated for each country.

As mentioned before, the tax potential is essentially the �tted values of the model. Below

the results from both models are presented for Lithuania. Since the data was di�erenced, 1

observation is lost, so the year starts from 2003.

Looking at the results below, the MLE approach shows that before the crisis, Lithuania's

TAX fact was very close to its potential.
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Figure 13: Lithuania's TAX fact and potential from the MLE approach

After the crisis, both the fact and potential experience a drop, although the latter begins

to rise in future periods while the former continues to drop. The mean ration of these two

curves (or tax e�ort) from 2003 to 2017 is 0.9, which means that Lithuania is 10% away from

its TAX potential. According to the results, this also means that tax policy imposers can

increase taxes or the tax base because in order to boost revenue, without causing too much

harm to the economy.

Looking at the results in �gure 14 from system GMM, they appear to be quite similar,

although Lithuania never reaches its potential during the period. The ratio now reaches

0.83, which is a bit lower than the one from MLE estimation. Despite these little di�erences,

both models show that Lithuania is not "living up" to its TAX potential and that a tax

increase can be a justi�able action by law enforcers.

Although both models provide very similar results, only one must be chosen for further
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Figure 14: Lithuania's TAX fact and potential from the system GMM approach

analysis. Comparing these models is not trivial as both models are estimated very di�erently.

Furthermore, any metrics, like MAPE, MSE or R2 can not be used because a better model

in this approach would be the one that �ts the TAX data better, which is not the aim in

these models. It is noteworthy to point, that the Sargan test for the system GMM model

showed a p value of 0.051, which indicates that the instruments might not be fully valid,

indicating that the MLE approach is better.

Analyzing the autocorrelation function estimates, 4 countries in the system GMM model

and 6 countries in the MLE model appear to have signi�cant lags. Since these numbers are

low (99 countries in total), it can be concluded that the residuals of both models are not

su�ering from autocorrelation. Appendix F provides autocorrelation functions plots of those

countries, who had signi�cant lags.

In order to choose the correct model, 3 simulations are performed, which are done using

either the coe�cients and residual standard deviation from the MLE model, the system

GMM or the mean from both. The following steps are carried out:

1. Take one of the 3 coe�cient vectors and residual standard deviations;

2. Generate a new TAX for each country by using the coe�cients obtained in step 1. The

error term is generated using the normal distribution with 0 mean and the standard

deviation of the residuals of either model (or the mean standard deviation from both);

3. Repeat the process in step 2 1000 times, thus obtaining 1000 TAX simulations for

every country;

4. Fit both system GMM and MLE on the simulated data. This gives 1000 coe�cient
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vectors for each model;

5. Calculate the mean of all the coe�cients from both models and then divide the results

by the true coe�cients with which the data is generated. This shows how much each

model "captures" the true coe�cient values;

6. Calculate the standard deviation of the coe�cients for both models;

7. Choose the model who's deviations from the "true" coe�cients are smaller and have

lesser standard deviation.

In essence, this means that 3 scenarios are generated: one where the "true" process is

from the MLE model, the other is from the system GMM and the last is the mean taken

from them both (the coe�cients and the standard deviations of residuals). The results from

this simulations are provided below:

Mean of both models System GMM MLE

System GMM MLE System GMM MLE System GMM MLE

TAX lag 1.096 1.015 1.013 1.005 1.019 1.013

CONS 0.912 0.995 0.938 0.949 1.078 1.071

AGR 0.985 0.912 0.897 0.942 1.109 1.143

TRADE 0.913 0.978 1.065 1.074 0.871 0.888

GDPPC 0.889 0.956 0.854 0.873 1.091 1.072

CORRU 0.880 0.812 0.998 0.974 1.023 1.007

POP 1.178 1.059 1.060 1.082 0.983 0.909

CRISIS 1.021 1.071 0.989 0.994 1.040 1.023

Table 12: Simulation results: deviation from true parameters

As seen from table 12 both models are able to estimate the coe�cients that are near their

true value. When the mean of both models is taken, the MLE outperforms system GMM, as

5 out of 8 coe�cients are closer to their "true" values. A similar situation is seen when the

data is simulated using system GMM coe�cients. Lastly, when the data is simulated using

MLE coe�cients, the latter once again shows better results, because 6 out of 8 coe�cient

values are closer to 1. This would indicate that MLE outperforms system GMM in these

simulations.

Next, the standard deviations of the coe�cients for each model in table 13 is shown. Both

models perform similarly because when simulation is done with the mean of both coe�cients.

When simulating with system GMM, the latter performs better, with the same situation seen

when simulating with MLE, as then MLE outperforms system GMM.

In accordance with tables 12, 13 and the fact that the Sargan's test showed that the
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Mean of both models System GMM MLE

System GMM MLE System GMM MLE System GMM MLE

TAX lag 0.035 0.029 0.032 0.031 0.033 0.028

CONS 0.062 0.054 0.058 0.061 0.046 0.041

AGR 0.023 0.024 0.028 0.031 0.023 0.030

TRADE 0.034 0.035 0.041 0.039 0.035 0.037

GDPPC 0.116 0.073 0.115 0.120 0.095 0.101

CORRU 0.039 0.041 0.048 0.053 0.043 0.035

POP 0.272 0.185 0.254 0.287 0.197 0.248

CRISIS 0.011 0.014 0.014 0.012 0.015 0.010

Table 13: Simulation results: standard deviation of each coe�cient

instruments might be weak for system GMM estimation, the MLE model is chosen for

further analysis. It should be noted that in essence, these models are similar and using one

or the other does not give very di�erent results in further analysis.

Having chosen the model, the tax e�ort results are calculated for every country and

presented below in a histogram. Each value is the mean of the tax e�ort time series.
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Figure 15: Histogram of tax e�ort

In �gure 15, the red dotted line represents Lithuania's position (0.9) and the black line is

the mean (1.05). Georgia was excluded from when making this plot as its e�ciency greatly

exceeded the rest of the countries and distorted the plot. It appears that Lithuania is more

than one standard deviation away from the mean, making it a country which has a low tax
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e�ort level. This puts the country in the seventh place from the bottom of all countries.

Since the mean is 1.05, this means that countries are ful�lling their potential. Estonia's,

Poland's and Latvia's e�ciency is 1, 0.96 and 1.02 respectively, which means that Lithuania

performs the worst among its neighbors. Other country tax e�ort is provided in Appendix

C.

Appendix D provides tax capacity and TAX dynamics for Latvia, Estonia and Poland.

It can be seen that Poland in general is under performing while Estonia and Latvia have

spiked in later years.

Next, the results can be plotted on a two dimensional area where the x axis is the e�ort

and the y axis is the TAX fact.
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Figure 16: Results of TAX and tax e�ort

The vertical line represents tax e�ort when it is 1, and the horizontal dotted line is the

mean of TAX. These two lines divide the plot into 4 groups: the one with low TAX and low

e�ort (lower left), low TAX, high e�ort (lower right), high TAX, low e�ort (upper left) and

high TAX, high e�ort (upper left). Lithuania belongs to the high TAX and low e�ort group.

This means that in order for Lithuania to improve its tax e�ort, it should try to impose

reforms in improving its tax collection rather than creating new taxes or widening its tax

base. Perhaps the agriculture and foreign trade sectors could be a good starting point as

the clustering analysis showed that it is possible that these sectors are ine�ciently taxed.
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The mean values (from 2003 to 2017) of these 4 groups in �gure 16 by each variable is

shown below in table 14. It appears that higher TAX is associated with larger GDPPC,

TRADE, less corruption and smaller AGR. Also, �gure 16 and table 14 shows that there

appears to be no correlation between tax e�ort and TAX, meaning that a high taxation level

in a country does not lead to its potential being reached.

TAX AGR GDPPC TRADE CORRU POP CONS

Low TAX,

low e�ort
13.51 6.54 13643.22 84.73 1.90 52.36 73.67

Low TAX,

high e�ort
12.34 13.19 10704.37 85.85 1.80 62.02 81.51

High TAX,

low e�ort
23.56 3.33 27252.31 112.42 3.12 52.13 78.07

High TAX,

high e�ort
23.02 4.87 24443.03 100.86 2.76 52.32 79.07

Table 14: Mean values of each variable in every group

In order to have a better understanding, on how Lithuania's position has changed over

time, the model can be estimated on di�erent time periods. The period length, or window,

was chosen to be 9 years long as this length provided stable models. The results are shown

in �gure 17 and the model coe�cient estimates are provided in appendix G.
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Figure 17: Lithuania's position through time

It seems that through the course of time, Lithuania has driven away from the mean TAX
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level and widened the gap between its tax capacity and actual TAX. In the last period,

however, there can be seen a rise in the level of tax e�ort. This is probably due to the rise

in taxation in the last years, as seen in �gure 13.

Next, the results can be plotted on a map, which gives a better understanding about the

geographical distribution of tax e�ort. 28 European countries are shown with their color

representing tax e�ort in �gure 18 .
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Figure 18: Map of tax e�ort

It appears that countries, located to the east of Europe seem to have a lower value of tax

e�ort. Western countries like Germany, France, Italy and others characterize with higher

tax e�ort. This might suggest the fact that there exists a "spillover" of tax e�ciency among

countries. Geographically related regions might implement similar �scal policies which lead

to akin tax e�orts.

Lastly, since every country now has its actual TAX and potential time series, FPCA can

once again be applied in order to have a better understanding of these two variables. The

same procedure is repeated for TAX capacity: every time series is smoothed with tha same

base and parameters. Then, FPCA is performed. The �rst component, which explains for

99.8% of all variation is plotted together with the same �rst component of TAX. The results
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Figure 19: FPCA implemented on TAX and tax capacity

are shown below in �gure 19.

It is visible that the general trend of tax capacity is considerably less variable than its

fact. Furthermore, up to the �nancial crisis of 2008, countries tend to exceed their TAX

potential and after the crisis they tend to under perform. In the last year however, a spike

can be seen meaning that countries tend to catch up to their TAX potential. According

to these �ndings, it is normal that Lithuania is not meeting its potential after the crisis.

Probably the one of the reasons why Lithuania has a low tax e�ort overall is due to the fact

that up to the crisis, the country did not exceed its tax capacity.

4 Conclusions

Several conclusions can be made from this thesis.

Clustering analysis showed that Lithuania's agricultural and trading sectors are respec-

tively smaller and larger compared to other countries, that achieve a similar level of taxation

as Lithuania. This can possibly mean that these sectors are ine�ciently used taxwise. It is

also possible, that the drop in tax to GDP ratio after the 2009 crisis is not natural in the

sense of macroeconomics, meaning that �scal policy imposers deviated from the taxation

level which would be normal for Lithuania's macroeconomic climate.
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Impulse response analysis showed that the factors governing tax revenue tend to act

di�erently depending on the income level of the country. For example, positive shocks in

the agricultural sector have a negative e�ect in countries with lower GDP per capita, but a

positive e�ect in countries with high GDP per capita. This sort of "switching" can be for

almost every variable that was included. Possibly, as a country progresses to a high income

country, its institutional sectors also become more advanced, thus the standard e�ects of

macroeconomic/institutional variables on taxation start to change.

Dynamic panel data modeling showed that from 2003 to 2017, Lithuania achieved 90% of

its tax potential on average. Compared to other countries in terms of tax e�ort, this value

puts Lithuania in the 7th place from the bottom out of 99 countries analyzed. The mean

value of tax e�ort for the period of 2003 - 2017 is 105% meaning that on average, countries

are ful�lling their tax potential. Despite this, Lithuania's tax to GDP ratio mean is higher

then the mean of all countries, indicating that the level of taxation in the country is "good".

This means that Lithuania should act through tax collection reforms in order to improve its

overall state. Plotting the results on a map showed that there exists geographical groups

with similar levels of tax e�ort.

Lastly, functional principal component analysis showed that prior to the 2009 crisis,

countries were over performing and collecting more taxes than their potential. After the

crisis, however, countries lowered their taxation levels and were collecting less then they

could. This in turn gives insight that it is normal for Lithuania to not being able to achieve

its taxation potential after the crisis.

Summing up, it can be concluded that Lithuania is not living up to its tax potential and

that increasing tax revenue might not cause harm. These new increases can be done through

new reforms oriented for a more e�ective tax collection. Perhaps the agriculture or foreign

trade sectors would be a good starting point.
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6 Appendices

6.1 Appendix A

The Minkowki distance is probably one of the most common metrics. It is also called an Lq

distance and is calculated:

d(XT , YT ) =

(
T∑
t=1

(Xt − Yt)q
)1/q

(1)

The Minkowski metric becomes the Euclidean distance, when q = 2 which is the one of

the most common distances used. When q = 1, one deals with the Manhattan distance.

The Frechet distance is also quite common. Let M be the set of all possible sequences of

m pairs preserving the observations order in the form

r = ((Xa1, Yb1), ..., (Xam, Ybm)) (2)

where ai, bj ∈ {1, ..., T} such that a1 = b1 = 1, am = bm = T , and ai+1 = ai or ai + 1 and

bi+1 = bi or bi + 1,for i ∈ {1, ...,m− 1}. Then the Frechet distance is de�ned by:

d(XT , YT ) = min
r∈M

(
max
i=1,,,m

|Xai − Ybi|

)
(3)

Di�ering from the Minkowski distance, the Frechet distance requires to take into account

the ordering of the observations. It also can be calculated on sequences with di�erent sizes.

Next, the Dynamic time warping distance (DTW):

d(XT , YT ) = min
r∈M

( ∑
i=1,...,m

|Xai − Ybi|

)
(4)

Similarly to the Frechet distance, DTW is aimed to �nd a mapping between the series so

that a speci�c distance measure between the coupled observations (Xai, Ybi) is minimized.

Both Frechet and DTW distances allow to identify similar shapes, even when shifting or

scaling is present in the time series. Compared to dLp distances, both dF and dDTW ignore

the temporal structure of the values as the proximity is based on the di�erences |Xai − Ybi|

regardless of the behavior around these values.

Mowing forward, we have the complexity-invariant dissimilarity (CID) measure. Batista

et al. (2011) argue that, under many dissimilarity measures, pairs of time series with high

levels of complexity frequently tend to be further apart than pairs of simple series. This way,

complex series are incorrectly assigned to classes with less complexity. In order to mitigate
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this e�ect, the authors propose to use information about complexity di�erence between two

series as a correction factor for existing dissimilarity measures.

dCID(XT , YT ) = CF (XT , YT ) · d(XT , YT ) (5)

where d(XT , YT ) denotes a convetional raw-data distance (e.g. Euclidean distance) and

CF (XT , YT ) is a complexity correction factor given by

CF (XT , YT ) =
max{CE(XT ), CE(YT )}
min{CE(XT ), CE(YT )}

(6)

with CE(XT ) a complexity estimator of XT . If all series have the same complexity, then

dCID(XT , YT ) = d(XT , YT ). Nevertheless, an important complexity di�erence between XT

and YT turns into an increase of the dissimilarity between them. The complexity estimator

is very simple and cosists in computing:

CE(XT ) =

√√√√T−1∑
t=1

(Xt −Xt+1)2 (7)

The CID method is intuitive, parameter-free, invariant to the complexity of time series,

computationally e�cient, and it has produced improvements in accuracy in several clustering

experiments carried out.

The correlation dissimilarity measure uses the Pearson's correlation coe�cient as a com-

ponent:

COR(XT ) =

∑T
t=1(Xt −XT )(Yt − Y T )√∑T

t=1(Xt −XT )2

√∑T
t=1(Yt − Y T )2

(8)

Golay, Kollias, Stoll, Meier, Valavanis, and Boesiger (2005) construct a fuzzy k-means

algorithm using the following two cross-correlation-based distances:

dCOR,1(XT , YT ) =
√

2(1− COR(XT , YT )) (9)

and

dCOR,2(XT , YT ) =

√√√√(1− COR(XT , YT )

1 + COR(XT , YT )

)B

, withB ≥ 0 (10)

Note that dCOR,2 becomes in�nite when COR(XT , YT ) = 1 and the parameter B allows

regulation of the fast decreasing of the distance.

Lastly, we have a dissimilarity measure, that uses �rst order temporal correlation as a

component:

CORT (XT , YT ) =

∑T−1
t=1 (Xt+1 −Xt)(Yt+1 − Yt)√∑T−1

t=1 (Xt+1 −Xt)2

√∑T−1
t=1 (Yt+1 − Yt)2

(11)
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CORT (XT , YT ) belongs to the interval [-1,1]. The value 1 would show that both series

have a similar dynamic behavior through their growths. -1 would indicate a similar growth

in the opposite direction. Lastly 0 implies that there is no similarity between XT and YT .

The dissimilarity index proposed by Douzal Chouakria and Nagabhushan (2007) is de�ned

as follows:

dCORT (XT , YT ) = φ[CORT (XT , YT )] · d(XT , YT ) (12)

Here, φk(·) is an adaptive tuning function to automatically modulate a conventional raw-

data distance d(XT , YT ) according to temporal correlation. Instead of, for instance, a linear

tuning function, Douzal Chouakria and Nagabhushan (2007) propose to use an exponential

adaptive function given by

φk(u) =
2

1 + exp(ku)
, k ≥ 0 (13)
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6.2 Appendix B

First group Second group Third group

Variable Information criteria Value Lag Value Lag Value Lag

AGR AIC -833.779 1 -833.422 1 -832.843 1

AGR AIC -821.841 2 -821.674 2 -820.922 2

AGR BIC -2566.58 1 -2566.22 1 -2565.64 1

AGR BIC -2499.22 2 -2499.06 2 -2498.3 2

AGR HQIC -1592.01 1 -1591.65 1 -1591.07 1

AGR HQIC -1558.67 2 -1558.51 2 -1557.75 2

CONS AIC -834.864 1 -835.304 1 -835.966 1

CONS AIC -822.935 2 -823.575 2 -824.067 2

CONS BIC -2567.67 1 -2568.11 1 -2568.77 1

CONS BIC -2500.32 2 -2500.96 2 -2501.45 2

CONS HQIC -1593.09 1 -1593.53 1 -1594.2 1

CONS HQIC -1559.77 2 -1560.41 2 -1560.9 2

CORRU AIC -834.637 1 -834.782 1 -836.259 1

CORRU AIC -822.701 2 -822.904 2 -824.297 2

CORRU BIC -2567.44 1 -2567.58 1 -2569.06 1

CORRU BIC -2500.08 2 -2500.29 2 -2501.68 2

CORRU HQIC -1592.87 1 -1593.01 1 -1594.49 1

CORRU HQIC -1559.53 2 -1559.74 2 -1561.13 2

GDPPC AIC -835.816 1 -835.517 1 -836.195 1

GDPPC AIC -823.89 2 -823.915 2 -824.255 2

GDPPC BIC -2568.62 1 -2568.32 1 -2569 1

GDPPC BIC -2501.27 2 -2501.3 2 -2501.64 2

GDPPC HQIC -1594.05 1 -1593.75 1 -1594.42 1

GDPPC HQIC -1560.72 2 -1560.75 2 -1561.09 2

POP AIC -836.38 1 -836.223 1 -836.4 1

POP AIC -824.457 2 -824.366 2 -824.433 2

POP BIC -2569.18 1 -2569.03 1 -2569.2 1

POP BIC -2501.84 2 -2501.75 2 -2501.82 2

POP HQIC -1594.61 1 -1594.45 1 -1594.63 1

POP HQIC -1561.29 2 -1561.2 2 -1561.27 2

TRADE AIC -834.024 1 -834.598 1 -835.503 1

TRADE AIC -822.14 2 -822.674 2 -823.666 2

TRADE BIC -2566.83 1 -2567.4 1 -2568.31 1

TRADE BIC -2499.52 2 -2500.06 2 -2501.05 2

TRADE HQIC -1592.25 1 -1592.83 1 -1593.73 1

TRADE HQIC -1558.97 2 -1559.51 2 -1560.5 2

Table 15: Information criterion of estimated PVAR models
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6.3 Appendix C

TAX TAX CAP TAX EF COUNTRY TAX TAX CAP TAX EF COUNTRY TAX TAX CAP TAX EF COUNTRY

7.55 6.98 1.08 AFG 20.36 20.49 1.00 EST 10.55 10.18 1.03 MDG

16.43 17.17 0.96 AGO 20.73 22.78 0.91 FIN 13.37 12.56 1.06 MLI

12.58 12.85 0.98 ARG 22.57 22.43 1.01 FRA 36.91 55.65 0.67 MLT

22.73 24.59 0.92 AUS 25.33 24.66 1.03 GBR 18.27 18.01 1.02 MNG

25.83 26.94 0.96 AUT 19.81 7.22 2.75 GEO 16.86 16.37 1.03 MUS

24.85 25.14 0.99 BEL 15.38 18.68 0.82 GHA 14.60 15.47 0.94 MYS

13.88 11.08 1.25 BFA 8.63 10.34 0.83 GNQ 29.34 24.19 1.21 NAM

7.97 7.05 1.13 BGD 22.15 20.05 1.11 GRC 14.17 11.83 1.20 NIC

20.12 20.42 0.98 BGR 10.98 11.72 0.94 GTM 20.94 20.58 1.02 NLD

11.68 9.27 1.26 BHS 15.53 13.91 1.12 HND 25.90 25.60 1.01 NOR

20.14 20.20 1.00 BIH 20.62 21.84 0.94 HRV 13.05 8.51 1.53 NPL

17.22 18.30 0.94 BLR 22.08 20.92 1.06 HUN 28.43 29.54 0.96 NZL

22.82 19.06 1.20 BLZ 11.58 12.28 0.94 IDN 15.15 13.35 1.14 PER

14.31 15.58 0.92 BRA 10.53 9.06 1.16 IND 13.02 11.86 1.10 PHL

25.11 24.84 1.01 BRB 22.78 23.91 0.95 IRL 16.49 17.22 0.96 POL

11.05 9.66 1.15 BTN 24.33 24.72 0.98 ISL 21.27 20.98 1.01 PRT

25.40 27.36 0.93 BWA 23.84 25.46 0.94 ISR 8.88 8.35 1.06 PRY

12.51 13.38 0.94 CAN 22.50 21.44 1.05 ITA 5.21 5.12 1.02 PSE

9.62 9.33 1.03 CHE 24.46 24.37 1.00 JAM 17.29 18.01 0.96 ROU

17.68 16.32 1.08 CHL 18.00 18.59 0.97 JOR 13.46 13.69 0.98 RUS

9.51 8.72 1.09 CHN 10.02 9.01 1.11 JPN 12.93 12.78 1.01 SGP

14.42 13.00 1.11 CIV 14.13 13.28 1.06 KAZ 15.82 12.67 1.25 SLV

9.87 9.16 1.07 COG 10.98 7.85 1.40 KHM 16.60 18.44 0.90 SVK

13.44 11.33 1.19 COL 14.42 14.53 0.99 KOR 19.09 21.13 0.90 SVN

19.68 21.98 0.90 CPV 1.09 1.33 0.82 KWT 27.20 27.38 0.99 SWE

13.76 13.89 0.99 CRI 15.25 16.31 0.94 LBN 27.90 27.97 1.00 SYC

30.96 38.05 0.81 CYP 19.90 18.59 1.07 LCA 15.61 13.20 1.18 TGO

14.40 15.56 0.93 CZE 12.36 12.80 0.97 LKA 15.44 14.71 1.05 THA

11.20 10.92 1.03 DEU 17.68 19.64 0.90 LTU 20.57 19.47 1.06 TUN

33.20 30.15 1.10 DNK 25.14 24.66 1.02 LUX 17.33 14.15 1.23 UKR

13.25 11.69 1.13 DOM 21.36 20.91 1.02 LVA 18.91 17.84 1.06 URY

13.75 13.56 1.01 EGY 22.19 19.10 1.16 MAR 10.27 9.56 1.07 USA

14.02 14.57 0.96 ESP 17.07 14.97 1.14 MDA 25.93 23.70 1.09 ZAF

Table 16: 2003-2017 period mean TAX, tax capacity and tax e�ort
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6.4 Appendix D
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Figure 20: Estonia's tax e�ort and TAX
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Figure 21: Polands tax e�ort and TAX
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Figure 22: Latvia's tax e�ort and TAX
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6.6 Appendix F
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Figure 23: Residual autocorrelation function plots from MLE model
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Figure 24: Residual autocorrelation function plots from system GMM model
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6.7 Appendix G

2003 - 2011 2004 - 2012 2005 - 2013 2006 - 2014 2007 - 2015 2008 - 2016 2009 - 2017

TAX lag 0.029 0.005 -0.024 -0.072* -0.085* -0.174* -0.213*

AGR 0.156 0.019 0.021 0.008 0.33* -0.001 0.002

GDPPC 0.526* 0.548* 0.543* 0.582* 0.67* 0.712* 0.198

TRADE 0.117* 0.12* 0.118* 0.085* 0.109* 0.14* 0.087*

POP -0.767 -0.47 0.273 0.742* 0.897* 0.831* 0.315

CORRU 0.1* 0.054 0.048 0.028 0.76 0.078 -0.071

CONS 0.157* 0.16* 0.126* 0.207* 0.448* 0.508* 0.291*

Table 18: Model coe�cient estimates and signi�cance at α = 0.9

Coe�cients with the star sign mean that they are signi�cant.
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6.8 Appendix H

Canberra distance

TAX AGR GDPPC TRADE CORRU POP CONS

clust1 12.227 9.398 13768.099 76.010 1.840 58.012 78.258

clust2 22.348 4.371 24943.065 117.927 2.787 51.073 76.127

clust3 23.562 4.225 25711.803 100.982 2.945 52.533 79.468

clust4 13.775 13.895 7622.650 104.987 1.851 60.274 79.645

Euclidean distance

TAX AGR GDPPC TRADE CORRU POP CONS

clust1 9.275 10.510 16972.502 76.706 1.942 61.790 75.738

clust2 15.020 10.346 9011.120 90.676 1.869 56.346 80.171

clust3 26.820 2.555 37624.671 116.782 3.372 52.636 75.567

clust4 20.916 5.203 17781.835 96.498 2.550 51.357 81.178

Manhattan distance

TAX AGR GDPPC TRADE CORRU POP CONS

clust1 9.337 11.463 16840.163 76.492 1.942 62.821 76.817

clust2 14.991 9.899 9073.205 90.776 1.869 55.863 79.664

clust3 26.820 2.555 37624.671 116.782 3.372 52.636 75.567

clust4 20.916 5.203 17781.835 96.498 2.550 51.357 81.178

Maximum distance

TAX AGR GDPPC TRADE CORRU POP CONS

clust1 9.275 10.510 16972.502 76.706 1.942 61.790 75.738

clust2 14.926 10.407 8950.592 91.647 1.835 56.321 80.150

clust3 26.820 2.555 37624.671 116.782 3.372 52.636 75.567

clust4 20.803 5.343 17454.663 94.232 2.584 51.664 81.169

Minkowski distance

TAX AGR GDPPC TRADE CORRU POP CONS

clust1 9.337 11.463 16840.163 76.492 1.942 62.821 76.817

clust2 14.991 9.899 9073.205 90.776 1.869 55.863 79.664

clust3 26.820 2.555 37624.671 116.782 3.372 52.636 75.567

clust4 20.916 5.203 17781.835 96.498 2.550 51.357 81.178

Table 19: Cluster centers from FPCA clustering
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6.9 Appendix I

CID distance

TAX AGR GDPPC TRADE CORRU POP CONS

clust1 12.024 10.969 12848.572 81.661 1.868 59.541 78.059

clust2 18.102 8.240 8952.786 104.449 2.089 53.062 80.265

clust3 23.821 3.270 30026.544 101.210 3.037 52.395 78.306

clust4 31.114 3.108 32138.266 158.337 3.323 46.764 78.381

COR distance

TAX AGR GDPPC TRADE CORRU POP CONS

clust1 16.503 9.901 16254.363 93.001 2.192 58.965 80.248

clust2 19.219 5.781 21724.720 92.594 2.468 54.218 76.440

clust3 17.333 4.765 15283.436 103.942 2.035 52.184 70.955

clust4 17.839 6.431 20293.623 94.494 2.675 50.496 81.432

CORT distance

TAX AGR GDPPC TRADE CORRU POP CONS

clust1 9.450 11.587 16153.696 75.211 1.910 62.236 76.440

clust2 15.062 9.886 9133.725 92.801 1.835 56.067 79.840

clust3 21.122 4.817 22225.066 94.222 2.784 51.604 79.810

clust4 27.663 2.532 35742.119 122.459 3.307 52.679 76.305

DTWARP distance

TAX AGR GDPPC TRADE CORRU POP CONS

clust1 10.578 12.372 14141.310 70.332 1.899 63.259 79.198

clust2 15.503 8.644 9253.055 100.333 1.886 53.485 78.362

clust3 26.820 2.555 37624.671 116.782 3.372 52.636 75.567

clust4 20.916 5.203 17781.835 96.498 2.550 51.357 81.178

Euclidean distance

TAX AGR GDPPC TRADE CORRU POP CONS

clust1 9.450 11.587 16153.696 75.211 1.910 62.236 76.440

clust2 15.175 9.813 9072.301 91.777 1.888 55.822 80.179

clust3 21.474 4.483 23558.570 96.283 2.773 51.650 79.170

clust4 27.663 2.532 35742.119 122.459 3.307 52.679 76.305

Frechet distance

TAX AGR GDPPC TRADE CORRU POP CONS

clust1 9.209 10.018 17591.524 67.219 1.968 61.251 76.721

clust2 14.731 10.736 8869.145 94.040 1.825 56.772 79.741

clust3 23.280 3.858 28135.259 101.819 2.997 52.561 78.066

clust4 34.558 1.913 25752.083 194.503 2.951 44.745 78.840

Table 20: Cluster centers from discrete time series clustering
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6.10 Appendix J

PVAR(1) model variables First group Second group Third group

GDPPC and TAX
0.921 0.893 0.892

0.857 0.446 0.727

CONS and TAX
0.880 0.832 0.783

0.582 0.440 0.749

TRADE and TAX
0.841 0.759 0.797

0.841 0.477 0.676

AGR and TAX
0.889 0.795 0.690

0.784 0.455 0.690

POP and TAX
0.909 0.857 0.991

0.898 0.479 0.753

CORRU and TAX
0.821 0.832 0.740

0.730 0.476 0.740

Table 21: Eigenvalues of PVAR(1) models

Since no eigenvalue exceeds 1, all PVAR models are stable.
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6.11 Appendix K

Model DIC

∆ln(TAXi,t) = γ∆ln(TAXi,t−1) + β1∆ln(AGRi,t)
′
+ β2∆ln(TRADEi,t)+

β3∆ln(GDPPCi,t) + β4∆ln(CONSi,t) + β5∆ln(POPi,t)+

β6∆ln(CORRUi,t)
′
+ φCRISIS + α∗i + εi,t

-16045.65

∆ln(TAXi,t) = γ∆ln(TAXi,t−1) + β1∆ln(AGRi,t−1) + β2∆ln(TRADEi,t)+

β3∆ln(GDPPCi,t) + β4∆ln(CONSi,t) + β5∆ln(POPi,t)
′
+

β6∆ln(CORRUi,t)
′
+ φCRISIS + α∗i + εi,t

-16031.61

∆ln(TAXi,t) = γ∆ln(TAXi,t−1) + β1∆ln(AGRi,t)
′
+ β2∆ln(TRADEi,t)+

β3∆ln(GDPPCi,t) + β4∆ln(CONSi,t) + β5∆ln(POPi,t)
′
+

β6∆ln(CORRUi,t−1)
′
+ φCRISIS + α∗i + εi,t

-16023.97

∆ln(TAXi,t) = γ∆ln(TAXi,t−1) + β1∆ln(AGRi,t−1) + β2∆ln(TRADEi,t)+

β3∆ln(GDPPCi,t) + β4∆ln(CONSi,t) + β5∆ln(POPi,t)
′
+

β6∆ln(CORRUi,t−1)
′
+ φCRISIS + α∗i + εi,t

-16029

Table 22: Estimated models and their DIC

Here, DIC is de�ned as D(θ) = −2log(p(Y |θ)) +C, with C being a constant that cancels

out in all calculations that compare di�erent models, and which therefore does not need to

be known.

The ′ near a variable indicates that it was insigni�cant at α = 0.95.

69



6.12 Appendix L

Model
Sargan's test

p value

∆ln(TAXi,t) = γ∆ln(TAXi,t−1) + β1∆ln(AGRi,t)
′
+ β2∆ln(TRADEi,t)+

β3∆ln(GDPPCi,t) + β4∆ln(CONSi,t) + β5∆ln(POPi,t)+

β6∆ln(CORRUi,t)
′
+ φCRISIS + α∗i + εi,t

0.051

∆ln(TAXi,t) = γ∆ln(TAXi,t−1) + β1∆ln(AGRi,t−1)
′
+ β2∆ln(TRADEi,t)+

β3∆ln(GDPPCi,t) + β4∆ln(CONSi,t) + β5∆ln(POPi,t)+

β6∆ln(CORRUi,t)
′
+ φCRISIS + α∗i + εi,t

0.067

∆ln(TAXi,t) = γ∆ln(TAXi,t−1) + β1∆ln(AGRi,t)
′
+ β2∆ln(TRADEi,t)+

β3∆ln(GDPPCi,t) + β4∆ln(CONSi,t) + β5∆ln(POPi,t)+

β6∆ln(CORRUi,t−1)
′
+ φCRISIS + α∗i + εi,t

0.068

∆ln(TAXi,t) = γ∆ln(TAXi,t−1) + β1∆ln(AGRi,t−1)
′
+ β2∆ln(TRADEi,t)+

β3∆ln(GDPPCi,t) + β4∆ln(CONSi,t) + β5∆ln(POPi,t)+

β6∆ln(CORRUi,t−1)
′
+ φCRISIS + α∗i + εi,t

0.091

Table 23: Estimated models and their Sargan's test p value

The ′ near a variable indicates that it was insigni�cant at α = 0.95.
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