Random convolution of \mathcal{O}-exponential distributions*

Svetlana Danilenko ${ }^{\text {a }}$, Jonas Šiaulys ${ }^{\text {b }}$
${ }^{\text {a }}$ Faculty of Fundamental Sciences, Vilnius Gediminas Technical University Saulètekio ave. 11, LT-10223 Vilnius, Lithuania svetlana.danilenko@vgtu.lt
${ }^{\mathrm{b}}$ Faculty of Mathematics and Informatics, Vilnius University Naugarduko str. 24, LT-03225 Vilnius, Lithuania jonas.siaulys@mif.vu.lt

Received: October 15, 2014 / Revised: February 12, 2015 / Published online: March 31, 2015

Abstract

Assume that ξ_{1}, ξ_{2}, \ldots are independent and identically distributed non-negative random variables having the \mathcal{O}-exponential distribution. Suppose that η is a nonnegative non-degenerate at zero integer-valued random variable independent of ξ_{1}, ξ_{2}, \ldots In this paper, we consider the conditions for η under which the distribution of random sum $\xi_{1}+\xi_{2}+\cdots+\xi_{\eta}$ remains in the class of \mathcal{O}-exponential distributions.

Keywords: long tail, random sum, closure property, \mathcal{O}-exponential distribution.

1 Introduction

Let ξ_{1}, ξ_{2}, \ldots be independent copies of a random variable (r.v.) ξ with distribution function (d.f.) F_{ξ}. Let η be a nonnegative non-degenerate at zero integer-valued r.v. independent of $\left\{\xi_{1}, \xi_{2}, \ldots\right\}$. We suppose that F_{ξ} is \mathcal{O}-exponential and we find minimal conditions under which the d.f.

$$
\begin{aligned}
F_{S_{\eta}}(x) & :=\mathbf{P}\left(\xi_{1}+\xi_{2}+\cdots+\xi_{\eta} \leqslant x\right) \\
& =\sum_{n=0}^{\infty} \mathbf{P}(\eta=n) \mathbf{P}\left(\xi_{1}+\xi_{2}+\cdots+\xi_{n} \leqslant x\right) \\
& =\sum_{n=0}^{\infty} \mathbf{P}(\eta=n) F_{\xi}^{* n}(x)
\end{aligned}
$$

belongs to the class of \mathcal{O}-exponential distributions as well. Here and elsewhere in this paper, $F^{* n}$ denotes the n-fold convolution of d.f. F. Theorem 1 below is the main result of this paper. Before the exact formulation of this theorem, we recall the definition of \mathcal{O}-exponential and some related d.f.'s classes. In all definitions below, we assume that $\bar{F}(x)=1-F(x)>0$ for all $x \in \mathbb{R}$.

[^0]Definition 1. For $\gamma>0$, by $\mathcal{L}(\gamma)$ we denote the class of exponential d.f.s, i.e. $F \in \mathcal{L}(\gamma)$ if for any fixed real y,

$$
\lim _{x \rightarrow \infty} \frac{\bar{F}(x+y)}{\bar{F}(x)}=\mathrm{e}^{-\gamma y}
$$

In the case $\gamma=0$, class $\mathcal{L}(0)$ is called the long-tailed distribution class and is denoted by \mathcal{L}.

Definition 2. A d.f. F belongs to the dominated varying-tailed class $(F \in \mathcal{D})$ if for any fixed $y \in(0,1)$,

$$
\limsup _{x \rightarrow \infty} \frac{\bar{F}(x y)}{\bar{F}(x)}<\infty
$$

Definition 3. A d.f. F is \mathcal{O}-exponential $(F \in \mathcal{O} \mathcal{L})$ if for any fixed $y \in \mathbb{R}$,

$$
0<\liminf _{x \rightarrow \infty} \frac{\bar{F}(x+y)}{\bar{F}(x)} \leqslant \limsup _{x \rightarrow \infty} \frac{\bar{F}(x+y)}{\bar{F}(x)}<\infty
$$

It is easy to see that the following inclusions hold:

$$
\mathcal{D} \subset \mathcal{O} \mathcal{L}, \quad \mathcal{L} \subset \mathcal{O} \mathcal{L}, \quad \bigcup_{\gamma \geqslant 0} \mathcal{L}(\gamma) \subset \mathcal{O} \mathcal{L}
$$

In [2,3], Cline claimed that d.f. $F_{S_{\eta}}$ remains in the class $\mathcal{L}(\gamma)$ if $F_{\xi} \in \mathcal{L}(\gamma)$ and η is any nonnegative non-degenerate at zero integer-valued r.v. Albin [1] observed that Cline's result is false in general. He obtained that d.f. $F_{S_{\eta}}$ remains in the class $\mathcal{L}(\gamma)$ if F_{ξ} belongs to the class $\mathcal{L}(\gamma)$ and $\mathbf{E e}{ }^{\delta \eta}<\infty$ for each $\delta>0$. In order to prove this claim, author used the upper estimate

$$
\begin{equation*}
\frac{\overline{F^{* n}}(x-t)}{\overline{F^{* n}}(x)} \leqslant(1+\varepsilon) \mathrm{e}^{\gamma t} \tag{1}
\end{equation*}
$$

provided that $\varepsilon>0, t \in \mathbb{R}, F \in \mathcal{L}(\gamma), x \geqslant n\left(c_{1}-t\right)+t$ and $c_{1}=c_{1}(\varepsilon, t)$ is sufficiently large such that

$$
\frac{\bar{F}(x-t)}{\bar{F}(x)} \leqslant(1+\varepsilon) \mathrm{e}^{\gamma t}
$$

for $x \geqslant c_{1}$ (see [1, Lemma 1]). Unfortunately, the obtained estimate holds for positive t only. If t is negative, then the above estimate is incorrect in general. This fact was shown by Watanabe and Yamamuro (see [8, Remark 6.1]). Thus, the Cline proposition that $\mathbf{P}\left(\xi_{1}+\xi_{2}+\cdots+\xi_{\eta} \leqslant x\right)$ belongs to the class $\mathcal{L}(\gamma)$ remains not proved.

In this paper, we investigate a wider class, $\mathcal{O L}$, instead of the class $\mathcal{L}(\gamma)$. We show that the d.f. of the sum $\xi_{1}+\xi_{2}+\cdots+\xi_{\eta}$ remains in the class $\mathcal{O} \mathcal{L}$, if r.v. η satisfies the conditions similar to that in [1]. The following theorem is the main statement in this paper.
Theorem 1. Let ξ_{1}, ξ_{2}, \ldots be independent copies of a nonnegative r.v. ξ with d.f. F_{ξ}. Let η be a nonnegative, non-degenerate at zero, integer-valued and independent of $\left\{\xi_{1}, \xi_{2}, \ldots\right\}$ r.v. with d.f. F_{η}. If F_{ξ} belongs to the class $\mathcal{O} \mathcal{L}$ and $\overline{F_{\eta}}(\delta x)=O\left(\sqrt{x} \overline{F_{\xi}}(x)\right)$ for each $\delta \in(0,1)$, then $F_{S_{\eta}} \in \mathcal{O} \mathcal{L}$.

A detailed proof of Theorem 1 is presented in Section 3. Note that the proof is similar to that of Theorem 6 in [5].

The following assertion actually shows that Albin's conditions for the counting r.v. η are sufficient for d.f. $F_{S_{\eta}}$ to remain in the class $\mathcal{O} \mathcal{L}$. The proof of the following corollary is also presented in Section 3.

Corollary 1. Let ξ_{1}, ξ_{2}, \ldots be a sequence of independent nonnegative r.v.s with common d.f. $F_{\xi} \in \mathcal{O} \mathcal{L}$.
(i) D.f. $\mathbf{P}\left(\xi_{1}+\cdots+\xi_{n} \leqslant x\right)$ belongs to the class $\mathcal{O} \mathcal{L}$ for each fixed $n \in \mathbb{N}$.
(ii) Let η be a r.v. which is nonnegative, non-degenerate at zero, integer-valued and independent of $\left\{\xi_{1}, \xi_{2}, \ldots\right\}$. If $\mathbf{E e}^{\varepsilon \eta}<\infty$ for each $\varepsilon>0$, then $F_{S_{\eta}} \in \mathcal{O} \mathcal{L}$.

2 Auxiliary lemmas

Before proving our main results, we give three auxiliary lemmas. The first lemma is well known classical estimate for the concentration function of a sum of independent and identically distributed r.v.s. The proof of Lemma 1 can be found in [6] (see Theorem 2.22), for instance.

Lemma 1. Let X_{1}, X_{2}, \ldots, be a sequence of independent r.v.s with a common nondegenerate d.f. Then there exists a constant c_{2}, independent of λ and n, such that

$$
\sup _{x \in \mathbb{R}} \mathbf{P}\left(x \leqslant X_{1}+X_{2}+\cdots+X_{n} \leqslant x+\lambda\right) \leqslant c_{2}(\lambda+1) n^{-1 / 2}
$$

for all $\lambda \geqslant 0$ and all $n \in \mathbb{N}$.
The second auxiliary lemma is due to Shimura and Watanabe (see [7, Prop. 2.2]). The lemma describes an important property of a d.f. from the class $\mathcal{O} \mathcal{L}$.

Lemma 2. Let F be a d.f. from the class $\mathcal{O} \mathcal{L}$. Then there exists positive Δ such that

$$
\lim _{x \rightarrow \infty} \mathrm{e}^{\Delta x} \bar{F}(x)=\infty
$$

The last auxiliary lemma is crucial in the proof of Theorem 1. The elements of the statement below can be found in [4] (see the proof of Theorem 3(b)). Inequality (1), which is a particular case of the statement below, is proved in [1] (see Lemma 2.1). Leipus and Šiaulys [5] generalized Albin's inequality (1) for an arbitrary d.f. with unbounded support. The analytical proof of Lemma 3 is given in [5] (see proof of Lemma 4). In this paper, we present another, completely probabilistic proof of the lemma below having in mind the importance of the statement.
Lemma 3. Let d.f. F be such that $\bar{F}(x)>0$ for all $x \in \mathbb{R}$. Suppose that

$$
\sup _{x \geqslant d_{2}} \frac{\bar{F}(x-t)}{\bar{F}(x)} \leqslant d_{1}
$$

for some positive constants t, d_{1} and $d_{2}>t$. Then, for all $n=1,2, \ldots$, we have:

$$
\sup _{x \geqslant n\left(d_{2}-t\right)+t} \frac{\overline{F^{* n}}(x-t)}{\overline{F^{* n}}(x)} \leqslant d_{1} .
$$

Proof of Lemma 3. Let X be a r.v. with d.f. F. Then the condition of Lemma 3 says that

$$
\begin{equation*}
\sup _{x \geqslant d_{2}} \frac{\mathbf{P}(X>x-t)}{\mathbf{P}(X>x)} \leqslant d_{1} \tag{2}
\end{equation*}
$$

for some positive $t, d_{1}, d_{2}>t$, and we need to prove that

$$
\begin{equation*}
\sup _{x \geqslant\left(n d_{2}-t\right)+t} \frac{\mathbf{P}\left(S_{n}^{X}>x-t\right)}{\mathbf{P}\left(S_{n}^{X}>x\right)} \leqslant d_{1} \tag{3}
\end{equation*}
$$

for all $n \in \mathbb{N}$, where $S_{n}^{X}=X_{1}+\cdots+X_{n}$, and X_{1}, X_{2}, \ldots are independent copies of X.
The proof is proceeded by induction on n. According to condition (2), inequality (3) holds for $n=1$. Suppose now that $N \geqslant 1$. For arbitrary real x, z and $t>0$, we obtain

$$
\begin{align*}
\mathbf{P}\left(S_{N+1}^{X}>x\right)= & \mathbf{P}\left(S_{N}^{X}+X_{N+1}>x, X_{N+1} \leqslant x-z\right) \\
& +\mathbf{P}\left(S_{N}^{X}+X_{N+1}>x, S_{N}^{X} \leqslant z\right) \\
& +\mathbf{P}\left(X_{N+1}>x-z\right) \mathbf{P}\left(S_{N}^{X}>z\right) \\
\geqslant & \mathbf{P}\left(S_{N}^{X}>x-X_{N+1}, x-X_{N+1} \geqslant z\right) \\
& +\mathbf{P}\left(X_{N+1}>x-S_{N}^{X}, x-S_{N}^{X} \geqslant x-z+t\right) \\
& +\mathbf{P}\left(X_{N+1}>x-z\right) \mathbf{P}\left(S_{N}^{X}>z\right) . \tag{4}
\end{align*}
$$

If we replace x by $x-t$ and z by $z-t$ then we get

$$
\begin{align*}
\mathbf{P}\left(S_{N+1}^{X}>x-t\right)= & \mathbf{P}\left(S_{N}^{X}+X_{N+1}>x-t, X_{N+1} \leqslant x-z\right) \\
& +\mathbf{P}\left(S_{N}^{X}+X_{N+1}>x-t, S_{N}^{X} \leqslant z-t\right) \\
& +\mathbf{P}\left(X_{N+1}>x-z\right) \mathbf{P}\left(S_{N}^{X}>z-t\right) \\
= & \mathbf{P}\left(S_{N}^{X}>x-X_{N+1}-t, x-X_{N+1} \geqslant z\right) \\
& +\mathbf{P}\left(X_{N+1}>x-S_{N}^{X}-t, x-S_{N}^{X} \geqslant x-z+t\right) \\
& +\mathbf{P}\left(X_{N+1}>x-z\right) \mathbf{P}\left(S_{N}^{X}>z-t\right) \tag{5}
\end{align*}
$$

R.v.s X_{1}, X_{2}, \ldots are independent. Therefore,

$$
\begin{aligned}
& \mathbf{P}\left(S_{N}^{X}>x-X_{N+1}-t, x-X_{N+1} \geqslant z\right) \\
& \quad=\mathbf{E}\left(\mathbf{E}\left(\mathbf{1}_{\left\{S_{N}^{X}>x-X_{N+1}-t\right\}} \mathbf{1}_{\left\{x-X_{N+1} \geqslant z\right\}} \mid x-X_{N+1}=y\right)\right) \\
& \quad=\mathbf{E}\left(\mathbf{1}_{\{y \geqslant z\}} \mathbf{E}\left(\mathbf{1}_{\left\{S_{N}^{X}>y-t\right\}} \mid x-X_{N+1}=y\right)\right) \\
& \quad=\mathbf{E}\left(\mathbf{1}_{\{y \geqslant z\}} \mathbf{P}\left(S_{N}^{X}>y-t\right)\right)
\end{aligned}
$$

$$
\begin{align*}
& \leqslant \sup _{y \geqslant z} \frac{\mathbf{P}\left(S_{N}^{X}>y-t\right)}{\mathbf{P}\left(S_{N}^{X}>y\right)} \mathbf{E}\left(\mathbf{1}_{\{y \geqslant z\}} \mathbf{P}\left(S_{N}^{X}>y\right)\right) \\
& =\sup _{y \geqslant z} \frac{\mathbf{P}\left(S_{N}^{X}>y-t\right)}{\mathbf{P}\left(S_{N}^{X}>y\right)} \mathbf{P}\left(S_{N}^{X}>x-X_{N+1}, x-X_{N+1} \geqslant z\right) \tag{6}
\end{align*}
$$

where $\mathbf{1}_{A}$ denotes the indicator function of an event A. Similarly,

$$
\begin{align*}
& \mathbf{P}\left(X_{N+1}>x-S_{N}^{X}-t, x-S_{N}^{X} \geqslant x-z+t\right) \\
& \quad \leqslant \sup _{y \geqslant x-z+t} \frac{\mathbf{P}\left(X_{N+1}>y-t\right)}{\mathbf{P}\left(X_{N+1}>y\right)} \mathbf{P}\left(X_{N+1}>x-S_{N}^{X}, x-S_{N}^{X} \geqslant x-z+t\right) \tag{7}
\end{align*}
$$

Using estimates (4)-(7), we obtain

$$
\begin{equation*}
\frac{\mathbf{P}\left(S_{N+1}^{X}>x-t\right)}{\mathbf{P}\left(S_{N+1}^{X}>x\right)} \leqslant \max \left\{\sup _{y \geqslant z} \frac{\mathbf{P}\left(S_{N}^{X}>y-t\right)}{\mathbf{P}\left(S_{N}^{X}>y\right)}, \sup _{y \geqslant x-z+t} \frac{\mathbf{P}(X>y-t)}{\mathbf{P}(X>y)}\right\} \tag{8}
\end{equation*}
$$

if $x, z \in \mathbb{R}, t>0$ and $N \geqslant 1$.
Suppose now that (3) is satisfied for $n=N$. We will show that (3) holds for $n=$ $N+1$.

Condition (2) and estimate (8) imply, taking $z=z_{N}=N x /(N+1)+t /(N+1)$ and $w_{N}=x-z_{N}+t=x /(N+1)+N t /(N+1)$, that

$$
\frac{\mathbf{P}\left(S_{N+1}^{X}>x-t\right)}{\mathbf{P}\left(S_{N+1}^{X}>x\right)} \leqslant \max \left\{\sup _{y \geqslant z_{N}} \frac{\mathbf{P}\left(S_{N}^{X}>y-t\right)}{\mathbf{P}\left(S_{N}^{X}>y\right)}, \sup _{y \geqslant w_{N}} \frac{\mathbf{P}(X>y-t)}{\mathbf{P}(X>y)}\right\} \leqslant d_{1}
$$

if $x \geqslant(N+1)\left(d_{2}-t\right)+t$, because, in this case,

$$
z_{N} \geqslant N\left(d_{2}-t\right)+t \quad \text { and } \quad w_{N} \geqslant d_{2} .
$$

So, estimate (3) holds for $n=N+1$ and the validity of (3) for all n follows by induction.

3 Proofs of main results

In this section, we present detailed proofs of our main results.
Proof of Theorem 1. First, we show that

$$
\begin{equation*}
\limsup _{x \rightarrow \infty} \frac{\overline{F_{S_{\eta}}}(x-a)}{\overline{F_{S_{\eta}}}(x)}=\limsup _{x \rightarrow \infty} \frac{\mathbf{P}\left(S_{\eta}>x-a\right)}{\mathbf{P}\left(S_{\eta}>x\right)}<\infty \tag{9}
\end{equation*}
$$

for each $a \in \mathbb{R}$.
If $a \leqslant 0$, then $\mathbf{P}\left(S_{\eta}>x-a\right) \leqslant \mathbf{P}\left(S_{\eta}>x\right)$ for all $x \in \mathbb{R}$, and estimate (9) is obvious.

Suppose now that $a>0$. Since $F_{\xi} \in \mathcal{O} \mathcal{L}$, we derive that

$$
\begin{equation*}
\limsup _{x \rightarrow \infty} \frac{\overline{F_{\xi}}(x-a)}{\overline{F_{\xi}}(x)}=c_{3} \tag{10}
\end{equation*}
$$

for some finite positive quantity c_{3} maybe depending on a. So, there exists some $K=$ $K_{a}>a+1$ such that

$$
\begin{equation*}
\sup _{x \geqslant K} \frac{\overline{F_{\xi}}(x-a)}{\overline{F_{\xi}}(x)} \leqslant 2 c_{3} . \tag{11}
\end{equation*}
$$

Applying Lemma 3, we obtain that

$$
\begin{equation*}
\sup _{x \geqslant n(K-a)+a} \frac{\mathbf{P}\left(S_{n}>x-a\right)}{\mathbf{P}\left(S_{n}>x\right)}=\sup _{x \geqslant n(K-a)+a} \frac{\overline{F_{\xi}^{* n}}(x-a)}{\overline{F_{\xi}^{* n}}(x)} \leqslant 2 c_{3}, \tag{12}
\end{equation*}
$$

where and below $S_{n}=\xi_{1}+\xi_{2}+\cdots+\xi_{n}$ if $n \in \mathbb{N}$.
For an arbitrarily chosen positive x, we have

$$
\begin{align*}
\mathbf{P}\left(S_{\eta}>x\right) & =\sum_{n=1}^{\infty} \mathbf{P}\left(S_{n}>x\right) \mathbf{P}(\eta=n) \geqslant \sum_{n=1}^{\infty} \mathbf{P}\left(\xi_{1}>x\right) \mathbf{P}(\eta=n) \\
& =\bar{F}_{\xi}(x) \mathbf{P}(\eta \geqslant 1) \tag{13}
\end{align*}
$$

If $x \geqslant K$, then, using (12), we get:

$$
\begin{aligned}
\mathbf{P}\left(S_{\eta}>x-a\right)= & \mathbf{P}\left(S_{\eta}>x-a, \eta \leqslant \frac{x-a}{K-a}\right)+\mathbf{P}\left(S_{\eta}>x-a, \eta>\frac{x-a}{K-a}\right) \\
= & \sum_{n \leqslant(x-a) /(K-a)} \mathbf{P}\left(S_{n}>x-a\right) \mathbf{P}(\eta=n) \\
& +\sum_{n>(x-a) /(K-a)} \mathbf{P}\left(S_{n}>x-a\right) \mathbf{P}(\eta=n) \\
\leqslant & 2 c_{3} \sum_{n \leqslant(x-a) /(K-a)} \mathbf{P}\left(S_{n}>x\right) \mathbf{P}(\eta=n) \\
& +\sum_{n>(x-a) /(K-a)} \mathbf{P}\left(S_{n}>x-a\right) \mathbf{P}(\eta=n) \\
& +\sum_{n>(x-a) /(K-a)} \mathbf{P}\left(S_{n}>x\right) \mathbf{P}(\eta=n) \\
& -\sum_{n>(x-a) /(K-a)} \mathbf{P}\left(S_{n}>x\right) \mathbf{P}(\eta=n)
\end{aligned}
$$

$$
\begin{align*}
\leqslant & c_{4} \sum_{n=1}^{\infty} \mathbf{P}\left(S_{n}>x\right) \mathbf{P}(\eta=n) \\
& +\sum_{n>(x-a) /(K-a)} \mathbf{P}\left(x-a<S_{n} \leqslant x\right) \mathbf{P}(\eta=n) \tag{14}
\end{align*}
$$

with $c_{4}=\max \left\{2 c_{3}, 1\right\}$.
According to Lemma 1, we obtain

$$
\sup _{x \in \mathbb{R}} \mathbf{P}\left(x-a<S_{n} \leqslant x\right) \leqslant c_{5}(a+1) \frac{1}{\sqrt{n}},
$$

where the constant c_{5} is independent of a and n. Thus, inequality (14) implies

$$
\begin{align*}
\mathbf{P}\left(S_{\eta}>x-a\right) & \leqslant c_{4} \mathbf{P}\left(S_{\eta}>x\right)+c_{5}(a+1) \sum_{n>(x-a) /(K-a)} \frac{\mathbf{P}(\eta=n)}{\sqrt{n}} \\
& \leqslant c_{4} \mathbf{P}\left(S_{\eta}>x\right)+c_{5} \sqrt{\frac{K-a}{x-a}}(a+1) \mathbf{P}\left(\eta>\frac{x-a}{K-a}\right) \tag{15}
\end{align*}
$$

provided that $x \geqslant K$.
Inequalities (13) and (15) imply that, for $x \geqslant K$, it holds

$$
\frac{\mathbf{P}\left(S_{\eta}>x-a\right)}{\mathbf{P}\left(S_{\eta}>x\right)} \leqslant c_{4}+\frac{c_{5} \sqrt{K-a}(a+1)}{\sqrt{x-a} \mathbf{P}(\eta \geqslant 1) \overline{F_{\xi}}(x)} \overline{F_{\eta}}\left(\frac{x-a}{K-a}\right)
$$

Consequently,

$$
\begin{aligned}
& \limsup _{x \rightarrow \infty} \frac{\mathbf{P}\left(S_{\eta}>x-a\right)}{\mathbf{P}\left(S_{\eta}>x\right)} \\
& \quad \leqslant c_{4}+c_{5} \frac{(a+1) \sqrt{K-a}}{\mathbf{P}(\eta \geqslant 1)} \limsup _{x \rightarrow \infty} \frac{\overline{F_{\eta}}((x-a) /(K-a))}{\sqrt{x-a} \overline{F_{\xi}}(x-a)} \limsup _{x \rightarrow \infty} \frac{\overline{F_{\xi}}(x-a)}{\overline{F_{\xi}}(x)} \\
& \quad=c_{4}+c_{3} c_{5} \frac{(a+1) \sqrt{K-a}}{\mathbf{P}(\eta \geqslant 1)} \limsup _{x \rightarrow \infty} \frac{\overline{F_{\eta}}(x /(K-a))}{\sqrt{x} \overline{F_{\xi}}(x)}<\infty
\end{aligned}
$$

due to equality (10) and requirement $\overline{F_{\eta}}(\delta x)=O\left(\sqrt{x} \overline{F_{\xi}}(x)\right)$ which holds for arbitrary $\delta \in(0,1)$. Therefore, relation (9) is satisfied for for all $a \in \mathbb{R}$.

It remains to prove that

$$
\liminf _{x \rightarrow \infty} \frac{\overline{F_{S_{\eta}}}(x-a)}{\overline{F_{S_{\eta}}}(x)}=\liminf _{x \rightarrow \infty} \frac{\mathbf{P}\left(S_{\eta}>x-a\right)}{\mathbf{P}\left(S_{\eta}>x\right)}>0
$$

where a is an arbitrarily chosen real number. But this relation follows from the proved estimate (9), because

$$
\mathbf{P}\left(S_{\eta}>x\right) \geqslant \overline{F_{\xi}}(x) \mathbf{P}(\eta \geqslant 1)>0
$$

for each positive number x, and so

$$
\liminf _{x \rightarrow \infty} \frac{\mathbf{P}\left(S_{\eta}>x-a\right)}{\mathbf{P}\left(S_{\eta}>x\right)}=\left(\limsup _{x \rightarrow \infty} \frac{\mathbf{P}\left(S_{\eta}>x+a\right)}{\mathbf{P}\left(S_{\eta}>x\right)}\right)^{-1}>0
$$

The last inequality, together with estimate (9), implies that d.f. $F_{S_{\eta}}$ belongs to the class $\mathcal{O} \mathcal{L}$. Theorem 1 is proved.

Proof of Corollary 1. Part (i) of Corollary 1 is evident. So we only prove part (ii). Let $\delta \in(0,1)$. According to the Markov inequality, we have

$$
\begin{equation*}
\overline{F_{\eta}}(\delta x)=\mathbf{P}(\eta>\delta x)=\mathbf{P}\left(\mathrm{e}^{y \eta}>\mathrm{e}^{y \delta x}\right) \leqslant \mathrm{e}^{-\delta y x} \mathbf{E e}^{y \eta} \tag{16}
\end{equation*}
$$

for each $y>0$. The d.f. F_{ξ} belongs to the class $\mathcal{O} \mathcal{L}$. Therefore, Lemma 2 implies that $\mathrm{e}^{\Delta x} \overline{F_{\xi}}(x) \rightarrow \infty$ as $x \rightarrow \infty$. for some positive Δ.

Choosing $y=\Delta / \delta>0$ in (16), we obtain:

$$
\frac{\overline{F_{\eta}}(\delta x)}{\sqrt{x} \overline{F_{\xi}}(x)} \leqslant \frac{\mathbf{E e}^{y \eta}}{\mathrm{e}^{\delta y x} \sqrt{x} \overline{F_{\xi}}(x)}=\frac{1}{\sqrt{x}} \frac{1}{\mathrm{e}^{\Delta x} \overline{F_{\xi}}(x)} \mathbf{E e}^{(\Delta / \delta) \eta} \underset{x \rightarrow \infty}{\rightarrow} 0
$$

because $\mathbf{E} e^{\varepsilon \eta}$ is finite for an arbitrarily positive ε according to the main condition of Corollary 1. The statement of Corollary 1 follows now from Theorem 1.

Acknowledgment. We would like to thank anonymous referees for the detailed and helpful comments.

References

1. J.M.P. Albin, A note on the closure of convolution power mixtures (random sums) of exponential distributions, J. Aust. Math. Soc., 84:1-7, 2008.
2. D.B.H. Cline, Convolutions of the distributions with exponential tails, J. Aust. Math. Soc., 43:347-365, 1987.
3. D.B.H. Cline, Convolutions of the distributions with exponential tails: Corrigendum, J. Aust. Math. Soc., 48:152-153, 1990.
4. P. Embrechts, C.M. Goldie, On closure and factorization properties of subexponential and related distributions, J. Aust. Math. Soc., Ser. A, 29:243-256, 1980.
5. R. Leipus, J. Šiaulys, Closure of some heavy-tailed distribution classes under random convolution, Lith. Math. J., 52:249-258, 2012.
6. V.V. Petrov, Limit Theorems of Probability Theory: Sequences of Independent Random Variables, Oxford Studies in Probability, Vol. 4, Clarendon Press, Oxford, 1995.
7. T. Shimura, T. Watanabe, Infinite divisibility and generalized subexponentiality, Bernoulli, 11:445-469, 2005.
8. T. Watanabe, K. Yamamuro, Ratio of the tail of an infinitely divisible distribution on the line to that of its Lévy measure, Electron. J. Probab., 15:44-74, 2010.

[^0]: *The authors are supported by a grant (No. MIP-13079) from the Research Council of Lithuania.

