
VILNIAUS UNIVERSITETAS
MATEMATIKOS IR INFORMATIKOS FAKULTETAS

INFORMATIKOS KATEDRA

Baigiamasis bakalauro darbas

Duomenų migravimas tarp SQL ir NoSQL duomenų bazių
(Data Migration Between SQL and NoSQL Databases)

Atliko: 4 kurso 2 grupės studentas
Juozas Natkevičius (parašas)

Darbo vadovas:
Partn. Doc. Liutauras Ričkus (parašas)

Recenzentas:
Prof., Dr. Rimantas Vaicekauskas (parašas)

Vilnius
2020

1

Turinys

Įvadas . 2
1. SQL ir NoSQL duomenų bazės . 3

1.1. NoSQL tipai . 3
1.2. „MySQL“ ir „MongoDB“ . 4

2. Duomenų migravimo metodai . 5
2.1. Duomenų migravimas tarp reliacinių ir NoSQL duomenų bazių panaudojant „Mid-

model“ . 5
2.2. Migravimas iš reliacinės į grafų duomenų bazę panaudojant „R2G“. 6
2.3. „MySQL“ migravimas į „MongoDB“ panaudojant „NoSQLayer“ . 9

3. „MongoDB“ schemos modeliavimo strategijos . 11
4. Programa automatizuotam duomenų migravimui iš „MySQL“ į „MongoDB“ taikant schemos

denormalizavimo strategiją . 13
4.1. Reliacinės duomenų bazės metaduomenų gavimas . 13
4.2. Duomenų migravimas denormalizuojant reliacinę schemą . 15
4.3. Programos taikymas realios SQL duomenų bazės migravimui į „MongoDB“. 18

Išvados . 24
Summary . 26
Literatūra . 27

2

Įvadas
Daugelis šiuolaikinių programų susiduria su smarkiai išaugusio duomenų kiekio problema bei

atitinkamais iššūkiais, susijusiais su šių duomenų apdorojimu bei saugojimu. Ilgą laiką sėkmingai
su šiomis užduotimis besitvarkiusios tradicinės reliaciniu modeliu paremtos SQL (angl. Structured
Query Language) duomenų bazės vis dažniau pasirodo esančios nepakankamai efektyvios ypatin-
gai didelio kiekio nestruktūrizuotų duomenų apdorojimui bei saugojimui vykdyti [RVC+15]. Ne-
pakankamas efektyvumas susidūrus su itin didelės apimties duomenų operacijomis, pasireiškiantis
sumažėjusia duomenų bazės sparta ar išaugusiais talpos poreikiais, yra viena iš pagrindinių priežas-
čių, leidusių išaugti NoSQL duomenų bazių paklausai ir duomenų migravimo klausimo aktualumui
[WK12].

NoSQL (angl. Not only SQL) yra sparčiai populiarėjančių duomenų bazių rūšis, kurios pagrin-
dinis atributas yra tas, jog skirtingai negu tradicinės reliacinės duomenų bazės, NoSQL nenaudoja
lentelių kaip pagrindinių duomenų saugojimo struktūrų. Tai leidžia šioms sistemoms naudoti žy-
miai lankstesnes struktūras, kurių dėka užtikrinamas kur kas efektyvesnis nestruktūrizuotų, didelės
apimties duomenų apdorojimas.

Darbo tikslas - pritaikyti schemos denormalizavimo metodą programos, atliekančios automa-
tizuotą duomenų migravimą iš „MySQL“ į „MongoDB“, kūrimui. Siekiant, kad tikslas būtų pa-
siektas, o gautos išvados būtų naudingos sprendžiant susijusias duomenų migravimo tarp reliacinių
ir NoSQL duomenų bazių problemas, keliami tokie darbo uždaviniai:

1. Išanalizuoti literatūroje pristatomus duomenų migravimo iš SQL į NoSQL duomenų bazes
metodus.

2. Palyginti reliacinės duomenų bazės schemos migravimo į „MongoDB“ strategijas.

3. Sukurti programą, atliekančią automatinį duomenų migravimą iš „MySQL“ į „MongoDB“
pritaikant schemos denormalizavimo strategiją.

4. Atlikti realios „MySQL“ saugomos reliacinės duomenų bazės migravimą į „MongoDB“ pa-
naudojant sukurtą programą ir įvertinti gautus rezultatus.

Pirmojoje darbo dalyje aptariami esminiai SQL ir NoSQL duomenų bazių privalumai, trūkumai
ir skirtumai. Tada analizuojami mokslinėje literatūroje pateikiami duomenų migravimo metodai
tarp SQL ir NoSQL duomenų bazių. Išanalizavus metodus pristatomos ir palyginamos rekomen-
duojamos reliacinių duomenų bazių schemų migravimo į „MongoDB“ strategijos. Sekančiame
skyriuje pristatomas detalus sukurtos programos, skirtos automatizuotam duomenų migravimui iš
„MySQL“ į „MongoDB“ pritaikant schemos denormalizavimo strategiją, funkcionalumo aprašy-
mas. Tuomet sukurtos programos veikimas yra iliustruojamas migruojant realią „MySQL“ siste-
moje saugomą reliacinę duomenų bazę į „MongoDB“ ir pateikiami migravimo proceso rezultatai.
Pabaigoje pristatomos darbo metu gautos išvados.

3

1. SQL ir NoSQL duomenų bazės
SQL (angl. Structured Query Language) - tai programavimo kalba, skirta darbui su reliacinėse

duomenų bazių valdymo sistemose saugomais duomenimis, todėl tokios sistemos dar vadinamos
SQL. Šiose sistemose saugomi duomenys yra struktūrizuoti pagal reliacinį modelį. Pagal reliaci-
nį modelį sumodeliuotoje duomenų bazėje duomenys yra išskaidomi į vieną ar daugiau lentelių.
Kiekviena lentelės eilutė reprezentuoja tam tikrą įrašą, o kiekvienas stulpelis to įrašo atributus.
Kiekvienas lentelės įrašas privalo turėti unikalų pirminio rakto atributą (angl. primary key), pagal
kurį tą įrašą galima identifikuoti. Lentelės taip pat gali turėti tarpusavio sąryšius, kurie yra api-
brėžiami naudojant išorinio rakto (angl. foreign key) atributą, rodantį į susijusios lentelės pirminį
raktą. [Ora15]

Ilgą laiką reliacinės SQL duomenų bazės buvo vienareikšmiškai populiariausias būdas sau-
goti duomenis, tačiau augant socialinių tinklų populiarumui bei verslui keliantis į virtualią erdvę
SQL populiarumas pradėjo mažėti. Pagrindinė to priežastis - sumažėjęs reliacinių duomenų bazių
efektyvumas, dirbant su itin didelės apimties duomenimis, bei ribotas jų plečiamumas [WK12].

NoSQL atspindi naują požiūrį į duomenų saugojimą ir apdorojimą. NoSQL papildo reliacinį
modelį ir sukuria galimybę saugoti itin didelės apimties duomenis lanksčiose duomenų struktūrose
užtikrinančiose aukštą duomenų apdorojimo spartą. Vien socialinių tinklų gigantai „Facebook“ ir
„Twitter“ kasdien išsaugo ir apdoroja terabaitus duomenų [Bou18]. NoSQL sistemos aukoja relia-
cinėse duomenų bazėse užtikrinamą vientisumą (angl. consistency) vardan kitų faktorių, tokių kaip
prieinamumas, plečiamumas ir didesnis našumas, reikalingų dirbant su „Big Data“ duomenimis.

1.1. NoSQL tipai
Šiuo metu pagrindiniai NoSQL duomenų bazių tipai, atsižvelgiant į jose saugomų duomenų

struktūrą, yra tokie [MH13]:

• Dokumentų - kiekvienas įrašas yra XML, JSON ar kt. formato objektas.

• Stulpelių - kiekvienas įrašas yra stulpelis, kurį sudaro eilutės.

• Rakto - reikšmes - kiekvienas įrašas yra reikšmė, kurią pasiekti galima pagal jai priskirtą
raktą.

• Grafų - duomenys yra saugomi grafinėse struktūrose ir jų viršūnėse bei briaunose.

Kiekvienas iš skirtingų tipų pasižymi sau būdingais duomenų saugojimo bei paieškos ir duo-
menų vaizdavimo būdais, kurie gali nežymiai skirtis priklausomai nuo konkrečios duomenų bazių
valdymo sistemos (DBVS). Duomenų bazių valdymo sistema (DBVS) - tai programinė įranga, su-
teikianti duomenų bazės vartotojui galimybę dirbti su duomenimis nesigilinant į technines detales.
Kitaip tariant, duomenų bazių valdymo sistema atlieka vartotojo sąsajos vaidmenį su duomenų
baze.

4

Šiame darbe pagrindinis dėmesys skiriamas dokumentų (angl. „Document stores“) tipo No-
SQL duomenų bazėms ir duomenų bazių valdymo sistemoms. Dokumentų duomenų bazės buvo
sukurtos dokumentų saugojimui ir apdorojimui. Dokumentai duomenų bazėse yra saugomi tam
tikru formatu, tokiu kaip XML („Extensible Markup Language“), JSON („Javascript Option Nota-
tion)“), BSON („Binary JSON“) ar kitu, priklausomai nuo pasirinktos DBVS [MH13]. Dokumentų
duomenų bazės yra labiausiai tinkamos didelės apimties nestruktūrizuotų dokumentų rinkiniams,
tokiems kaip el. laiškai, XML dokumentai, socialinių tinklų žinutės ir kt., saugoti. Jos taip pat yra
vienos populiariausių tarp visų tipų NoSQL duomenų bazių.

1.2. „MySQL“ ir „MongoDB“
„MySQL“ yra viena populiariausių reliacinių DBVS, populiarumu nusileidžianti tik „Oracle“

DBVS [DbE20b]. Tai yra atviro kodo (angl. open source) DBVS su galimybe įsigyti įmonės (angl.
enterprise) licenciją. „MySQL“ yra lengva, saugi ir palaikanti visą darbui su šiuolaikinėmis relia-
cinėmis SQL duomenų bazėmis reikalingą funkcionalumą.

„MongoDB“ yra vienareikšmiškai populiariausia ne tik tarp dokumentų, bet ir tarp visų tipų
NoSQL duomenų bazių valdymo sistemų [DbE20a]. Kaip ir „MySQL“, „MongoDB“ taip pat yra
atviro kodo, tačiau tik su tam tikromis panaudojimo taisyklėmis ir ribojimais. Joje duomenys yra
saugomi reliacines lenteles atitinkančiose struktūrose - dokumentų kolekcijose. Kiekviena kolek-
cija yra sudaryta BSON formato dokumentų, kurie atitinka įrašus SQL duomenų bazėse.

Straipsnyje „A Comparative Study: MongoDB vs. MySQL“ [GPG+15] autoriai atliko tyrimą,
kurio metu buvo kuriamos „MySQL“ ir „MongoDB“ duomenų bazės tiems patiems duomenims
saugoti. Autorių pateikiamose išvadose pabrėžiami šie „MongoDB“ pranašumai [GPG+15]:

• Lankstesnė duomenų struktūra: vartotojai gali keisti dokumentų struktūrą be privalomo duo-
menų bazės struktūros modifikavimo.

• Spartesnis užklausų apdorojimas atliekant bazines duomenų operacijas: skaitymo (angl. re-
ad), rašymo (angl. write), trynimo (angl. delete) ir modifikavimo (modify).

5

2. Duomenų migravimo metodai
Šioje dalyje analizuojami trys mokslinėje literatūroje pristatomi duomenų migravimo iš relia-

cinių SQL į NoSQL duomenų bazes metodai bei įrankiai. Pirmajame straipsnyje aprašomas „Mid-
model“, leidžiantis atlikti duomenų migravimą iš reliacinės į įvairių tipų NoSQL duomenų bazes.
Antrasis metodas yra skirtas duomenų migravimui iš reliacinės į grafų tipo duomenų bazę. Trečia-
jame straipsnyje pateikiamas įrankio „NoSQLayer“, leidžiančio migruoti duomenis iš „MySQL“ į
dokumentų tipo NoSQL DBVS „MongoDB“, aprašymas.

2.1. Duomenų migravimas tarp reliacinių ir NoSQL duomenų bazių panau-
dojant „Mid-model“

Straipsnyje „Mid-model Design Used in Model Transition and Data Migration between Rela-
tional Databases and NoSQL Databases“ [LLD15] autoriai pristato modelį, skirtą duomenų mig-
ravimui tarp reliacinių SQL ir NoSQL duomenų bazių. Pagrindinis šio modelio privalumas yra
universalumas. Autorių teigimu, modelis suteikia galimybę atlikti duomenų migravimą iš reliaci-
nių į skirtingų tipų NoSQL duomenų bazes.

1 pav. „Mid-model“ struktūra [LLD15].

Iliustracijoje (1 pav.) pavaizduota „Mid-model“ struktūra. Pagrindinis šio modelio elementas
yra objektas. Objektą sudaro reliacinėje duomenų bazėje saugomi lentelių metaduomenys. Esybė
atitinka reliacinės duomenų bazės lentelę, savybės apibrėžia lentelės turimus stulpelius, o sąryšiai
- esybę su kitomis duomenų bazės esybėmis siejančius sąryšius. Sąryšiai gaunami naudojantis pir-
miniais ir išoriniais lentelės raktais. Kiekvienam objektui taip pat nustatomos tam tikros duomenų
ir užklausų savybės. Straipsnio autorių teigimu, tai padeda išlaikyti duomenų integralumą migra-
vimo proceso metu [LLD15]. Kiekvienas objektas gali turėti keletą duomenų ir užklausų savybių.

6

Duomenų savybės - tai tam tikros esybės charakteristikos, kurios gali būti svarbios atliekant
NoSQL duomenų bazės struktūros modeliavimą. Pavyzdžiui, esybė gali turėti dažno įterpimo
(angl. frequent insertion) savybę, tai reikštų, kad modeliuojant NoSQL duomenų bazės struktūra
reikėtų atsižvelgti, kad su šia esybe bus atliekama daug rašymo operacijų. Kitas autorių pateikia-
mas pavyzdys - duomenų savybė didelis duomenų kiekis (angl. large data size), kuri indikuotų
apie didelį esybės reliacinės duomenų bazės lentelėje esantį įrašų kiekį [LLD15]. Užklausų savy-
bės saugo dažniausiai su objekto esybe susijusių užklausų informaciją. Ši informacija taip pat yra
naudojama modeliuojant NoSQL duomenų bazės struktūrą, kadangi nusako, kokios yra dažniausiai
naudojamos užklausos dirbant su kiekviena reliacinės duomenų bazės lentele.

„Mid-model“ taip pat saugo įvairias migravimo strategijas. Šios strategijos, pavaizduotos
iliustracijos (1 pav.) apačioje, leidžia nustatyti optimaliausią duomenų migravimo metodą kiek-
vienai skirtingo tipo NoSQL duomenų bazei. Kiekvieną modelyje išsaugotą strategiją galima mo-
difikuoti, o jei tinkamos strategijos modelyje nėra - yra galimybė pridėti naują [LLD15].“

Pilnas straipsnyje aprašomo modelio veikimo procesas susideda iš keturių etapų [LLD15]:

1. Gaunamas šaltinio duomenų bazės esybių sąryšių modelis.

2. Generuojamos šaltinio duomenų bazės duomenų ir užklausų savybės.

3. Generuojamas „Mid-model“ pagal sugeneruotas šaltinio duomenų bazės savybes ir sąryšių
modelį.

4. Generuojamas NoSQL duomenų bazės modelis pagal nustatytą tinkamiausią migravimo stra-
tegiją ir atliekamas duomenų migravimas.

Apibrendinant galima teigti, kad autorių siūlomas „Mid-model“ išsiskiria savo universalumu.
Modelyje aprašant įvairias migravimo strategijas galima atlikti migravimą į bet kuriuo tipo NoSQL
duomenų bazę. Esminė su reliacine šaltinio duomenų baze susijusi informacija yra gaunama vie-
nodai, nepriklausomai nuo to, į kokio tipo NoSQL duomenis norima migruoti. Ši informacija yra
saugoma objektuose ir į ją patenka ne tik esybių, bet ir su esybe susijusių duomenų bei užklausų
informacija. Šios informacijos pakanka pasirinkto tipo NoSQL duomenų bazės modeliui sukurti,
po to seka duomenų migravimas.

2.2. Migravimas iš reliacinės į grafų duomenų bazę panaudojant „R2G“
Šiame poskiryje aprašoma straipsnyje „R2G: a Tool for Migrating Relations to Graphs“

[VMT14] pristatomo įrankio „R2G“, skirto duomenų migravimui iš reliacinės į grafų duomenų
bazės valdymo sistemą, metodika bei pagrindiniai veikimo principai.

Autorių teigimu, „R2G“ įrankis susideda iš keturių pagrindinių komponentų, vykdančių tam
tikras užduotis nustatyta eilės tvarka [VMT14]:

1. MA – metaduomenų analizuotojas (angl. Metadata Analyzer), atliekantis reliacinės šaltinio
duomenų bazės schemos analizę ir konstruojantis atitinkamą grafo schemą.

7

2. DM – duomenų atvaizduotojas (angl. Data Mapper), atsakingas už duomenų atvaizdžio kū-
rimą pagal MA sukurtą grafo schemą.

3. QM – užklausų atvaizduotojas (angl. Query Mapper), transformuojantis reliacinės duomenų
bazės užklausas į grafų duomenų bazės valdymo sistemai suprantamas užklausas pagal MA
sukurtą grafo schemą.

4. GM – grafo tvarkytojas (angl. Graph Manager), kuris, pasinaudodamas DM sugeneruotu at-
vaizdžiu bei QM užklausomis, atlieka reliacinės duomenų bazės migravimą į grafų duomenų
bazės valdymo sistemą.

2 pav. Reliacinės duomenų bazės schema [VMT14].

Pirmajame žingsnyje atliekamas grafo schemos kūrimas yra paremtas teiginiu, kad kiekviena
reliacinės duomenų bazės schema gali būti pavaizduota kaip grafas, atsižvelgiant į schemoje (8 pav.)
nurodomus apribojimus bei pirminius ir išorinius raktus [VMT14]. Reliacinę schemą R atitinka
orientuotas grafas RG (N , E), kur N – viršūnių, o E – briaunų aibės, kuriame:

• Kiekvienam R priklausančiam atributui yra atitinkama viršūnė A ϵ N .

• Viršūnes jungia briauna (Ai, Aj) ϵ E, jeigu yra patenkinama bent viena iš duotųjų sąlygų:

– Ai yra lentelės R esančios schemoje R raktas arba rakto dalis, o Aj yra ne raktinis R
atributas.

– Tiek Ai, tiek Aj priklauso tam pačiam raktui lentelėje R esančioje schemoje R.

– Ai priklauso Ri, o Aj priklauso Rj ir Ai bei Aj sieja išorinis raktas.

8

Vadovaujantis šiomis taisyklėmis, straipsnyje pateikiamas pavyzdys, kuriame pagal reliacinės
duomenų bazės schemą (8 pav.) yra sukonstruojamas atitinkamas grafas, išsaugantis visus reika-
lingus atributus bei jų sąryšius (9 pav.).

3 pav. Reliacinės duomenų bazės schema atvaizduota grafe [VMT14].

Antrajame žingsnyje yra atliekamas reliacinių duomenų atvaizdavimas grafo struktūroje. Ki-
taip tariant, naudojantis pirmajame žingsnyje sukonstruotu grafu (9 pav.), atvaizduojami konkretūs
duomenų kortežai (angl. tuple) – lentelių eilutės grafinėje struktūroje.

Trečiajame žingsnyje „R2G“ užklausų atvaizduotojas (QM) transformuoja reliacinės duome-
nų bazės užklausas į tokias, kurios būtų suprantamos grafų duomenų bazių valdymo sistemoms,
pirmajame žingsnyje sugeneruoto grafo (9 pav.) pagalba. Pasak autorių, jų sukurtas įrankis geba
sėkmingai „versti“ SQL užklausas į kelio apėjimo operacijas grafų duomenų bazėje [VMT14]. Pa-
gal reliacines užklausas, visų pirma, yra kuriamas taip vadinamas užklausos šablonas, kuris nurodo
grafo schemos dalį, kurioje yra saugoma užklausos rezultato reikšmė. Tuomet, pritaikius šį šabloną
konkrečiam grafui su duomenimis, yra randami užklausos rezultatą atitinkantys duomenys.

Pabaigoje „R2G“ komponentas - grafų tvarkytojas (GM) - atlieka duomenų migravimą į adresa-
to duomenų bazę ir vykdo visas migravimui reikalingas užklausas, pasinaudodamas ankstesniuose
žingsniuose duomenų atvaizduotojo (DM) ir užklausų atvaizduotojo (QM) sukurtais atvaizdžiais ir
užklausų šablonais.

Apibendrinant, straipsnyje [VMT14] aprašomas „R2G“ įrankis, skirtas duomenų migravimui
iš reliacinės į grafų duomenų bazių valdymo sistemą, veikia keturių žingsnių principu. Pirmiau-
sia, vadovaujantis apibrėžtomis taisyklėmis, yra sugeneruojamas reliacinės duomenų bazės schemą

9

atitinkantis grafas, kurio viršūnės atspindi reliacinėse lentelėse saugomus atributus, o briaunos –
sąryšius tarp jų. Toliau seka reliacinės duomenų bazės duomenų atvaizdavimas grafinės duome-
nų bazės struktūroje. Šiame žingsnyje, pasinaudojant įvedama apjungiamumo (angl. unifiability)
sąvoka, atsiranda galimybė grafo viršūnėse saugoti ne vieno, o kelių susijusių duomenų kortežų
duomenis. Trečiajame žingsnyje, užklausų atvaizduotojas (QM) transformuoja reliacinės duome-
nų bazės užklausas į grafų duomenų bazių valdymo sistemoms suprantamą formatą, kurdamas už-
klausų šablonus, kuriuos vėliau galima pritaikyti konkretiems duomenims grafe pasiekti. Pabaigoje
grafų tvarkytojas (GM), pasitelkdamas ankstesniuose žingsniuose sugeneruota informacija, atlieka
duomenų ir užklausų migravimą.

2.3. „MySQL“ migravimas į „MongoDB“ panaudojant „NoSQLayer“
Šiame poskiryje aprašomas straipsnyje „A Framework for Migrating Relational Datasets to

NoSQL“ [RVC+15] pateikiamas metodas duomenų migravimui tarp reliacinės ir NoSQL duomenų
bazių. Autoriai pristato sistemą „NoSQLayer“, skirtą automatizuotam ir skaidriam duomenų bei
duomenų valdymo modelio migravimui tarp reliacinės „MySQL“ ir NoSQL „MongoDB“ duome-
nų bazių valdymo sistemų. Pagrindinė idėja, kuria remiantis buvo kuriama ši sistema, yra šaltinio
duomenų bazės semantikos išsaugojimas atsižvelgiant ne vien į duomenų migravimą, bet ir užtik-
rinant, kad darbui su duomenimis būtų galima naudoti tas pačias, šaltinio duomenų bazėje naudo-
jamas užklausas. Šiame skyriuje bus detaliau analizuojama pirmoji „NoSQLayer“ sistemos dalis -
Duomenų migravimo modulis (angl. Data Migration Module).

Pagrindiniai duomenų migravimo modulio atliekami žingsniai yra automatinis šaltinio duo-
menų bazės elementų, tokių kaip lentelės, atributai, sąryšiai ir kt. identifikavimas, atitinkamos
struktūros adresato NoSQL duomenų bazės sukūrimas bei visų duomenų migravimas. Taip pat
straipsnyje pateikiama ir šio modulio veikimą iliustruojanti schema (4 pav.).

4 pav. Duomenų migravimo modulio veikimo schema [RVC+15].

Pirmiausia duomenų migravimo modulyje atliekama reliacinės duomenų bazės analizė, sie-
kiant atrinkti metaduomenis, reikalingus migravimo procesui. Kitaip tariant, reikia identifikuoti
visus duomenų bazei priklausančius elementus. Pasak straipsnio autorių, šiai užduočiai atlikti pui-
kiai tinka „Java DatabaseMetaData“ API (angl. Application Programming Interface), kurį sudaro

10

klasės ir metodai, reikalingi metaduomenų išgavimui, o pats API gali būti sėkmingai pritaikomas
skirtingoms duomenų bazių valdymo sistemoms [RVC+15]. Šio API pagrindiniai metodai ir jų
aprašymai pateikiami lentelėje (lent. 1).

1 lentelė. „Java DatabaseMetaData“ API pagr. metodai [RVC+15]

Metodas Aprašymas
getTables() Metodas grąžina visų duomenų bazėje esančių lentelių sąrašą, kuriuo iteruojant galima

gauti informaciją apie kiekvieną lentelę.
getColumns() Metodas grąžina informaciją apie visus nurodomos lentelės atributus (vardai, tipai ir

kt.) bei identifikuoja lentelės pirminius raktus.
getIndexInfo() Metodas naudojamas gauti informaciją apie visus reliacinėje duomenų bazėje sukurtus

indeksus.
getMetaData() Metodas naudojamas kitai reikalingai informacijai, tokiai kaip vientisumo apribojimai

ir duomenų tipai, gauti.

Sekantis duomenų migravimo modulio atliekamas žingsnis, surinkus informaciją apie šaltinio
duomenų bazės duomenis, yra tinkamos adresato duomenų bazės struktūros sukūrimas. Straipsnyje
teigiama, kad „NoSQLayer“ sistema šiuo metu palaiko duomenų migravimą į dokumentų duomenų
bazės valdymo sistemą „MongoDB“. Kaip ir kiekviena dokumentų tipo NoSQL duomenų bazė,
„MongoDB“ duomenys saugomi kaip dokumentų rinkiniai, todėl adresato struktūra yra kuriama
kiekvieną reliacinės šaltinio duomenų bazės lentelę vaizduojant kaip dokumentą, o lentelės atri-
butus – kaip dokumentų laukus. Taip pat kiekvienas lenteles jungiantis sąryšis „MongoDB“ yra
atvaizduojamas kaip dokumento nuoroda tam, kad būtų užtikrinamas migruojamų duomenų in-
tegralumas ir būtų galima atlikti transakcijas, reliacinėje duomenų bazėje reikalaujančias lentelių
jungimo (angl. join).

Svarbu paminėti, kad adresato duomenų bazėje saugomi ne tik iš reliacinės šaltinio duomenų
bazės migruojami duomenys, tačiau yra sukuriama ir atskira kolekcija saugoti metaduomenims,
išgautiems iš šaltinio duomenų bazės pirmojo žingsnio metu. Autorių teigimu, „NoSQLayer“ šią
kolekciją sukuria todėl, kad metaduomenys yra svarbūs antrosios sistemos dalies – duomenų atvaiz-
davimo modulio veikimui, kadangi yra naudojami integralumo apribojimams bei tinkamų duomenų
tipų naudojimui užtikrinti [RVC+15].

Paskutinė duomenų migravimo modulyje atliekama funkcija yra pats duomenų migravimas
iš šaltinio reliacinės į adresato NoSQL duomenų bazę. Migravimui atlikti, kiekvienai reliacinei
lentelei, saugomai „MySQL“ duomenų bazių valdymo sistemoje, naudojamos „SELECT * from
TABLE“ užklausos, skirtos duomenims išgauti, kurie tuomet yra dedami į „MongoDB“ kaip ati-
tinkamos dokumentų kolekcijos.

11

3. „MongoDB“ schemos modeliavimo strategijos
Dokumente „RDBMS to MongoDB Migration Guide“ [Mon18] aprašomi reliacinėje duome-

nų bazėje esančių sąryšių modeliavimo „MongoDB“ DBVS būdai. Išskiriamos dvi pagrindinės
strategijos: įterpimo (angl. embedding) arba nuorodų (angl. referencing).

Įterpimo strategija yra pagrįsta schemos denormalizavimu - kelių esybių apjungimu į vieną
bendrą. SQL duomenų bazių schemos yra normalizuotos siekiant užtikrinti duomenų integralu-
mą ir išvengti duomenų dubliavimo. „MongoDB“ struktūra yra kur kas laisvesnė. Joje galima
denormalizuoti schemą ir apjungti esybių duomenis naudojant įterpimo strategiją. Naudojant šią
strategiją, kelių tarpusavyje susijusių reliacinių lentelių įrašai yra saugomi viename MongoDB“
dokumente. Pagrindiniai įterpimų naudojimo trūkumai yra duomenų dubliavimo atsiradimas ir dėl
to išaugusi duomenų bazės apimtis bei sudėtingesnis rašymo ir modifikavimo operacijų atlikimas.
Tačiau pagrindinis privalumas yra efektyvi, paprastai viena užklausa atliekama susijusių duomenų
paieška [Mon18].

Nuorodų strategijos esminis siekis yra išlaikyti normalizuotos duomenų bazės schemos seman-
tiką. SQL duomenų bazės lentelės „MongoDB“ DBVS yra modeliuojamos kaip atskirų dokumentų
kolekcijos. Sąryšiams atvaizduoti dokumentuose naudojamos nuorodos į susijusius dokumentus.
Nuorodos pagal savo prasmę atitinka reliacinėse duomenų bazėse naudojamus išorinius raktus.
Pagrindinis nuorodų naudojimo trūkumas pasireiškia kuomet reikia gauti tarpusavyje susijusių do-
kumentų duomenis, nes reikalingos papildomos užklausos nuorodomis susijusiems dokumentams
gauti ir tai mažina duomenų bazės efektyvumą [Mon18]. Kita vertus, nuorodų strategija užtikrina
tam tikrų „MongoDB“ esančių apribojimų laikymąsi, pavyzdžiui, nėra rizikos viršyti šešiolikos
megabaitų vieno dokumento dydžio limitą. Taip pat normalizuotoje duomenų bazėje efektyviau
atliekamos rašymo ir modifikavimo operacijos, kadangi užtenka jas atlikti vienam dokumentui, o
ne visoms denormalizavimo metu atsiradusioms kopijoms.

Dokumente pabrėžiama, kad nėra universalios schemos modeliavimo strategijos, tinkančios
visoms duomenų bazėms, kadangi kiekviena jų gali turėti skirtingus sąryšių svorius, skaitymo bei
rašymo operacijų tendencijas ir kitas savybes, kurios gali daryti įtaką skirtingiems efektyvumo op-
timizavimo poreikiams [Mon18]. Taip pat dokumente teigiama, kad daugeliu atveju optimaliausia
yra naudoti įvairias schemos modeliavimo strategijų kombinacijas, kadangi tiek nuorodų, tiek įter-
pimų naudojimas turi savo privalumų bei trūkumų. Egzistuoja bendros rekomendacijos sąryšių
modeliavimui „MongoDB“ DBVS [Mon18]. SQL duomenų bazėse galimi šie lentelių tarpusavio
sąryšiai:

1. 1:1 - vienas lentelės A įrašas gali būti susijęs tik su vienu lentelės B įrašu ir atvirkščiai.
Modeliuojant 1:1 sąryšį „MongoDB“ DBVS rekomenduojama naudoti įterpimo strategiją.
Tokių būdų susijusių dokumentų informacijai pasiekti pakanka vienos skaitymo operacijos
[Mon18].

2. 1:N - vienas lentelės A įrašas gali būti susijęs su daugiau negu vienu lentelės B įrašu, o

12

vienas lentelės B įrašas gali būti susijęs tik su vienu lentelės A įrašu. Modeliuojant 1:N
sąryšį „MongoDB“ DBVS rekomenduojama naudoti įterpimo strategiją. Tačiau yra atvejai,
kuomet šiam sąryšiui modeliuoti labiau tinkama nuorodų strategija [Mon18]:

• Dokumentas turi labai daug susijusių dokumentų arba susiję dokumentai yra itin didelės
apimties. Tokiais atvejais įterpinėjant dokumentus kyla rizika viršyti 16 megabaitų
dokumento limitą.

• Susijęs dokumentas yra labai retai skaitomas ar modifikuojamas, todėl jo įterpimas
bereikalingai padidintų susijusio dokumento dydį.

3. N:N - vienas lentelės A įrašas gali būti susijęs su daugiau negu vienu lentelės B įrašu, o
vienas B lentelės įrašas gali būti susijęs su daugiau negu vienu lentelės A įrašu. Modeliuo-
jant N:N sąryšį „MongoDB“ DBVS rekomenduojama naudoti vienpusį (angl. one way) arba
dvipusį (angl. two way) įterpimus [Mon18]. Dvipusis nuo vienpusio įterpimo skiriasi tuo,
kad naudojant dvipusį įterpimą į abu dokumentus yra atitinkamai įterpiamos susijusių do-
kumentų reikšmės. Analogiškai 1:N, galimi atvejai kuomet N:N sąryšiui įterpimo metodas
nėra optimalus. Tokiais atvejais siūloma naudoti vienpuses arba dvipuses nuorodas.

Straipsnyje „A Study of Normalization and Embedding in MongoDB“ [KGK14] aprašomas ty-
rimas, kuriame lyginamas normalizuotų ir denormalizuotų schemos modelių „MongoDB“ DBVS
skaitymo operacijų efektyvumas. Eksperimentui atlikti buvo naudojamos dvi „MongoDB“ DBVS
saugomos skirtingai sumodeliuotos duomenų bazės. Viena iš jų buvo normalizuota - sąryšiams
tarp dokumentų apibrėžti buvo naudojama jungimo strategija su išoriniais raktais. Kita duomenų
bazė buvo denormalizuota - dokumentai buvo kiek įmanoma labiau apjungti tarpusavyje naudojant
įterpimus. Tuomet abiem duomenų bazėms buvo siunčiamos vienodos skaitymo užklausos ir ma-
tuojamas rezultatų gavimo laikas. Straipsnio autoriai išvadose teigia, kad su visomis užklausomis
denormalizuota „MongoDB“ duomenų bazė užklausas vykdė stabiliai greičiau už normalizuoto
modelio, dokumentų nuorodomis paremtą dokumentų duomenų bazę [KGK14].

13

4. Programa automatizuotam duomenų migravimui iš „My-
SQL“ į „MongoDB“ taikant schemos denormalizavimo stra-
tegiją

Šiame skyriuje pristatoma sukurta programa, skirta automatizuotam duomenų migravimui iš
reliacinės „MySQL“ į dokumentų tipo NoSQL duomenų bazių valdymo sistemą „MongoDB“ pri-
taikant reliacinės schemos denormalizavimo strategiją. Ankstesniame skyriuje išnagrinėtos pagrin-
dinės sąryšių modeliavimo strategijos, naudojamos migruojant SQL schemą į ”MongoDB”. Pag-
rindinis denormalizavimo strategijos, kuria paremtas aprašomos programos „MongoDB“ schemos
modeliavimas, tikslas yra kiek įmanoma labiau apjungti susijusių esybių įrašus tam, kad juose sau-
gomą informaciją būtų galima pasiekti atliekant vieną skaitymo operaciją. Šios programos duo-
menų migravimo strategija orientuotą į „MongoDB“ DBVS esančių duomenų skaitymo operacijų
efektyvumą.

Pristatoma programa automatizuotą duomenų migravimą vykdo dviem etapais:

1. Gaunami ir išsaugomi reliacinės šaltinio duomenų bazės metaduomenys.

2. Reliacinė schema yra denormalizuojama atsižvelgiant į lenteles siejančius sąryšius ir atlie-
kamas duomenų migravimas.

Programa parašyta „Java“ programavimo kalba, todėl prisijungimui ir darbui su „MySQL“
DBVS naudojama JDBC API (angl. Application Programming Interface). JDBC (angl. Java
Database Connectivity) - tai programavimo interfeisas, aprašantis metodus, skirtus komunikavi-
mui su įvairiomis reliacines duomenų bazes valdančiomis sistemomis. Prisijungimui ir darbui su
„MongoDB“ naudojama „mongodb-3.4.3“ tvarkyklė (angl. driver). Sekančiuose skyriuose deta-
liau aprašomi kiekvieno etapo metu programos atliekami veiksmai.

4.1. Reliacinės duomenų bazės metaduomenų gavimas
Pirmas programos atliekamas veiksmas šio etapo metu yra prisijungimas prie „MySQL“

DBVS. Naudojantis JDBC API prisijungimui prie „MySQL“ DBVS naudojamas metodas getCon-
nection(), kuriame nurodomas prisijungimo URL (Uniform Resource Locator) adresas su šaltinio
duomenų bazės pavadinimu bei „MySQL“ vartotojo, turinčio skaitymo teises į tą duomenų bazę,
prisijungimo vardas ir slaptažodis. Šis metodas grąžina Connection tipo objektą, skirtą tolimes-
niam darbui su duomenų baze. Sekantis veiksmas, prisijungus prie „MySQL“ DBVS, yra šaltinio
duomenų bazės metaduomenų gavimas.

Metaduomenų gavimas skirstomas į du žingsnius. Pirmojo žingsnio metu gaunama bendra
informacija naudojama duomenų bazę atitinkančios „Java“ klasių struktūros atmintyje sukūrimui,
išsaugomi joje esančių lentelių bei stulpelių pavadinimai, sukuriami ir užpildomi atitinkamų ob-
jektų sąrašai. Metaduomenų klasių struktūra ir jų sukūrimo procesas atrodo taip:

14

1. Migruojamos reliacinės šaltinio duomenų bazės pavadinimas paprastai yra žinomas iš anks-
to. Jai sukuriamame „Java“ klasės objekte taip pat yra saugomas sąrašas visų lentelių klasės
objektų, atitinkančių migruojamoje duomenų bazėje esančias lenteles. Naudojantis meto-
du getMetaData() gaunamas visų „MySQL“ esančių duomenų bazių metaduomenų rinkinys.
Gautam metaduomenų rinkiniui kviečiamas metodas getTables() ir nurodomas duomenų ba-
zės pavadinimas. Gaunamas konkrečios duomenų bazės lentelių rinkinys. Toliau gaunami
lentelių metaduomenys (2 žingsnis).

c l a s s Database {
S t r i n g databaseName ;
A r r a y L i s t <Table > t a b l e s ;

}

2. Iteruojama gautu lentelių rinkiniu ir kiekvienam lentelės įrašui sukuriamas Table klasės ob-
jektas, kuriam priskiriamas lentelės pavadinimas. Sukurtas objektas taip pat yra patalpina-
mas į bendrą duomenų bazės lentelių sąrašą. Imamas lentelės pavadinimas ir bendram me-
taduomenų rinkiniui kviečiamas metodas getColumns() nurodant lentelės ir duomenų bazės
pavadinimus. Gaunamas lentelės stulpelių rinkinys. Toliau gaunami stulpelių metaduomenys
(3 žingsnis). Įvykdžius paskutinę lentelių rinkinio iteraciją, pirminis metaduomenų gavimas
baigiamas.

c l a s s Tab le {
S t r i n g tableName ;
A r r a y L i s t <Column> columns ;
A r r a y L i s t <Column> pr imaryKeys ;
HashMap < S t r i n g , Column> impor tedKeys ;
HashMap < S t r i n g , Column> expo r t edKeys ;

}

3. Iteruojama gautu rinkiniu ir kiekvienam stulpelių įrašui sukuriamas Column klasės objektas,
kuriam priskiriamas stulpelio pavadinimas ir tėvinės lentelės objektas. Sukurtas objektas taip
pat yra patalpinamas į bendrą tėvinės lentelės stulpelių sąrašą. Įvykdžius paskutinę stulpelių
rinkinio iteraciją, grįžtama į 2 žingsnį.

c l a s s Column {
Tab le p a r e n t T a b l e ;
S t r i n g columnName ;
Boolean pr imaryKey ;

}

Antrojo žingsnio metu gaunama informacija apie lentelių pirminius, importuotus ir eksportuo-
tus raktus. Importuotas raktas - tai lentelės išorinis (angl. external) raktas, susietas su kitos lentelės

15

pirminiu (angl. primary) raktu. Eksportuotas raktas - tai lentelės pirminis raktas, su kuriuo su-
sietas kitos lentelės išorinis raktas. Informacijai apie raktus gauti iteruojama pirmajame žingsnyje
sudarytu duomenų bazės lentelių sąrašu. Bendram metaduomenų rinkiniui kviečiami šie metodai
perduodant lentelės pavadinimą:

1. getPrimaryKeys - gaunami lentelės pirminių raktų stulpelių pavadinimai. Pagal pavadinimą
atrenkamas lentelės stulpelis pažymimas kaip pirminis raktas ir įdedamas į tėvinės lentelės
pirminių raktų sąrašą.

2. getImportedKeys - gaunami lentelės importuotų raktų stulpelių bei susietų stulpelių ir jų len-
telių pavadinimai. Kiekvienas importuoto rakto ir su juo susieto stulpelių poros įdedamos į
lentelės importuotų raktų struktūrą.

3. getExportedKeys - gaunami lentelės eksportuotų raktų stulpelių bei susietų stulpelių ir jų
lentelių pavadinimai. Kiekvienas eksportuoto rakto ir su juo susieto stulpelių poros įdedamos
į lentelės eksportuotų raktų struktūrą.

Atlikus abu žingsnius, reliacinės šaltinio duomenų bazės metaduomenų gavimo etapas bai-
giamas. Surinktų duomenų pakanka pradėti migravimą į „MongoDB“ DBVS atliekant reliacinės
schemos denormalizavimą pagal lentelių tarpusavio sąryšius.

4.2. Duomenų migravimas denormalizuojant reliacinę schemą
Šiame etape programa atlieka reliacinės šaltinio duomenų bazės schemos ir duomenų migravi-

mą į „MongoDB“. Procesas vykdomas tokia tvarka:

1. Sukuriamos jungtys su „MySQL“ ir „MongoDB“ DBVS. Prisijungimui prie „MySQL“ nau-
dojamas ankstesniame skyriuje minėtas metodas getConnection(). Prie „MongoDB“ prisi-
jungiama kviečiant klasės MongoClient konstruktorių ir perduodant prisijungimo URI (Uni-
form Resource Identifier) adresą. Tuomet sukurtam MongoClient objektui kviečiame meto-
dą getDatabase ir nurodome duomenų bazės pavadinimą. Jeigu „MongoDB“ sistemoje to-
kia duomenų bazė neegzistuoja, automatiškai sukuriama nauja duomenų bazė ir grąžinamas
darbui su ja skirtas objektas MongoDatabase. Sukūrus jungtis su „MySQL“ ir „MongoDB“,
galima pradėti duomenų migravimo procesą.

2. Iteruojama pirmajame programos veikimo etape sukurtu duomenų bazės lentelių sąrašu tab-
les. Analizuojami kiekvienoje iteracijoje gaunamos lentelės sąryšiai (baigus iteravimą mig-
ravimas laikomas pabaigtu ir programa baigia darbą):

(a) Jeigu lentelė neturi importuotų ir eksportuotų raktų (importedKeys ir exportedKeys
struktūros yra tuščios), tai jos įrašams migruoti kuriama nauja „MongoDB“ kolekci-
ja (angl. collection) (3 žingsnis).

16

(b) Jeigu lentelė turi importuotų, tačiau neturi eksportuotų raktų, tai naujos „MongoDB“
kolekcijos nekuriame, nes lentelės įrašai bus įterpiami susijusių lentelių dokumentuose.
Grįžtama į 2 žingsnį.

(c) Jeigu lentelė neturi importuotų, tačiau turi eksportuotų raktų, tai jos įrašams migruoti
kuriama nauja „MongoDB“ kolekcija (3 žingsnis).

(d) Jeigu lentelė turi ir importuotų, ir eksportuotų raktų, tai jos įrašams migruoti kuria-
ma nauja „MongoDB“ kolekcija (3 žingsnis), išskyrus atvejį, kai importuotų raktų yra
daugiau negu 2 ir jie sutampa su lentelės pirminiais raktais - tai reiškia, kad lentelė yra
jungiamoji, skirta N:N sąryšiui tarp kitų lentelių apibrėžti. Jungiamosioms lentelėms
naujos „MongoDB“ kolekcijos nekuriamos (grįžtama į 2 žingsnį), nes N:N sąryšiu su-
sijusių lentelių įrašams migruoti naudojama dvipusio įterpimo strategija.

3. Kviečiamas metodas getCollection() su parametru tableName, nurodančiu lentelės pavadi-
nimą. Jeigu tokios kolekcijos „MongoDB“ duomenų bazėje nėra, sistema automatiškai ją
sukuria. Sukuriama SQL užklausa (angl. statement) visiems lentelės įrašams gauti:

SELECT * FROM tableName

Gaunamas užklausos rezultato duomenų rinkinys (angl. Result Set). Jeigu jame nėra įrašų,
grįžtama į 2 žingsnį. Jeigu duomenų rinkinys nėra tuščias, einama į 4 žingsnį.

4. Sukuriamas sąrašas Document tipo objektams, atitinkantiems „MongoDB“ BSON dokumen-
tus, saugoti. Iteruojama lentelės įrašų duomenų rinkiniu:

(a) Kiekviena gauto lentelės įrašo stulpelio pavadinimo ir reikšmės pora metodu put() pri-
dedama į įrašui sukurtą dokumento objektą. Tikrinama, ar lentelės eksportuotų raktų
struktūroje yra elementas, kurio raktinė reikšmė atitinka stulpelio pavadinimą. Jeigu
tokių elementų yra, tuomet kiekvienam jų gaunama eksportuotų raktų struktūros reikš-
mės Column tipo objekto tėvinė lentelė expToTable ir tikrinama:

i. Jeigu expToTable lentelės eksportuotų raktų sąrašas yra tuščias, vadinasi susiję
šios lentelės įrašai bus įterpiami į einamąjį dokumentą. Kuriama SQL užklausą
susijusiems įrašams gauti:
SELECT * FROM expToTableName WHERE expToColumnName =
columnValue
Čia expToColumnName - stulpelio, į kurį eksportuotas raktas, pavadinimas, co-
lumnValue - einamojo lentelės įrašo stulpelio reikšmė.
Gaunamas susijusių įrašų sąrašas, kuriuo iteruojant visos visų stulpelių, išskyrus
einamojo, pavadinimų ir reikšmių poros dedamos į susijusių įrašų sąrašą. Iteravi-
mo pabaigoje sąrašas įdedamas į einamosios lentelės įrašui sukurtą „MongoDB“
dokumentą, nurodant expToTable lentelės pavadinimą.

17

ii. Jeigu expToTable lentelės eksportuotų raktų sąrašas nėra tuščias ir lentelė nėra N:N
jungiamoji, vadinasi einamajame dokumente bus sukuriama nuoroda į susijusius
šios lentelės įrašus. Kuriama SQL užklausą susijusiems įrašams gauti:
SELECT expToTablePrimaryKeys FROM expToTableName WHERE
expToColumnName = columnValue
Čia expToTablePrimaryKeys - lentelės expToTable pirminiai raktai.
Gaunamas susijusių įrašų sąrašas, kuriuo iteruojant visos visų stulpelių, išskyrus
einamojo, pavadinimų ir reikšmių poros dedamos į susijusių įrašų sąrašą. Itera-
vimo pabaigoje sąrašas pridedamas prie einamosios lentelės įrašui sukurto „Mon-
goDB“ dokumento kaip nuoroda, nurodant expToTable lentelės pavadinimą.

iii. Jeigu expToTable lentelė yra N:N jungiamoji, vadinasi į einamąjį dokumentą rei-
kalinga įterpti kitą N:N sąryšio pusę žyminčios lentelės susijusius įrašus. Šiam
tikslui pasiekti naudojamas kitas expToTable lentelės išorinis raktas, kurio pava-
dinimas nelygus einamojo stulpelio pavadinimui. Jis gaunamas iš jungiamosios
lentelės importuotų raktų struktūros. Kuriama SQL užklausą susijusiems įrašams
gauti:
SELECT * FROM expToTableName INNER JOIN
otherForeignKeyParentTable ON expToTableName.expToColumnName
= otherForeignKeyParentTable.otherForeignKeyColumnName WHERE
columnName = columnValue
Čia otherForeignKeyParentTable - kitą N:N sąryšio pusę žyminčios lentelės pava-
dinimas, otherForeignKeyColumnName - kitą N:N sąryšio pusę žyminčios lentelės
eksportuoto rakto stulpelio pavadinimas.
Gaunamas susijusių įrašų sąrašas, kuriuo iteruojant visos visų stulpelių, išskyrus
einamojo, pavadinimų ir reikšmių poros dedamos į susijusių įrašų sąrašą. Itera-
vimo pabaigoje sąrašas pridedamas prie einamosios lentelės įrašui sukurto „Mon-
goDB“ dokumento kaip nuoroda, nurodant expToTable lentelės pavadinimą.

(b) Baigus iteruoti per gauto lentelės įrašo stulpelius užpildytas „MongoDB“ dokumentas
įdedamas į kolekcijos dokumentų sąrašą. Apdorojus paskutinį gautą įrašą, einama į 5
žingsnį.

5. Kiekvienai sukurtai „MongoDB“ kolekcijai kuriamas indeksas, atitinkantis reliacinės lente-
lės pirminių raktų laukus. Kuriamas indeksas su parametru unique, o tai reiškia, jog į ko-
lekciją nebus galima patalpinti dokumento, kuriame bus aptikta pasikartojanti pirminį raktą
reliacinėje lentelėje atitinkančio lauko reikšmė. Taip pat tokiu būdu padidinamas nuorodomis
susietų dokumentų paieškos duomenų bazėje efektyvumas, kadangi nuorodos dokumentuo-
se sukuriamos panaudojant lentelės pirminių raktų laukus. Sukūrus indeksą, grįžtama į 2
žingsnį.

18

4.3. Programos taikymas realios SQL duomenų bazės migravimui į „Mon-
goDB“

Siekiant įvertinti sukurtos programos funkcionalumą, buvo atliekami realių „MySQL“ DBVS
saugomų reliacinių duomenų bazių migravimo testai į „MongoDB“. Testavimui buvo naudojamos
viešai prieinamos bandomosios reliacinės duomenų bazės, sudarytos iš ne daugiau kaip 10 lentelių,
susietų įvairiais sąryšiais. Šiame skyriuje pristatomas SQL duomenų bazės „employees“ migravi-
mo į „MongoDB“ procesas ir rezultatai panaudojant ankstesniame skyriuje aprašytą programą.

5 pav. SQL duomenų bazės „employees“ esybių sąryšių diagrama.

Iš pateiktos esybių diagramos (5 pav.) matoma, kad duomenų bazę „employees“ sudaro penkios
lentelės, tarpusavyje apibrėžtos sąryšiais:

1. Vienas lentelės „employees“ įrašas gali būti susietas su daugiau nei vienu lentelės „salaries“
įrašu, o atitinkamai daugiau nei vienas „salaries“ įrašas gali būti susietas su ne daugiau kaip
vienu „employees“ įrašu, todėl sąryšis yra 1:N.

2. Vienas lentelės „employees“ įrašas gali būti susietas su daugiau nei vienu lentelės „titles“
įrašu, o atitinkamai daugiau nei vienas „titles“ įrašas gali būti susietas su ne daugiau kaip
vienu „employees“ įrašu, todėl sąryšis yra 1:N.

3. Daugiau nei vienas lentelės „employees“ įrašas gali būti susietas su daugiau nei vienu len-
telės „departments“ įrašu, o atitinkamai daugiau nei vienas „departments“ įrašas gali būti
susietas su daugiau nei vienu „employees“ įrašu. Lenteles siejantis sąryšis N:N normalizuo-
tas naudojant jungiamąją lentelę „dept_emp“ ir iškaidant N:N į du 1:N sąryšius tarp lentelių
„departments“ ir „dept_emp“ bei „employees“ ir „dept_emp“.

Sukurta programa automatizuotam duomenų migravimui iš „MySQL“ į „MongoDB“ DBVS,
taikant schemos denormalizavimo strategiją, vykdo duomenų bazės „employees“ migravimą sky-
riuose 4.1. ir 4.2. detaliai aprašytais etapais.

19

Visų pirma, programa atlieka prisijungimą prie „MySQL“ DBVS ir visų joje saugomų duo-
menų bazių metaduomenų rinkinio gavimą. Sukuriamas Database klasės objektas duomenų bazei
„employees“. Pasinaudojant gautu rinkiniu kviečiamas metodas getTables() ir nurodomas duomenų
bazės pavadinimas „employees“. Iteruojama gautu „employees“ duomenų bazės lentelių metaduo-
menų rinkiniu. Kiekvienoje iteracijoje sukuriamas lentelę atvaizduojantis Table klasės objektas,
jame išsaugomas lentelės pavadinimas, o pats objektas įtraukiamas į duomenų bazės lentelių objek-
tų sąrašą. Kiekvienam lentelės metaduomenų rinkinio elementui kviečiame metodą getColumns().
Iteruojama gautu rinkiniu ir kiekvienoje iteracijoje sukuriamas lentelės stulpelį atvaizduojamas
Column tipo objektas, kuriam suteikiamas pavadinimas, priskiriamas tėvinę lentelę atitinkantis
objektas, o sukurtas stulpelio objektas įtraukiamas į jos stulpelių objektų sąrašą.

Toliau atliekama antra 4.1. skyriuje aprašyta duomenų bazės metaduomenų gavimo dalis - ren-
kama informacija apie kiekvienos lentelės pirminius, importuotus (išorinius) ir eksportuotus raktus.
Ši informacija gaunama iteruojant sudarytu lentelių objektų sąrašu ir bendram duomenų bazės me-
taduomenų rinkiniui kviečiant skirtingus metodus, skirtus atitinkamų tipų raktams gauti. Gauti
pirminių raktų pavadinimus atitinkantys stulpelių objektai išsaugomi lentelės pirminių raktų sąra-
še, o importuotų ir eksportuotų raktų duomenys jiems skirtose raktų - reikšmių poras saugančiose
struktūrose.

Sekantis programos atliekamas veiksmas - 4.2. skyriuje aprašomo duomenų migravimo, de-
normalizuojant reliacinės „employees“ duomenų bazės schemą, įgyvendinimas. Programa sukuria
jungtis su „MySQL“ ir „MongoDB“ DBVS. „MongoDB“ sukuriama nauja duomenų bazė „emp-
loyees.“ Iteruojama turimu duomenų bazės lentelių objektų sąrašu:

1. Pirmoji lentelė sąraše - „departments“. Ši lentelė neturi importuotų, tačiau turi vieną eks-
portuotą raktą (pirminio rakto stulpelis „dept_no“ eksportuotas į lentelę „dept_emp“ kaip
išorinis raktas „dept_no“), todėl lentelei „departments“ kuriama nauja tokio paties pavadini-
mo „MongoDB“ kolekcija (2.c.):

(a) Sukuriama ir įvykdoma SQL užklausa lentelės „departments“ įrašams gauti.
SELECT * FROM departments

(b) Sukuriamas sąrašas Document tipo objektams saugoti. Iteruojama gautu užklausos re-
zultatų rinkiniu.

(c) Sukuriamas Document tipo objektas gautam įrašui saugoti. Stulpelio „dept_no“ pava-
dinimas ir reikšmė įraše dedami į sukurtą dokumentą.

(d) Lentelės „departments“ eksportuotų raktų struktūroje aptinkamas elementas, kurio rak-
tinė reikšmė yra „dept_no“. Raktą struktūroje atitinkanti reikšmė - stulpelio objektas
„dept_no“, kurio tėvinė lentelė yra „dept_emp“. Kadangi „dept_emp“ yra jungiamoji
N:N sąryšio lentelė, gaunama kita jos importuotų raktų struktūroje saugoma pora, ku-
rios raktinė reikšmė „emp_no“ atitinka stulpelio objektą „emp_no“ rodantį į tėvinę len-
telę „employees“ (4.iii.). Sukuriama ir įvykdoma SQL užklausa lentelių „dept_emp“
ir „employees“ duomenims, susijusiems su einamuoju lentelės „departments“ įrašu:

20

SELECT * FROM dept_emp INNER JOIN employees ON dept_emp.emp_no =
employees.emp_no WHERE dept_no=colVal

Čia colVal - einamojo įrašo stulpelio „dept_no“ reikšmė.

(e) Iteruojama gaunamu susijusių įrašų sąrašu. Kiekvieno stulpelio pavadinimo ir reikšmės
pora, išskyrus einamąjį (kadangi jo reikšmė jau įrašyta į sukurtą „MongoDB“ doku-
mentą), dedama į susijusio įrašo dokumentą, kuris atitinkamai yra dedamas į susijusių
įrašų dokumentų sąrašą. Baigus susijusių įrašų iteravimą, užpildytas susijusių doku-
mentų sąrašas pridedamas prie einamojo dokumento su reikšme „employees“.

(f) Imama sekančio stulpelio „dept_name“ pavadinimas ir reikšmė įraše. Jų pora dedama į
sukurtą dokumentą. Eksportuotų raktų struktūroje elemento, kurio raktinė reikšmė yra
„dept_name“, nėra.

(g) Kiekvienos iteracijos pabaigoje sukurtas lentelės „departments“ įrašą atitinkantis do-
kumentas su įterptais „employees“ duomenimis įkeliamas į bendrą „departments“ ko-
lekciją „MongoDB“ sistemoje.

(h) Galiausiai kolekcijai „departments“ „MongoDB“ sistemoje sukuriamas indeksas „Pri-
maryKey“, kuriame nurodyti visi lentelės pirminių raktų stulpelių pavadinimai. Iš SQL
į „MongoDB“ migruoto lentelės „departments“ įrašo dokumento, kuriame įterpta ir su-
sijusių „employees“ įrašų informacija, pavyzdys pateikiamas iliustracijoje (6 pav.).

6 pav. Į „MongoDB“ migruoto lentelės „departments“ įrašą, į kurį buvo įterptas susijęs „employ-
ees“ lentelės įrašas, atitinkančio dokumento pavyzdys.

21

2. Antroji lentelė sąraše - „dept_emp“. Lentelė turi ir importuotų, ir eksportuotų raktų, tačiau ji
taip pat yra ir jungiamoji sąryšio N:N lentelė, todėl naują „MongoDB“ kolekcija nekuriama
(2.d.)

3. Trečioji lentelė sąraše - „employees“. Ši lentelė neturi importuotų, tačiau turi tris eksportuo-
tus raktus (pirminio rakto stulpelis „emp_no“ eksportuotas į lenteles „dept_emp“, „salaries“
ir „titles“ kaip išorinis raktas „emp_no“), todėl lentelei „employees“ kuriama nauja tokio
paties pavadinimo „MongoDB“ kolekcija (2.c.):

(a) Sukuriama ir įvykdoma SQL užklausa lentelės „departments“ įrašams gauti.

SELECT * FROM employees

(b) Sukuriamas sąrašas Document tipo objektams saugoti. Iteruojama gautu užklausos re-
zultatų rinkiniu.

(c) Sukuriamas Document tipo objektas gautam įrašui saugoti. Stulpelio „emp_no“ pava-
dinimas ir reikšmė įraše dedami į sukurtą dokumentą.

(d) Lentelės „employees“ eksportuotų raktų struktūroje aptinkamas elementas, kurio rak-
tinė reikšmė yra „emp_no“. Raktą struktūroje atitinkanti reikšmė - stulpelio objektas
„emp_no“, kurio tėvinė lentelė yra „dept_emp“. Kadangi „dept_emp“ yra jungiamo-
ji N:N sąryšio lentelė, gaunama kita jos importuotų raktų struktūroje saugoma pora,
kurios raktinė reikšmė „dept_no“ atitinka stulpelio objektą „dept_no“ rodantį į tėvinę
lentelę „departments“ (4.iii.). Vykdomas analogiškas, lentelės „departments“ migravi-
me aprašytas procesas.

(e) Lentelės „employees“ eksportuotų raktų struktūroje aptinkamas dar vienas elementas,
kurio raktinė reikšmė yra „emp_no“. Raktą struktūroje atitinkanti reikšmė - stulpelio
objektas „emp_no“, kurio tėvinė lentelė yra „salaries“. Kadangi lentelės „salaries“
eksportuotų raktų sąrašas yra tuščias, vadinasi susiję šios lentelės įrašai bus įterpiami į
einamąjį dokumentą (4.i.).

(f) Sukuriama ir įvykdoma SQL užklausa susijusiems lentelės „salaries“ įrašams gauti.

SELECT * FROM salaries WHERE emp_no = colValue

(g) Sukuriamas sąrašas Document tipo objektams saugoti. Iteruojama gautu užklausos re-
zultatų rinkiniu.

(h) Iteruojama gaunamu susijusių įrašų sąrašu. Kiekvieno stulpelio pavadinimo ir reikšmės
pora, išskyrus einamąjį (kadangi jo reikšmė jau įrašyta į sukurtą „MongoDB“ doku-
mentą), dedama į susijusio įrašo dokumentą, kuris atitinkamai yra dedamas į susijusių
įrašų dokumentų sąrašą. Baigus susijusių įrašų iteravimą, užpildytas susijusių doku-
mentų sąrašas pridedamas prie einamojo dokumento su reikšme „salaries“.

(i) Lentelės „employees“ eksportuotų raktų struktūroje aptinkamas dar vienas elementas,
kurio raktinė reikšmė yra „emp_no“. Raktą struktūroje atitinkanti reikšmė - stulpe-

22

lio objektas „emp_no“, kurio tėvinė lentelė yra „titles“. Kadangi lentelės „titles“ eks-
portuotų raktų sąrašas yra tuščias, vadinasi susiję šios lentelės įrašai bus įterpiami į
einamąjį dokumentą (4.i.). Atliekami analogiški veiksmai kaip ir su susijusia lentele
„salaries“.

(j) Imamos sekančio stulpelių „birth_date“, „first_name“, „last_name“, „gender“ ir „hi-
re_date“ pavadinimai ir reikšmės įraše. Jų poros dedama į sukurtą dokumentą. Eks-
portuotų raktų struktūroje elemento, kurio raktinė reikšmė yra kuris nors iš minėtų stul-
pelių, nėra.

(k) Kiekvienos iteracijos pabaigoje sukurtas lentelės „employees“ įrašą atitinkantis doku-
mentas su įterptais „departments“, „salaries“ ir „titles“ duomenimis įkeliamas į bendrą
„employees“ kolekciją „MongoDB“ sistemoje.

(l) Galiausiai kolekcijai „employees“ „MongoDB“ sistemoje sukuriamas indeksas „Pri-
maryKey“, kuriame nurodyti visi lentelės pirminių raktų stulpelių pavadinimai. Iš
SQL į „MongoDB“ migruoto lentelės „employees“ įrašo dokumento, kuriame įterpta ir
susijusių „departments“, „salaries“ ir „titles“ įrašų informacija, pavyzdys pateikiamas
iliustracijoje (7 pav.).

7 pav. Į „MongoDB“ migruoto lentelės „employees“ įrašą, į kurį buvo įterpti susiję „departments“,
„salaries“ ir „titles“ lentelių įrašai, atitinkančio dokumento pavyzdys.

23

4. Ketvirtoji lentelė sąraše - „salaries“. Ši lentelė turi importuotų (išorinis raktas „emp_no“),
tačiau neturi eksportuotų raktų, todėl jai nauja „MongoDB“ kolekcija nekuriama, nes lentelės
įrašai bus įterpiami susijusių lentelių, šiuo atveju lentelės „employees“ dokumentuose (2.b.).

5. Penktoji ir paskutinė lentelė sąraše - „titles“. Ši lentelė turi importuotų (išorinis raktas
„emp_no“), tačiau neturi eksportuotų raktų, todėl jai nauja „MongoDB“ kolekcija neku-
riama, nes lentelės įrašai bus įterpiami susijusių lentelių, šiuo atveju lentelės „employees“
dokumentuose (2.b.).

6. Baigiamas duomenų bazės lentelių sąrašo iteravimas. Duomenų „MySQL“ į „MongoDB“
laikomas užbaigtu.

Programa sėkmingai atliko automatizuotą reliacinės duomenų bazės „employees“ migravimą į
„MongoDB“, panaudojant schemos denormalizavimo strategiją. Reliacinėje „employees“ schemo-
je esantys 1:N sąryšiai buvo denormalizuoti į lentelės „employees“ įrašus atitinkančius dokumentus
įterpiant susijusius lentelių „salaries“ ir „titles“ įrašų dokumentus. Lenteles „employees“ ir „de-
partments“ jungiantis N:N sąryšis, šaltinio duomenų bazėje realizuotas panaudojant jungiamąją
lentelę „dept_emp“, „MongoDB“ sukurtoje duomenų bazėje sumodeliuotas atliekant dvipusį įter-
pimą: tarpusavyje susijusių „departments“ ir „employees“ lentelių įrašų dokumentai buvo įterpiami
vienas kito viduje.

24

Išvados
Atlikta egzistuojančios literatūros, susijusios su duomenų migravimų tarp SQL ir NoSQL duo-

menų bazių, analizė. Pristatyti trys metodai ir juose naudojami įrankiai, skirti duomenų migravimui
iš reliacinės SQL į skirtingų tipų NoSQL duomenų bazių valdymo sistemas. Nustatyta, kad visuo-
se metoduose autorių siūloma veiksmų seka, nors ir įgyvendinama nevienodai, yra gana panaši:
pirmiausia surenkama informacija apie reliacinės šaltinio duomenų bazės struktūrą (lenteles, atri-
butus, raktus, indeksus ir kt.), tuomet pagal tai yra modeliuojama atitinkamo tipo NoSQL duomenų
bazės struktūra, pritaikyta migruojamiems duomenims ir jų sąryšiams saugoti, ir pabaigoje yra at-
liekamas duomenų migravimo procesas. Šio darbo kontekste atlikta apžvalga yra aktuali, kadangi
rasta įrodymų, palaikančių sprendimą kuriamos programos, skirtos automatiniam duomenų mig-
ravimui, atliekamą funkciją skaidyti į etapus: šaltinio SQL duomenų bazės metaduomenų gavimo
bei analizės, ir NoSQL schemos modeliavimo ir duomenų migravimo.

Atliktas strategijų, skirtų reliacinės duomenų bazės modeliavimui „MongoDB“ sistemoje, pa-
lyginimas. Nustatyta, kad plačiausiai naudojamos ir rekomenduojamos yra schemos normalizavi-
mo ir denormalizavimo strategijos. Normalizavimo strategija yra paremta siekiu išlaikyti migruo-
jamos reliacinės duomenų bazės struktūrą - kiekvienai lentelei sukurti ją atitinkančią dokumentų
kolekciją, o tarpusavio sąryšiais susietas lenteles „MongoDB“ duomenų bazėje atvaizduoti doku-
mentų nuorodomis, atliekančiomis išorinių raktų funkciją. Pagrindiniai normalizuotos schemos
naudojimo „MongoDB“ privalumai yra didelis rašymo ir modifikavimo operacijų efektyvumas bei
išsaugoma migruojamos reliacinės duomenų bazės semantika. Vis dėlto normalizuotų schemų duo-
menų bazės kenčia nuo mažesnio skaitymo operacijų efektyvumo, kadangi „MongoDB“ nepalaiko
tiesioginių jungimo (JOIN) operacijų, todėl susijusių dokumentų duomenims gauti reikia naudoti
keletą sudėtinių operacijų.

Šiai problemai eliminuoti rekomenduojama naudoti schemos denormalizavimo strategiją, pa-
remtą tarpusavyje susijusių dokumentų jungimu naudojant įterpimus. Denormalizuojant migruo-
jamą reliacinę schemą, atliekamas tam tikras išankstinis jungimas (PRE-JOIN), kuriuo dėka susiję
skirtingų lentelių įrašai „MongoDB“ duomenų bazėje yra saugomi tame pačiame dokumente ir yra
pasiekiami viena operacija. Tačiau naudojant dokumentų įterpimus kyla rizika viršyti „MongoDB“
vieno dokumento dydžio limitą ir yra kuriamos duomenų kopijos, o tai ne tik didina duomenų ba-
zės apimtį, bet ir mažina rašymo bei modifikavimo operacijų efektyvumą. Prieita prie išvados,
kad optimaliausia yra panaudoti abiejų strategijų privalumus ir sukurtoje automatizuoto migravi-
mo programoje naudoti ne vien įterpimų, bet ir nuorodų metodą.

Sukurta programa automatizuotam duomenų migravimui iš „MySQL“ į „MongoDB“ taikant
schemos denormalizavimo strategiją. Programa migravimo procesą atlieka dviem etapais: pirmiau-
sia yra gaunama ir struktūrizuojama šaltinio reliacinės duomenų bazės metaduomenų informacija,
o tuomet yra atliekamas duomenų migravimas. Duomenų migravimo etape „MongoDB“ schemos
modeliavimui yra naudojami lentelių importuotų ir eksportuotų raktų informacija. Pagal apibrėžtas
taisykles, atsižvelgiant į importuotų ir eksportuotų raktų kiekį bei į tai, ar lentelės, į kurias eks-

25

portuojami raktai, pačios eksportuoja raktus į kitas lenteles, yra nustatomas įterpimo ar nuorodų
strategijos naudojimas.

Programos funkcionalumas pademonstruotas detaliai aprašant atliktą automatizuotą realios
„MySQL“ sistemoje saugomos duomenų bazės migravimą į „MongoDB“. Atlikus migravimą 5
reliacinėse lentelėse saugoma informacija buvo perkelta į 2 dokumentų kolekcijas, denormalizavus
reliacinę šaltinio duomenų bazės schemą ir panaudojant vieną dvipusio bei du vienpusio įterpimo
metodus. Sėkmingi migravimo bandymų rezultatai leidžia daryti prielaidą, kad sukurtą programą
būtų galima nesudėtingai modifikuoti bei pritaikyti duomenų migravimui ir iš kitų reliacinių į do-
kumentų duomenų bazių valdymo sistemas, kadangi fundamentaliai jų visų funkcionalumas yra
pakankamai panašus.

26

Summary
Nowadays, many programs and software applications are facing a constant growing of data that

has to be stored and manipulated efficiently, which has proved to be a tough challenge for the rigid
traditional relational SQL databases. This has increased the popularity of much less schema rest-
ricted document type NoSQL databases which are much better suited to handle large amounts of
unstructured data. However, migrating data from relational to document NoSQL databases can be
a challenging task, because it requires knowledge of relational schema to select an optimal migra-
tion strategy. Proposed solution to this problem - an application that utilizes schema denormaliza-
tion strategy to perform automatic data migration from „MySQL“ to „MongoDB“. The automatic
migration of data is performed by analyzing existing relationships between relational tables and
using embedding method to store related entries as a single „MongoDB“ collection document. In
this document the migration process of test „MySQL“ database to „MongoDB“ has been described
in detail to provide a better understanding of how the algorithm behind proposed application works.

Keywords: SQL, NoSQL, „MySQL“, „MongoDB“, automatic migration, schema
denormalization, document embedding

27

Literatūra
[Bou18] S. Bouamama. Migration from a relational database to nosql. International Journal

of Knowledge-Based Organizations, 8:63–80, 2018.

[DbE20a] DbEngines. Db-engines ranking. https://db-engines.com/en/ranking, 2020.
tikrinta 2020-05-05.

[DbE20b] DbEngines. Db-engines ranking of relational dbms. https://db-engines.com/
en/ranking/relational+dbms, 2020. tikrinta 2020-05-05.

[GPG+15] C. Gyorodi, G. Pecherle, R. Gyorodi, and A. Olah. A comparative study: mongodb
vs. mysql. Conference Paper: The 13th International Conference on Engineering of
Modern Electric Systems, Oradea, 2015.

[KGK14] A. Kanade, A. Gopal, and S. Kanade. A study of normalization and embedding in
mongodb. Conference Paper: 2014 IEEE International Advance Computing Confer-
ence (IACC), 2014.

[LLD15] D. Liang, Y. Lin, and G. Ding. Mid-model design used in model transition and data
migration between relational databases and nosql databases. 2015 IEEE International
Conference on Smart City/SocialCom/SustainCom (SmartCity), 2015.

[MH13] A. B. M. Moniruzzaman and S. A. Hossain. Nosql database: new era of databases
for big data analytics - classification, characteristics and comparison. International
Journal of Database Theory and Application, 6:1–14, 2013.

[Mon18] MongoDB. Rdbms to mongodb migration guide. https://webassets.mongodb.
com/_com_assets/collateral/RDBMStoMongoDBMigration.pdf, 2018. tikrinta
2020-04-21.

[Ora15] Oracle. Oracle database concepts. https://docs.oracle.com/cd/E11882_01/
server.112/e40540.pdf, 2015. tikrinta 2020-04-20.

[RVC+15] L. Rocha, F. Vale, E. Cirilo, D. Barbosa, and F. Mourao. A framework for migrating
relational datasets to nosql. Procedia Computer Science, 51:2593–2602, 2015.

[VMT14] R. De Virgilio, A. Maccioni, and R. Torlone. R2g: a tool for migrating relations to
graphs. In Advances in Database Technology - EDBT 2014, pp. 640–643, Athens,
Greece. OpenProceedings, 2014.

[WK12] B. Walek and C. Klimes. A methodology for data migration between different database
management systems. International Journal of Computer and Information Engineer-
ing, 6:536–541, 2012.

