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Abstract 

 

The research aims to develop an integrated framework for measurement 

and analysis the productive efficiency of Lithuanian family farms and identify 

the related implications for efficiency improvement. The proposed framework 

is mainly based on the non-parametric frontier methods. Object of the research 

is Lithuanian family farms reporting to the Farm Accountancy Data Network. 

The research features both empirical and theoretical novelty in that it develops 

some new techniques for efficiency analysis and employs them to analyse the 

performance of Lithuanian family farms. 

The efficiency analysis rests on the neoclassical production theory. The 

research is mainly based on the non-parametric technique, viz. DEA. The latter 

technique is implemented by the means of the linear programming. The robust 

production frontiers are estimated via the bootstrapping and Monte Carlo 

simulations. The uncertainty is dealt with by the means of the fuzzy numbers. 

The program (i. e. farming type) efficiency is assessed by utilising the MEA 

methodology along with the meta-frontier approach. The TFP changes are 

measured by employing the TFP indices, which are based on the DEA models. 

The results are analysed by the means of the regression models (truncated 

regression, panel models) and multivariate statistical methods (namely cluster 

analysis and multiple correspondence analysis).  
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Anotacija 

 

Tyrimo tikslas – pasiūlius integruotą Lietuvos ūkininkų ūkių gamybinio 

efektyvumo matavimo ir analizės metodiką, numatyti atitinkamas žemės ūkio 

efektyvumo didinimo kryptis. Pasiūlyta metodika remiasi neparametriniais 

ribiniais metodais. Tikslui pasiekti keliami šie uždaviniai: 1) pristatyti 

efektyvumo analizės praktiką ir mokslinio tyrimo metodiką; 2) pasiūlyti žemės 

ūkio efektyvumo analizei tinkamus metodus; 3) įvertinti Lietuvos ūkininkų 

ūkių veiklos efektyvumą taikant neparametrinius metodus; 4) atlikti 

technologijos, būdingos nagrinėjamam sektoriui, ir jos pokyčių analizę; 5) 

kiekybiškai įvertinti efektyvumo ir produktyvumo veiksnių poveikį. 

Efektyvumo analizė remiasi neoklasikine gamybos teorija. Tyrimui 

daugiausia naudojamas neparametrinis metodas, t. y. duomenų apgaubties 

analizė (DEA). Pastarasis metodas įgyvendinamas tiesinio programavimo 

modelių pagalba. Nuokrypiams atsparios gamybos ribos įvertinamos taikant 

saviranką ir Monte Karlo simuliaciją. Siekiant atsižvelgti į neapibrėžtumą, 

taikoma neraiškiųjų skaičių teorija. Programinis (ūkininkavimo tipų) 

efektyvumas vertinamas taikant daugiakryptę efektyvumo analizę (MEA) ir 

meta-ribos požiūrį. Bendrojo produktyvumo pokyčių analizė remiasi bendrojo 

produktyvumo indeksais, kurie apskaičiuojami DEA pagalba. Gautieji 

rezultatai yra analizuojami taikant regresijos modelius (nupjauta regresija, 

panelinė regresija), daugiamatės statistikos metodais (sankaupų analizė, 

dauginė atitikties analizė).   
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INTRODUCTION 

 

The foremost goal of any economic research is to ensure the proper 

allocation of resources and thus achieve social and economic welfare (Latruffe, 

2010). In order to identify the most promising practice one needs to employ 

respective methodology. Performance management aims at identifying and 

spreading the best practices within an organization, sector, or the whole 

economy. The relative performance evaluation—benchmarking—is the 

systematic comparison of one production entity (decision making unit) against 

other entities (Bogetoft, Otto, 2011). Indeed, benchmarking is an important 

issue for both private and public decision makers to ensure the sustainable 

change. Due to Jack and Boone (2009) benchmarking can create motivation for 

change; provide a vision for what an organization can look like after change; 

provide data, evidence, and success stories for inspiring change; identify best 

practices for how to manage change; and create a baseline or yardstick by 

which to evaluate the impact of earlier changes.  

Reasonable strategic decision making requires an integrated assessment 

of the regulated sector. The agricultural sector is related to voluminous public 

support as well as regulations. The application of benchmarking, thus, becomes 

especially important when fostering sustainable agricultural development. 

Furthermore, productive efficiency gains might result into lower costs as well 

as greater profit margins for the producer and better prices for the participants 

in the agricultural supply chain (Samarajeewa et al., 2012). Nauges et al. 

(2011) presented the following factors stressing the need for research into 

agricultural efficiency. First, agricultural producers typically own land and live 

on their farms, therefore the standard assumption that only efficient producers 

are to maintain their market activity usually does not hold in agriculture; 

moreover, suchlike adjustments would result in various social problems. 

Second, it is policy interventions—education, training, and extension 

programmes—that should increase the efficiency. Third, policy issues relating 

to farm structure are of high importance across many regions.  



12 

In order to perform appropriate benchmarking it is necessary to fathom 

the terms of effectiveness, efficiency, and productivity. One can evaluate 

effectiveness when certain utility or objective function is defined (Bogetoft, 

Otto, 2011). In the real life, however, this is not the case and the ideal 

behaviour can be described only by analysing the actual data, i. e. by the means 

of benchmarking. Finally, productivity means the ability to convert inputs to 

outputs. There can be a distinction made between total factor productivity 

(Solow, 1957) and partial (single factor) productivity. The productivity growth 

is a source of a non-inflatory growth and thus should be encouraged by a 

means of benchmarking and efficiency management.  

It is due to Alvarez and Arias (2004) and Gorton and Davidova (2004) 

that frontier techniques are the most widely applied methods for efficiency 

measurement in agriculture. Indeed, the frontier methods can be grouped into 

parametric and non-parametric ones. For instance, Aysan et al. (2011) 

employed stochastic frontier analysis for assessment of the Turkish banking 

sector. Rasmussen (2011) employed the same method for analysis of the 

Danish farms. Chou et al. (2012) employed stochastic frontier analysis to 

measure performance of the IT capital goods sectors across OECD countries. 

Zhan (2012) analysed the properties of different stochastic frontier 

specifications. Aristovnik (2012) utilized the non-parametric technique, 

namely data envelopment analysis, to analyse the efficiency of R&D 

expenditures in some European Union Member States. Bojnec and Latruffe 

(2011) as well as Davidova and Latruffe (2007) applied data envelopment 

analysis to assess the performance of Slovenian and Czech farms, respectively. 

Bilgin et al. (2012) attempted to research into the Chinese firm performance by 

the means of the deterministic Cobb-Douglas frontier. Latruffe et al. (2004) 

applied both stochastic frontier analysis and data envelopment analysis to 

analyse the technical efficiency of the Polish farms. Rahman and Salim (2013) 

employed the Fare-Primont index to analyse the TFP growth in the Bangladesh 

agriculture.  
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Topicality of the research. Family farming has been reinvigorating in 

Lithuania since early 1990s when the collective farming system was 

deconstructed. Since then the Lithuanian farming system has undergone many 

economic, structural, and institutional reforms. Year 2004 marks the accession 

to the European Union (EU) which is related to the Common Agricultural 

Policy. The Lithuanian farming system, however, is not fully developed yet. In 

terms of the utilized agricultural area, the average Lithuanian farm expanded 

from 9.2 ha up to 13.7 ha during 2003–2010, whereas the total utilized 

agricultural area increased by some 10% and the number of agricultural 

holdings decreased by 27% from 272 thousand down to less than 200 thousand 

(Statistics Lithuania, 2014). Indeed, the number of the smallest farms has 

decreased and these adjustments lead to a farm structure which is similar to 

that of the European countries. There is, however, a substantial area of state-

owned or abandoned land which can be employed for the agricultural activities 

in the future. Therefore it is important to analyse the farming efficiency which 

might impact a number of factors influencing farmers’ decisions. 

Research problem. The research is motivated by both importance of 

efficiency measurement and lack of suchlike studies in the Lithuanian context. 

Lithuanian farming system is still underperforming if compared to the western 

standards. Thus, it is important to identify certain types of farming which are 

the forerunners or laggards in terms of operation efficiency. Furthermore, both 

public and private investments are needed in the agricultural sector to improve 

its efficiency and productivity (OECD, FAO, 2011). To be specific, some 

2.287 billion EUR were assigned under the Lithuanian Rural Development 

Programme for 2007–2013. The appropriate allocation of such investments, 

however, requires a decision support system based on multi–objective 

optimization. Consequently, it is important to develop benchmarking 

frameworks and integrate them into the processes of the strategic management. 

The forthcoming programming period of 2014–2020 together with the new 

Rural Development Programme will certainly require suchlike management 

decisions. Up to now, only a handful of studies attempted to analyse the 
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farming efficiency in Lithuania (Rimkuvienė et al., 2010, Douarin, Latruffe, 

2011; Baležentis, Baležentis, 2011, 2013; Baležentis, Kriščiukaitienė, 2012a). 

Moreover, these papers were focused on diachronic analysis or different 

farming types were analysed by employing single–period data. Another issue 

to be tackled is post–efficiency analysis. Indeed, the uncertainties associated 

with the agricultural production data do also require appropriate techniques for 

efficiency estimation. 

The research aims to develop an integrated framework for measurement 

and analysis the productive efficiency of Lithuanian family farms and identify 

the related implications for efficiency improvement. The proposed framework 

is mainly based on the non-parametric frontier methods. The following tasks 

are, therefore, set: (i) to present the research methodology for efficiency 

analysis, (ii) to develop the appropriate techniques for analysis of the 

agricultural efficiency; (iii) to estimate the technical efficiency of Lithuanian 

family farms by the means of the non-parametric techniques, (iv) to analyse the 

underlying technology as well as its shifts, and (v) to quantify the impact of the 

efficiency and productivity change effects. Object of the research is 

Lithuanian family farms reporting to the Farm Accountancy Data Network. 

Novelty of the research. The research features both empirical and 

theoretical novelty in that it develops some new techniques for efficiency 

analysis and employs them to analyse the performance of Lithuanian family 

farms. Specifically, the hybrid method DEA-MULTIMOORA is introduced to 

analyse the TFP changes with respect to multiple criteria. In addition, the fuzzy 

FDH method based on  -cuts is suggested to tackle the uncertainty associated 

with the production data. The MEA method is extended to the meta-frontier 

analysis. Considering the empirical novelty, the research develops and employs 

a systematic framework for the analysis of the agricultural sector in terms of 

the efficiency and TFP measures. The research thus estimates the technical, 

allocative, and cost efficiency of Lithuanian family farms. A variety of TFP 

indices, viz. Malmquist, Hicks-Moorsteen, Färe-Primont, Malmquist-

Luenberger indices, are employed to estimate the TFP change as well as bias of 
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the production frontier. The factors driving the change in the analysed 

variables are also identified by employing regression and multivariate 

statistics. Furthermore, the optimal farm size is estimated by the means of 

DEA. Noteworthy, these measures have not been estimated for Lithuanian 

family farms ever before. The results of the research provide certain insights 

into the causes and sources of (in)efficiency prevailing among Lithuanian 

family farms. Suchlike information can be used to facilitate a reasonable 

decision making, especially at the macro level. 

Practical value. The research estimates the level of efficiency for 

different farming types along with the determinants of efficiency. Therefore, it 

is possible to identify the causes of inefficiency prevailing among Lithuanian 

family farms. Suchlike knowledge thus is beneficial for decision makers and 

farmers themselves in order to better understand the ways efficiency can be 

improved. Analysis of the most productive scale size is particularly important 

for land market regulation, which limits the maximal land area per farm. The 

methodologies proposed in the research can also be employed in other 

instances of economic analysis and thus contribute to reasonable managerial 

decision making.  

Research methodology. The efficiency analysis rests on the 

neoclassical production theory. The research is mainly based on the non-

parametric technique, viz. DEA. The latter technique is implemented by the 

means of the linear programming. The robust production frontiers are 

estimated via the bootstrapping and Monte Carlo simulations. The uncertainty 

is dealt with by the means of the fuzzy numbers. The program (i. e. farming 

type) efficiency is assessed by utilising the MEA methodology along with the 

meta-frontier approach. The TFP changes are measured by employing the TFP 

indices, which are based on the DEA models. The results are analysed by the 

means of the regression models (truncated regression, panel models) and 

multivariate statistical methods (namely cluster analysis and multiple 

correspondence analysis).  
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The study is therefore structured as follows. Section 1 presents the 

preliminaries for efficiency analysis along with general trends prevailing in 

Lithuanian agriculture. Section 2 presents methodology of the research. 

Section 3 focuses on the performance of Lithuanian family farms. The latter 

section also attempts to present the position of agricultural sector among other 

sectors of Lithuanian economy. In order to account for uncertainties in the 

data, the technical efficiency is further analysed by the means of the 

simulation-based methodology (bootstrapped DEA, robust frontiers, double 

bootstrap, conditional measures) and fuzzy FDH. Section 4 is dedicated to 

analysis of the total factor productivity change in Lithuanian family farms. 

Section 5 aims to analyse the underlying productive technology of Lithuanian 

family farms. Therefore, the technical change is analysed with respect to 

change in the input productivity. Another important issue to be addressed is 

that of the optimal farm size (i. e. returns to scale). Section 6 employs the 

extended data set to check the impact of increase in the time span upon results 

of the analysis. Finally, Section 7 discusses limitations of the research. 

Propositions defended: 

1. The changes in the total factor productivity are to be analysed in terms 

of 1) level of efficiency; 2) dynamics in the total factor productivity, 3) 

level of variance. Therefore, a hybrid multi-criteria decision making 

methodology—DEA-MULTIMOORA—is proposed.  

2. It is the uncertainty of the performance and accountancy of Lithuanian 

agricultural sector (as well as those of other Central and Eastern 

European countries) that makes the use of fuzzy logics and probabilistic 

(stochastic) methodologies relevant when analysing agricultural 

efficiency. Accordingly, a fuzzy efficiency estimation model is 

proposed.  

3. Even though a vibrant growth of the crop farming has been observed in 

Lithuania, the livestock farms appeared to be more efficient. The public 

support, thus, should be aligned with respect to the trends of different 
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farming types. Indeed, the mixed farming should receive an additional 

financial and technological support to increase their productivity. 

4. The farm size limitations currently imposed in Lithuania are not likely 

to render deadweight losses, however, the issues related to corporate 

farming still need to be analysed.  

Approbation of the research results. The main findings of the 

research have been presented in 19 scientific articles, 8 of which are indexed in 

the Web of Science data base. A scientific study has also been prepared. The 

results have also been presented at 6 international or national conferences. In 

addition, a research visit to Maastricht university was carried out on 2014 01 

26 – 2014 02 16 (supervisor Dr Kristof De Witte). 
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1. PRELIMINARIES FOR THE EFFICIENCY ANALYSIS 

 

This part of the thesis is to present the preliminaries for efficiency 

analysis. In particular, Section 1.1 focuses on literature review. The following 

Section 1.2 presents the key concepts of efficiency analysis based on the 

neoclassical methodology. Finally, Section 1.3 discusses the key techniques for 

estimation of the efficiency measures. Finally, Section 1.4 attempts to present 

the general trends prevailing in Lithuanian agriculture.  

 

1. 1. State-of-the-art of the agricultural efficiency research 

 

This section presents a literature survey on efficiency analyses in 

agriculture. The first sub-section tackles the foreign literature, whereas the 

second one focuses on the Lithuanian researches.  

As Henningsen (2009) put it, the agricultural efficiency is interrelated 

with labour intensity, farm structure, technology and investment, managerial 

skills, and profitability. The very efficiency thus can be considered as a 

measure of productivity and profitability. The farm structure impacts 

technology, labour intensity, and managerial skills given larger farms tend to 

accumulate respective resources to a higher extent. The labour intensity and 

labour opportunity costs are reciprocally related to the investments into 

advanced technologies. Management skills also influence both labour intensity 

and investments into technology. The aforementioned factors affect the 

profitability, whereas the profitability, in turn, determines farmers’ decisions 

on staying in the sector or distributing their working time across various 

economic sectors. The productive efficiency, therefore, needs to be measured 

and analysed in terms of multiple interrelated variables and dimensions. 

Furthermore, the performance management aims at identifying and spreading 

the best practices within an organization, sector, or the whole economy. The 

relative performance evaluation—benchmarking—is the systematic 

comparison of one production entity (decision making unit) against other 
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entities (Bogetoft, Otto 2011). Indeed, benchmarking is an important issue for 

both private and public decision makers to ensure the sustainable change. Due 

to Jack and Boone (2009) benchmarking can create motivation for change; 

provide a vision for what an organization can look like after change; provide 

data, evidence, and success stories for inspiring change; identify best practices 

for how to manage change; and create a baseline or yardstick by which to 

evaluate the impact of earlier changes. 

The general framework for efficiency analysis is presented in Figure 

1.1. First, input, output, and price data are needed to estimate various types of 

efficiency by the means of frontier models. Second, the obtained efficiency 

estimates are treated as dependent variables for econometric model aimed at 

explaining the underlying causes of (in)efficiency. The latter model requires a 

set of explanatory variables—regressors—identifying certain sources of 

(in)efficiency. Particularly, these variables can be objective and subjective 

ones. Objective data may come from the same source as the data for the 

frontier model, namely databases, measurements etc. As for subjective data, 

they may be obtained by the means of questionnaire survey (see, for instance, 

Douarin and Latruffe, 2011). 

 

 

Fig. 1.1. The conceptual framework for the frontier-based benchmarking. 
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Indeed, the frontier models of the agricultural efficiency anlaysis usually 

involve the following variables: 

1. Inputs – usually these are the quantities of the intermediate products 

(working capital as it is treated by the neoclassical economic 

thought) and factors of production (fixed capital along with labour 

force). Intermediate consumption comprises feed, fertilizers, seed as 

well as other inputs transformed throughout the production process. 

Production factors (land, labour etc.) might be partially affected by 

the production process and embodied in the produce, yet they remain 

essentially unchanged for further use. It is often possible, though, to 

transform the quantities of fixed capital (stock variables) into 

monetary terms (flow variables) by assuming depreciation or 

considering the relevant price data. 

2. Outputs – the quantities of produce. The preferred measures in 

agricultural efficiency analyses are those physical quantities (e. g. 

weight in tonnes). However, the agricultural producers often feature 

diversity in their products thus it might be impossible to include all 

those quantities because of the curse of dimensionality. Furthermore, 

some quantities would be equal to zero. Therefore, the implicit 

output quantities (output value deflated by respective price indices) 

are often used in the analyses. 

3. Input prices allow estimating production cost and thus the allocative 

efficiency. This information results in the cost efficiency. 

4. Output prices allow estimating production revenue and the output 

allocative efficiency. As a result, one can estimate the revenue 

efficiency. If both the input and output price data are available, the 

profit efficiency can be analysed.  

5. Environmental variables (in the narrow sense) define the impact a 

production process causes upon its environment. These are usually 

the side effects of a production process. Inclusion of these variables 

enables to re-define the production function and thus the concept of 
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efficiency. In order to account for the side (environmental) effects, 

the undesirable outputs (e. g. greenhouse gas emission) are usually 

included in the frontier models. However, the environmental 

variables can include Czekaj (2013) included the area of permanent 

grassland or agri-environmental payments as desirable outputs. 

The second stage (post-efficiency) analysis enables to identify specific 

factors influencing efficiency as well to quantify their impact. Therefore 

appropriate strategic management decisions can be offered, whereas the 

existing ones may undergo a thorough analysis. The contextual variables can 

also be referred to as the environmental variables even they do not necessarily 

deal with the environmental issues in the narrow sense. 

The key elements of a benchmarking framework, namely frontier and 

econometric models, might be chosen from a set of various possible 

instruments. As it was discussed in the preceding section, the frontier models 

can be grouped into parametric and non-parametric ones with SFA and DEA 

representing these groups. The econometric model for second stage analysis 

can be, for instance, a logit or Tobit model, whereas panel data might be 

analysed by the means of fixed or random effects models. Combinations of 

these options create certain patterns for efficiency research. We have thus 

performed a scientometric analysis aimed at identifying the current trends of 

frontier benchmarking in agriculture. 

 

1. 1. 1. Foreign literature survey 

 

The scientometric analysis is based on data retrieved from the globally 

renowned database Web of Science (Thomson Reuters) which is usually 

employed for suchlike analyses (Zavadskas et al., 2011). The aim of the 

scientometric research was to analyse the dynamics in number of citable items, 

namely articles, reviews, proceedings etc., related to the frontier efficiency 

measurement in agriculture. The research covers the period of 1990–2012 (as 

of March 2012). 
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The initial query was defined by setting publication topic equal to: 

(frontier OR stochastic frontier analysis OR data envelopment analysis) AND 

(agriculture OR farming). The latter query should identify the extent of 

manifestation of frontier measures across the current scientific sources. Of 

course, some papers are omitted thanks to usage of acronyms. As a result, the 

query returned 1011 publications. The number of released publications has 

been growing throughout the analysed period and exceeded 140 publications 

per annum in 2013 (Figure 1.2). Meanwhile, the number of citations has also 

been increasing and reached 13121 citations (9946 without self-citation) until 

2012 with over 2000 citations per annum in 2013 (Figure 1.3). Frontier-based 

efficiency measurements in agriculture, therefore, can be considered as a rather 

prospective and expanding research area. 

 

  

Fig. 1.2. Published items in each year. 

Source: Thomson Reuters. 

Fig. 1.3. Citations in each year. 

Source: Thomson Reuters. 

 

Table 1.1 presents the main journals which constitute the basis for 

dissemination of the agricultural efficiency research results. The presented list 

implies that journals covering the areas of both agricultural economics and 

applied economics tend to publish these studies.  
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Table 1.1. The main journals featuring publications on agricultural efficiency, 

1990–2014. 

No. Source Titles  Record Count  % of the total number  

1. Agricultural Economics  53  5.2  

2. Journal of Productivity 

Analysis 

 32  3.2 

3. American Journal of 

Agricultural Economics 

 29  2.9 

4. Applied Economics  27  2.7 

5. Journal of Agricultural 

Economics 

 22  2.2 

6. Agricultural Systems  20  2.0 

7. European Review of 

Agricultural Economics 

 18  1.8 

8. Ecological Economics  14  1.4 

9. African Journal of 

Agricultural Research 

 13  1.3 

10. Journal of Dairy Science  13  1.3 

 

Queries on applications of SFA and DEA returned similar results, 

namely 272 and 230 publications, respectively. Therefore both of these 

methods are equally important for agricultural research. Meanwhile, the 

respective queries on application of the econometric instruments for second–

stage analysis suggested Tobit regression being the most popular method (37 

publications), whereas fixed effects (13 publications), random effects (7 

publications), and logit (4 publications) models remained behind.   

We will review some recent studies on frontier measures of agricultural 

efficiency in order to reveal the concrete manifestations of frontier efficiency 

measurement as well as second stage analysis. Latruffe et al. (2004) analysed 

the efficiency of crop and livestock farming in Poland by the means of SFA 

and DEA. SFA analysis was carried out by employing efficiency effects model 
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(Battese, Coelli, 1995) relating the observed inefficiencies with a pre-defined 

set of efficiency variables. Thus, the second stage analysis can be implemented 

simultaneously with estimation of the SFA model. The DEA analysis, 

however, was supplemented by the second stage analysis, namely Tobit 

regression. The Cobb-Douglas production function was employed for SFA to 

regress the total output in value against utilized agricultural area (UAA) as a 

land factor, annual work units (AWU) as a labour factor, depreciation plus 

interests as a capital factor, and intermediate consumption as a variable factor. 

The following variables were chosen as the determinants of inefficiency: total 

output, share of hired labour, degree of market integration (i. e. the ratio of 

total revenue over total output), soil quality index, and farmer’s age. The Tobit 

model for DEA included variables defining ratios between certain inputs as 

well as the inefficiency determinants from SFA model.  

Bojnec and Latruffe (2008) analysed performance of the Slovenian 

farms by the means of both DEA and SFA. The allocative and economic 

efficiencies were also estimated. The cluster analysis was employed to classify 

the analysed farming types into relatively homogeneous groups, however there 

was no second state analysis performed. Later on, efficiency was related to the 

farm structure (Bojnec, Latruffe, 2011). Akinbode et al. (2011) employed the 

same SFA with efficiency effects model for estimation of technical efficiency. 

Moreover, the cost function was specified to estimate allocative and economic 

efficiency. The variation in the latter two efficiencies was explained by 

employing Tobit model. The same methodological framework was 

implemented by Samarajeewa et al. (2012) to analyse beef cow/calf farming in 

Canada. Lambarraa and Kallas (2010) implemented efficiency effects SFA 

model when estimating impact of Less Favoured Area (LFA) payments on 

farming efficiency. The two production functions therefore were defined for 

farms receiving LFA payments and for those not receiving payments. The 

random effect Tobit model was employed for the whole sample with an 

additional dummy variable identifying absorption of these payments. 
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The study of Asmild and Hougaard (2006) focuses on efficiency of 

Danish pig farms from the ecological and economic viewpoints. The 

directional DEA was applied to estimate the efficiency and possible 

improvements. Kuosmanen and Kuosmanen (2009) analysed technical 

efficiency of Finnish dairy farms with respect to environmental impact. Indeed, 

the concept of sustainable value included the surplus of nitrogen into account. 

Rasmussen (2011) employed the input distance function to estimate efficiency 

of the Danish pig, dairy, and crop farms. These functions were also used to 

estimate the optimal operation scale for respective farming type. Nauges et al. 

(2011) presented the state-contingent stochastic production function to assess 

land distribution under different plant species regarding the weather conditions 

(i. e. states).  

A meta-regression analysis
1
 including 167 farm level technical 

efficiency studies of developing and developed countries was undertaken by 

Bravo-Ureta et al. (2006). The econometric results implied lower TE scores are 

obtained by employing SFA as opposed to those obtained by DEA. In addition, 

deterministic parametric models are also likely to populate lower efficiency 

scores if compared to SFA. Production functions (the primal approach) were 

estimated most frequently. The study showed that animal farming features 

higher TE if compared to crop farming. It was also concluded that farming in 

Western Europe and Oceania is likely to feature higher levels of TE. Indeed, a 

negative relationship between subsidies and efficiency is omnipresent across 

the European countries according to the meta-analysis by Minviel and Latruffe 

(2014). 

There have been some studies to agricultural efficiency carried out in 

the CEE countries. Gorton and Davidova (2004) presented a survey of the 

relevant studies. Brümmer (2001) employed data envelopment analysis (DEA) 

and stochastic frontier analysis (SFA) with efficiency effects model to analyse 

the efficiency of Slovenian farms. Later on, Bojnec and Latruffe (2011, 2013) 

                                                           
1
 A meta-regression analysis is based on results of the previous (econometric) researches. In this 

particular case the obtained mean efficiency scores were related to certain variables describing the 

environment of respective farming systems. 



29 

analysed the relationships between size and efficiency of Slovenian farms. 

Bojnec and Fertő (2013) employed SFA to analyse the relationships between 

efficiency and off-farm income. Latruffe et al. (2004, 2005) employed the 

bootstrapped DEA along with the SFA to estimate the efficiency of the Polish 

farms. Balcombe et al. (2008) analysed the determinants of the total factor 

productivity change in Polish farms. Davidova and Latruffe (2007) related the 

Czech farm efficiency to the financial indicators. Latruffe et al. (2008) utilised 

the double bootstrapping methodology to assess the Czech farm efficiency. 

Chaplin et al. (2004) analysed the efficiency of Polish, Czech, and Hungarian 

farms. Latruffe et al. (2012) compared the Hungarian and French farm 

performance by the means of DEA and meta-frontier approach. Baležentis and 

Kriščiukaitienė (2013) analysed the determinants of Lithuanian family farms’ 

efficiency by the means of the Tobit model, whereas Baležentis et al. (2014) 

employed the bootstrapped DEA and the non-parametric regression for the 

latter purpose.  

 

1. 1. 2. Lithuanian literature survey 

 

Productive efficiency of agricultural sector is extensively analysed 

across the Central and East European states where agriculture is relatively 

important economic activity if compared to the western states (Gorton and 

Davidova, 2004). The Lithuanian agricultural sector, though, received less 

attention in the latter scientific area. Moreover, those few examples employed 

non-parametric methods, whereas parametric methods (e. g. stochastic frontier 

analysis) remain underused. The remaining part of this section overviews 

earlier papers which analysed efficiency of the Lithuanian agricultural sector 

by the means of frontier measures, namely DEA. 

The paper by Rimkuvienė et al. (2010) also addressed the farming 

efficiency by performing an international comparison on a basis of DEA and 

free disposal hull—the two non-parametric methods. This study also discussed 

the differences between terms efficiency and effectiveness which are often 
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misused in Lithuanian scientific works. The research covered years 2004–2008 

and some 174 observations (aggregates) for EU and non-EU states. Input- and 

output-oriented DEA models yielded efficiency scores of 43.2 and 41.4%, 

respectively. In addition the effectiveness of capital and intermediate 

consumption was observed in Lithuania.  

Baležentis and Baležentis (2011) followed the similar framework for 

international comparison. However, the latter study employed not only DEA 

but also multi-criteria decision making method MULTIMOORA. The 

agricultural efficiency was assessed with respect to the three ratios, namely 

crop output (EUR) per ha, livestock output (EUR) per LSU, and farm net value 

added (EUR) per AWU. Therefore, the land, livestock, and labour productivity 

were estimated. According to the DEA efficiency scores, Lithuania and Latvia 

reached the efficiency of 52 and 54%, whereas Estonia and Poland that of 

58%. The high value of slacks in crop output (land productivity) and the net 

value added per AWU (labour productivity) for the three Baltic States 

indicated the necessity of qualitative and quantitative changes to be 

implemented here.  

It was Douarin and Latruffe (2011) who offered the single foreign 

contribution to the DEA-based efficiency analysis of Lithuanian agriculture. 

The aim of that study was to estimate the farming efficiency and possible 

outcomes of the incentives provided by EU Single Area Payments. Moreover, 

this study was based on micro- rather than aggregate data. Thus, farm 

efficiency estimation was followed by questionnaire survey which tried to 

identify the farmers’ behaviour, namely decisions to expand their farms or stay 

in the farming sector, as a result of public support distribution. The research 

showed that 1) larger farms operated more efficiently, 2) subsidies were related 

to lower efficiency scores. The Heckman model was employed to quantify the 

impact of various factors on farmers’ decisions to stay in farming or expand 

the farm. It was concluded that the overall farming efficiency should decrease, 

for lower efficiency farms were about to expand and thus increase competition 

in the land market.  
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Baležentis and Kriščiukaitienė (2012) also analysed performance of the 

Lithuanian family farms on a basis of FADN aggregates. The DEA was 

employed for the analysis. As a result, slack analysis revealed that low land 

productivity, returns on assets, and intermediate consumption productivity are 

the most important sources of the inefficiency, in that order. Low land 

productivity is especially important for specialised cereals and general field 

cropping. Therefore, the incentives for crop structure adjustment should be 

imposed in order to increase land productivity. The highest mean values of 

return on assets slacks were observed for specialist cereal farming and general 

field cropping.  

The carried out analysis suggests that frontier benchmarking in 

agriculture is a robustly developing branch of science. To be specific, the 

number of publications released per year on frontier benchmarking in 

agriculture has increased sixfold since early 1990s. Indeed, both data 

envelopment analysis and stochastic frontier analysis are equally important 

instruments for estimating productive efficiency. It is the tobit model that can 

be considered as the most popular method for the second stage analysis.  

The Lithuanian agricultural sector, however, is not sufficiently analysed 

by the means of the frontier techniques. The Lithuanian agricultural sector still 

facing the consequences of post-communist transformations should be 

analysed by employing the discussed two-stage frontier benchmarking 

framework in order to fathom the underlying trends in productivity, efficiency, 

and farming decisions. In addition, the parametric techniques should be 

involved in the analysis. The discussed methods and research frameworks 

would certainly increase the effectiveness of the strategic management 

decisions. 
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1. 2. Definitions and measures of efficiency 

 

Instead of defining the efficiency as the ratio between outputs and 

inputs, we can describe it as a distance between the quantity of input and 

output, and the quantity of input and output that defines a frontier, the best 

possible frontier for a firm in its cluster (Daraio, Simar, 2007a).   

The very term of efficiency was initially defined by Koopmans (1951). 

Koopmans offered the following definition of an efficient decision making unit 

(DMU): A DMU is fully efficient if and only if it is not possible to improve any 

input or output without worsening some other input or output. Due to 

similarity to the definition of Pareto efficiency, the former is called Pareto–

Koopmans Efficiency. Such a definition enabled to distinguish efficient and 

inefficient DMUs, however it did not offer a measure to quantify the level of 

inefficiency specific to a certain DMU.  

Thus Debreu (1951) discussed the question of resource utilization and 

introduced the measure of productive efficiency, namely coefficient of 

resource utilization. Debreu’s measure is a radial measure of technical 

efficiency. Radial measures focus on the maximum feasible equiproportionate 

reduction in all variable inputs for an input-conserving orientation, or the 

maximum feasible equiproportionate expansion of all outputs for an output-

augmenting orientation (Daraio, Simar, 2007a; Fried et al., 2008).  

Finally, Farrell (1957) summarized works of Debreu (1951) and 

Koopmans (1951) thus offering frontier analysis of efficiency and describing 

two types of economic efficiency, namely technical efficiency and allocative 

efficiency (indeed, a different terminology was used at that time). It is worth to 

note, that the seminal paper of Farrell (1957) was dedicated to analysis of 

agricultural production in the United States. The concept of technical 

efficiency is defined as the capacity and willingness to produce the maximum 

possible output from a given bundle of inputs and technology, whereas the 

allocative efficiency reflects the ability of a DMU to use the inputs in optimal 

proportions, considering respective marginal costs (Kalirajan, Shand, 2002). 
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However, Farrell (1957) noted that price information is rather hard to tackle in 

a proper way, thus technical efficiency became a primal measure of the 

productive efficiency. 

Besides, the two other types of efficiency can be defined, viz. scale and 

structural efficiency. Scale efficiency measures the extent to which outputs 

increase due to increase in input. Farrell (1957) and later Charnes, Cooper and 

Rhodes (1978) employed the most restrictive constant returns to scale (CRS) 

assumption. The latter assumption was relaxed by Banker, Charnes and Cooper 

(1984), who also pointed out that scale efficiency is related to variable returns 

to scale (VRS) efficiency (pure technical efficiency) and CRS technical 

efficiency. The structural efficiency is an industry level concept describing the 

structure and performance of certain sector which is determined by 

performance of its firms. Indeed, one sector can be structurally efficient than 

another in case its firms are operating closer to the efficiency frontier. For 

instance, one can define hypothetic average values for several sector and 

compute efficiency scores for them thus assessing differences in structural 

efficiency across these sectors.  

In order to relate the Debreu–Farrell measures to the Koopmans 

definition, and to relate both to the structure of production technology, it is 

useful to introduce some notation and terminology (Fried et al., 2008). Let 

producers use inputs   m

mxxxx  ,...,, 21  to produce outputs 

  n

nyyyy  ,...,, 21 . Production technology then can be defined in terms of 

the production set: 

  yxyxT  producecan  , .   (1.1) 

Thus, Koopmans efficiency holds for an input-output bundle   Tyx ,  

if, and only if,   Tyx ','  for    yxyx ,','  . 

Technology set can also be represented by input requirement and output 

correspondence sets, respectively: 

  TyxxyI  ,)( ,   (1.2) 



34 

  TyxyxO  ,)( .   (1.3) 

The isoquants or efficient boundaries of the sections of T can be defined 

in radial terms as follows (Farrell, 1957). Every ny   has an input isoquant: 

 1),(),()(   yIxyIxxyisoI .  (1.4) 

Similarly, every mx   has an output isoquant (transformation curve): 

 ( ) ( ), ( ), 1isoO x y y O x y O x     .  (1.5) 

In addition, DMUs might be operating on the efficiency frontier defined 

by Eqs. 1.4–1.5, albeit still use more inputs to produce the same output if 

compared to another efficient DMU. In this case the former DMU experiences 

a slack in inputs. The following subsets of the boundaries I(y) and O(x) 

describe Pareto-Koopmans efficient firms: 

 xxxxyIxyIxxyeffI  ','),('),()( ,   (1.6) 

 yyyyxOyxOyyxeffO  ','),('),()( .  (1.7) 

Note that )()()( yIyisoIyeffI   and )()()( xOxisoOxeffO  .  

There are two types of efficiency measures, namely Shepard distance 

function, and Farrell efficiency measure. These functions yield the distance 

between an observation and the efficiency frontier. Shepard (1953) defined the 

following input distance function: 

  )(,max),( yIyxyxDI   .  (1.8) 

Here 1),( yxDI
 for all )(yIx , and 1),( yxDI

 for )(yisoIx . The 

Farrell input-oriented measure of efficiency can be expressed as: 

  )(,min),( yIyxyxTE I   .   (1.9) 

Comparing Eqs. 1.8 and 1.9 we arrive at the following relation: 

),(1),( yxDyxTE II  ,   (1.10) 

with 1),( yxTE I
 for )(yIx , and 1),( yxTE I

 for )(yisoIx . 

Similarly, the following equations hold for the output-oriented measure: 

  )(,min),( xOyxyxDO   ,   (1.11) 
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  )(,max),( xOyxyxTEO   ,   (1.12) 

),(1),( yxDyxTE OO  ,    (1.13) 

where ( , ) 1OTE x y   for ( )y O x , and ( , ) 1OTE x y   for ( )y isoO x . 

Note that the Farrell measures, 
ITE  and 

OTE , are homogeneous of 

degree –1 in inputs and outputs, respectively; whereas the Shepard measures, 

ID  and 
OD , are homogeneous of degree +1 in inputs and outputs, respectively. 

Figure 1.4 depicts the two efficiency measurement approaches discussed 

above, namely input- and output-oriented. Initial input-output bundle  00 , yx  is 

projected into efficiency frontier T by (i) reducing inputs and thus achieving an 

efficient point  00 , yx  or (ii) augmenting outputs and thus achieving an 

efficient point  00 , yx  . Noteworthy, Figure 1.4 presents a production frontier, 

for output quantity is related to input quantity there. In case the two input 

(output) quantities were related, one would have an isoquant (a transformation 

curve) as well as the implicit assumption of constant returns to scale. 

 

 

Fig. 1.4. Technical efficiency measurement in terms of the Farrell measures. 

 

Besides the discussed non-directional efficiency measures there exists a 

class of directional efficiency measures. Whereas the former methods analyse 

equiproportional scaling of either inputs or outputs, the directional measures 

consider both of these alterations simultaneously.  

One of the initial suggestions of the directional efficiency measurement 

is the graph hyperbolic measure of technical efficiency: 
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  TyxTEG   ,min .   (1.14) 

By simultaneously reducing inputs and expanding outputs with α>0 we move 

the initial point  00 , yx  along the hyperbolic curve (the dashed line in Figure 

1.5) until it reaches the efficiency frontier at the point   /, 00 yx . 

 

 

Fig. 1.5. The graph efficiency measure. 

 

The graph efficiency measure, however, is seldom employed due to the 

non-linearities involved (Bogetoft, Otto, 2011).  

The previously discussed Shepard measures of efficiency can be 

generalized into the directional technology distance function (Färe et al., 

2008). In this case direction of improvement can be considered as a vector 

rather than a scalar (as in case of Shepard and Farrell measures of efficiency). 

Thus, let ),( yx ggg   be a direction vector with m

xg   and 
n

yg   and 

introduce the excess function: 

  TgygxggyxE yxyxD   00 ,max),;,( . (1.15) 

Figure 1.6 illustrates this function. 
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Fig. 1.6. The directional technology distance function. 

 

Technology is denoted by T, whereas the directional vector g is in the 

fourth quadrant indicating that the inputs are to be contracted and outputs 

augmented simultaneously. To be specific, inputs are scaled down by gx, 

whereas outputs are increased by gy. Thus the directional vector is transformed 

into ),( yx gg  and added to the initial point  00 , yx . Addition of the two 

vectors means defining a parallelogram, the vertex whereof is given by 

 
yx gygx  00 , . Therefore, one will put the initial point on the efficiency 

frontier by maximizing β. By setting )0,(),( xgg yx   and ),0(),( ygg yx   we 

would arrive at the input- and output-oriented distance functions, respectively. 

In addition one may choose ),(),( yxgg yx  , ),(),( yxgg yx  , )1,1(),( yx gg , or 

optimize ),( yx gg  to minimize distance to frontier technology. 

As it was already said, Farrell (1957) defined the two types of 

efficiency, which are known as technical and economic efficiency. The 

technical efficiency and its measures were described above. The economic 

efficiency is divided into cost, revenue and profit efficiency. For each of the 

three measures, a respective frontier is established. Here we focus solely on 

cost efficiency. However, revenue efficiency is a straightforward modification 

of the cost efficiency. 
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Assume that producers face input prices m

mwwww  ),...,,( 21  and 

seek to minimize cost. Thus, a minimum cost function—cost frontier—is 

defined as: 

 1),(min),(  yxDxwwyc I

T

x
.   (1.16) 

Then a measure of cost efficiency (CE) is defined as the ratio of the 

minimum cost to the actual cost: 

xwwycwyxCE T),(),,(  .   (1.17) 

A measure of input-allocative efficiency AEI is obtained by employing 

Eqs. 1.17 and 1.9: 

),(/),,(),,( yxTEwyxCEwyxAE II  .  (1.18) 

Thus, cost efficiency can be expressed as a product of technical 

efficiency and cost allocative efficiency. Figure 1.7 depicts these measures.  

 

Fig. 1.7. The concept of cost efficiency. 

 

The three lines in Figure 1.7 represent respective isocosts, namely ET xw

, 0xwT , and 0xwT  for points Ex , 0x , and 0x , in that order. Here the efficient 

point Ex  minimizes cost and thus defines the cost frontier ET xwwyc ),( . The 

cost efficiency of the point 0x  is then given by ratio 

00),( xwxwxwwyc TETT   (cf. Eq. 1.17). The cost efficiency of 0x  can be 

further decomposed into technical efficiency 0000000 )( xwxwxx TT    

and allocative efficiency determined by the ratio )( 00 xwxw TET  .  
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1. 3. Frontier models for efficiency analysis 

 

Indeed, there are many techniques to establish an efficiency frontier (i. 

e. an instance of representation of the underlying technology). First, these can 

be broken down into parametric and non-parametric methods (Murillo-

Zamorano, 2004). Second, frontier techniques can be either deterministic or 

stochastic (Kuosmanen, Kortelainen, 2012). Third, frontier techniques can be 

either axiomatic or non-axiomatic (Afriat, 1972). Fourth, frontiers can be either 

average-practice or best-practice (Kuosmanen, Kuosmanen, 2009).  

The parametric frontier methods rely on econometric inference and aims 

at estimating parameters for pre-defined exact production functions. These 

parameters may refer, for instance, to the relative importance of different cost 

drivers or to parameters in the possibly random noise and efficiency 

distributions (Bogetoft, Otto, 2011). The parametric frontier methods can be 

further classified into deterministic and stochastic ones. The two deterministic 

frontier models, namely Ordinary Least Squares (OLS) and Corrected Ordinary 

Least Squares (COLS), attribute the distance between an observation and the 

efficiency frontier to statistical noise or inefficiency, respectively. The 

stochastic parametric method—Stochastic Frontier Analysis (SFA)—explains 

the gap between an observation and the efficiency frontier in terms of both 

inefficiency and random errors.  

On the other side, non-parametric frontier methods usually aim at 

establishing an empirical production frontier. Specifically, the empirical 

production frontier (surface) is defined by enveloping linearly independent 

points (observations) and does not require subjective specification of the 

functional form. Therefore the non-parametric models are easier to be 

implemented. It is the deterministic non-parametric frontier methods that do 

not allow statistical noise and thus explains the whole distance between the 

observation and production frontier by inefficiency. Data Envelopment 

Analysis (DEA) and Free Disposable Hull (FDH) are the two widely renowned 

non-parametric deterministic models. The stochastic non-parametric methods 
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account for the statistical noise by correcting the initial observations and, thus, 

the efficiency frontiers. Bootstrapped DEA, chance-constrained (stochastic) 

DEA, stochastic semi-non-parametric envelopment of data (STONED) can be 

given as the examples of the latter class of the frontier methods. 

The following Figure 1.8 depicts the differences between some of the 

discussed methods. As one can note, the parametric methods (OLS, COLS, 

SFA) define continuous frontiers, whereas non-parametric model DEA offers a 

piece-wise approximation thereof. FDH would result in a non-convex frontier. 

To be precise, the DEA frontier is not completely devoid of assumptions on its 

functional form. Indeed, it is considered to be locally linear one. Given DEA 

and FDH frontiers are defined empirically, they do include at least one 

observation, which is then considered as an efficient one. The same applies for 

the COLS frontier. In case of the OLS and SFA frontiers, no observations are 

considered to be fully efficient. 

 

 

Fig. 1.8. Parametric and non-parametric frontier models. 

 

COLS frontier is based on the OLS one and shifted by a constant equal 

to the maximal error term so that the resulting error term would satisfy e≥0. 

SFA assumes certain distribution of random error as well as inefficiency terms 

and thus defines an intermediary frontier.  
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Indeed, SFA and DEA are the two seminal methods for, respectively, 

parametric and non-parametric analysis. These methods are to be discussed 

throughout the remaining part of the section.  

 

 

1. 3. 1. Data Envelopment Analysis 

 

DEA specifies the efficiency frontier with respect to the two 

assumptions, namely free disposability and convexity. The assumption of the 

free disposability means that we can dispose of unwanted inputs and outputs. 

First, if we can produce a certain quantity of outputs with a given quantity of 

input, then we can also produce the same quantity of outputs with more inputs. 

Second, if a given quantity of inputs can produce a given quantity of outputs, 

then the same input can also be used to produce less output (Bogetoft, Otto, 

2011). By combining these two assumptions we arrive at the free disposability 

of inputs and outputs. The technology related to free disposability assumption 

is called the free disposable hull. Assume there are Kk ,...,2,1  firms each 

possessing a certain input-output bundle ),( kk yx , then the free disposable hull 

is defined as 

  kknm yyxxKkyxT   ,:,...,2,1),( . (1.19) 

An graphic interpretation of the free disposable hull is presented in Figure 1.9.  

 

Fig. 1.9. Free disposable hull. 
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The convexity assumption implies that any linear combination of the 

feasible production plans ),( kk yx  is also feasible. The convex VRS technology 

set is defined in the following way: 

 KkyyxxyxT kK

k

kK

k

kkK

k

kk ,...,2,1,0,1,,),(
111

  
 .       (1.20) 

By combining assumptions of the free disposability, VRS, and 

convexity (cf. Eqs. 19 and 20) the following technology set is obtained: 

 KkyyxxyxT kK
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kK

k

kkK

k

kk ,...,2,1,0,1,,),(
111

  
 .       (1.21) 

The latter technology set includes all points that can be considered as feasible 

ones under assumption of either convexity or free disposability (Figure 1.7).  

DEA is a nonparametric method of measuring the efficiency of a decision–

making unit (DMU) such as a firm or a public–sector agency (Ray, 2004). 

The modern version of DEA originated in studies of A. Charnes, W. W. 

Cooper and E. Rhodes (Charnes et al., 1978, 1981). Hence, these DEA models 

are called CCR models. Initially, the fractional form of DEA was offered. 

However, this model was transformed into input– and output–oriented 

multiplier models, which could be solved by means of the linear programming 

(LP). In addition, the dual CCR model (i. e. envelopment program) can be 

described for each of the primal programs (Cooper et al., 2007; Ramanathan, 

2003).  

Unlike many traditional analysis tools, DEA does not require to gather 

information about prices of materials or produced goods, thus making it 

suitable for evaluating both private– and public–sector efficiency. Suppose that 

there are Kk ,...,2,1  DMUs, each producing nj ,...,2,1  outputs from 

mi ,...,2,1  inputs. Hence, the t–th DMU ( 1,2,...,t K ) exhibits input–oriented 

Farrell technical efficiency t , whereas input–oriented Shepard technical 

efficiency is a reciprocal number and 1 /t t  . The input–oriented technical 

efficiency t  may be obtained by solving the following multiplier DEA 

program: 

 
,

min
t k

t
 

  (1.22) 
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Meanwhile, the output–oriented technical efficiency 
t  may be obtained by 

solving the following multiplier DEA program: 
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k  unrestricted. 

(1.23) 

In Eqs. 1.22 and 1.23, coefficients 
k  are weights of peer DMUs. 

Noteworthy, this model presumes existing constant returns to scale (CRS), 

which is rather arbitrary condition. CRS indicates that the manufacturer is able 

to scale the inputs and outputs linearly without increasing or decreasing 

efficiency (Ramanathan, 2003).  

Whereas the CRS constraint was considered over–restrictive, the BCC 

(Banker, Charnes, and Cooper) model was introduced (Banker et al., 1984). 

The CRS presumption was overridden by introducing a convexity constraint 

1
1

 

K

k k  , which enabled to tackle the variable returns to scale (VRS). The 

BBC model, hence, can be written by supplementing Eqs. 1.22 and 1.23 with a 

convexity constraint 1
1

 

K

k k . 

The best achievable input can therefore be calculated by multiplying actual 

input by technical efficiency of certain DMU (cf. Eq. 1.22). On the other hand, 

the best achievable output is obtained by multiplying the actual output by the 

output-oriented technical efficiency, where technical efficiency scores are 

obtained by the virtue of Eq. 1.23. The difference between the actual output 
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and the potential one is called the radial slack. Let us consider point ),( 11 yx  in 

Figure 1.10. We can note that the latter point is projected onto the efficiency 

frontier by reducing input 1x  to 1x  (radial movement); however output still 

needs to be improved by the non-radial movement from 1y  to Ey .  

In addition it is possible to ascertain whether a DMU operates under 

increasing returns to scale (IRS), CRS, or decreasing returns to scale (DRS). 

CCR measures gross technical efficiency (TE) and hence resembles both TE 

and scale efficiency (SE); whereas BCC represents pure TE. As a result, pure 

SE can be obtained by dividing CCR TE by BCC TE. Noteworthy, technical 

efficiency describes the efficiency in converting inputs to outputs, while scale 

efficiency recognizes that economy of scale cannot be attained at all scales of 

production (Ramanathan, 2003). 

 

 

Fig. 1.10. Data envelopment analysis model. 

 

DEA is considered as an axiomatic approach for it satisfies the axioms 

of convexity, free disposability, and minimal extrapolation (Afriat, 1972). The 

axiom of minimal extrapolation implies that the observed data are enveloped 

by a frontier which features the minimal distance between itself and the data. 
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As a result, the underlying production is given as 

 *

1 1 1
( ) max | , , 1, 0

K K Kt k t k

t k k k kk k k
y f x y y y x x   

  
        . 

It is due to Thanassoulis et al. (2008) that the cost efficiency is obtained 

by the virtue of the following linear cost minimization model: 
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(1.24) 

where 
t

iw
 are the input prices for the t–th DMU. Indeed, this model yields the 

minimum cost which is the input for Eq. 1.17 

Recently, many improvements to DEA have been offered (Shetty, 

Pakkala, 2010; Zerafat Angiz et al., 2010; Wang et al., 2009) which mainly 

focus on imposing peer weight restrictions and thus making DEA a more 

robust instrument for ranking of the DMUs. Moreover, bootstrapping 

techniques might be employed to estimate confidence intervals for the 

efficiency scores (Wilson, 2008; Odeck, 2009).  

 

1. 3. 2. Stochastic Frontier Analysis 

 

SFA is a parametric method for efficiency measurement. In its simplest 

form, it allows to define the production frontier for one output and multiple 

inputs technology. Further modifications, however, enable to relax this 

restriction. Unlike OLS and COLS, SFA models take into account both the 

efficiency term u and the error term v. The base model proposed by Aigner et 

al. (1977) and Meeusen and van den Broeck (1977) then can be presented in 

the following manner: 

kv

k

kk eTExfy )( .    (1.25) 
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The base model after a log transformation becomes 

),0(~),,0(~

),(
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NuNv

uvxfy








,   (1.26) 

where N+ denotes half-normal distribution truncated at the zero point. Greene 

(2008) presented a variety of possible distribution functions, namely truncated 

normal, exponential, and gamma. The Maximum Likelihood method is 

employed to estimate parameters β, u, and v. The firm-specific technical 

efficiency is computed as follows: )exp( uTEk  . 

As one can note, a disturbance term in Eq. 1.26 consists of an 

inefficiency measure, u, and a random error, v, with the former being 

independently identically distributed truncated normal (half-normal) variable 

and the latter one being independently identically distributed normal variable. 

Therefore we cannot use OLS to decompose the disturbance term. The 

maximum likelihood method
2
 is therefore applied.  

First, we need the likelihood function describing the SFA model (Eq. 

1.26). The density function for the error term, v, of a certain observation is the 

normal distribution (Bogetoft, Otto, 2011): 
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2
 The method of maximum likelihood (ML) can be applied for the following linear model (Maddala, 

2001): 

),0(~ 2 iidNuuxy iiii  ,    

  

where yi are independently and normally distributed with respective means 
ix   and a common 

variance 
2 . The joint density of the observations, therefore, is  
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 In case the parameters β are fixed, we have a density function. In case, we have a set of 

observations and analyse a density function in terms of parameters ),,( 2  the latter is called a 

likelihood function and denoted by ),,( 2L . The essence of the ML method is to choose these 

parameters so that they maximize this likelihood function. Commonly it is more convenient to 

maximize the logarithm of the likelihood function: 
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where 2

v  is the variance of v. The inefficiency term, u, follows the half–

normal distribution truncated at zero: 




























0for 0

0for 
2

1
exp

2

2

)( 2

2

2

u

u
u

u
uu

u  , (1.28) 

here the extra 2-factor is introduced to maintain the total mass of the half-

normal distribution equal to unity, i. e. 



 1)( duuu . 

Having a set of observations ),( yx , one cannot directly calculate the v 

and u terms. Indeed, it is possible to calculate the total error term 

),(  xfyuv  . The distribution of  , thus, is the convolution of 

distributions of v and –u: 
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After setting  
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and combining Eqs. 1.27–1.29 we get 
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with   being the distribution function of the standard normal distribution with 

zero mean, and variance of unity, i. e. dtez
z t
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. When the 

parameter λ is 0, there is no effect from differences in efficiency and when it 

gets larger, the larger part of the whole disturbance term is attributed to 

variation in efficiency. The logged density function gets the following form: 
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In case we have K observations, the joint density function becomes 
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and the logarithm of the joint density function is then given by 
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By taking into account that the error term 
k  depends on the vector of 

parameters, β, we can rearrange Eq. 1.35 into the following log likelihood 

function: 
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The function ),,( 2 l  is the log-likelihood function which depends on 

the parameters  ,, 2  and on the observed data ),(),...,,( 11 KK yxyx . Thus, the 

maximum of the log-likelihood function is found by equating every element of 

its gradient to zero. The existing non-linearity, however, does not allow 

achieving a closed-form solution. Therefore, an iterative optimization 

algorithm, namely Newton’s method, is employed to estimate the parameters. 

The two functional forms are usually employed for SFA, viz. Cobb–

Douglas (Cobb, Douglas, 1928) and Translog (Christensen et al., 1971, 1973). 

The logged Cobb–Douglas production function has the following form: 
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Translog (Transcendental Logarithmic Production Function) is a generalization 

of the Cobb–Douglas function: 
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As one can note, production functions defined by Eqs. 1.37–1.38 can 

tackle single–output technology only. To measure the productive efficiency 

and analyse the production technology, we can employ the Shepard distance 

functions (cf. Eqs. 1.8 and 1.11). Given both ),( yxDI and 
),( yxDO  are 
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homogeneous of degree +1 in x and y, respectively, the following equations 

hold: 
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By logging both sides of Eqs. 1.39–1.40 and substituting kk

O

k

I uDD  lnln

, where u
k
 is the inefficiency term of the k-th DMU, we have: 
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The latter two equations can be evaluated by adding the error term v
k
 

and specifying a SFA model. A translog function might be employed to 

approximate the input and output distance functions. By choosing (arbitrarily) 

certain input 
mx  we normalize the input vector and thus define a homogeneous 

translog input distance function: 
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Similarly, a translog output distance function is defined in the following way: 
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Equations 1.43 and 1.44 imply that we only need to estimate a1, a2, ..., 

am–1 and b1, b2, ..., bn–1, respectively, whereas 
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The similar computations are valid for the cost frontier. For instance, 

Greene (2008) presents the specification of a multiple–output translog cost 

function. After imposing its homogeneity it has the following form: 
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where Ck is the observed costs for the k-th DMU and k

iw  denotes price of the i-

th input for the k-th DMU. Note that inefficiency term, u
k
, increases the value 

of cost function. Accordingly, special treatment of these functions is needed 

when employing statistical packages (e. g. package frontier in R). 

 

1. 4. Agriculture in Lithuania 

 

For historical reasons, the agricultural sector still faces the consequences 

of the previous collectivization (Gorton and Davidova, 2004). Since Lithuania 

joined the EU in 2004 they have been subject to the regulations of the 

Common Agricultural Policy and the Lithuanian agricultural sector has 

undergone substantial transformation. Therefore in the present study we choose 

to consider input efficiency since our focus will be on the efficiency in the 

utilization of various input factors.  Considering the utilization of specific input 

factors enables individual farmers to better target efficiency improving 

strategies as well as planners to better design efficiency improving policies.  

The economic crisis stressed the importance to look for efficiency gains 

in the agricultural sector. As it is the case in all Central and East European 

(CEE) countries, the agricultural sector constitutes an important part of the 

Lithuanian economy. Eurostat (2014) reports that the share of the gross 

domestic product (GDP) generated in the latter sector decreased from 4% in 

2004 down to 2.3% in 2009; however it rebounded to 3.2% in 2011 (in current 

prices). To compare, the respective figures for the 27 European Union (EU) 

Member States (EU-27) are 1.8%, 1.3%, and 1.5%. As for the “old” EU 
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Member States (EU-15), these figures are even lower, viz. 1.6%, 1.2%, and 

1.3%. The same pattern is revealed by considering the structure of 

employment: the share of employees working the agricultural sector is 15% 

back in 2004, whereas it subsequently decreased to 8.3% in 2008 and further 

down to 7.7% in 2011. Meanwhile, the EU-27 featured the shares of 5.8%, 5%, 

and 4.9%, respectively. Considering the EU-15, the corresponding figures are 

3.2%, 2.8%, and 2.8%. Thus, the Lithuanian agricultural sector still plays a 

relatively more important role in the Lithuanian economy as it is the case in the 

economically advanced EU Member States. Even though the outcomes of the 

economic transition are evident, agriculture will remain both an economically 

and socially important activity in Lithuania.  

In addition, the Lithuanian agricultural sector faces certain 

transformations due to the historical context prevailing in the CEE countries. 

Specifically, the collectivization and de-collectivization rendered distortions of 

the factor markets, which, in turn, have been shaping farmers’ decisions to a 

certain extent. Another important factor of the agricultural development in 

Lithuania is the European integration processes. Lithuania acceded to the EU 

in 2004 and thus became a subject to the Common Agricultural Policy. As a 

result, the farm structure has been changing in terms of both land area and 

farming type. The aforementioned circumstances stress the need for researches 

into efficiency of the Lithuanian farms. Indeed, these researches would enable 

to identify the main reasons of inefficiency and possible paths for 

development.  

The issues of agricultural efficiency are of particular importance in 

Lithuania, which, like other post-communist Central and East European states, 

has a relatively large agricultural sector and, to some extent, still faces the 

consequences of collectivization (Gorton, Davidova, 2004). In Lithuania, the 

process of de-collectivization began in 1989 and reached its peak in 1992–

1993. Since then the Lithuanian agricultural sector has undergone a profound 

transformation. Lithuania acceded to the EU in 2004. Consequently, the 

Lithuanian agricultural sector became subject to the regulations of the 
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Common Agricultural Policy. As of 2004–2009, the rural population 

constituted one third of the total population of Lithuania. The share of 

agricultural and related activities in gross value added accounted for some 4% 

in 2004 but went down to 2.3% in 2009 (Statistics Lithuania, 2010). Over the 

same period, the share of employees engaged in agricultural and related 

activities also dropped, from 15.2% to 8.3%.  

Gross agricultural production amounted to some 4.6 billion Litas (1.3 

billion Euros) in 2004, whereas it decreased during years 2006 and 2009. A 

value of 5.7 billion Litas (1.65 billion Euros) was observed in 2009. Family 

farms account for the most significant share of agricultural production; 75% in 

2004 and 71% in 2009 (Statistics Lithuania, 2010). Thus, family farms are the 

key suppliers of agricultural production in Lithuania. 

The agricultural census of 2010 indicated certain changes in Lithuanian 

farm structure. Specifically, both the number and area of small farms (up to 

100 ha) decreased between 2003 and 2010, whereas indicators for large farms 

(over 100 ha) increased during the same period. As Statistics Lithuania (2012) 

reports, the number of large farms grew from 2.1 thousand in 2003 up to 3.8 

thousand in 2010, an increase of 81%. The land area owned by large farms 

consequently increased to 74%. The relative importance of large farms 

increased at an even more rapid pace. In 2003, large farms occupied some 26% 

of all utilized agricultural area (i.e. 2.49 million ha), whereas by 2010 these 

farms had increased their land share to 42% of the utilized agricultural area, 

which itself had also increased (to 2.74 million ha). Those developments led to 

an increase in the average farm size from 9.3 ha to 13.8 ha throughout 2003–

2010 (Department …, 2005; Statistics Lithuania, 2012). Indeed, these trends 

can be perceived as an adjustment toward the farm structure typical of 

developed EU member states. Therefore, one can expect further expansion of 

large farms given that agricultural policy will not impose additional incentives 

for small farms. In addition, a significant amount of existing abandoned land 

provides large farms with opportunities for further expansion. As of 2010, 

there were approximately 500 thousand ha of abandoned land in Lithuania 
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(Kuliešis et al., 2011). It is thus important to estimate the possible effect of 

these developments on the technical efficiency of the Lithuanian agricultural 

sector. 

Furthermore, a decline in livestock farming is evident in Lithuania. The 

share of the crop output to the gross agricultural output increased from 50% in 

2004 to 56% in 2009 (Statistics Lithuania, 2010). This increase was especially 

significant among family farms, where the share of the crop output increased 

from 55% to 65% throughout the same period. However, the agricultural 

enterprises themselves virtually did not change their production structure. 

Noteworthy, dairy is the main branch of livestock farming in Lithuania. 

Significant changes in the relative prices of livestock production fuelled the 

transition from livestock farming toward crop farming. 

We can observe a general trend of farmers shifting from livestock to 

crop farming. From 2004 to 2011, the share of crop output to the gross 

agricultural output increased from 50% to 59% for the sector in general and 

from 55% to 65% amongst the family farms (Statistics Lithuania, 2012). This 

indicates that family farms are switching from livestock to crop farming at a 

faster pace than the sector in general. 
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2. RESEARCH METHODOLOGY 

 

This section describes the techniques employed to address the tasks of the 

research. Indeed, we present techniques for estimation of the efficiency scores 

and efficiency effects, TFP indices, and techniques for analysis of the 

productive technology. The general framework of the research is depicted in 

Fig. 2.1.  

 

 

Fig. 2.1. Framework of the research. 

 

Noteworthy, the following methodologies are introduced by the author:  

 A hybrid methodology for TFP and efficiency analysis, DEA-

MULTIMOORA (Baležentis et al., 2013); 

 non-parametric analysis of efficiency effects with assumption of 

separability (Baležentis et al., 2014);  

 fuzzy FDH (Hougaard, Baležentis, 2014) for analysis of uncertain 

data; 

  program MEA for analysis of managerial and program efficiency. 
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2. 1. Estimation of technical efficiency and its determinants 

 

This sub-section presents the main methods used for estimation of the 

productive efficiency as well the second stage analysis. In particular, we focus 

on the following issues: 1) bootstrapped DEA, 2) partial frontiers, 3) fuzzy 

FDH, 4) second stage analysis.  

Productivity is considered as the key factor for competitiveness in the 

long run (European Commission, 2011). Indeed, it also guarantees non-

inflatory growth and thus provides a momentum for increase in real income. It 

is due to Latruffe (2010) that measures of competitiveness can be broadly 

classified into neoclassical ones and strategic management ones. The 

neoclassical approach analyses competitiveness from the viewpoint of 

international trade flows, whereas the strategic management theories focus on 

the specific factors of competitiveness. These factors encompass, for instance, 

profitability, productivity, and efficiency. It is, therefore, important to analyse 

the trends in productivity and efficiency in order to make reasonable strategic 

management decisions. Furthermore, this study will focus on the strategic 

management approach rather than neoclassical one. 

 Frontier techniques are those most suitable for efficiency and 

productivity analysis (Murillo-Zamorano, 2004; Margono et al., 2011; 

Bogetoft, Otto, 2011; Bojnec, Latruffe, 2011; Atici, Ulucan 2011; Hajiagha et 

al., 2013). These methods can be grouped into parametric and nonparametric as 

well as into deterministic and stochastic ones. This study employs a 

deterministic non-parametric method, data envelopment analysis, which 

requires no a priori specification of the functional form of the underlying 

production function
3
. Furthermore, productivity indices are employed to 

analyse the changes in productivity. The two seminal methods are usually 

employed, namely Malmquist and Luenberger productivity indices (Ippoliti, 

Falavigna, 2012; Tohidi et al., 2012).  

                                                           
3
 Indeed, the production function is implicitly assumed to be a locally linear one. 
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 On the other hand, efficiency can be analysed at various levels, 

namely at the firm, sector, and nation level. The assessment of inter-sectoral 

patterns of efficiency provides a rationale for strategic management for both 

private and public decision makers. Indeed, the comparison of efficiency 

across different sector of Lithuanian economy has been analysed by the means 

of financial ratios (Baležentis et al., 2012). Therefore, there is a need for 

further studies on the area. This thesis aims to analyse the productive 

efficiency across different sectors of Lithuanian economy by the means of the 

Malmquist productivity index. It is worth to be noted, that the latter method 

has not been applied for analysis of the Lithuanian economy.  

 Hybrid method DEA-MULTIMOORA. The economic 

researches often involve multiple conflicting objectives and criteria 

(Zavadskas, Turskis, 2011). In our case, we have different efficiency and 

productivity change indicators. Accordingly the multi-criteria decision making 

method MULTIMOORA (Brauers, Zavadskas, 2006; 2010, 2011) is employed 

to summarize these indicators and provide an integrated ranking of the 

economic sectors. Such a ranking provides some insights regarding possible 

success in competition for resources among the economic sectors. 

Graph DEA and rank-sum test. Agricultural census of 2010 indicated 

certain changes in the Lithuanian farm structure. Specifically, both the number 

and the area of small farms (up to 100 ha) had decreased in between 2003 and 

2010, whereas respective indicators for large farms (over 100 ha) had increased 

during the same period (cf. Section 1.4). It is thus important to estimate the 

possible effect of these developments on the technical efficiency of the 

Lithuanian agricultural sector. The graph DEA and the rank–sum test were 

employed to test the relationships between efficiency and farm expansion 

variables. The R programming language and package Benchmarking (Bogetoft, 

Otto, 2011) were employed to implement the graph DEA model. 

Henningsen and Kumbhakar (2009) pointed out that farm-level data for 

Central and Eastern Europe often feature statistical noise, owing to both 

internal and external factors. Internal factors encompass farmers’ and 
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consulting services’ willingness and ability to report the true figures associated 

with inputs and outputs involved in the production process. For instance, tax 

policies or gaps in methodologies could lead to biased farm-level data. As for 

the external factors, these are related to ongoing shifts in farm structure and 

factor markets, which, in turn, were fuelled by integration into the Common 

Market. The purely deterministic DEA, therefore, might not ensure robust 

analysis. As a remedy to this problem, we opted to employ bootstrapped DEA, 

which mitigates the underlying bias to a certain extent.  

Bootstrapped DEA was introduced by Simar and Wilson (1998b, 2000a, 

2000b). Assaf and Matawie (2010) employed bootstrapped DEA to assess the 

efficiency of health care foodservice facilities. Aldea and Ciobanu (2011) and 

Aldea et al. (2012) used bootstrapped DEA to analyse renewable energy 

production efficiency across EU Member States. Halkos and Tzeremes (2012) 

used it in their analysis of the Greek renewable energy sector. Noteworthy, the 

Lithuanian agricultural sector has not yet been analysed by means of 

bootstrapped DEA. Analysis of efficiency can be carried out by visualizing the 

densities of the efficiency scores (Simar, Zelenyuk, 2006; Mugera, 

Langemeier, 2011). Fuzzy clustering is used to identify efficiency change 

paths. Finally, non-parametric regression is employed to reveal underlying 

relationships between the efficiency scores and the determinants of 

inefficiency. 

Robust frontiers. The analyses of efficiency and productivity usually 

rest on the estimation of the production frontier. The production frontier can be 

estimated via either the parametric or non-parametric methods or combinations 

thereof. The non-parametric techniques are appealing ones due to the fact that 

they do not need the explicit assumptions on the functional form of the 

underlying production function and still enable to impose certain axioms in 

regards to the latter function (Afriat, 1972).  

The deterministic non-parametric methods, though, feature some 

caveats. Given the data generating process (DGP) of the observed production 

set is unknown, the underlying production set also remains unknown. 
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Therefore, the efficiency scores based on the observed data—which constitute 

a single realization of the underlying DGP—might be biased due to outliers. 

As a remedy to the latter shortcoming, the statistical theory could be employed 

to construct the random production frontiers. The chance constrained DEA 

seek to tackle the statistical noise which affects all the observations (Land et 

al., 1993; Huang, Li, 2001). Another remedy to the uncertainty in the 

efficiency analysis is the partial frontier measures (Daraio, Simar, 2007a). 

The partial frontiers (also referred to as the robust frontiers) were 

introduced by Cazals et al. (2002). The idea was to benchmark an observation 

not against all the observations dominating it but rather against a randomly 

drawn sample of these. This type of frontier was named the order–m frontier. 

The latter methodology has been extended by introducing the conditional 

measures enabling to analyse the impact of the environmental variables on the 

efficiency scores (Daraio, Simar, 2005, 2007a, 2007b). Wheelock and Wilson 

(2003) introduced the Malmquist productivity index based on the partial 

frontiers. Simar and Vanhems (2013) presented the directional distance 

functions in the environment of the partial frontiers. The order–m frontiers 

have been employed in the sectors of healthcare (Pilyavsky, Staat, 2008) and 

finance (Abdelsalam et al., 2013) among others.  

In spite of the importance of the efficiency analysis and the 

shortcomings of the conventional efficiency measures, efficiency of the 

Lithuanian agricultural sector—like that of the other ones—has not been 

analysed by the means of the partial frontiers. Indeed, the Lithuanian 

agricultural sector has been analysed by the means of the bootstrapped Data 

Envelopment Analysis (Baležentis, Kriščiukaitienė, 2012b). However, the 

latter method offers rather poor means for the analysis of sensitivity. 

Therefore, there is a need for further analyses of performance of the Lithuanian 

family farms and agricultural sector in general. The simulation–based 

methodology is of particular importance in the latter context. 

On the other hand, the order–  frontiers were introduced to define the 

benchmark by rather setting the probability of dominance,  . It was Aragon et 
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al. (2005) who introduced the concept of the order–  frontiers in a (partially) 

univariate framework. Daouia and Simar (2007) further developed the latter 

concept by allowing for the multivariate analysis. Wheelock and Wilson 

(2008) offered an unconditional measure of the  –efficiency. 

Fuzzy FDH. In practice, though, the results of DEA studies are often 

subject to considerable uncertainties. There are at least two main reasons for 

that: 

First, the data that are used are typically connected with some level of 

uncertainty. This may not only be a result of stochastic measurement errors but 

also be caused by more systematic differences in data registration (for instance 

if units are compared across different countries or if units are compared across 

different time periods). In some countries data uncertainties are also caused by 

lack of tradition for data collection and thereby strong varying data quality 

with partly missing or estimated data etc. 

Second, the DEA methodology is very sensitive to such data uncertainties 

since the methods are non-parametric and based on extreme observations 

(undominated observations). Thus, flawed data distorts the estimated efficient 

frontier of the production possibility set, which plays the role as benchmark for 

all other observations. 

These problems are well-recognized in the DEA-literature and dealt with 

in many different ways (Liu et al., 2013). One such way is to express data 

uncertainties through the use of fuzzy numbers instead of usual crisp data. Data 

sets consisting of fuzzy numbers can then be incorporated into the DEA 

framework as demonstrated in the, by now, substantial strand of literature on 

fuzzy DEA, see e.g., the recent survey in Hatami-Marbini et al. (2011). 

In this study, we suggest yet another approach particularly related to a 

variant of the DEA model called the FDH-method, see e.g. Deprins et al. 

(1984), Tulkens (1993). The FDH-method is basically DEA without the 

assumption of convexity (of the technology). As such it builds on a minimal set 

of assumptions concerning the underlying production technology. While 
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theoretically convenient, the convexity assumption is often questionable in 

practice. 

We suggest a specific method (Hougaard, Baležentis, 2014) for fuzzy 

production data which mimics the FDH-method for crisp data. For each α-level 

fuzzy data (in the form of fuzzy numbers) take the form of intervals. Our main 

idea is to rank such intervals using probabilities for having either the lowest or 

the highest value among a given set of intervals under the assumption that 

values are uniformly distributed over the range of each interval. Using these 

probabilities we define a dominance relation between production units as well 

as max and min operators over intervals. This enables us to mimic exactly the 

way (Farrell's radial technical) efficiencies are determined in the crisp FDH-

model. The final fuzzy efficiency score combines the interval scores of each α-

level set. 

Our approach has the advantage to alternative approaches that all 

involved computations are quite simple. In this way we avoid, for instance, the 

use of fuzzy programming techniques. Moreover, our approach is quite flexible 

in the sense that it allows the analyst (and/or decision maker) to engage in an 

iterative decision process through changes in the various parameters of the 

method. 

We illustrate the suggested fuzzy FDH-method using a data set on 

Lithuanian family farms where significant variation in data can be found for 

the same farm over several time periods. One reason for this can be stochastic 

events like changing weather conditions but other types of data uncertainties 

may be present as well. We therefore model data uncertainty by triangular 

fuzzy numbers where the value of a given variable for the year in question can 

be modelled as the kernel and the support is made up by respectively the 

minimal and maximal observation for that variable over the total time span.  

Second-stage analysis. Efficiency analysis is often followed by second-

stage analysis to estimate the impact of certain efficiency determinants. 

Suchlike inference might be useful for understanding of the underlying trends 

of efficiency and, thus, reasonable policy making. The second-stage analysis 
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can be based on various techniques (Hoff, 2007; Bogetoft, Otto, 2011). In 

principle, the two frameworks can be defined for DEA-based efficiency scores. 

In semi-parametric frameworks, the DEA scores are regressed on explanatory 

variables by employing models of limited dependent variables. In fully non-

parametric frameworks, non-parametric regression is used in the second stage 

analysis. The non-parametric framework under the assumption of separability 

among explanatory variables and production frontier was described by Daraio 

and Simar (2005), whereas that under no assumption of separability is 

presented in this thesis (cf. Section 3.3)  

Initially, the ordinary least squares (OLS) regression was considered as a 

primal tool for post-efficiency analysis. The latter method is attractive in that 

its coefficients are easy to interpret. However, it is obvious that efficiency 

scores are bounded to certain intervals which depend on both the type and the 

orientation of the distance functions. Consequently, the censored regression 

(tobit model) emerged as a remedy. Later on, however, Simar and Wilson 

(2007) argued that the censored regression models suffer from certain 

drawbacks. First, the underlying data generating process does not generate 

censored variables. Indeed, it is the finite sampling that causes efficiency 

estimates concentrated around unity. Second, censored model’s errors are 

serially correlated. Therefore they suggested using truncated regression 

alongside bootstrapping (Efron, Tibshirani, 1993) in order to avoid the serial 

correlation. The proposed methodology is thus referred to as the double 

bootstrapping.  

The double bootstrap procedure was implemented in analyses dedicated 

for various economic sectors (Assaf, Agbola, 2011; Alexander et al., 2010; 

Afonso, Aubyn, 2006). Though, there are few examples of application of the 

double bootstrap methodology for the researches of agricultural efficiency. 

Latruffe et al. (2008) analysed the performance of Czech farms, both private 

and corporate ones. Balcombe et al. (2008) employed the double bootstrap 

methodology to identify the determinants of efficiency in Bangladesh rice 
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farming. Olson and Vu (2009) utilised single and double bootstrap procedures 

to analyse farm household efficiency.  

The conditional measures of efficiency are developed for a univariate 

framework by Cazals et al. (2002) and for a multivariate framework by Daraio 

and Simar (2005). Conditional measures estimate efficiencies without 

assuming that the environmental variables affect only the distribution of the 

efficiency scores, but do not alter the very production frontier (i.e. the 

separability condition does not hold). By comparing like with likes the 

operational environment is immediately included in the efficiency estimates.  

The environment a certain observation operates in can be described by a 

vector of environmental variables,  rZ z  . The joint probability function 

of dominance can then be extended as    | , Pr , |XY ZH x y X x Y y Z z    . 

The environmental variables can be both discrete and continuous. As suggested 

by De Witte and Kortelainen (2013), the kernel of Aitchison and Aitken (1976) 

can be used for unordered discrete variables, whereas that of Li and Racine 

(2007) – for ordered discrete variables. Hall et al. (2004) and Li and Racine 

(2008) presented the least squares cross validation method for bandwidth 

selection.  

The influence of the environmental variables upon the efficiency scores 

can be quantified by computing the ratios of the conditional measures over the 

unconditional ones: 
 

 
,

,

ˆ , |

ˆ ,

m Kz

m K

x y z
Q

x y




 . In a fully non-parametric framework, 

one than specify a non-parametric model to relate the ratios, z

kQ , to the 

environmental variables, kz :  k

z k kQ f z   for 1, 2, ,k K   (De Witte and 

Kortelainen, 2013). 

 

2. 2. Total factor productivity indices 

 

A production frontier can move inwards or outwards from the origin 

point depending on the technological development underlying the observed 
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productive system. Thus, one needs to measure not only efficiency, but also the 

total factor productivity (TFP) change which tackles both firm-specific catch-

up and system-wide technical change. For the latter purpose, the productivity 

indices are usually employed (Caves et al., 1982). These can be Malmquist, 

Luenberger, Hicks–Moorsteen, Färe–Primont etc.  

Efficiency measures can be employed to construct various productivity 

indices, which, in turn, can be further decomposed into certain terms 

describing the different factors on productivity change (Bojnec, Latruffe, 2009, 

2011). One of the most elaborated measures for efficiency is data envelopment 

analysis (DEA), see, for instance, studies by Murillo-Zamorano (2004), 

Knežević et al. (2011), Borůvková and Kuncová (2012), Votápková and Žák 

(2013), Zelenyuk (2012). Accordingly, various studies employed DEA for 

efficiency and productivity analysis in agriculture (Alvares, Arias, 2004; 

Gorton, Davidova, 2004; Douarin, Latruffe, 2011; Bojnec, Latruffe, 2011). 

However, efficiency estimates are not enough to identify the underlying trends 

of productivity. Therefore, the productivity indices are employed to measure 

changes in the total factor productivity (Mahlberg et al., 2011; Sufian, 2011). 

Specifically, the three types of TFP indices are commonly utilized to 

estimate the dynamics of the total factor productivity viz. (i) Malmquist index, 

(ii) Hicks–Moorsteen index, and (iii) Luenberger index (Färe et al., 2008). The 

Malmquist productivity index relies on multiplicative relations and usually is 

either input- or output-oriented. The Hicks–Moosteen index is based on input 

and output modification. The Luenberger productivity index (Luenberger, 

1992; Chambers et al., 1996) is based on additive decomposition and 

directional distance function.  

Moreover, Tulkens and Vanden Eeckaut (1995) defined the three types of 

technologies underlying the TFP indices, namely (i) contemporaneous, (ii) 

sequential, and (iii) intertemporal technologies. This study also employs the 

sequential Malmquist–Luenberger productivity index (Oh, Heshmati, 2010), 

which is more robust as outliers have lesser effect on the shape of the 

production possibility set. Furthermore, no technical regress is allowed which 



64 

might be true in the agricultural sector assuming that farmers do not lose their 

knowledge. 

Färe et al. (2008) firstly describe productivity as the ratio of output y over 

input x. Thereafter, the productivity can be measured by employing the output 

distance function of Shepard (1953): 

    tt

o TyxyxD   /,:min, ,   (2.1) 

where tT stands for the technology set (production possibility set) of the period 

t. This function is equal to unity if and only if certain input and output set 

belongs to production possibility frontier.  

The Malmquist productivity index (Malmquist, 1953) can be employed 

to estimate TFP changes of single firm over two periods (or vice versa), across 

two production modes, strategies, locations  etc. In this study we shall focus on 

output–oriented Malmquist productivity index and apply it to measure period–

wise changes in TFP. The output–oriented Malmquist productivity index due 

to Caves et al. (1982) is defined as 
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with indexes 0 and 1 representing respective periods. The two terms in 

brackets follows the structure of Fisher’s index. Consequently a number of 

studies (Färe et al., 1992, 1994; Ray, Desli, 1997; Simar, Wilson, 1998a; 

Wheelock, Wilson, 1999) attempted to decompose the latter index into 

different terms each explaining certain factors of productivity shifts. 

Specifically, Färe et al. (1992) decomposed productivity change into efficiency 

change (EC or catching up) and technical change (TC or shifts in the frontier): 

TCECM o  ,   (2.3) 

where  

   000111 ,, yxDyxDEC oo ,  (2.4) 
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EC measures the relative technical efficiency change. The index becomes 

greater than unity in case the firm approaches frontier of the current 

technology. TC indicates whether the technology has progressed and thus 

moved further away from the observed point. In case of technological progress, 

the TC becomes greater than unity; and that virtually means that more can be 

produced using fewer resources. Given the Malmquist productivity index 

measures TFP growth, improvement in productivity will be indicated by values 

greater than unity, whereas regress – by that below unity. 

An important issue associated with the decomposition a la Färe et al. 

(1992) is that of returns to scale. In this case Eqs. 2.1–2.5 represent distance 

functions relying on the assumption of the constant returns to scale (CRS) 

rather than variable returns to scale (VRS). As a result the efficiency change 

component, EC, catches both the pure technical efficiency change and scale 

change. The latter two terms were defined by Färe et al. (1994) who offered the 

decomposition of the Malmquist productivity index under assumption of VRS. 

Indeed, macro-level studies do often assume the underlying production 

technology as a CRS technology. 

Färe et al. (1994), for instance, further decomposed the EC term, i. e. the 

global efficiency change, into the two components, viz. pure technical 

efficiency change (PEC) and scale efficiency change (SEC): 

oM EC TC PEC SEC TC     .   (2.6) 

The latter two components measure the performance of a firm in terms of both 

variable returns to scale (VRS) and CRS technologies. Specifically, the PEC 

component is obtained by considering the change in pure technical efficiency 

(i. e. VRS efficiency), whereas the SEC component relies on distance from 

both CRS and VRS frontiers: 
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where 1PEC   indicates catch-up of a certain DMU in terms of pure technical 

efficiency, 1PEC   indicates no change, and 1PEC   indicates a negative 

catch-up effect; 1SEC   indicates that a DMU gets closer to its optimal scale 

of operation, 1SEC   indicates no change in scale efficiency, and 1SEC   

implies that that a DMU moves further from the optimal scale. As one can 

note, the TC component in Eq. 2.7 is the same as that in Eq. 2.5.  

In case a certain DMU keeps its efficiency at the same level throughout 

the two periods under consideration, the CRS frontier remains unchanged and 

the only change is the shift in the VRS frontier, the TC component will not 

identify these developments. As a remedy to this shortcoming, an additional 

decomposition of the Malmquist productivity index was offered by Simar and 

Wilson (1998a). Whereas the EC component was further decomposed by Färe 

et al. (1994), Simar and Wilson (1998a) introduced a decomposition of the TC 

term into the pure technology change (PTC) and changes in scale of the 

technology (STC). Therefore, the Malmquist productivity index can be 

decomposed into the four components: 

oM EC TC PEC SEC PTC STC      .  (2.8) 

The latter two terms refer to VRS and both VRS and CRS technologies, 

respectively. Indeed, these computations follow the spirit of the EC 

decomposition offered by Färe et al. (1994). The following computations then 

lead to estimation of the Malmquist productivity index (Simar, Wilson, 1998a): 
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where PEC and SEC feature the same interpretations as in Eq. 2.7; 1PTC   

means that the VRS frontier moves outwards due to a technical progress, 

 implies no change, and  indicates an inward movement of the 

VRS frontier associated with a technological regress; 1STC   suggests that the 

underlying technology increases its curvature and approaches VRS;  

means that the technology exhibits no change in its shape, and  implies 

a flattening of the technology and a movement towards CRS.   

 The Malmquist productivity index can be estimated by the means 

of the distance functions based either on parametric (e. g. stochastic frontier 

analysis) or non-parametric (e. g. data envelopment analysis) estimates. The 

generic non-parametric methods do not account for the statistical noise. 

Therefore, the bootstrapping approach was offered by Simar & Wilson (1998b, 

2000) for the data envelopment analysis (DEA) and the Malmquist 

productivity indices (Simar & Wilson, 1999). Wilson (2008) did also develop 

the FEAR package to facilitate these computations. 

The latter methodology has been widely employed for the 

productivity analyses. As for agriculture and fisheries, Hoff (2006) analysed 

the fishing activity by the means of the bootstrapped Malmquist indices; Odeck 

(2009) applied the bootstrapped Malmquist indices to the Norwegian grain 

industry; Balcombe, Davidova & Latruffe (2008) researched into the 

productivity of the Polish family farms, whereas Rezitis, Tsiboukas & 

Tsoukalas (2009) focused on the Greek livestock farms. The remaining sectors 

1PTC  1PTC 

1STC 

1STC 



68 

were also analysed by the means of the bootstrapped Malmquist indices. For 

instance, Perelman & Serebrisky (2012) analysed the efficiency and 

productivity of the Latin American airports. Jaraitė & Di Maria (2012) 

employed the bootstrapped Malmquist indices for analysis of power generation 

in the European Union. Horta et al. (2013) analysed the performance of the 

construction industry. Arjomandi, Valadkhani & Harvie (2011) utilized the 

bootstrapped Malmquist indices for analysis of the Iranian banking sector. 

Zhou, Ang & Han (2010) employed the bootstrapped Malmquist indices for the 

analysis of carbon emissions with weak disposability. 

This study applies the bootstrapped Malmquist productivity index 

to a sample of the Lithuanian family farms in order to estimate the dynamics of 

the total factor productivity there. Furthermore, the multiple correspondence 

analysis is employed to visualize the underlying patterns of the total factor 

productivity change. Indeed, the bootstrapped Malmquist indices have not been 

applied to the Lithuanian agricultural sector up to now. 

In case the confidence interval obtained by the virtue of bootstrapping 

does not include the unity, one can conclude that the change in the Malmquist 

productivity index is significant at the significance level of  . The same 

routine can be generalized for the components of the Malmquist productivity 

index, i. e. , , , , ,
k k k k k k

o o o o o oEC TC PEC SEC PTC STC . 

Sequential Malmquist–Luenberger productivity index. The 

contemporaneous efficiency measure, 

  ( ) max , ( )E T       
x y x y

x,y;g ,g x g y g
, τ={t, t+1}, can be employed 

to construct the contemporaneous Malmquist–Luenberger productivity index 

and thus quantify the change in total factor productivity between the two 

periods, t and t+1, in the following manner (Chung et al., 1997): 
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x ,y ;g ,g
,  (2.10) 

where s={t, t+1}. In order to avoid the arbitrary choice of the base period, τ, a 

geometric mean of the two consecutive contemporaneous is used as a measure 
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of change in total factor productivity: 
, 1 1 1/2( )t t t tML ML ML   . It is due to Chung 

et al. (1997) that the Malmquist–Luenberger index can be decomposed into the 

two terms representing technical and efficiency change, respectively.  

Similarly, the sequential Malmquist–Luenberger productivity index is 

defined by utilizing the sequential efficiency measure, 

  ( ) max , ( )q

qE T       
x y x y

x,y;g ,g x g y g
, s={t, t+1}, and sequential 

production possibility sets: 
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.  (2.11) 

The sequential Malmquist–Luenberger productivity index depends on 

its base period. Therefore, a geometric mean of the two indices is used: 
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The geometric mean form of the Luenberger–Malmquist productivity 

index can be decomposed into the two components as follows: 
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where efficiency change, 
, 1t tEC 

, measures the movement of a certain DMU 

towards the production frontier (catch-up) in between time periods t and t+1; 

and technical change, 
, 1t tTC 

, measures the sift of the production frontier in 

between the two time periods. In case there has been an increase (decrease) in 

the productivity, 
, 1t tSML 

 becomes greater (lesser) than unity. If there have 

been no changes in productivity between the two periods, then 
, 1 1t tSML   . 

Note that all of the directional distance functions employed in Eqs. 2.11–2.13 

assume a constant returns to scale (CRS) technology.  
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In case 
, 1t tEC 

 is greater than unity, a DMU is said to have improved its 

efficiency in terms of respective sequential frontier, i. e. it experienced a 

catching-up movement in between time periods t and t+1. On the contrary, the 

, 1t tEC 

 component lesser than unity indicates a DMU specific with a 

divergence from the production frontier throughout the time.  

The technical change is captured by 
, 1t tTC 

. Given we are dealing with 

the sequential production possibility sets, 
, 1t tTC 

 can be equal to unity in case 

of no shifts in production frontier or greater than unity in case of technical 

progress. As Oh and Heshmati (2010) pointed out, both the DMUs-innovators 

and those DMUs surrounded by the innovators exhibit
, 1 1t tTC   .  

The two terms of the Malmquist productivity index—efficiency change 

and technical change—were already presented in the study of Färe et al. 

(1992). As it was already mentioned, that decomposition assumed a CRS 

technology and omitted the scale efficiency from analysis. Indeed, one might 

be interested in scale efficiency when analysing micro data. Later on, Färe et 

al. (1994) suggested a decomposition of the Malmquist productivity index 

under assumption of variable returns to scale (VRS). In the spirit of Färe et al. 

(1994), we can now assume the VRS technology and thus further decompose 

the efficiency term into pure technical efficiency change and scale efficiency 

change: 
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where , 1t tPEC   is the pure efficiency change and 
, 1t tSEC 

 is the scale efficiency 

change in between time periods t and t+1; superscript v denotes the VRS 

directional distance functions. Obviously, , 1 1t tPEC    indicates an increase in 

pure technical efficiency, whereas 
, 1 1t tSEC    indicates scale efficiency gains. 
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The directional distance functions for Eqs. 2.13–2.14 can be estimated 

in a non-parametric deterministic way by employing data envelopment analysis 

(DEA).  

A Hicks–Moorsteen (or Malmquist TFP) productivity index 

for the base period t is defined as the ratio of a Malmquist output quantity 

index at the base period t and a Malmquist input quantity index at the base 

period t (Kerstens et al., 2010): 
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where ( )

O

T tE  and ( )

I

T tE  are, respectively, output- and input- oriented Farrell 

measures of efficiency (cf. the TE terms in Eqs. 1.9 and 1.12). Obviously, 

1t ty y   entails 1

( ) ( )( , ) ( , )O t t O t t

T t T tE x y E x y   and thus the numerator in Eq. 2.15 

becomes greater than unity. Similarly, 1t tx x   makes 

1

( ) ( )( , ) ( , )I t t I t t

T t T tE x y E x y  and thus the denominator in Eq. 2.15 becomes lesser 

than unity. Therefore Hicks–Moorsteen index exceeding (less than) unity 

indicates productivity gain (loss).  

The decomposition of the Hicks–Moorsteen index, however, is a 

rather complicated issue. Although Bjurek (1994, 1996) stated that the latter 

index can be decomposed in the similar way as the Malmquist index he did not 

present an explicit formulation of this procedure. Later on, Lovell (2003) 

described the general framework for decomposition of the Hicks–Moorsteen 

index and noted that is suffers from double accounting and a lack of economic 

interpretability. However, Lovell (2003) did offer the two ways to improve the 

decomposition by (i) partially orienting it or (ii) rearranging the terms of 

decomposition. Following the first approach one can decompose the Hicks–

Moorsteen index with a base period t in the following way: 
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where  
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  is the total factor 

productivity index with ( )

I

TD   and ( )

O

TD   being the Shepard efficiency measures 

(cf. Eqs. 1.8 and 1.11, respectively) for { , 1}t t   .  

The two output-oriented terms OTE  and OT  in Eq. 2.16 measure 

efficiency change and technical change, respectively. They are obtained in the 

following way:  
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 The product of the remaining three terms, namely the scale effect (

tS ), the output mix effect ( tOM ), and input mix effect ( tIM ), constitutes 

the activity effect (Lovell, 2003). The latter three terms are computed in 

Kerstens et al. (2010). This study, therefore, utilizes the Hicks–Moorsteen TFP 

index (Bjurek, 1994; Lovell, 2003; Epure, Prior, 2007) and DEA to measure 

TFP changes in Lithuanian family farms and decompose these changes into 

separate effects.  

Färe-Primont index approach. Recently, O’Donnell (2011b) 

developed the package DPIN which facilitates the computations of the latter 

indices. Rahman and Salim (2013) and Khan et al. (2014) employed the Färe-

Primont index for analysis of the agricultural productivity and efficiency. 

Productivity is generally defined as a ratio of output over input (Färe et al., 

2008). However, this principle becomes a more complex one in the presence of 

multi-input and/or multi-output technology. Let there be K decision making 

units (DMUs) observed during T time periods with each using inputs 

 1 2, , , 't t t t

k k k mkx x x x  and producing outputs  1 2, , , 't t t t

k k k nky y y y , where 

1, 2, ,k K   is a DMU index, 1,2, ,t T   denotes a respective time period, 

and m and n are the numbers of inputs and outputs respectively. As O’Donnell 
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(2008, 2012) put it, the total factor productivity (TFP)
4
 of a DMU is then 

defined as /kt kt ktTFP Y X , where ( )t

kt kY Y y  is an aggregate output, 

( )t

kt kX X x  is an aggregate input, and (·)Y  and (·)X  are non-negative non-

decreasing linearly-homogeneous aggregator functions respectively. One can 

further compute the index comparing the TFP of DMU k in period t with the 

TFP of DMU l in period s: 

,

,

,

/ /

/ /

ls ktkt kt kt kt ls
ls kt

ls ls ls kt ls ls kt

YTFP Y X Y Y
TFP

TFP Y X X X X
    , (2.19) 

where , /ls kt kt lsY Y Y  and , /ls kt kt lsX X X  are output and input quantity indices 

respectively. Indeed, Eq. 2.19 measures the growth in TFP as a measure of 

output growth divided by a measure of input growth (O’Donnell, 2011a).  

The change in TFP defined in terms of by Eq. 2.19 can be further 

analysed by decomposing it into certain terms describing efficiency and 

productivity changes. It was O’Donnell (2008) who argued that a TFP index 

can be decomposed into the two terms describing TFP efficiency (TFPE) 

change and technology change (TC). Specifically, the TFPE measures the 

difference between an observed TFP and maximal TFP related to the 

underlying technology. In case of DMU k in period t we have: 

*/kt kt tTFPE TFP TFP ,   (2.20) 

where 
* maxt

k
ktTFP TFP  denotes the maximal TFP possible for period t. 

Similarly, the following equation holds for DMU l in period s: 

*/ sls lsTFPE TFP TFP .   (2.21) 

Thus, the change in TFPE catches the change in DMU’s 

performance (efficiency change – EC), whereas the TC accounts for change in 

the maximal TFP. The TFP change (cf. Eq. 2.19) then decomposes as: 

*
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.  (2.22) 

                                                           
4
 Indeed, one can also use the term multi-factor productivity instead of TFP. This might be more 

relevant in the sense that an analysis might not cover all factors of production. 
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The EC term in Eq. 2.22 can be further decomposed into measures of scale 

efficiency change (SEC) and mix efficiency change (MEC). The concept of the 

mix efficiency was introduced by O’Donnell (2008). Whereas scale efficiency 

is related to economies of scale, mix efficiency is related to economies of 

scope. The difference between allocative efficiency and mix efficiency lies in 

the fact that the former is a value concept (i. e. cost, revenue, profit), and the 

latter one is a productivity (quantity) concept. All in all, mix efficiency 

indicates possible improvement in productivity due to changes in input 

structure.  

 The following Fig. 2.2 depicts the concept of the mix efficiency in 

the input space (in the presence of two inputs). The curve passing through 

points B, R, and U is an input isoquant, i. e. an efficient frontier. An isocost is 

based on input prices, whereas the dashed lines going through points A, B, R, 

and U are iso-aggregate-input lines. Specifically, they were established by the 

virtue of the simple linear aggregation function 1 1 2 2

t t

kt k kX x x   , where 1 0   

and 2 0  . The slope of an iso-aggregate-input line thus becomes 1 2/   and 

intercept varies depending on the aggregate input quantity in between 2/ktX   

and 2
ˆ /ktX  . The DMU operating at point A could move towards point B in 

case it managed to reduce its input consumption securing the same level of 

output and holding input structure constant; as a result the aggregate input 

would fall from ktX  down to ktX . Minimisation of costs without any 

restrictions on input mix results in a movement from B to R and subsequent 

decrease in aggregate input from ktX  to ktX . Minimisation of the aggregate 

input without constraints on the input mix entails a movement from B to U and 

a decrease in aggregate input from ktX  to ktX . The following measures of 

efficiency can be defined in terms of Fig. 2.2:  

/kt kt ktITE X X ,    (2.23) 

/kt kt ktAE X X ,    (2.24) 

ˆ /kt kt ktIME X X .    (2.25) 
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Indeed, Eq. 2.23 defines an input-oriented measure of the technical efficiency 

(Farrell, 1957), Eq. 2.24 stands for a measure of the allocative efficiency (Färe, 

Grosskopf, 1990; Thanassoulis et al., 2008), and Eq. 2.25 defines an input-

oriented measure of the mix efficiency (O’Donnell, 2008).  

 

 

Fig. 2.2. The concept of mix efficiency (O’Donnell, 2011a). 

 

 The measures of TFP and efficiency can be further depicted in an 

input-output space (Fig. 2.3). The points A, R, and U come from Fig. 2.2 and 

denote the observed production plan, technically efficient production plan with 

mix restrictions, and technically efficient production plan without mix 

restrictions respectively. The curve passing through points B and D is a mix-

restricted frontier, whereas that passing through points E and U is an 

unrestricted frontier. The rays passing through each point are associated with 

respective TFP levels. The Farrell (1957) input-oriented measure of efficiency 

can thus be described in terms of the TFP change: /kt A B BAITE TFP TFP TFP  . 

Similarly, the mix efficiency measure defined by O’Donnell (2008) can be 

given as /kt B U UBIME TFP TFP TFP  . The input-oriented scale efficiency 
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measure, ISE, compares TFP at the efficient point B to the highest one under 

the same input-mix at point D: 

/

/

kt kt
kt

kt kt

Y X
ISE

Y X
 .    (2.26) 

The residual mix efficiency, RME, measures the difference between the 

maximal TFP for the unrestricted frontier (point E) and TFP at the scale-

efficient point D: 

*

/kt kt
kt

t

Y X
RME

TFP
 .    (2.27) 

The input-oriented scale-mix efficiency, ISME, encompasses ISE and RME 

and thus compares the maximal TFP at point E to that at the scale-efficient 

point D: 

*

/kt kt
kt

t

Y X
ISME

TFP
 .    (2.28) 

Further details on these measures can be found in O’Donnell (2008). 

 

 

Fig. 2.3. The input-oriented measures of technical, scale and mix efficiency 

(O’Donnell, 2011a). 
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 The TFP efficiency, TFPE, can therefore be decomposed into 

several terms: kt kt kt kt kt ktTFPE ITE ISME ITE ISE RME     . In an input-

oriented framework, the TFP index given by Eqs. 2.19 and 2.22 can also be 

decomposed in the following way: 

* *

, * *

t kt kt t kt kt kt
ls kt

s ls ls s ls ls ls

TFP ITE ISME TFP ITE ISE RME
TFP

TFP TITE ISME ITE IS RF E MEP

   
 

      
      

    
  

    
.    (2.29) 

 An analogous decomposition is available for the output orientation 

(O’Donnell, 2011a). The components defined in Eq. 2.29 can be estimated by 

employing linear programming models and package DPIN. The routine for 

estimation of the Färe-Primont indices is further discussed by O’Donnell 

(2011a).  

 

2. 3. Analysis of the productive technology 

 

In this research, the following features of the underlying 

productive technologies are considered: 1) nature of the technical change 

specific to a technology, 2) prevailing returns to scale, 3) managerial and 

program efficiency, 4) context efficiency.  

The biased technical change was analysed across various 

economic sectors and management levels by the means of the bias-corrected 

Malmquist indices (Färe et al., 1997). Weber and Domazlicky (1999) focused 

on TFP growth in US manufacturing across the states. Managi and Karemera 

(2004) analysed the US agricultural sector. Kumar (2006) analysed the 

performance of manufacturing across Indian states. Barros et al. (2009) 

attempted to research into productivity of the Japanese credit banks. Barros and 

Weber (2009) focused at the airport productivity change. Assaf and Barros 

(2011) employed the bias-corrected Malmquist index to measure the 

performance of the hotel chains. Barros et al. (2012) analysed the productivity 

of Brazilian seaports. It was Briec and Peypoch (2007) who offered the 

concept of parallel neutrality and developed the bias-corrected Luenberger 
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productivity indices. These measures were employed in a number of researches 

on TFP growth (Barros et al., 2011; Briec et al., 2011; Peypoch, Sbai, 2011). 

Färe et al. (1997) introduced the further decomposition of the Malmquist 

productivity index as a remedy to the biased technological change (Weber, 

Domazlicky, 1999; Assaf, Barros, 2011). Specifically, the TC component was 

decomposed into the three terms with each of them describing output–biased 

technical change (OBTC), input–biased technical change (IBTC), and the 

magnitude of technological change (MTC): 

 
 

 
 

1/ 2
1 1 1 1

1 1 1 1

, ,

, ,

t t t t t t

I I

t t t t t t

I I

D x y D x y
OBTC

D x y D x y

   

   

 
 
 
 

,  (2.30) 

 
 

 
 

1/ 2
1 1

1 1

, ,

, ,

t t t t t t

I I

t t t t t t

I I

D x y D x y
IBTC

D x y D x y

 

 

 
 
 
 

,  (2.31) 

 
 1

,

,

t t t

I

t t t

I

D x y
MTC

D x y
 ,    (2.32) 

where TC OBTC IBTC MTC   .  

 Increase in the MRTS of 1x  for 2x  in between periods t and 1t   

would entail    2 2 1 11/ /
t t

x x x x


 . These changes, coupled with an increasing 

productivity ( 1IBTC  ), would imply that the observed technical change is an 

2x –consuming and 1x –saving one. On the other hand, an increasing MRTS and 

a decreasing productivity ( 1IBTC  ) would indicate movement towards an 2x –

saving and 1x –consuming technology. The Hicks-neutral technical change is 

observed when 1IBTC  . The following Table 2.1 summarizes the discussed 

patterns of the input–biased technology change. 

 

Table 2.1. Input–biased technology change. 

 1IBTC   1IBTC   1IBTC   

   
1

/ /i it q tqx x x x


  
qx –using, 

ix –saving 

ix –using, 

qx –saving 
Neutral 

   
1

/ /
tq q ti ix x x x


  

ix –using, 

qx –saving 

qx –using, 

ix –saving 
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 In case the number of output or inputs is reduced to one, the term 

OBTC or IBTC, respectively, equals unity. All in all, the discussed measures 

enable one to fathom the underlying technical change in terms of changes in 

the structure of input-output bundle. Specifically, the technical change can be 

identified as Hicks’ neutral, or Hicks’ factor-saving (-consuming). By 

facilitating the pairwise comparisons, one can analyse the substitution between 

the production factors evolved in between the two time periods and its effect 

on the TFP.  

Returns to scale and scale elasticity constitute a fundamental 

issue for the economic analysis and performance management. Specifically, 

the analysis of the prevailing returns to scale enables to describe the structure 

of a certain sector in terms of scale efficiency. Accordingly, various studies 

attempted to estimate the underlying returns to scale (Growitsch et al., 2009; 

Atici, Podinovski, 2012). Indeed, the regulated economic sectors feature a 

particular need for suchlike analyses.  

Agricultural sectors are relatively more important in the Central 

and East European countries than in the Western countries given the 

differences in economic structure prevailing there. Therefore, the researches of 

agricultural efficiency are of particular importance in suchlike countries (van 

Zyl et al., 1996; Gorton, Davidova, 2004; Kirner, Kratochvil, 2006). Indeed, 

farm size and farm structure do often constitute the key foci of the economic 

researches thanks to the land reform and farm restructuring there. The scale 

efficiency size is therefore a measure of interest as well as the most productive 

scale. The latter measures enable to determine whether a farm operates at 

increasing, constant, and decreasing return to scale. However, the issues of 

farm size were analysed across the whole world. Townsend et al. (1998), Luik 

et al. (2009), and Mugera and Langemeier (2011) applied data envelopment 

analysis to analyse the returns to scale and size of the agricultural producers. 

Alvarez and Arias (2004) employed the fixed-effects frontier and the translog 

supply function to relate the technical efficiency to the farm size.  
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 The data envelopment analysis (DEA) enables to determine 

whether a decision making unit (DMU) operates at the optimal scale size. This 

can be implemented by estimating the scale efficiency which, in turn, is a ratio 

between CRS efficiency scores and VRS efficiency scores. DMUs operating at 

the most productive scale size (MPSS) would be attributed with scale 

efficiency values of unity, whereas the remaining ones would feature scale 

efficiency scores lower than unity. However, this measure does not give any 

information regarding the direction of the prospective changes in scale size for 

the scale-inefficient DMUs. Accordingly, the two approaches prevail allowing 

for a more detailed analysis of returns to scale (RTS) by the means of DEA 

(Førsund, Hjalmarsson, 2004; Zschille, 2014): The qualitative approach (Färe 

et al., 1983; Färe and Grosskopf, 1985; Grosskopf, 1986; Tone, 1996) enables 

to determine whether a DMU operates under increasing returns to scale (IRS), 

CRS, or decreasing returns to scale (DRS). The quantitative approach further 

enables to quantify scale elasticity in DEA. The latter analysis can be further 

employed in an indirect or a direct approach. The indirect approach was 

introduced by Banker and Thrall (1992) and utilized by Førsund and 

Hjalmarsson (2004), Førsund et al. (2007), Podinovski et al. (2009), Zschille 

(2014). The direct approach was followed by Krivonozhko et al. (2004), 

Førsund et al. (2007). In the sequel we will focus on the qualitative approach 

which classifies the farms in terms of the regions of RTS they operate in. 

 Thiele and Brodersen (1999) analysed the performance of the 

West and East German farms with respect to returns to scale. Latruffe et al. 

(2005) focused on the Polish farms while analysing the technical and scale 

efficiencies. Vasiliev et al. (2008) conducted a similar analysis on the Estonian 

grain farms. The Lithuanian agricultural sector, though, has not been 

sufficiently analysed in terms of optimal farm size and returns to scale. 

Kriščiukaitienė et al. (2007) employed the linear programming methodology to 

model the optimal farm size in terms of technological and economic variables. 

The latter study was based on a hypothetic farm data. Jurkėnaitė (2012) 
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analysed the viability of certain farming types in terms of various financial 

indicators.  

 The elasticity of scale can be estimated once the production 

frontier is established for a technology of interest. Data envelopment analysis 

(DEA) constitutes a proper tool for analysis of the scale elasticity (Soleimani-

Damaneh et al., 2009). Therefore, we follow an axiomatic non-parametric 

deterministic approach. Axiomatic approach implies that the axioms of the free 

disposability, convexity, and minimal extrapolation (Afriat, 1972) are 

respected. Non-parametric approach implies that there are no assumptions on 

the distribution of the error terms. However, the DEA implicitly assumes the 

piecewise-linear functional form of the underlying production function. 

Finally, deterministic approach means that the whole error term is assumed to 

arise due to inefficiency.  

Program and managerial efficiency. In this section we shall first 

briefly recall the MEA approach developed in Bogetoft and Hougaard (1999) 

and subsequently in Asmild et al. (2003). MEA will also be compared to 

standard DEA. We then move on to reconsider the program efficiency 

approach of Charnes et al (1981) related to DEA and show how this can be 

reformulated along the lines of MEA. The advantage of the latter is improved 

information due to a disaggregation into input specific efficiency scores as well 

as an improved underlying benchmark selection.   

Consider a set of farms using multiple inputs to produce multiple 

outputs   n

nyyyy  ,...,, 21
. The common underlying technology: 

  yxyxT  producecan  , .   (2.33) 

can be represented by input requirement sets: 

  TyxxyI  ,)( .   (2.34) 

and the standard Farrell input-oriented index of technical efficiency used in 

DEA to assign an efficiency score to each farm, can be defined as: 

  ( , ) min , ( )F

IE x y x y I y   .   (2.35) 
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 The Farrell efficiency score, FE , implicitly concerns the distance 

between the observation at hand (x, y) and its projection onto an isoquant in the 

direction of the origin. Figure 2.4 presents a graphical interpretation of this 

measure: The initial point, 0x , is projected onto the isoquant describing the 

technology T at the point 0FS x . The Farrell efficiency measure,  , is then 

obtained as the ratio 00 / 0FS x . Clearly, an efficient production plan (here a 

farm) is assigned efficiency score 1F

IE   while inefficient farms are assigned 

scores 1F

IE  . 

 The implicit selection of the benchmark does not depend on the 

potential improvements in input consumption (in our case we have 0 *

1 1x x  and 

0 *

2 2x x ). Thus, the inputs are uniformly scaled down by a common factor . 

Obviously, suchlike scaling is not proportional to improvement potentials. As 

argued in Bogetoft and Hougaard (1999) it is compelling to select a benchmark 

proportional to improvements potentials. They also suggest an efficiency index 

which relates to such a benchmark selection that was later used in connection 

with the linear programs of DEA to produce a procedure dubbed Multi-

directional Efficiency Analysis (MEA), in Asmild et al (2003). In Figure 2.4 

below the benchmark selection of MEA is illustrated compared to the 

traditional Farrell approach. 
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Fig. 2.4. DEA and MEA efficiency scores. 

 

 Contrary to the conventional DEA model, where the reference 

production plan is established in an implicit manner as described above, MEA 

facilitates efficiency measurement based on the ideal reference plan, 

* * * *

1 2( , ,..., )mx x x x , and the benchmark plan, PIS . The ideal reference plan 

depends on the observed plan, x, and is defined as 

  *

1 2 1 1( ) min | , ,..., , , ,..., ( )i i i i i mx x x x x x x x x I y    , 1,2,...,i m  .     (2.36) 

That is, the ideal reference plan consists of the minimal input requirements for 

each input obtained independently in terms of the given technology. Note that 

*x  is generally infeasible. The benchmark plan, PIS , is then found as the 

largest possible reduction of x in the direction of xx . Indeed, the reductions are 

made in proportion to the input specific excesses given by *

1,2, ,( ( ))i mx x x   . In 

case x is an efficient plan, we have *( )x x x  and all the excesses are equal to 

zero. This entails PIx S  and all the input specific MEA scores become zero.  

The ideal reference plan for an input-oriented model is found by 

solving the m linear programming problems (Asmild et al., 2003): 
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(2.37) 

where 
1

1
K

kk



  is a variable returns to scale (VRS) constraint. Thus, a 

solution yielded by Eq. 2.37 * *( , )x  further serve as coordinates of the ideal 

reference plan: * * * *

1 2 3( , ,..., )x x x x . Assuming that *x x , consider the following 

linear programming problem: 
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(2.38) 

where 
1

1
K

kk



  is a variable returns to scale constraint. Eq. 2.38 entails a 

solution, * *( , )  . We shall here be more concerned with the disaggregated 

input specific efficiency scores of MEA for particular farms 0 0( , )x y  defined as 

* 0 *

0

1, ,

( )i i

i i m

x x

x



 

 
 
 


. 

The sample of DMUs under analysis can often be decomposed 

into homogeneous sub-samples, which are engaged in the same field of activity 
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but are likely to have different production frontiers. Thereafter, we refer these 

sub-samples to as programs. The program specificities imply that their 

production frontiers will be differently related to the pooled frontier of the total 

sample.  

 Charnes et al. (1981) proposed a framework to distinguish 

between managerial efficiency and the program efficiency: First, efficiency 

scores (in terms of managerial efficiency) are estimated for each observation 

within a sub-sample relative to the sub-samples (programs) own frontier. 

Second, the observed inputs are adjusted so that the managerial inefficiency is 

removed and all farms are projected onto their efficient sub-sample frontier. 

Third, the efficient frontiers of each program are then compared to the pooled 

frontier of the entire sample. Thus, one can identify the program-specific 

efficiency constraints. Indeed, Charnes et al. (1981) investigated the efficiency 

of two education programs in US using DEA to determine of efficiency scores 

involved.  

We will pick up on the approach of Charnes et al. but with the 

important difference that we will use the MEA efficiency scores rather than the 

DEA scores to estimate both managerial and program efficiency. As in case of 

the standard application of DEA we argue that the implicit benchmark 

selection of MEA is more compelling and its disaggregation into input specific 

efficiency scores provides further insights into the underlying technological 

differences between sub-samples.  

The MEA model (Eqs. 2.37–2.38) is applied in both stages of 

process, that is both when individual observations are compared to their sub-

sample specific frontier and when the program frontier (adjusted for 

managerial inefficiency) is compared to the pooled frontier of the entire 

sample. Figure 2.5 illustrates the concept of the program efficiency MEA with 

two programs defined by respective sub-sample technologies, 1T  and 2T . 

As it was already discussed in the preceding section, suchlike 

projection consists of the two steps, namely (i) determination of the Stage 1 

ideal reference plan, *x , by the virtue of Eq. 2.37 and (ii) Stage 1 benchmark 
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selection, ,1PIS , which is facilitated by considering Eq. 2.38. Let the 

coordinates of the Stage 1 benchmark selection be denoted in the following 

way:  ,1 ,1 ,,1 1

1 2, ,...,PI P IP P

m

I Ix x xS  . The input-specific managerial efficiency can 

thus be evaluated by computing respective ratios: 

,1

M i
i PI

i

x
b

x
 , 1,2,...,i m ,   (2.39) 

where 1M

ib   indicates an efficient utilization of the i-th input in terms of the 

managerial efficiency. Note that the sub-index for DMUs is removed from the 

previously discussed notations for sake of brevity. 

 

 

Fig. 2.5. The two-stage model MEA for the assessment of managerial and 

program efficiency. 

 

Given Stage 2 focuses on program efficiency, all the observations 

are projected onto their respective program frontiers. That is, we further 

analyse the production plans ,1( , )PIS y . The observed production plans 0( , )x y , 

though, serve as those describing the pooled production frontier, T. Similarly, 
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the projection of ,1( , )PIS y  on the pooled frontier consists of the two steps, 

namely (i) determination of the Stage 2 ideal reference plan, **x , by the virtue 

of Eq. 2.37 and (ii) Stage 2 benchmark selection, ,2PIS , which is facilitated by 

considering Eq. 2.38. Let the coordinates of the Stage 2 benchmark selection 

be denoted in the following way:  ,2 ,2 ,,2 2

1 2, ,...,PI P IP P

m

I Ix x xS  . The input-specific 

program efficiency can thus be evaluated by computing respective ratios: 

,1

,2

PI
P i
i PI

i

x
b

x
 , 1,2,...,i m ,   (2.40) 

where 1P

ib   indicates an efficient utilization of the i-th input in terms of the 

program efficiency. Note that the sub-index for DMUs is removed from the 

previously discussed notations for sake of brevity. 

The two-stage MEA methodology thus allows one to evaluate the 

managerial and program efficiency in terms of separate inputs. Indeed, this 

technique can be adapted to input-output or output oriented models in a 

straightforward manner. The software package Benchmarking (Bogetoft, Otto, 

2011) was employed for the analysis. 

Context-dependent assessment of efficiency. Depending on the 

assumptions on returns to scale, the efficient frontier is defined by considering 

observations which are the most productive ones, whether locally or globally. 

As a result, the analysis depends on the observations used as a yardstick. In 

case of DEA, the efficiency scores attributed to the inefficient observations 

will not be affected by changes in other inefficient observations, albeit changes 

in the efficient ones will render respective alterations in the overall ranking. 

Thus, it is possible to alter the efficiency scores by changing the reference set 

(i. e. efficiency frontier).  

Another peculiarity of the DEA is associated with the distribution of the 

efficiency scores. As Ulucan and Atici (2010) pointed out, the proportion of 

(extremely) inefficient observations is often inflated due to exogenous factors 

or different activities certain decision making units (DMUs) are engaged in. As 

a result, the targets for input consumption or output production become 
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meaningless. Furthermore, the consumer choice theory also stipulates that 

consumers usually choose a product amongst those belonging to a certain sub-

group (determined by the product positioning) of the products. By generalizing 

this idea to efficiency analysis one can conclude that performance of a DMU 

might be low in terms of the entire sample, albeit sufficient in its environment. 

The context-dependent DEA, therefore, becomes particularly appealing 

in that the observations are stratified with respect to their levels of efficiency. 

The latter instance of stratification enables one to draw more reasonable 

recommendations regarding performance improvements. The context-

dependent DEA was introduced by Seiford and Zhu (Seiford, Zhu, 2003; Zhu, 

2003). The latter approach relied on the radial measures. Later on, the slack-

based context-development DEA was developed (Morita et al., 2005; Morita, 

Zhu, 2007; Cheng et al., 2010). The context-dependent DEA has also been 

extended with the ratio DEA (Wei et al., 2012) and cross-efficiency measures 

(Lim, 2012).  

The concept of progress is visualized in Fig. 2.6. The observations 

define the first-level efficiency frontier, i. e. 1l  . The observations belonging 

to the latter frontier, 1E , are then removed from the reference set and the new 

frontier is established. After iteratively removing the efficient observations, 

analysis ends up when no inefficient observations are included in the reference 

set. In this instance, there are four levels of efficiency. As one can note, the 

progress scores for the original observation,  ,t tx y , can be measured against 

each level of efficiency, up to the third degree in total. Meanwhile, the 

attractiveness scores for that particular observations cannot be computed given 

it is already located at the lowest level of efficiency. 
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Fig. 2.6. The measurement of progress in the context-dependent DEA model. 

 

 As Seiford and Zhu (2003) pointed out, the observations can be 

grouped into the four groups with respect to the attractiveness and progress 

scores. Highly attractive observations can feature either low progress (LH) or 

high progress (HH). Little attractive observations can also feature either low 

progress (LL) or high progress (HL). The LH-type observations can therefore 

be considered as the most desirable ones, for they are quite efficient and 

maintain higher distance from the dominated observations. On the other hand, 

the HL-type observations are least desirable, given they are peculiar with low 

efficiency and low distance from the dominated observations.   

This research employs the context-dependent DEA to Lithuanian family 

farms. In particular, the analysis focuses on the three farming types, viz. crop, 

livestock, and mixed farming.  
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2. 4. Data used 

 

Farm Accountancy Data Network. The technical and scale efficiency 

was assessed in terms of the input and output indicators commonly employed 

for agricultural productivity analyses (Bojnec, Latruffe 2008, 2011; Douarin, 

Latruffe 2011). More specifically, the utilized agricultural area (UAA) in 

hectares was chosen as land input variable, annual work units (AWU) – as 

labour input variable, intermediate consumption in Litas was used as a variable 

of the variable costs, and total assets in Litas as a capital factor. On the other 

hand, the three output indicators represent crop, livestock, and other outputs in 

Litas, respectively. Indeed, the three output indicators enable to tackle the 

heterogeneity of production technology across different farms.  

The cost efficiency was estimated by defining respective prices for each 

of the four inputs described earlier. The land price was obtained from the 

Eurostat and assumed to be uniform for all farms during the same period. The 

labour price is the average salary in agricultural sector from Statistics 

Lithuania. The price of capital is depreciation plus interests per one Litas of 

assets. Meanwhile, the intermediate consumption is directly considered as a 

part of total costs. 

The data for 200 farms selected from the FADN sample cover the 

period of 2004–2009. Thus a balanced panel of 1200 observations is employed 

for analysis. The analysed sample covers relatively large farms (mean UAA – 

244 ha). As for labour force, the average was 3.6 AWU.  

In order to quantify the factors influencing the agricultural 

productivity, we employed the following indicators for the second–stage 

analysis. Total output was used to identify relationship between farm size and 

efficiency. Soil index was used to check whether it significantly influences 

productivity. Farmer’s age was used to test the linkage between demographic 

processes and efficiency. The dummy variable for organic farming was 

introduced to explore the performance of the organic farms. The share of crop 

output in the total output was used to ascertain whether either the crop or 
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livestock farming is more efficient in Lithuania. The ratio of production 

subsidies to the total output was employed to estimate the effect of support 

payments, whereas the ratio of subsidies for equipment to the total output was 

defined to identify the impact of capital investments. The time trend (Time) 

was used to assess whether a general increase in efficiency scores was 

observed throughout the research period. UAA in hectares (UAA) was used as 

a proxy for farm size. A ratio of assets to labour force in AWU (Assets/AWU) 

was used to capture the degree of sufficiency of the capital. The share of the 

crop output in the total output (Crop) was employed as a measure of farm 

specialisation. Finally, the ratio of production subsidies
5
 to the total output 

(Subsidies) was included in the model to account for the accumulated public 

support. Note that the first three variables were mean-scaled in order to ensure 

a faster convergence of the maximum likelihood model.  

National Accounts. The part of research regarding the performance of 

Lithuanian agriculture as an economic sector (cf. Section 3.1) relies on 

National Accounts data provided by Statistics Lithuania (2014). We used the 

aggregates for 35 economic activities (NACE 2 classification), see Table A1 

for details. The data cover the period of 2000–2010. The gross value added 

generated in certain sector was chosen as the output variable, whereas 

intermediate consumption, remuneration, and fixed capital consumption were 

treated as inputs. The latter three indicators enable to tackle the total factor 

productivity and thus are usually employed for productivity analysis (Piesse, 

Thirtle, 2000). The FEAR package (Wilson, 2008) was employed for the 

analysis. 

 

  

                                                           
5
 For 2007-2013, production subsidies comprise subsidies under Pillar I and Pilar II Axis 2, whereas 

investment subsidies are distributed according to Axis 1 of Pillar II.  
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3. THE TRENDS IN EFFICIENCY OF LITHUANIAN AGRICULTURE 

 

 Section 3.1 presents the dynamics of efficiency and TFP of 

Lithuanian agricultural sector. Sections 3.2–3.7 focus on the performance of 

Lithuanian family farms. Therefore we assess the relationship between farm 

size change and efficiency. Further on, the determinants of the technical, 

allocative, and economic (cost) efficiency are analysed. In order to account for 

uncertainties in the data, the technical efficiency is further analysed by the 

means of the simulation-based methodology (bootstrapped DEA, robust 

frontiers, double bootstrap, conditional measures) and fuzzy FDH. 

 

3. 1. Efficiency and total factor productivity of Lithuanian agricultural 

sector 

 

The VRS technical efficiency scores
6
 were estimated by employing the 

output oriented DEA model as described in Section 1.3.1. The following Fig. 

3.1 presents these estimates for years 2000 and 2010. The weighted average 

was obtained by weighting the efficiency scores by the value added generated 

in the respective sector during the base year. As the results suggest, the mean 

efficiency increased from 0.79 in 2000 up to 0.85 in 2010. These efficiency 

scores imply that there was a 21% gap in output for 2000 which decreased to 

15% in 2010 given technological frontier of those periods. Note that the 

contemporaneous technological frontier is defined by the efficient DMUs viz. 

economic sectors, and these gaps are therefore incomparable in absolute terms. 

The application of Malmquist index will enable to identify the shifts of the 

efficiency frontier. As one can note, the four sectors remained operating on the 

efficiency frontier during 2000–2010: pharmaceutical products (C21), 

wholesale and retail trade (G), real estate activities (L), and education (P).  

                                                           
6
 Please note that the VRS assumption is relaxed for the Malmquist productivity index, see Section 2.2 

for more details. 
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 As in 2000, the whole manufacturing sector (activities C22 to 

C33) and utility services (D and E) exhibited the lowest values of technical 

efficiency ranging between 0.32 and 0.49. Most of these sectors, however, 

experienced the steepest increase in efficiency amounting to some 50% of the 

initial efficiency scores and thus graduated the group of the worst performing 

sectors. Meanwhile the most significant decrease in efficiency was observed 

for the primary sector (A and B). This indicates the need for modernization in 

these sectors. Anyway, it may also be related to the overall transformation of 

the economy. Scientific research and development (M72) was specific with 

particularly high decrease in efficiency probably caused by rising 

compensations for employees.  

 The Malmquist index given by Eqs. 2.3-2.5 was employed to 

examine the productivity changes across different economic sectors. Initially, 

we estimated the shift in productivity between years 2000 and 2010 (Fig. 3.2). 

As one can note, the most significant increase in productivity was observed for 

pharmaceutical (C21) and chemical (C20) production. Indeed, these industries 

were positively affected by the investments and market enlargement following 

the accession to the European Union. Similar trends were also exhibited in 

sectors of electronics (C26), machinery (C28), and transport equipment (C29, 

C30). Although the scientific research sector (M72) was specific with the 

decreased efficiency score, it enjoyed an increase in productivity. At the other 

end of spectrum, the two primary sectors (A and B) demonstrated a 

tremendous decrease in productivity. Specifically, the agricultural sector was 

specific with decrease of 40%, whereas mining and quarrying with that of 

some 23%. Publishing industry (J58–J60) was also experiencing the decreasing 

productivity: the Malmquist index for that sector suggested that productivity 

there dropped by some 28% thanks to decreasing sectoral efficiency. Indeed, 

cancellation of value-added tax exemptions might have caused the efficiency 

decrease in the latter sector. 
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Fig. 3.1. Technical efficiency scores across economic sectors, 2000 and 2010. 

Note: see Table A1 in Annex A for abbreviations. 
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Fig. 3.2. Malmquist productivity index across economic sectors, 2010 

compared to 2000. 

Note: see Table A1 for abbreviations. 

 



96 

The decomposition of the Malmquist index enables to identify the 

underlying reasons in productivity change. As Fig. 3.2 suggests, the increase in 

productivity of the pharmaceutical sector was driven by both inner innovation 

(efficiency change) and shift in the production frontier (technology change). 

As for chemical sector, these two factors have a positive effect, however catch-

up effect was stronger. In general, the technology effect was positive for all 

sectors with exception of public administration (O) and education (P) which 

were subject to a negative shift in the efficiency frontier (i. e. the reference 

sector exhibited higher efficiency in 2010). 

In addition, the Malmquist productivity indices were computed for each 

period of the two subsequent years between 2000 and 2010. The results 

indicate that the total factor productivity had been decreasing during 2003-

2006 and has been recovering since 2008 (Fig. 3.3). The analysis of the 

cumulative change in the total factor productivity implies that the productivity 

has never been decreased below the level of 2000 and had reached its peak in 

2007 when the accumulated growth since 2000 reached some 6%. As for the 

whole period of 2000–2010, the accumulated growth rate was some 4%. 

Furthermore, the cumulative change in total factor productivity has never been 

below the value unity what indicates that the Lithuanian economy was rather 

persistent throughout the economic downturns.  

 

 
Fig. 3.3. Changes in the mean total factor productivity (TFP) during 2000–2010. 
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 In order to better understand the driving forces of change in total 

factor productivity, the mean values of the Malmquist components are depicted 

in Fig. 3.4. As one can note, the overall productivity (i. e. shifts in the 

production frontier) were generally downwards until 2005 and has been 

following an opposite trend afterwards. Meanwhile, the catch-up effect 

exhibited an inverse movement: firm-specific increase in productivity had been 

increasing until 2005 and decreasing ever since. The results imply that the 

recent economic downturn negatively affected the firm-specific innovations, 

whereas the overall productivity of the economy has increased possibly due to 

appropriate managerial decisions. The reported results also imply that 

efficiency and changes in productivity varied across the economic sectors 

throughout 2000–2010.  

 

 
Fig. 3.4. Decomposition of the Malmquist productivity index for 2000–2010. 
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higher variation of these indicators is associated with higher risk and 

uncertainty in respective economic sectors. To cap it all, there is a dichotomy 

between efficiency and productivity as well as between mean values and 

variation of the analysed criteria. The multi-criteria decision making method 

MULTIMOORA will therefore be employed to simultaneously consider these 

criteria identifying different objectives: 

1. the mean technical efficiency score for 2000–2010 (to be maximized); 

2. coefficient of variation of the technical efficiency scores (to be 

minimized); 

3. the mean change in total factor productivity for 2000–2010 (to be 

maximized); 

4. coefficient of variation of change in total factor productivity (to be 

minimized). 

The presented set of indicators has the following implications. First, a 

sector specific with high values of technical efficiency might be experiencing 

decreasing total factor productivity and thus require certain managerial and 

institutional measures to be taken. Second, a sector exhibiting increasing total 

factor productivity might still remain an inefficient one. Third, a high variance 

in these indicators indicates high volatility of performance and should also 

attract certain attention. The initial data are given in Table A2. 

The analysed alternatives, i. e. economic sectors, were ranked by the 

MULTIMOORA method as reported by Brauers and Zavadskas (2010). Table 

3.1 presents the results.  

The results indicate that the best performing sectors in terms of 

efficiency and productivity were those of wholesale and retail trade, real estate 

activities, education, hospitality, health, telecommunications, transport, legal 

services, accounting, advertising. Therefore, the services sector seems to be 

that most developed in Lithuania. Indeed, some of them, viz. education, 

hospitality, and health sectors, can prevail by providing services for foreign 

visitors and thus generating substantial revenues. Meanwhile, transport, legal 

services, accounting, and advertising sectors rely both on local and 
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international customers. Finally, real estate, telecommunications, and trade 

sectors are mainly focused on domestic market and thus on the development of 

the remaining economic sectors in Lithuania.  

 

Table 3.1. Ranks of the economic sectors provided by the MULTIMOORA. 

Economic 

sector 

Ratio 

System 

Reference 

Point 

Multiplicative 

Form 
Final Rank 

(MULTIMOORA) 

G 1 1 1 1 

L 2 2 2 2 

P 3 5 3 3 

I 4 4 5 4 

Q86 5 3 6 5 

J61 6 7 7 6 

M73_TO_M75 8 8 8 7 

H 7 12 9 8 

O 9 6 10 9 

M69_TO_M71 10 11 11 10 

C21 11 29 4 11 

E 12 9 12 12 

C16_TO_C18 13 10 14 13 

C10_TO_C12 14 15 16 14 

C31_TO_C33 15 16 13 15 

F 16 21 15 16 

J58_TO_J60 17 13 18 17 

N 18 14 17 18 

B 19 20 19 19 

C13_TO_C15 20 25 20 20 

C24_C25 21 19 21 21 

C28 22 18 23 22 

D 23 24 22 23 

R 24 17 26 24 

C29_C30 25 28 24 25 

C22_C23 26 26 25 26 

S 27 23 27 27 

J62_J63 29 22 28 28 

C27 28 30 29 29 

A 30 27 30 30 

Q87_Q88 31 31 31 31 

C26 32 32 35 32 

C20 33 34 33 33 

K 34 33 34 34 

M72 35 35 32 35 
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The manufacturing sector followed the services. Pharmaceutical, wood, 

food, and furniture production exhibited the best performance amidst the 

manufacturing activities. Indeed, these sectors received substantial foreign 

investments and thus modernized their production technologies. Therefore, 

these sectors can be considered as those constituting the core of the Lithuanian 

economy. The construction sector was also attributed with rather high rank. 

The textile, metallurgy, machinery, transport equipment, and rubber industry 

operated less efficiently. Accordingly, certain fiscal and institutional measures 

should be considered to improve the situation in the latter sectors.  

The multi–criteria analysis also suggested that the worst performing 

sectors were those of IT services, electrical equipment, agriculture, computer 

products, and electrical equipment. IT–related industries are likely to face the 

competition of the developing countries. Finally, financial and insurance 

activities as well as scientific research (R&D) were placed at the very bottom. 

Indeed, the last two sectors were peculiar with rather high volatility of the 

efficiency indicators. As for the financial sector, these findings are almost 

imminent in the presence of the economic downturn. However, R&D sector 

should be appropriately supported in order to create a basis for prospective 

activities. As European Commission (2011) reported, the Lithuanian 

knowledge-intensive business sectors, namely IT and R&D, are specific with 

one of the largest backward dependence on the imported materials among the 

EU Member States. Therefore, this dependence should be reduced in order to 

maintain efficiency as well as competitiveness.  

The following Fig. 3.5 exhibits a steep decrease in efficiency of the 

agricultural sector during 2005–2009. Meanwhile, the weighted average for the 

whole economy fluctuated around 0.85. The efficiency of the agricultural 

sector fell to somewhere below 0.5 in 2009 and thus reaching its minimum. 

However, this indicator did increase in 2010 up to 0.6. The decrease of 2005–

2009 can mainly be related to an increased capital consumption which, in turn, 

gained momentum after Lithuania acceded to the EU and the Lithuanian 
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agricultural sector received significant financial support under various 

schemes. Nevertheless, the economic crisis of 2008–2009 had a relatively 

lower impact upon the agricultural sector if compared to the remaining ones. 

Given the TE score for the agricultural sector approached 0.6 (Shepard 

measure) in 2010, it should increase its output by a factor of 1/0.6=1.66 

(Farrell measure) in order to approach the efficiency frontier. 

 

 

Fig. 3.5. Technical efficiency scores for the whole economy (Mean) and 

agricultural sector (Agriculture etc.), 2000–2010 

 

TFP can increase not only because of increasing efficiency, but also due 

to movements of the production frontier. The total change in TFP is presented 

in Fig. 3.6. As one can note, it follows the similar pattern as Fig. 3.5. Although 

the TFP used to move upwards during certain periods, the cumulative TFP 

change remained negative for the agricultural sector and indicated that TFP 

had decreased by some 40% during 2000–2010. Meanwhile, the weighted 

average TFP change for the whole economy indicated TFP increase of some 

4%.  
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The changes in TFP can be decomposed in the spirit of Eq. 2.3 into the 

two terms, TC and EC. Fig. 3.7 exhibits the results of this decomposition for the 

whole economy (as the weighted average) and the agricultural sector. It is 

obvious, that a negative TC—an inward movement of the production frontier—

was observed for both the agricultural sector and the whole economy until 2004. 

Ever since, TC has been positive indicating technological progress. 

 

 

Fig. 3.6. TFP change in the whole economy (Mean) and agricultural sector  

(Agriculture etc.), 2000–2010. 

 

Once again, it might the integration with the EU that encouraged 

technological and market developments. The agricultural sector, though, has 

not gained much from these processes yet in terms of efficiency and 

productivity. On the other hand, the high-technology and trade services cannot 

be directly compared to the agricultural sector due to different value added 

chains and technologies.  
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Fig. 3.7. Decomposition of the TFP change in the whole economy (Mean) and 

agricultural sector (Agriculture etc.), 2000–2010 

 

The presented set of indicators has the following implications. First, a 

sector specific with high values of technical efficiency might be experiencing 

decreasing total factor productivity and thus require certain managerial and 

institutional measures to be taken. Second, a sector exhibiting increasing total 

factor productivity might still remain an inefficient one. Third, a high variance 

in these indicators indicates high volatility of performance and should also 

attract certain attention. The analysis showed that the agricultural sector was 

the 30
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 among the 35 economic sectors under analysis. This finding implies 

that the agricultural sector might not be attractive for investors and 
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To conclude, a multi–criteria framework for estimation of productive 
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would enable to identify the possible development paths for Lithuanian 

agriculture.  

 

3. 2. Technical efficiency and expansion of Lithuanian family farms 

 

The relative farming efficiency (i. e. technical efficiency) was estimated 

by the graph DEA method during 2004–2009 (Table 3.2). Table 3.2 also 

presents the dynamics in the farm size described by European Size Units (ESU, 

a standard gross margin of EUR 1200) and UAA. 

 

Table 3.2. Productive efficiency and mean farm size of Lithuanian family 

farms (N=200), 2004–2009. 

Year Technical Efficiency 
Farm size (ESU) Farm size (UAA in ha) 

Mean Change Mean Change 

2004 0.817 34.05 

 

202.1 

 2005 0.774 38.25 4.20 226.4 24.3 

2006 0.720 49.12 10.86 248.0 21.6 

2007 0.827 60.91 11.79 254.9 6.8 

2008 0.823 61.31 0.40 265.4 10.6 

2009 0.732 66.08 4.77 270.2 4.8 

Mean 0.782 51.62 6.40 244.5 13.6 

 

The observed technical efficiency scores generally coincide with those 

obtained on a basis of the aggregate data (Baležentis, Kriščiukaitienė, 2012a). 

The steepest decreases in the technical efficiency were observed in 2006 and 

2009. 

The farm size has increased in terms of both ESU and UAA. Indeed, the 

economic growth was more significant: the mean size in ESU increased 

twofold, whereas the mean area increased by some 33%. However, the growth 

rates fluctuated during the research period. In spite of the increasing intensity 

of farming, the efficiency scores dropped in 2009 possibly due to external 

factors. 

The rank sum test was further employed to test the links between farm 

expansion and efficiency at a farm level. The farm expansion was identified by 
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changes in ESU, UAA, labour force (AWU), and assets. Accordingly, the two 

groups of farms were defined for each of these variables depending individual 

farms exhibited increase or decrease in a certain variable. Specifically, we 

analysed the differences of the efficiency scores for the preceding period 

across the two groups of farms. For instance, there were 733 observations with 

increasing ESU during 2004–2009. Each of these observations was attributed 

with respective efficiency score from the preceding period (2004–2008). Thus, 

the set of efficiency scores was formed for farms experienced expansion in 

ESU. Similarly, the set of efficiency scores was defined for farms experienced 

contraction in ESU. The two sets of efficiency scores were then compared by 

the means of the rank-sum test to test the impact of farm efficiency on their 

expansion. In case the expanding farms were specific with higher efficiency 

scores we could expect an increase in the structural efficiency. Noteworthy, the 

external shocks might also influence these developments.  

The rank–sum test for ESU indicated that expanded and contracted 

farms significantly differ in their efficiency level. Specifically, the expanded 

farms were specific with lower efficiency (p=0.017). Therefore, increasing 

area, herd size etc. was not sufficiently related to increasing revenues from 

respective farming types. This phenomenon might be caused by inappropriate 

technologies or unreported income. 

The similar trends were also observed regarding the farm expansion in 

terms of UAA. Those farms experienced increase in UAA were peculiar with 

lower efficiency scores in the preceding period (p=0.005).  

Finally, the rank–sum test indicated that efficiency scores were equally 

distributed independently of farm expansion in labour input or assets. The null 

hypothesis of sample equality was accepted at p=0.393 and p=0.73 for labour 

input and assets, respectively. It might be thus concluded that efficient farms 

are not likely to increase their assets, albeit further studies are needed to test 

whether these investments cause shifts in efficiency during the following 

periods.  
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What the results do indicate is that large Lithuanian family farms are 

experiencing rather extensive growth and thus decreasing efficiency. Indeed, 

Douarin and Latruffe (2011) identified rather similar trends in efficiency 

change. As they argued, the farm efficiency was likely to decrease due to 

Single Area Payments which created certain incentives for smaller farms to 

stay in farming. To cap it all, one needs to develop certain benchmarking 

systems that would enable to streamline the strategic management of the 

agricultural sector and thus provide reasonable incentives for increase in 

efficiency here.  

 

3. 2. Economic efficiency and its determinants  

 

This section presents the analysis of the economic (cost) efficiency as 

well as its components in Lithuanian family farms. The research involved DEA 

and SFA as the estimators of the efficiency scores, therefore the section is 

structured accordingly. The results from DEA were used for the second-stage 

analysis based on the tobit and logit models. 

 

3. 2. 1. Non-parametric analysis of the productive efficiency 

 

The non-parametric method, DEA, was employed to estimate the 

efficiency scores. The DEA-based efficiency scores were then analysed by the 

means of the tobit and logit models. This sub-section presents the results of the 

analysis. 

 

3. 2. 1. 1. Dynamics of the efficiency scores 

 

The input–oriented VRS DEA model (Eq. 1.22) was employed to 

analyse the FADN data which were arranged into the cross–section table. The 

cost efficiency estimates were obtained by employing Eq. 1.24. The summary 
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of efficiency scores is presented in Table 3.3. The latter table describes the 

mean values for the whole period of 2004–2009. 

Considering the VRS technology, the mean technical efficiency 

fluctuated around 65.8%, which virtually means that average farm should 

reduce its inputs by some 35% and sustain the same output level to achieve the 

efficiency frontier (these numbers do also include the scale effect). The mean 

value of allocative efficiency was equal to 70.5% and indicated that the cost 

productivity can be increased by 29.5% due to changes in input–mix. 

Considering these types of efficiency, the mean economic efficiency—or, 

alternatively, cost efficiency—of 46% was observed for the Lithuanian family 

farms. Therefore, these farms should be able to produce the same amount of 

output given the input vector is scaled down by some 54%. Suchlike shifts, 

however, might not be feasible for every farm given they are specific with 

certain heterogeneity across farming types. Table 3.3 also suggests that the 

highest variation was observed for the economic efficiency estimates where 

coefficient of variation was 7.2% for VRS technology. 

 

Table 3.3. Descriptive statistics of input–oriented technical (TE), scale (SE), 

allocative (AE), and cost (CE) efficiency scores under CRS and VRS 

assumptions. 

 

TE 
SE 

AE CE 

VRS CRS VRS CRS VRS CRS 

Arithmetic Mean 0.658 0.535 0.834 0.705 0.747 0.460 0.401 

Median 0.628 0.520 0.925 0.728 0.758 0.436 0.376 

Standard Deviation 0.204 0.193 0.205 0.167 0.118 0.182 0.166 

Sample Variance 0.042 0.037 0.042 0.028 0.014 0.033 0.027 

Coefficient of variation 0.063 0.070 0.051 0.040 0.019 0.072 0.068 

Minimum 0.154 0.070 0.093 0.105 0.293 0.099 0.037 

Maximum 1 1 1 1 1 1 1 

 

 The dynamics of different types of efficiency throughout 2004–

2009 is presented in Table 3.4. As one can note, there were two major shocks 

in productive efficiency: the first one occurred in 2006, whereas the second 
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one – in 2009. Obviously the former is related to worsened climatic conditions, 

for the mean grain yield dropped from 28.9 t/ha in 2005 down to 18.8 t/ha in 

2006 (Statistics Lithuania, 2011). The second shock is related to some turmoil 

in the agricultural markets.  

 

Table 3.4. Dynamics of the Lithuanian family farm efficiency (DEA 

estimates), 2004–2009. 

 

TE 
SE 

AE CE 

VRS CRS VRS CRS VRS CRS 

Crop farming 

2004 0.69 0.52 0.79 0.66 0.77 0.46 0.40 

2005 0.61 0.47 0.80 0.64 0.73 0.39 0.34 

2006 0.53 0.38 0.76 0.57 0.71 0.31 0.27 

2007 0.69 0.63 0.91 0.72 0.75 0.50 0.47 

2008 0.68 0.62 0.91 0.72 0.75 0.49 0.46 

2009 0.57 0.46 0.84 0.65 0.75 0.37 0.34 

Average 0.63 0.51 0.84 0.67 0.75 0.42 0.38 

Livestock farming 

2004 0.74 0.67 0.91 0.85 0.83 0.63 0.56 

2005 0.84 0.75 0.89 0.83 0.83 0.70 0.62 

2006 0.77 0.67 0.87 0.79 0.78 0.60 0.52 

2007 0.87 0.81 0.93 0.82 0.80 0.72 0.65 

2008 0.85 0.80 0.94 0.81 0.79 0.69 0.63 

2009 0.70 0.63 0.89 0.81 0.83 0.57 0.52 

Average 0.80 0.72 0.90 0.82 0.81 0.65 0.58 

Mixed farming 

2004 0.78 0.50 0.67 0.78 0.75 0.61 0.38 

2005 0.71 0.53 0.77 0.73 0.70 0.52 0.37 

2006 0.66 0.44 0.71 0.70 0.66 0.46 0.29 

2007 0.72 0.59 0.82 0.78 0.75 0.56 0.44 

2008 0.72 0.56 0.79 0.74 0.69 0.54 0.39 

2009 0.61 0.44 0.75 0.74 0.72 0.45 0.32 

Average 0.70 0.51 0.75 0.74 0.71 0.52 0.36 
Note: the reported estimates are the input–oriented technical (TE), scale (SE), allocative (AE), and 

cost (CE) efficiency scores under CRS and VRS assumptions 

 

Considering the variation of different types of efficiency, one can 

conclude that the cost efficiency (CE) was the most time–variant, whereas the 

allocative efficiency (AE) – the most time–invariant. Indeed, the coefficients of 

variation presented in Table 3.3 are 4% for AE and 7.2% for CE under VRS. 

Therefore, the shifts in economic efficiency can be attributed to shifts in 
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technical and scale efficiency to a higher extent. This finding indicates that 

farmers tend to adjust the input–mix for their farms at a reasonable rate given 

the changes in prices of the production factors.  

Although the discussed descriptives of the efficiency scores provide 

some insights, the further analysis is needed to fathom the processes affecting 

productive efficiency. The underlying causes and sources of inefficiency thus 

are further analysed by the means of tobit and logit models. 

 

3. 2. 1. 2. Explaining inefficiency: tobit and logit models 

 

This section explores the main determinants of inefficiency and 

quantifies their impact on efficiency scores or dynamics thereof. We have 

defined the two main foci for our post–efficiency analysis, namely (i) tobit 

regression for particular factors of efficiency and (ii) logit regression for 

factors influencing longitudinal changes in efficiency. 

 The following factors were chosen as regressors. The logged 

output (lnOutput) identified the scale of operation and was considered a proxy 

for farm size. Indeed, the question of the optimal farm size has always been a 

salient issue for policy makers and scientists (Alvarez, Arias, 2004; Gorton, 

Davidova, 2004; van Zyl et al., 1996). The soil quality index (Soil) was 

included in the models to test the relationship between the environmental 

conditions and efficiency. The ratio of crop output to the total output 

(CropShare) captures the possible difference in farming efficiency across crop 

and livestock farms. Similarly, the dummy variable for organic farms 

(Organic) was used to quantify the difference between organic and 

conventional farming. It is due to Offermann (2003) that Lithuanian organic 

farms exhibit 60–80% lower crop yields depending on crop species if 

compared to same values for conventional farming. The demographic variable, 

namely age of farmer (Age) was introduced to ascertain whether young 

farmers–oriented measures can influence the structural efficiency. Finally, the 

effect of production and equipment subsidies on efficiency was estimated by 



110 

considering ratios of production subsidies to output (SubsShare) and 

equipment subsidies to output (ESubsShare), respectively. 

As one can note, the autoregressive terms were included in the three 

tobit models (Table 3.5) to increase their robustness. The backward procedure 

was carried out in terms of heteroskedasticity and autocorrelation consistent 

(HAC) z values. Therefore, Table 3.5 presents the significant factors of 

efficiency.  

The tobit regression (cf. Table 3.5) suggests that both cost and allocative 

efficiency is positively impacted by the scale of operation (i. e. the amount of 

output), whereas technical efficiency has no significant relation to the latter 

variable. Therefore it can be concluded that the larger farms are more likely to 

make more efficient decisions regarding input–mix. Indeed bigger quantities 

involved in supply and production chain management in larger farms provide 

more flexibility for large farms. This is especially the case in rather small 

market of Lithuania. Although some other studies reported efficiency to follow 

U-shaped curve across farm size groups (Latruffe et al. 2004), our findings 

might diverge from the forms, given we analyse sample particularly covering 

large farms. Thus only the right tail of the efficiency curve is what we focus at. 

The soil index had a negative impact on the three types of efficiency, 

namely cost, allocative, and technical efficiency. Furthermore, these effects are 

negative for the whole range of the values of the latter indicator. Soil quality, 

hence, affects both technology and input management. This finding is likely to 

be an outcome of poor estimation methodology for this variable and farming 

practices related to areas specific with higher soil quality. Indeed, farms 

located in fertile areas tend to exploit extensive agriculture rather than 

intensive one and thus opt for less innovative technologies. Further research, 

however should be conducted to identify the exact factors of the negative link 

between soil quality index and efficiency. 
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Table 3.5. The tobit regression describing the impact of efficiency factors. 

 

CEt AEt TEt 

 Estimate z value Estimate z value Estimate z value 

(Intercept) -0.06957 -1.1875 

 

-0.18017 -3.6132 *** 0.334628 5.4576 *** 

CEt–1 0.669982 16.4166 *** 

      CEt–2 0.097827 3.0289 ** 

      AEt–1  

  

0.609962 17.4355 *** 

   AEt–2  

  

0.1978 5.9876 *** 

   TEt–1 

      

0.550301 11.9596 *** 

TEt–2 

      

0.140399 3.1882 ** 

lnOutputt 0.227834 14.7219 *** 0.113541 10.3271 *** 

   lnOutputt–1 -0.2121 -12.0894 *** -0.08851 -7.7249 *** 

   Soilt -0.00137 -2.4569 * -0.00127 -2.4235 * -0.00226 -2.3506 * 

Aget 0.001312 3.1348 ** 0.001025 2.7208 ** 

   Organict 0.046929 1.6524 . 

   

0.082167 2.403 * 

CropSharet -0.04764 -2.6511 ** 

      SubsSharet 

      

-0.10502 -2.945 ** 

SubsSharet–1 -0.05573 -2.8811 ** 

      Log(scale) -2.32891 -41.2717 *** -2.27569 -61.3961 *** -1.72798 -49.7414 *** 

Notes: 

(i) CE, AE, and TE stand for cost, allocative, and technical efficiency, respectively; 

(ii) z values are heteroskedasticity and autocorrelation consistent (HAC) ones; 

(iii) significance codes for respective p values: '***' – 0.001; '**' – 0.01; '*' – 0.05; '.' – 0.1. 
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Table 3.6. Coefficients of the logit regression describing shifts in efficiency scores with respect to certain determinants of 

efficiency. 

 

CEt AEt TEt 

 

Estimate z value Significance Estimate z value Significance Estimate z value Significance 

(Intercept) -2.09318 -1.4546 

 

-3.8793 -5.8944 *** -4.52054 -3.4166 *** 

lnOutputt 0.353191 3.7728 *** 0.379004 6.3762 *** 0.46756 5.2793 *** 

Soilt -0.04169 -4.359 *** -0.03211 -3.1791 ** -0.03299 -3.3967 *** 

CropSharet    0.469053 2.2075 *    

Organict 2.10544 4.1116 *** 

   

1.428548 3.4762 *** 

SubsSharet -3.05054 -3.0326 ** 

   

-1.54704 -2.0332 * 

ESubsSharet -2.00789 -3.9171 *** 

   

-1.29849 -2.7871 ** 
Notes: 

(i) CE, AE, and TE stand for cost, allocative, and technical efficiency, respectively; 

(ii) z values are heteroskedasticity and autocorrelation consistent (HAC) ones; 

(iii) significance codes for respective p-values: '***' – 0.001; '**' – 0.01; '*' – 0.05; '.' – 0.1. 
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Farmer’s age had a positive effect on allocative and economic 

efficiency, albeit this effect was negative for the youngest farmers. Thus 

farmer’s age matters to a higher extent for younger farmers, whereas its impact 

decreases later on. Furthermore, farmer’s age is likely to be related to 

economic rather than technical side of farming. 

Organic farming appeared to be more efficient if compared to 

conventional farming. To be specific, an average organic farm exhibited cost 

efficiency score which was greater by a margin of 4.7%, whereas technical 

efficiency increased by some 8.2%. Therefore the results support Tzouvelekas 

et al. (2001) who argued that organic farming regulations may encourage a 

more reasonable application of fertilizers etc., which, in turn, determines 

respective technological improvements. In addition, organic farms produce 

more expensive production. 

Due to a negative coefficient for crop output share in the total output, 

crop farming can be considered less efficient if compared to animal farming. 

Indeed, increase in crop share of 1 p. p. causes decline in efficiency of 4.8% 

(Table 3.4), whereas the marginal effect at the maximum crop share diminishes 

to 2.5%. This finding is consistent with study by Latruffe et al. (2004) who 

discovered similar pattern for Polish farms. 

The tobit model suggests that production subsidies had a negative 

simultaneous effect on technical efficiency, i. e. increase of subsidies to output 

ratio by 1 p. p. lead to an average decrease in efficiency equal to 10%. 

Meanwhile, the lagged effect of production subsides on cost efficiency was 

also observed. Thus production subsidies affected technical efficiency rather 

than allocative efficiency. As for equipment subsidies, they apparently had no 

significant effect on level of productive efficiency. 

The discussed factors determined the level of cost, allocative, and 

technical efficiency. The following sub–section discusses the impact of those 

factors on changes in efficiency. 

The changes in efficiency scores were explored by the means of logit 

regression. Therefore we defined 1ky   in case a certain farm experienced 
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increase in efficiency and 0ky   otherwise. The same factors as for tobit 

regression were employed. The backward procedure was carried out with 

respect to HAC z-values. Table 3.6 presents the final results. 

 As Table 3.6 suggests, the larger farms were more likely to 

experience increase in efficiency. Specifically, the increase in the total output 

of 1% caused increase of the odd ratio ranging between 1.4 for cost efficiency 

and 1.6 for technical efficiency. These numbers subsequently are translated 

into ratio between probabilities of events 1ky   (i. e. increase in efficiency) and 

0ky  , respectively. 

 The soil quality index exhibited a negative relation to increase in 

economic, allocative, and technical efficiency. These relationships can be 

explained by insufficient pressure for farmers who have their farms located in 

fertile areas to adopt innovative managerial practices.  

 Crop farming is more likely to achieve positive shift in allocative 

efficiency (effect on odd ratio accounts 1.6 times), though it is not the case for 

cost and technical efficiency. Indeed, crop market is rather dynamic and 

therefore farmers can adjust their decisions related to input–mix in a more 

dynamic way. 

 The fitted logit model imposes that farms adopted organic farming 

increase their odd ratio for achieving higher cost efficiency at a margin of 8.2, 

whereas gains in technical efficiency are also to be positively affected by the 

same decision. 

 Both production and equipment subsidies are likely to cause 

decrease in cost and technical efficiency, albeit they do not significantly affect 

allocative efficiency. These phenomena might be linked to excessive purchases 

of long-term assets. On the other hand, equipment subsidies tend to distort the 

input market and thus inflate prices of the traded inputs, viz. machinery, 

buildings. Furthermore, farms receiving higher production subsidies might be 

located in less favoured areas, where they are subject to lower productivity due 

to agro-climatic conditions. 
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 As one can note, farmer’s age had no significant impact on 

probability to experience efficiency increase. To conclude, large livestock 

farms adopted organic farming practices are those most likely to exhibit an 

increase in productive efficiency. 

 

3. 2. 2. Parametric analysis of the agricultural efficiency 

 

This section fits the stochastic production frontier to the micro data 

describing the performance of the Lithuanian family farms during 2004-2009 

in order to define the current trends of efficiency and productivity in the sector. 

The stochastic frontier analysis (SFA) is the econometric technique employed 

for the latter purpose. Specifically, the technical efficiency scores, output 

elasticities, and the total factor productivity change were estimated. 

 

3. 2. 2. 1. Production function and technical efficiency scores 

 

The SFA was employed to estimate the efficiency scores for the family 

farms. The panel data were analysed in a cross-section way. A series of LR 

tests was carried out before arriving at the non-neutral model. The labour 

variable as well as its interactions with remaining ones turned out to be 

insignificant and thus were removed from the further analysis. This finding 

might have stemmed from methodological or economic peculiarities. As for 

the methodological issues, the FADN practice might need some improvements 

on estimation of the labour amount involved in the agricultural production. 

Specifically, part-time work can be the hardest observable variable. On the 

other hand, the Lithuanian family farms might not be eager to report the 

accurate figures about the paid labour force due to legal regulations. 

The final specification of the stochastic translog production function is, 

therefore, given in Table 3.7. The time trend is not significant, but indicates a 

technical progress of some 4.7% per year, whereas the squared trend is 

negative and a significant one thus inducing that technical progress increases at 
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a decreasing rate. The positive coefficients near interactions between the time 

trend and intermediate consumption and utilized land area imply that the 

technical progress was factor-saving in terms of the latter two types of inputs. 

On the other hand, the negative coefficient associated with trend and asset 

interaction indicates increasing asset intensity in the production processes.  

As one can note, inefficiency accounted for some 67% of the total 

variation of the error term. The mean technical efficiency (TE) score was 0.76, 

which implies that output should be increased by some 30% on average. 

 

Table 3.7. The estimated stochastic production frontier for the Lithuanian 

family farms (2004–2009). 

 Estimate 

Standard 

Error z value Pr(>|z|) 

 Intercept 5.7128 2.1097 2.7078 0.006773 ** 

log(Int) 0.7480 0.5585 1.3393 0.180462 

 log(Assets) -1.0967 0.3207 -3.4195 0.000627 *** 

log(UAA) 1.5083 0.4904 3.0753 0.002103 ** 

(log(Int) * log(Assets)) 0.0724 0.0519 1.3958 0.162764 

 (log(Int) * log(UAA)) -0.1731 0.0870 -1.9906 0.046524 * 

(log(UAA) * log(Assets)) -0.0001 0.0457 -0.0033 0.997404 

 (0.5 * log(Int)^2) -0.0078 0.1042 -0.0747 0.940471 

 (0.5 * log(Assets)^2) 0.0339 0.0433 0.7843 0.432888 

 (0.5 * log(UAA)^2) 0.1286 0.0898 1.4315 0.152288 

 t 0.0466 0.1146 0.4062 0.684624 

 (0.5 * t^2) -0.0253 0.0080 -3.1427 0.001674 ** 

(t * log(Int)) 0.0221 0.0179 1.2334 0.217425 

 (t * log(Assets)) -0.0298 0.0112 -2.6738 0.0075 ** 

(t * log(UAA)) 0.0109 0.0168 0.6451 0.518868 

 sigmaSq 0.1808 0.0172 10.5371 < 2.2e-16 *** 

gamma 0.6665 0.0689 9.6704 < 2.2e-16 *** 

log likelihood value: -337.2857  

 total number of observations = 1200  

 mean efficiency: 0.77  

  Notes: (i) Int, Assets, UAA, and t stand for intermediate consumption, asset value, 

utilized agricultural area, and time trend, respectively; (ii) significance codes: *** – 

0.001; ** – 0.01; * – 0.05. 

 

 Fig. 3.8 depicts the mean values of TE scores across different 

farming types. As one can note, the mean TE had been declining since 2004 

and reached its trough in 2006. This particular fall was influenced by 
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unfavourable climatic conditions. After recovering in 2007, the TE further 

declined during 2008–2009. Noteworthy, the crop farms were specific with 

higher efficiency fluctuations if compared to livestock or mixed ones. 

Furthermore, the livestock farms were specific with the highest mean TE 

scores throughout the research period save year 2004. 

 

 

Fig. 3.8. The mean TE scores across different farming types, 2004–2009. 

 

 The previous Fig. 3.8 exhibits the mean values, whereas the 

underlying distribution of efficiency scores remained unknown. In order to 

cope with the latter issue, the kernel densities are usually employed in 

efficiency analyses. This type of graphic representations enables one to avoid 

arbitrary decisions involved in construction of the other ones (e.g. the different 

numbers of bins in histograms are related with different visualisations of the 

same efficiency score distribution). Fig. 3.9 thus exhibits the underlying 

distributions of the TE scores across the three farming types. The mean TE 

scores of each farming type are quite similar: 0.8 for livestock farms and 0.77 

for both crop and mixed farms. However, the crop farm distribution is right-

skewed and specific with a higher variance if compared to those of the 

remaining farming types. The lowest variance of the livestock farm TE score 

distribution implies that these farms are quite homogeneous in terms of 
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technical efficiency, whereas crop and mixed farms tend to be more 

heterogeneous.  

 

Fig. 3.9. Kernel densities of the TE scores across different farming types. 

 

 In order to test whether the differences of the mean TE are 

significant across farming types, the Least Significant Difference (LSD) test 

was employed. The results (cf. Table 3.8) imply that livestock farms had a 

significantly higher mean of TE scores at the confidence level of 5%. Indeed, 

the difference between livestock and crop farms was more significant 

(p=0.001) than that between livestock and mixed farms (p=0.017). Therefore, 

the mixed farms do benefit from animal farming in terms of efficiency gains.  
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Table 3.8. A Least Significant Difference t test for means of TE scores across 

different farming types. 

Mean Square Error:  0.009139696  

 
 Mean TE SE replication LCL UCL 

Crop 0.7713 0.0034 890 0.765 0.778 

Livestock 0.7994 0.0059 137 0.788 0.811 

Mixed 0.7733 0.0059 173 0.762 0.785 

 
     alpha: 0.05 ; Df Error: 1197 

  Critical Value of t: 1.961948  

  Least Significant Difference 0.0182516 

 Harmonic Mean of Cell Sizes  211.2198 

  

Means with the same letter are not significantly different. 

Groups Treatments  Means 
   a Livestock 0.79935 

   b Mixed 0.77329 

   b Crop 0.77134 

     

Comparison between treatments means 

 
 Difference pvalue sig LCL UCL 

Livestock - Crop 0.0280 0.0014 ** 0.0108 0.0452 

Mixed - Crop 0.0020 0.8060 

 

-0.0136 0.0175 

Livestock - Mixed 0.0261 0.0173 * 0.0046 0.0475 
Significance codes: *** – 0.001; ** – 0.01; * – 0.05. 

 

The non-parametric test (Li et al., 2009) was also employed to check 

whether the underlying densities of the TE are significantly different across the 

farming types. The non-parametric test did also confirm the difference between 

the underlying densities of TE scores associated with livestock and crop 

farming (p=0.02). The differences between densities of the mixed and livestock 

farms’ efficiency scores were significant at p=0.03. Finally, the TE score 

densities for the crop and mixed farms were different at p<0.000.  

To conclude, the livestock farms were specific with the highest 

technical efficiency. The following sub-sections analyse the main sources and 

factors of efficiency and total factor productivity. 
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3. 2. 2. 2. Output elasticities 

 

The partial output elasticities help one to fathom the prospective ways to 

improve the productive efficiency with respect to the underlying productive 

technology. The elasticity analysis is related to factor input rationing, for 

scarce resources should induce higher output elasticities and shadow prices. In 

the sequel we will analyse the dynamics of the three inputs, viz. assets, 

intermediate consumption, and land as described in Coelli et al. (2005). The 

technical change (time elasticity) is to be analysed alongside with the total 

factor productivity.   

 The output elasticities with respect to assets are given in Table 3.9. 

As one can note, assets became less productive throughout the research period: 

An additional per cent of assets would have resulted in 0.14-0.27 increase in 

output in 2004, whereas it would have caused an increase of only 0.1-0.21 in 

2009. This finding is alongside with the negative coefficient observed for an 

interaction between trend and assets. The latter developments might be related 

with excessive capital use (Petrick, Kloss, 2012), which, in turn, was fuelled by 

investment subsidies distributed in accordance with the Common Agricultural 

Policy after Lithuania acceded to the European Union. Noteworthy, it was the 

mixed farms that were specific with the lowest output elasticity to assets. 

Indeed, these farms have accumulated the highest amounts of fixed assets. 

Therefore, the investment support policy should be reconsidered for this 

particular farming type.  

 

Table 3.9. Output elasticity with respect to assets, 2004–2009. 

Year 
Farming type 

Crop Livestock Mixed 

2004 0.26 0.27 0.14 

2005 0.26 0.23 0.17 

2006 0.25 0.22 0.15 

2007 0.24 0.21 0.16 

2008 0.24 0.23 0.13 

2009 0.21 0.19 0.10 

Average 0.25 0.23 0.14 
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 Elasticity associated with intermediate consumption (Table 3.10) 

increased during the period of 2004-2009 from 0.64-0.81 up to 0.75-0.89. The 

increase might have been driven by improved farming practices, novel 

chemical products, and successful training programs. The lowest output 

elasticity to intermediate consumption was observed for the crop farms. 

Specifically, it constituted some 74-84% of the respective mean elasticity 

observed for either livestock or mixed farms, depending on which of them was 

a higher one, during 2004-2009. The crop farms are specific with inflated 

intermediate consumption values with fertilizer costs accounting for a 

significant share therein. Therefore, both introduction of new species and 

application of effective fertilizing schemes are still important for the crop 

farming. Anyway, the crop farming elasticity associated with intermediate 

consumption exhibited a positive trend and tended to converge with those 

specific for livestock and mixed farms.  

 

Table 3.10. Output elasticity with respect to intermediate consumption, 2004–

2009. 

Year 
Farming type 

Crop Livestock Mixed 

2004 0.64 0.77 0.81 

2005 0.65 0.79 0.77 

2006 0.66 0.81 0.79 

2007 0.71 0.86 0.84 

2008 0.73 0.86 0.86 

2009 0.75 0.89 0.88 

Average 0.69 0.83 0.83 

 

 The output elasticity with respect to utilized agricultural land was 

generally decreasing from 0.02-0.14 down to 0.01-0.1 during the period of 

2004-2009 (Table 3.11). The range of mean elasticities across farming types, 

though, remained virtually invariant. The mixed farms were specific with the 

highest elasticity, whereas the livestock – with the lowest one and even a 

negative value for year 2008 (this indicates a violation of the monotonicity of a 
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production frontier). Indeed, livestock farming does not require land as a 

production factor to the same extent as other farming types do. There are still 

some prospects to increase land productivity in the livestock farms mainly by 

producing fodder. 

 

Table 3.11. Output elasticity with respect to utilized agricultural area, 2004–

2009. 

Year 
Farming type 

Crop Livestock Mixed 

2004 0.09 0.02 0.14 

2005 0.07 0.05 0.10 

2006 0.07 0.05 0.11 

2007 0.05 0.03 0.09 

2008 0.03 -0.02 0.09 

2009 0.04 0.01 0.10 

Average 0.06 0.03 0.10 

 

 The analysis of the partial output elasticities implies that the 

Lithuanian family farms face rather meagre difficulties in land acquisition. For 

the mean partial elasticity associated with land, equal to 0.06, was the lowest 

one if compared to those associated with intermediate consumption or assets. 

The marginal asset productivity represented by respective elasticity (0.23) was 

much higher than that of land, albeit it was down-trended. Therefore, the 

excessive use of assets should be reduced by streamlining support measures 

under Rural Development Programme for 2014-2020. Finally, the highest 

output elasticity was that with respect to intermediate consumption. Indeed, 

this type of input is the one easy controllable and adjustable.  

 The total output elasticity was computed in order to test whether 

the underlying technology is CRS or VRS. The linear hypothesis of CRS was 

tested in the spirit of Eq. 3.28. The obtained statistic ( 0.85S  ) was well below 

the critical value. The null hypothesis about CRS was, therefore, accepted. In 

the remaining part of the research we therefore did not tackle the scale 

efficiency. 
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3. 2. 2. 3. Total factor productivity 

 

The economic performance of a decision making unit should be 

assessed not only in terms of efficiency but also in productivity. For efficiency 

measures the firm-specific distance from the production frontier, whereas the 

total factor productivity describes the shifts of the production frontier. 

Therefore, a certain firm might not reduce its technological features but 

become less efficient due to the frontier shift, i. e. increase in the sectoral total 

factor productivity. On the other hand, a certain firm can maintain the same 

level of efficiency and become more productive in case it catches up the 

frontier shift and thus increases its productivity.  

 The total factor productivity (TFP) change was assessed across the 

three farming types as described by Coelli et al. (2005). Given the fact that the 

CRS technology was assumed on a basis of the linear hypothesis test, the TFP 

change was decomposed into the two terms, namely technical change (TC) and 

efficiency change (EC). The estimates for each farming type are given in 

Figs. 3.10–3.12. 

 

 
Fig. 3.10. The cumulative total factor productivity change in the crop farms, 

2004-2009. 

 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

2005 2006 2007 2008 2009

TC EC TFP



124 

 

 
Fig. 3.11. The cumulative total factor productivity change in the livestock 

farms, 2004-2009. 

 

 
Fig. 3.12. The cumulative total factor productivity change in the mixed farms, 

2004-2009. 

 

 The crop farms were peculiar with the most intensive fluctuations 

of the TFP (Fig. 3.10). The TFP increased during 2004–2005 and 2006–2007, 

whereas it decreased during 2005-2006 and 2007-2009. The decrease of 2005-

2006 was mainly driven by a negative EC effect, what means that unfavourable 

climatic conditions decreased the TE of the crop farms. The TC, though, did 

not change if compared to the preceding period and the cumulative change 
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remained greater than unity. Therefore, the production frontier did not move 

inwards, but the efficiency of an average crop farm tended to decrease. A 

certain part of the crop farms, nevertheless, remained working as productive as 

in the preceding period. The EC caused decrease of the TFP to margin of 3%, 

whereas TC – to that of 10% during the period of 2004-2009. The very TFP 

decreased by some 13% in the meantime. 

 The livestock farms were specific with the lowest fluctuations in 

the TFP throughout 2004-2009 (Fig. 3.11). The latter sub-sector remained 

virtually unaffected by the downturn of 2005-2006, albeit the subsequent 

periods were specific with a negative TC trend. Accordingly the TFP began to 

diminish after year 2007. As a result, the TC resulted in the decline of the TFP 

by some 18%, whereas the EC component accounted for the increase of some 

2%. The resulting TFP change during 2004–2009 was a decrease of 12%. The 

observed changes in TFP indicate that it was the TC that reduced the TFP, 

whereas the livestock farms became more homogeneous in terms of the TE, 

because the cumulative EC remained positive (i. e. that above unity). The 

decreasing number of livestock is obviously related to the diminishing TFP. 

The frontier movement inwards could be alleviated by introducing respective 

support measures aimed at increasing the attractiveness of the livestock 

farming as an economic activity.  

 The mixed farming was specific with a degree of the TFP variation 

that lies in between those of the specialised farms (Fig. 3.12). Anyway, the 

mixed farms did not manage to maintain neither the TC level specific for the 

crop farms nor the EC experienced by the livestock farms. The mixed farming, 

therefore, was specific with the highest decrease in the TFP accounting for 

18%. The results do indicate that the mixed farms should receive more 

attention when preparing the training and support programs in terms of 

efficient managerial and agricultural decisions. 
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3. 2. 3. Comparison of the results 

 

In order to test the robustness of the obtained results one can 

compare the distributions of the technical efficiency scores obtained by the 

non-parametric DEA and the parametric SFA. Fig. 3.13 depicts the relationship 

between technical efficiency scores obtained by the means of the stochastic 

frontier analysis and output-oriented DEA model under CRS. Indeed, the VRS 

assumption results in virtually the same pattern of the efficiency scores. 

 

 

Fig. 3.13. Comparison of the TE scores obtained by DEA under CRS and SFA. 

 

 Correlation observed between these two variables was a rather 

high one (R=0.74). However, Fig. 3.13 suggests that the relationship is not a 

linear one. The DEA scores are generally lower that those obtained by SFA, 

for the former technique considers the whole distance between an observation 

and the efficiency frontier as that entailed by inefficiency. Furthermore, SFA 

does not allow a full efficiency, i. e. none of the observations is attributed with 
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technical efficiency score of unity. One more factor is related purely to the 

methodology of this study: The employed SFA model did not contain the 

labour input used in DEA model due to statistical insignificance. Anyway, the 

convergence was achieved in the upper part of the efficiency scores’ range.  

 Fig. 3.14 presents the mean technical efficiency scores obtained by 

DEA and SFA across farming types. The correlation observed between these 

two estimates was extremely high (R=0.99). However, the differences between 

mean efficiency observed for the livestock farms and that for the remaining 

farming types are much lower in SFA. It might be a result of the random error 

term in SFA. 

 

 

Fig. 3.14. The mean technical efficiency scores across farming types. 

 

 Given the employed dataset contained the longitudinal data, the 

relation between the efficiency scores obtained by DEA and SFA was analysed 

across the time periods, namely years 2004–2009. The following Fig. 3.15 

exhibits the results. The entailed correlation was also very high (R=0.9). Both 

of the employed methods identified the two efficiency shocks in 2006 and 

2009.  
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Fig. 3.15. Variation of the mean technical efficiency scores across years. 

 

 Both the non-parametric DEA and the parametric SFA identified 

the same patterns of efficiency in the Lithuanian family farms. The positive 

correlation was observed for the pooled efficiency scores as well as for the 

means of the different farming types or time periods. Therefore, the efficiency 

estimates obtained by the means of DEA and SFA can be considered as the 

robust ones. Generally, crop farms were specific with lower mean TE values 

during 2004–2009 if compared to the remaining farming types. Furthermore, 

the periods of 2006 and 2009 were those of the steepest decreases in TE for all 

farming types. 

 

3. 3. Determinants and patterns of farm efficiency under separability 

 

This section presents the results obtained using a fully non-parametric 

methodology as described by Baležentis et al. (2014). Note that it differs from 

the conditional efficiency measures in that the former methodology assumes 

separability among the environmental variables and the production frontier. 
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3. 3. 1. Dynamics of the productive efficiency 

 

The efficiency scores were obtained by employing the output-oriented 

bootstrapped DEA model under a VRS assumption (B=2000). The FEAR 

package (Wilson, 2008) was applied to implement the model. The reported 

efficiency scores are Shepard measures. The difference between the original 

and the bootstrapped DEA scores was not decisive, i.e. a mean difference of 11 

p. p. as well as difference in sample means of some 3 p. p. were observed. The 

highest difference was for years 2004, 2007, and 2008, which implies that the 

highest data variability occurred during technological expansion. This finding 

might indicate that some farms tended to increase their output during favorable 

periods in terms of climatic conditions to a greater extent than the remaining 

farms. Therefore, there is a need for further research into the sources and 

factors of convergence among Lithuanian family farms from the viewpoint of 

their productivity and efficiency. 

Table 3.12 further explores the dynamics of the DEA efficiency scores. 

As can be seen, the highest discrepancy between the original TE scores and the 

bootstrapped ones was observed for the livestock farms (some 14 p. p.). 

Noteworthy, these discrepancies increased in years 2005 and 2008 to the 

greatest extent. One can therefore assume that the livestock farms, in 

particular, exhibited a delayed response to changes in crop markets.  

The differences between the bootstrapped and original TE scores (cf. 

Table 3.12) have certain implications for bootstrapping. First, bootstrapped 

DEA accounted for measurement errors which emerged due to internal and 

external factors, as discussed in the Introduction. Second, the sampling errors 

were also tackled to some extent. Indeed, the differences between the mean TE 

scores across the farming types were much lower for bootstrapped DEA when 

compared to the original estimates (Table 3.12). 

The bootstrapped DEA efficiency scores imply that an average farm 

should have increased its outputs by a factor of 2 (=1/0.5) given that the input 

quantities remain fixed. The same factor was 2.1, 1.7, and 2.1 for crop, 
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livestock, and mixed farms, respectively. Table 3.121, however, presents only 

averages of the estimates.  

 

Table 3.12. Average technical efficiency (TE) scores across different farming 

types, 2004–2009. 

Year 
Original TE scores Bootstrapped TE scores 

Crop Livestock Mixed Average Crop Livestock Mixed Average 

2004 0.54 0.63 0.61 0.56 0.49 0.52 0.42 0.49 

2005 0.49 0.72 0.56 0.52 0.46 0.57 0.50 0.48 

2006 0.37 0.69 0.56 0.42 0.37 0.59 0.45 0.42 

2007 0.53 0.81 0.59 0.56 0.51 0.66 0.52 0.52 

2008 0.57 0.86 0.63 0.60 0.55 0.66 0.52 0.56 

2009 0.52 0.72 0.54 0.54 0.50 0.58 0.47 0.50 

Average 0.50 0.73 0.58 0.53 0.48 0.60 0.48 0.50 

 

An integrated squared difference test for equality of densities (Li et al., 

2009) was employed to test for differences between the efficiency scores’ 

densities associated with different farming types (399 bootstrap replications 

were carried out). The results of the test indicate that livestock farms differed 

from crop farms (
14.3nT 

, .001p  ) as well as from mixed farms (
14.6nT 

, 

.001p  ) in terms of efficiency densities. Coupled with the respective kernels, 

these findings suggest that livestock farms featured higher TE scores in 

general. Meanwhile, the difference between crop and mixed farms was also 

significant (
2.8nT 

, .01p  ). The lower p-value implies a higher similarity 

between densities of TE scores for the crop and mixed farms.  

 

3. 3. 2. Efficiency change paths 

 

Given that we analysed the performance of Lithuanian family farms by 

means of panel data, it is important to define the general trends and patterns of 

efficiency featured by the farms. Latruffe et al. (2008) employed cluster 

analysis to reveal the underlying total factor productivity change paths in the 

Polish family farm sector. In the same spirit, we employed fuzzy clustering to 
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identify efficiency change paths in the Lithuanian family farm sector. As 

already mentioned, fuzzy clustering allows partial membership of an 

observation to several clusters to different degrees. This means that the clusters 

can overlap in some ways. It was the underlying uncertainties associated with 

the nature of the data that made us opt for the latter technique.  

The number of clusters was determined by considering principal 

component analysis plots and sets of observations belonging to certain clusters 

represented by membership scores. The excessive number of clusters resulted 

in extremely low membership values, or the observations belonging to 

overlapping clusters appeared in the same areas defined by the principal axes. 

After a series of iterations, we identified four clusters describing efficiency 

change paths of Lithuanian family farms (Fig. 3.16).  

 

 

Fig. 3.16. The four efficiency change paths identified by means of fuzzy 

clustering. 

 

As one can note, Clusters 1 and 3 followed virtually the same path, with a 

varying distance between them in terms of average efficiency. Specifically, a 

robust increase was observed in 2007–2008 for both of the latter clusters, 

whereas a decrease in 2009 was specific for Cluster 3. Similarly, Cluster 4 

featured the same path during 2005–2009, but years 2004 and 2009 were ones 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

2004 2005 2006 2007 2008 2009

T
E

 

Cluster 1 Cluster 2 Cluster 3 Cluster 4



132 

 

of decline; however, these developments of TE were not so decisive when 

compared to those observed for Clusters 1 and 3. Cluster 3 exhibited the least 

stochastic dynamics of TE of all four clusters.  

The highest mean TE (0.62) was observed for Cluster 4. Indeed, this 

cluster also had the lowest coefficient of variation for the annual means (5%). 

One can thus assume that Cluster 4 represents the best performing farms which 

managed to maintain the highest efficiency scores throughout the research 

period. Clusters 2 and 3 exhibited similar mean TE scores (0.47 and 0.52, 

respectively), although Cluster 3 had a rather high coefficient of variation 

(18%), whereas a value of just 8% was observed for Cluster 2. Meanwhile, 

Cluster 1 featured the lowest mean value of TE, viz. 0.36, and a relatively high 

coefficient of variation (18%). The fuzzy cluster analysis, therefore, revealed 

four clusters which share a similar efficiency change tendency but which 

diverge in terms of magnitude of the change and average values of the 

efficiency scores. Further analysis was carried out in order to reveal the 

underlying characteristics of these clusters.  

A cluster can be described in terms of specialization by analysing the 

membership function values and the crop output share in the total output 

specific to each of the farms. The specialized crop farms belonged to Clusters 

1–3. Meanwhile, the livestock farms were members of Clusters 2 and 4 in 

general, with the latter cluster being the main one in terms of the membership 

values. The mixed farms were assigned to Clusters 1, 2, and 4. Indeed, the 

highest mean membership values were observed for Cluster 4. With respect to 

the previous findings, one can consider Clusters 1 and 3 as those of crop farms. 

However, the mean values of crop output share for these two clusters were 

87% and 92%, respectively, because some mixed farms were also assigned to 

Cluster 1. Cluster 2 contained all types of farming; however, the mean crop 

share for Cluster 2 was 80%, suggesting that this cluster can be considered as 

composed of crop farms and mixed farms engaged in crop production. Finally, 

Cluster 4 (crop share – 64%) was that of livestock farms and mixed farms. 

Indeed, Figs. 3.24 and 3.26 confirm that the livestock farms experienced the 
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highest TE as well as the lowest fluctuations thereof. Noteworthy, Cluster 1 

had both the lowest efficiency and the highest production subsidy rates, viz. 

52% of output value, whereas the remaining clusters exhibited rates of 21–

31%. The highest equipment subsidy rate was observed for Cluster 4 (10%), 

with the other clusters exhibiting rates of 7–9%. It can therefore be concluded 

that equipment subsidies contributed to the increase in productivity and 

efficiency of the livestock and mixed farms (Cluster 4), whereas production 

subsidies did not have such an impact.  

All in all, the four clusters identified by the research imply a certain 

taxonomy of Lithuanian family farms. First, the family farms can be classified 

in terms of volatility of the efficiency scores. Specifically, Clusters 1 and 3 

feature relatively high volatility, whereas Clusters 2 and 4 exhibit low 

volatility. Second, the family farms differ in terms of the mean TE level. 

Particularly, Clusters 3 and 4 represent farms with higher TE scores, whereas 

Clusters 1 and 2 are mainly associated with lower TE scores. Cluster 4, thus, 

can be considered as the best performing one. These findings can be 

particularly useful when tailoring rural development policy according to the 

specificities of the four groups of family farms. Having identified the 

efficiency change paths, we can now assess the impact of certain factors on the 

productive efficiency. 

 

3. 3. 3. Determinants of efficiency and non-parametric regression 

 

Given that the relationships between the environmental variables and 

efficiency scores might not always follow standard parametric cases, we 

employed non-parametric regression to analyse them. Furthermore, the non-

parametric regression methodology implemented by Hayfield and Racine 

(2008) allows one to obtain confidence bounds for the regression and thus 

more robust interpretations. Specifically, a local linear regression, or weighted 

least squares regression, is employed for the analysis. The weights for 

regression are obtained by the means of a product kernel with certain 
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bandwidth. Local linear regression then performs a linear regression on a data 

subsample within a small data window of the size determined by the bandwidth 

parameter. Note that the width of the window, i.e. bandwidth, influences the 

smoothness of the regression function: increasing bandwidth values lead to 

linear regression, whereas small bandwidths mean that regression is performed 

for nearly every specific observation. The kernel bandwidths were chosen via 

least squares cross-validation. A second-order Gaussian kernel was utilized for 

the continuous variables, whereas the kernel of Aitchison and Aitken (1976) 

was used for discrete data. 

Non-parametric regression was employed to test the relationships among 

the bootstrapped TE scores and the three explanatory variables, namely the 

logarithm of farm size in hectares (UAA), the share of crop output in the total 

output (CropShare), and the time period (Year). Investigating optimal farm 

size is a focal point of many agricultural economics studies. We can therefore 

attempt to analyse the impact of farm size on TE. Farm specialization is 

captured by the CropShare variable. Finally, the variable Year, which we 

considered as an ordinal discrete variable, accounts for time-specific efficiency 

shocks.  

Table 3.13 reports the bandwidths and p-values for the regressors. As one 

can note, the farm size variable, UAA, is specific with a relatively high value of 

bandwidth, which implies that farm size and efficiency are related in a close-

to-linear way. The significance test for non-parametric regression variables 

suggests that all of the analysed variables are significant at a confidence level 

of 0.05. However, the estimates reported in Table 3.13 do not enable one to 

fathom the exact links among the analysed variables. For the latter purpose we 

further employed partial regression plots which relate each single regressor to 

the dependent variable while holding the remaining regressors at their medians.  
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Table 3.13. Results of non-parametric regression analysis. 

 log(UAA) CropShare ordered(Year) 

Bandwidth 9.607014  0.1108654 0.1595112 

P Value <.000 *** 0.047619 * <.000 *** 

Significance codes: *** – 0.001, ** – 0.01, and * – 0.05. 

 

The impact of a certain variable on the efficiency scores can be analysed 

by means of partial regression plots (Fig. 3.27). These plots also display the 

bootstrapped confidence intervals. The results of the non-parametric regression 

suggest that increasing the farm size raises the TE slightly until the size 

reaches some 400 ha (
6e ). Note that the UAA values are presented on a log 

scale. Accordingly, the same increase in TE requires larger increases in UAA 

for the larger farms. Once the limit of 400 ha is crossed, the confidence 

intervals get wider, indicating that the largest farms are associated with both 

higher and lower efficiency scores compared to smaller farms. This finding, 

therefore, motivates for further research on the optimal size of family farms in 

Lithuania. As for farm specialization, one can note the three levels of 

efficiency in Fig. 3.17 across the respective farming types: livestock farms had 

both the highest TE scores and confidence intervals. The TE scores, though, 

rapidly decreased as the production structure approached that of the mixed 

farm. Meanwhile, the mixed farms showed a narrower range of TE scores 

scattered around a value of 0.5. Finally, the specialized crop farms tended to be 

the least efficient, as was found in the analyses described above. Inclusion of 

the additional explanatory variables into the non-parametric regression did not 

yield informative results: either they were insignificant or their distribution did 

not reveal any meaningful relationships.  
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Fig. 3.17. Partial regression plots for the selected determinants of farming 

efficiency. 

 

The results of the non-parametric regression analysis support the results 

obtained by kernel density estimation and fuzzy clustering. The key message is 

that crop farms are performing less efficiently when compared to mixed farms 

and especially compared to livestock farms. Furthermore, larger farms 

exhibited higher TE scores, although greater variation in efficiency scores was 

observed among the very largest farms (>400 ha). The non-parametric 

regression analysis, unlike the cluster analysis, failed to identify a significant 

impact of subsidies on TE. 

 

3. 4. Estimation of the efficiency via the order-m frontiers 

 

Initially, the ordinary FDH was employed to measure the efficiency 

across the three farming types. Both the input– and output–oriented FDH 

models (Tulkens, 1993) yielded almost the same results: The livestock farms 

achieved the highest level of efficiency, viz. 92%. The mixed farms came next 
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with the efficiency scores of 82–86% depending on the model’s orientation. 

Finally, the crop farms featured the lowest efficiency of 79–80%.  

In order to examine the sensitivity of the results, the order–m frontier 

was established for both input– and output–oriented models. A set of different 

values of m was constructed:  25,50,100,250,400,500,600,750,1000m  . By 

altering the value of m one can compute the share of the observations lying 

outside the production frontier, whether input– or output–oriented one. 

The share of observations lying outside the order–m input frontier is 

plotted against the order of the frontier, m, in Fig. 3.18. For the small values of 

m, almost all of the observations were left out for irrespectively of the farming 

type. The shares of the observations outside the production frontier, though, 

steeply diminished with m increasing up to the value of 400. Note that the 

value of m indicates how many values of inputs are drawn to estimate the 

expected level of efficiency. For 400m  , only the share of the livestock farms 

outside the production frontier continued to decrease to a higher extent, 

whereas those associated with other farming types virtually remained stable. 

Specifically, some 35%, 60%, and 45% of the crop, livestock, and mixed farms 

respectively fell outside the production frontier at 400m  . These values are 

quite high and imply that some sort of statistical noise is present in the data. By 

further increasing m up to 1000, we observed the decrease in shares of the 

crop, livestock, and mixed farm observations outside the production frontier 

down to 28%, 47%, and 39% respectively. These figures resemble the 

proportions of the noise data in the whole dataset. Furthermore, the 

observations associated with the livestock farming can be considered as 

atypical ones in terms of the data set under analysis.  
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Fig. 3.18. The share of observations outside the input order-m frontier 

 

 

Fig. 3.19. The share of observations outside the output order-m frontier 

 

As for the output order–m frontiers (Fig. 3.19), they rendered much 

lower shares of observations outside the frontier, possibly due to the univariate 

output values and multivariate input vectors. The shares of the observations 

falling outside the frontier diminished as m increased up to 400, whereas 

higher values of m did not induce any significant decrease. Noteworthy, the 

shares of observations lying outside the production frontiers were 24%, 48%, 

and 10% for crop, livestock, and mixed farms respectively. At 1000m  , these 
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shares decreased down to 16%, 34%, and 8%. Note that in the output–oriented 

case the mixed farms exhibited the lowest share of observations lying outside 

the production frontier.  

Thus, one can consider the value of 400 as the order of the partial input 

and output production frontiers to ensure the robustness of the analysis. Indeed, 

frontiers with orders 400m   exhibit similar shares of observations outside 

them and the only effects remaining are those of the outlier observations. 

The following Figs. 3.20 and 3.21 depict the mean efficiency scores for 

the input– and output–oriented models. Note that the latter results are the 

Farrell measures.  

The input–oriented Farrell efficiency scores below unity indicate that a 

certain farm should reduce their inputs by the respective factor. On the 

contrary, the order–m frontiers allow for efficiency scores exceeding unity and 

therefore indicating that certain farms are super-efficient ones. For small ms, 

the mean values of the input–oriented efficiency scores exceeded unity thus 

indicating that most of the observations fell outside the production frontier. 

Anyway, the livestock farming remained the most efficient farming type at all 

levels of m (Fig. 3.30). The mixed farms exhibited slightly lower mean 

efficiency scores. Finally, the crop farms remained at the very bottom in terms 

of the mean efficiency scores. Note that the mean efficiency scores did not 

vary with m for the input frontier orders exceeding the value of 400. 
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Fig. 3.20. The mean input Farrell efficiencies at different values of m 

 

 

Fig. 3.21. The mean output Farrell efficiencies at different values of m 

 

The patterns of efficiency had somehow altered in regards to the 

output–oriented frontiers. Fig. 3.21 depicts the Farrell output efficiency scores 

which exceed unity in case a farm is inefficient and approaches unity as a farm 

gets more efficient. Those farms featuring output efficiency scores below unity 

are considered as super–efficient ones. This time, the crop and mixed farms 

exhibited extremely similar values of the mean efficiency scores: For small 
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values of m ( 100m  ) the mixed farms featured the lowest efficiency scores, 

whereas the crop farms superseded them for 500m  . Anyway, the difference 

between these means remained a rather insignificant one. The livestock farms 

remained the most efficient ones for each value of m.  

Given the discussed findings we chose the order of the production 

frontiers as 400m   and further analysed the distributions of the efficiency 

scores associated with the different farming types. Therefore, Figs. 3.22–3.23 

present the kernel densities for the efficiency scores.  

As for the input efficiency scores (Fig. 3.22), all the farming types 

featured the modal values close to unity. Obviously, the livestock farms were 

specific with the highest concentration of the efficiency scores equal or greater 

to unity. Accordingly, the mean efficiency score for the livestock farms was 

1.01, i. e. an average farm was super–efficient. The corresponding values for 

the crop and mixed farms were 0.91 and 0.98 respectively. The first quartiles 

for the crop, livestock, and mixed farms were 0.77, 0.95, and 0.87 respectively. 

Meanwhile, the third quartiles were 1.02, 1.08, and 1.54 in that order. The 

latter numbers can be interpreted as the minimal factor to which top 25% 

efficient farms could increase their consumption of inputs given their 

production level and still remain efficient ones. Although the most efficient 

farms were the crop farms, they constituted rather insignificant share of the 

whole sample. Note that the maximal efficiency exceeded unity. Therefore, we 

can even speak of super–efficiency at this point. 
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Fig. 3.22. The densities of the input-oriented Farrell efficiency scores (m=400) 

 

 

Fig. 3.23. The densities of the output-oriented Farrell efficiency scores 

(m=400) 

 

The output efficiency scores were distributed in a similar way (Fig. 

3.23). The livestock farms exhibited the most concentrated distribution. The 

mean values of the efficiency scores did not fall below unity for either farming 

type: 1.32 for the crop farms, 1.05 for the livestock farms, and 1.25 for the 

mixed farms. However, the first quartile for the livestock farms was 0.95 and 
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thus indicated that more than 25% of the livestock farms were super–efficient 

ones. The corresponding values for the remaining farming types were ones. 

The third quartiles were 1.46, 1.11, and 1.38 for the crop, livestock, and mixed 

farms respectively. 

 

3. 5. Fuzzy analysis 

 

Say the panel data are arranged into a ( ) ( )n T k l    crisp matrix A , 

where 1,2, ,t T   is a time index and ( , ) ( , )j j tj tj

i r t i rA I O x y  . As stated 

previously, the fuzzy FDH method begins with a fuzzy input-output matrix, *A

, where each element, ( , )j j

i rI O , represents a fuzzy production plan: 

* ( , ) (( ; , , ),( ; , , ))j j j j j j j j

i r i i i r r rA I O x a b c y d e f  . 

In case of the longitudinal analysis, we employed the following 

aggregation to transform the panel data into a fuzzy input-output matrix: 

 0 0( , ) ( ;min , ,max ),( ;min , ,max )
t j t jj j tj tj tj tj

i r t i i t i t r r t rI O x x x x y y y y , (3.1) 

where 0t  is an arbitrary base period from 1,2, ,t T  . The latter operation 

ensures that the resulting fuzzy production plans are based on the original 

observations and not on synthetic averages. 

Therefore, the data are aggregated by considering the minima and 

maxima of the observed time series as the lower and upper bounds of the fuzzy 

numbers, respectively. The base period values serve as kernels for the latter 

numbers. In our case we had 2004, ,2009t    and selected 0 2008t  . The base 

year 2008 was chosen because it is the most recent year having featured no 

shocks in the agricultural production. 

Using the data set described above a fuzzy input-output data matrix was 

established by the virtue of Eq. 3.1. The triangular fuzzy numbers were then 

converted into interval numbers by employing levels {0,0.5,1}  . For each   

level, Eq. 3.84, a threshold value 0.3   was used to estimate the input-

oriented interval efficiencies, ( )inE j . The average efficiency scores, inE , were 
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obtained by the virtue of the fuzzy arithmetics, see e.g., Kaufmann and Gupta 

(1991): 

1

1
( )

n
in in

j

E E j
n

 


  .   (3.2) 

In order to analyse the differences in efficiency across farming types, 

these averages were computed for the three farming types separately. Fig. 3.24 

depicts the results. 

 

 

Fig. 3.24. Interval efficiencies across farming types at different α-levels. 

 

It can be noted that the average efficiencies may exceed unity, thus 

becoming similar to super-efficiency measures, see e.g., Bogetoft and Otto 

(2011). 

For 1   (corresponding to crisp FDH for the year 2008) there is a rather 

small difference between the average efficiency scores of the three farms 

types: Average efficiency for crop farms is 92%, for livestock farms 98% and 

for mixed farms 97%. At first glance it therefore appears that average 

efficiencies are rather high and that livestock farms seem to be the most 

efficient farm type. Yet, looking at the share of fully efficient farms we find 

http://www.sciencedirect.com/science/article/pii/S0165011414001705#fg0020
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that only 18% of the livestock farms are efficient among the pooled data set 

whereas 39% of the crop farms and 25% of mixed farms are efficient. A 

traditional FDH-based efficiency analysis for the year 2008 therefore indicates 

that while the crop farms are predominant among the best performers of the 

pooled data set the average efficiency is higher among the livestock farms 

(with mixed farms somewhere in between). In other words, there seems to be 

more variation connected with the performance of crop farms. 

This picture is reinforced by considering the full fuzzy FDH analysis 

where for α-levels lower than 1 (e.g., {0,0.5}   as depicted in Fig. 3.24) we 

consistently have that the average efficiency score interval of livestock farms is 

nested within the average efficiency score interval of crop farms. This means 

that the uncertainty connected with estimating the average efficiency scores of 

livestock farms is generally lower than for crop farms and that the variation in 

the performance of crop farms is much higher than among livestock farms, not 

only between individual farms as seen for the crisp FDH, but even for the 

average farm over the analysed time span. Indeed, the data given in Table 1 do 

indicate that crop farms tend to exhibit higher variation in all of the analysed 

variables compared to the remaining two farming types. 

A bit surprising is the fact that the support of the average fuzzy score of 

mixed farms is the widest and includes both that of crop and livestock farms. 

Note that this is not the case for 0.5   as shown in Fig. 3.24. 

The application of fuzzy FDH to the Lithuanian family farms enabled an 

assessment of the uncertainty and variation in the estimated efficiency scores 

of different farming types (viz. crop, livestock, and mixed farming). The 

results indicate that the relative efficiency associated with different farming 

types varied with the  -level representing the degree of uncertainty. The crisp 

FDH suggested the livestock farms were the most efficient ones on average, 

while the fuzzy efficiency scores revealed that variation in performance of the 

average crop farm was much higher with extremes being both better and worse 

than the average livestock farm. Specifically, the livestock farm average 

efficiency was represented by relatively narrow intervals that fell within the 

http://www.sciencedirect.com/science/article/pii/S0165011414001705#tl0010
http://www.sciencedirect.com/science/article/pii/S0165011414001705#fg0020
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bounds of fuzzy efficiencies associated with the remaining types of farming. 

Thus, the livestock farms can be considered as more homogeneous compared 

to the remaining farming types for all levels of uncertainty. 

 

3. 6. A double bootstrap inference 

 

The double bootstrap algorithm described in the Section 2.1 was 

employed for the analysis. The distribution of the efficiency scores are not 

discussed in this paper for sake of brevity. The numbers of the bootstrap 

replications were set as 1 100L 
 and 2 2000L 

.  

The first bootstrap loop aimed at estimating the bias-corrected output 

efficiency scores. The second bootstrap loop was used to estimate the 

confidence intervals for the parameters of the truncated regression. Analysis of 

the kernel distributions of the bootstrap estimates, 
*ˆ̂ , enabled to make a 

certain inference. Noteworthy, the densities for Time and UAA covered the 

value of zero, which, in turn, is associated with insignificance of a coefficient. 

The remaining densities lie in either side of the coordinate axis.  

The regression was estimated without an intercept. The confidence 

intervals for the parameters of the truncated regression were estimated by both 

the percentile method and aBC  method. The resulting intervals are given in 

Table 3.14. Note that the dependent variable was the output-oriented Farrell 

efficiency score, which gets higher values as farm becomes more inefficient. 

Therefore, the negative coefficients in Table 1 indicate sources of efficiency, 

whereas the positive ones indicate factors negatively related to efficiency.  

The three variables, namely ratio of assets to labour, crop share in the 

total output, and production subsidy intensity, remained significant at 1% level 

of significance irrespectively of the method employed for estimation of the 

confidence intervals. Meanwhile, the farm size variable featured higher 

significance under the aBC  method. The time variable exhibited the same 
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significance across both of the methods. Indeed, the time trend was significant 

at the confidence level of 10%.  

 

Table 3.14. Double bootstrap estimates for determinants of the farming 

inefficiency. 

Variables ˆ̂


 

Sig. 
Confidence intervals 

.1   .05   .01   

aBC  method 

Time -0.061 * -0.113 -0.010 -0.122 0.002 -0.144 0.016 

UAA -0.154 *** -0.270 -0.051 -0.292 -0.033 -0.335 -0.002 

Assets/AWU -0.484 *** -0.634 -0.355 -0.666 -0.327 -0.722 -0.288 

Crop 1.947 *** 1.747 2.145 1.711 2.181 1.625 2.283 

Subsidies 1.555 *** 1.386 1.717 1.357 1.750 1.304 1.810 

Percentiles method 

Time -0.061 * -0.113 -0.009 -0.121 0.002 -0.143 0.017 

UAA -0.154 ** -0.262 -0.046 -0.283 -0.029 -0.332 0.004 

Assets/AWU -0.484 *** -0.630 -0.348 -0.659 -0.323 -0.715 -0.279 

Crop 1.947 *** 1.752 2.149 1.713 2.187 1.631 2.288 

Subsidies 1.555 *** 1.387 1.721 1.359 1.753 1.306 1.816 

Significance codes: ‘***’ - 0.01, ‘**’ - 0.05, ‘*’ - 0.1  

 

The negative coefficients associated with the time trend, farm size, and 

ratio of assets to labour indicate that these variables contributed to increase in 

efficiency. Therefore, the efficiency was likely to increase during the research 

period given the remaining factors remained constant. The larger farms did 

also feature higher levels of efficiency. The latter finding might be related to 

both economies of scale and higher abilities for investment. The crop farms 

appeared to be less efficient if compared to livestock ones (the positive 

coefficient was observed for the corresponding variable). The production 

subsidies tended to decrease farming efficiency possibly due to lower 

incentives for adoption of innovative practices and market-oriented production.  

In order to check the robustness of the obtained results, the ordinary least 

squares (OLS) model was also specified. The OLS estimates are presented in 

Table 3.15. As one can note, the coefficients associated with the model 

variables were specific with the same signs as in case of the truncated 

regression. The differences in absolute values of the coefficients might be 
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explained by different magnitude of the variables (for instance, ratio of asset to 

labour might feature higher variance even after mean scaling). Indeed, both the 

significance and absolute value of the Assets/AWU increased significantly in 

the truncated regression model.  

  

Table 3.15. Ordinary least squares estimates. 

Variables Estimate SE t value p Sig. 

Time -0.04138 0.01531 -2.703 0.00697 *** 

UAA -0.05581 0.03191 -1.749 0.08053 * 

Assets/AWU -0.01825 0.02744 -0.665 0.50602  

Crop 1.91746 0.05759 33.293 2.00E-16 *** 

Subsidies 1.29016 0.06536 19.741 2.00E-16 *** 

      

R
2
 0.8443 Adj R

2
  0.8436  

F p-value 2.20E-16     

Significance codes: ‘***’ - 0.01, ‘**’ - 0.05, ‘*’ - 0.1  

 

Obviously, the significance of the efficiency determinants varied across 

the truncated regression and OLS estimations. Particularly, the ratio of assets 

to labour was not significant in the OLS model, albeit it featured a negative 

coefficient. The crop and subsidy indicators featured the same significance in 

both cases. The time and farm size variables were significant at different levels 

of confidence depending on model type and method for confidence intervals. 

Therefore, the results yielded by the bootstrapped truncated regression can be 

considered as confident ones. 

 

3. 7. Conditional efficiency measurement 

 

Since Farrell (1957) developed the idea of relative efficiency 

measurement, we can distinguish two broad approaches to measure efficiency. 

First, parametric methods require the a priori specification of a production 

function, which is often unknown. Therefore, they can easily lead to 

specification errors (Yatchew, 1998). On the other hand, non-parametric 

methods do not require any assumptions on the functional form of the 
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production function. Data Envelopment Analysis (DEA; Charnes, Cooper and 

Rhodes, 1978) can be given as a typical non-parametric frontier method. DEA 

is an appealing method as it does not require any assumptions regarding the 

functional form of the underlying production function. However, being a 

deterministic method in its nature, it does not account for random errors. 

Particularly this random variation is likely to occur in the context of farm 

efficiency analysis due to measurement errors, fluctuations related to operation 

environment, etc.  

A partial frontier approach addresses these shortcomings. The partial 

frontiers (also referred to as the robust frontiers) are introduced by Cazals et al. 

(2002). The idea is to benchmark an observation not against all the 

observations dominating it but rather against a randomly drawn sample of 

these. The latter methodology has been extended by introducing the 

conditional measures enabling to analyse the influence of the environmental 

variables on the efficiency scores (Daraio and Simar, 2005, 2007a, 2007b).  

The traditional Farrell’s and Shepard’s efficiency measures define a 

proportional contraction (resp. expansion) of inputs (resp. outputs). In many 

settings, including agriculture, the output-oriented direction is insightful as it 

reveals the output gap for given input levels. It can be used for benchmarking 

purposes as well as for policy insights in the potential improvements.  

The selection of input and output variables is in line with earlier 

literature (e.g., Bojnec and Latruffe, 2008). For a detailed summary of the 

descriptive statistics, see Table C1. 

Using the conditional efficiency model, we include characteristics of the 

operational environment. The existing literature suggests that farming 

efficiency might be impacted by farm size, technology, farmers’ 

characteristics, market integration, and temporal variations. Abdulai and Tietje 

(2007) estimated a stochastic production frontier for German dairy farms 

which included a set of explanatory variables. The latter set included the ratio 

of assets to livestock units, farmer’s age and education, off-farm employment, 

farm size in terms of herd size and UAA, hours worked, and expenditures for 
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feed and livestock. Kumbhakar et al. (2014) analysed the efficiency of 

Norwegian grain farms by the means of SFA and used the following 

environmental variables: off-farm income share, subsidy income share, 

entrepreneurial orientation index obtained during a survey, farmer experience 

in years, and education dummies. Latruffe et al. (2004) considered the 

following variables as determinants of efficiency: total output, technical ratios 

(land to labour, capital to labour), the use of external factors (share of hired 

labour, the share of rented land), the degree of market integration (the share of 

marketed output), soil quality index, and farmer’s age. It is due to Davidova 

and Latruffe (2007) that the following variables had been taken into account 

when analysing the patterns of farming efficiency in CEE countries: size 

variables (UAA), variables capturing the use of external factors (the share of 

hired labour, the share of rented land), and financial ratios (the ratio of debt to 

assets, the ratio of current debt to current assets). They argued that increasing 

use of external factors might render higher efficiency, for economic costs are 

then translated into accounting costs as well. Balcombe et al. (2008) accounted 

for farm size (UAA), the ratio of capital to labour, the share of hired labour, the 

degree of market integration, age, the share of other income, education, and 

time period. Bojnec and Latruffe (2013) explained the variation in the 

efficiency scores by considering the farm size, the share of rented land, the 

ratio of assets to labour input, farming type dummy, and time period dummy.  

Using these insights from earlier literature, we use the following 

variables as potential factors of farming efficiency. First, a time trend (Year) to 

account for temporal variations in output. Second, the logged UAA (lnUAA) 

represents the scale of operation and is considered as a proxy for farm size. 

Thanks to using logarithms we mitigate the significant variation in the size. 

Third, age of the farmer (Age) is introduced to ascertain whether young 

farmers–oriented measures can influence the structural efficiency. Fourth, the 

ratio of crop output to the total output (CropShare) captures the possible 

difference in farming efficiency across crop and livestock farms. Fifth, the 

effect of production subsidies on efficiency is estimated by considering the 
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ratio of production subsidies to output (SubsShare). Finally, the technological 

environment and capital accumulation is assessed by considering the logged 

ratio of assets to labour input (lnAssetsAWU).  

In line with Daraio and Simar (2005) the size of the partial frontier is 

determined as value for which the percentage of super-efficient observations is 

constant. In our application, this corresponds to m = 400. This implies that a 

farm is compared to 400 randomly drawn observations consuming at most the 

same amount of inputs.  

The mean unconditional output efficiency score is 1.29, whereas the 

conditional one amounts to 1.27 (Table C2). It defines for an average farm the 

proportionate increase in outputs that should occur in order to approach the 

production frontier.  

To examine which variables matter in farm efficiency, we estimate the 

conditional efficiency framework. The ratio of the conditional over the 

unconditional estimates is regressed on the environmental variables by the 

means of the non-parametric regression. The results are presented in Table 

3.16. Only two of the six variables appear to have a statistically significant 

influence upon the ratio: the time trend and production subsidies. Whereas the 

trend is significant at the level of 10%, the subsidy share is significant at 1% 

(Table 3.16). Although the remaining four variables are insignificant, the 

direction of their influence on efficiency scores might be interesting. We 

present the partial regression plots in Appendix B.  
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Table 3.16. Results of a non-parametric regression for the determinants of 

efficiency. 

Variable Direction of the 

influence 

p-value Significance 

Year Positive 0.078 * 

lnUAA U-shaped 1  

Age Arbitrary 1  

CropShare Negative 1  

SubsShare Negative <0.000 *** 

lnAssetsAWU Arbitrary 1  

Level of significance: *** - 1 per cent, * - 10 per cent. Positive (negative) 

indicates an (un)favourable influence on efficiency, arbitrary indicates that a 

certain variable features no clear patterns of influence on the efficiency. 

 

The partial regression plots for the time trend (Figs. B1-B3) indicate that 

there is an increasing trend in efficiency after accounting for the influence 

caused by remaining efficiency factors during the research period
7
. The year 

2006 features a decrease in efficiency if considering the first quartile 

regression plot (Fig. B1). Indeed, the low efficiency gains associated with the 

years 2004-2007 might be due to the transformations (i.e. changes in the 

production and farm structure) Lithuanian farms experienced after the 

accession. However, the growth in efficiency during 2008-2009 is observed 

irrespectively of the quantiles the explanatory variables are held at. These 

findings suggest that Lithuanian family farms managed to improve their 

productive efficiency after integration in the EU, yet the growth rates are 

subject to changes in the operational environment and eventually turned into 

negative ones.  

As for the land input, the partial regression plots show that it impacted 

the efficiency in the way of a quadratic function. However, suchlike 

relationship is somehow distorted at the extreme values if focusing at the first 

quartile of the remaining variables (Fig. B1). Generalizing the three partial 

                                                           
7
 Note that an increasing regression curve implies a favourable influence of a certain environmental 

variable on the efficiency in the output-oriented model. 
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regression plots for the land input, one can note that the minimal efficiency is 

maintained in the region of 55-150 ha (i. e. the values within  4 5,e e ). Thus, 

the small and the large family farms seem to fall among the most efficient 

ones. Indeed, smaller farms might maintain higher market integration and 

control more parts of the supply chains thus experiencing incentives for 

increasing the intensity of their production processes. The main concern 

regarding the farming efficiency remains with those middle-sized family farms. 

However, the link between farm size and the efficiency score ratio is not 

significant in the conditional framework.  

Farmers’ age has no significant influence on the efficiency score ratio, 

albeit the partial plots indicate some decreases in efficiency for the aged 

farmers. Even though the variations in efficiency are rather meagre along with 

the age, the peak is reached at around 50 years.  

The influence of the crop share in the total output differs across the 

quartiles of the environmental variables. In particular, the first-quartile results 

do indicate that both livestock and mixed farms feature higher efficiency. 

However, the advantage of the mixed farming vanishes when shifting to other 

quartiles. Therefore, the efficiency of the mixed farming is related to multiple 

factors and can be improved in a favourable environment. At the other end of 

spectrum, the crop farming appears to be less efficient irrespectively of the 

conditions described by different quartiles of the environmental variables. Note 

that the non-parametric test of statistical significance rejects the hypothesis of 

the variable’s influence on the efficiency ratio. 

The production subsidy share has a significant influence on the efficiency 

ratio. The partial plots (Figs. B1-B3) indicate that the subsidy rate is negatively 

related to efficiency. The relation is a linear one; therefore the influence of the 

rate of subsidies remained constant, which implies that a relative increase in 

subsidies with respect to the total output induces a decrease in efficiency 

irrespectively of the subsidy rate already achieved. The same linear 

relationship is observed for all quartiles of the environmental variables. 
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Finally, the logged ratio of assets to labour input has no significant 

influence on the efficiency ratio. Indeed, an increase in efficiency can be 

observed for the smallest values (around 9e  = 8100 LTL/AWU = 2350 

EUR/AWU). A further increase in the assets per labour unit causes decrease in 

efficiency when considering the first quartile (Fig. B1), whereas the remaining 

partial plots (Figs. B2-B3) suggested that the largest values of 14e  = 1200000 

LTL/AWU = 350 000 EUR/AWU might boost the efficiency. This finding 

might be related to the undergoing transformations in the farms. Indeed, farms 

are acquiring new assets (machinery, buildings etc.) as various means of 

support became available under the CAP. Yet not all of these investments are 

able to increase the productivity in the short run. Furthermore, excessive 

investments might never be recovered. On the other hand, it appears that those 

farms peculiar with median and third-quartile values of the environmental 

variables are somehow successful in making the investments successful.  
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4. TECHNOLOGY SHIFTS IN LITHUANIAN FAMILY FARMS 

 

This section of thesis is dedicated to analysis of the total factor 

productivity change in Lithuanian family farms. In order to ensure the 

robustness of the analysis, multiple methods are employed. Whereas the 

Malmquist index measures the change in TFP in between the two time periods, 

the Färe-Primont index allows determining the level of TFP for each period. 

Indeed, the Malmquist index is not a transitive one and thus does not allow to 

precisely measure the TFP change over multiple time periods in a chain-linked 

manner. As for the Färe-Primont index, it is a transitive one and thus enables to 

measure the change in the TFP in a more reasonable way. This section also 

attempts to explain the changes in TFP with respect to certain contextual 

variables. 

  

4. 1. The bootstrapped Malmquist index 

 

The bootstrapped Malmquist index was employed to estimate the changes 

in the total factor productivity in 200 Lithuanian family farms during 2004–

2009. As it was already mentioned, the bootstrapped Malmquist indices enable 

to identify the significant changes in the total factor productivity. The analysed 

sample, therefore, was classified into the three groups each encompassed of 

farms that featured significant decrease, no change, or a significant increase in 

the Malmquist productivity indices. Given the bias-corrected estimates cannot 

be used unless variance of the bootstrap estimates is three times lower than the 

squared bias of the original estimate, the original estimates are usually 

reported. Consequently, the indices that did not differ from unity at 0.1   

were equaled to unities for the further analysis. Hereafter, these variables will 

be referred to as the adjusted ones.  

The means of the adjusted Malmquist indices are given in Table 4.1. As 

one can note, the three farming types did not differ significantly in terms of the 

cumulative mean TFP change: these values fluctuated in between 0.82 and 
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0.85 across the farming types. This finding implies that the TFP had decreased 

by some 15–18% throughout 2004–2009. The negative TFP changes were 

observed for crop farms during all of the analysed periods save that of 2006–

2007. Both the livestock and the mixed farms exhibited positive changes in 

2004–2005 also. The steepest cumulative decrease in efficiency, represented 

by the EC component, was observed for the crop farms. Specifically, efficiency 

there decreased by some 21%. The inward movement of the production 

frontier, identified by the TC component, negatively affected the mixed farms: 

the TFP decreased by 21% due to the negative technical change. The livestock 

farms did also experience the same decrease in technology, which amounted 

for some 18%.  

The two terms, EC and TC, can be further decomposed to analyse the 

sources of changes in efficiency and technology itself. The decomposition of 

the efficiency change term, EC, into the two components revealed that the 

scale efficiency change, SEC, did not play an important role for either of the 

farming types. It can thus be concluded that the underlying technology was 

CRS. The mixed farms, though exhibited some features of a VRS technology. 

The highest decrease in pure efficiency (PEC) was observed for the crop farms 

(23%), whereas livestock and mixed farms experienced much lower decreases 

of 7–8%. Decomposition of the TC component induced that the pure technical 

change, PTC, decreased the productivity of the crop and mixed farms by 27% 

and 44%, respectively, whereas the crop farms did not suffer from decrease in 

technology. However, the negative effect on the mixed farms was alleviated by 

increasing convexity of the technology: the STC component indicated a 50% 

increase in productivity. Therefore, the mixed farms diverged in their scale, 

particularly in the period of 2004–2005. 
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Table 4.1. The Malmquist productivity index and its decomposition across 

farming types, 2004–2009. 

Farm type M EC TC PEC SEC PTC STC 

Crop 0.82 0.79 0.95 0.77 0.96 0.95 1.00 

2004–2005 0.89 0.97 0.92 0.93 1.03 0.93 0.99 

2005–2006 0.79 0.83 0.95 0.87 0.96 0.92 1.03 

2006–2007 1.66 1.13 1.39 1.06 1.02 1.38 0.99 

2007–2008 0.96 0.92 1.02 0.92 0.99 1.04 0.97 

2008–2009 0.73 0.94 0.78 0.97 0.97 0.77 1.01 

Livestock 0.82 0.97 0.82 0.93 0.99 0.73 1.09 

2004–2005 1.19 1.02 1.12 1.02 1.00 1.02 1.11 

2005–2006 0.88 0.93 0.96 0.95 0.99 0.91 1.03 

2006–2007 1.13 1.06 0.99 1.01 1.01 1.03 0.98 

2007–2008 0.92 0.95 1.00 0.96 0.99 0.97 1.01 

2008–2009 0.76 1.02 0.77 0.99 1.00 0.79 0.97 

Mixed 0.85 0.94 0.79 0.92 0.90 0.56 1.50 

2004–2005 1.01 1.05 0.96 1.05 0.99 0.70 1.40 

2005–2006 0.84 0.82 1.01 0.87 0.97 0.98 1.04 

2006–2007 1.28 1.12 1.07 1.01 1.03 1.10 0.98 

2007–2008 0.98 0.95 1.01 1.00 0.93 0.99 1.03 

2008–2009 0.80 1.03 0.75 1.01 0.99 0.75 1.02 

Notes: the geometric means of the adjusted estimates are presented; the annual 

data represent productivity changes, whereas farming type-specific heading 

rows exhibit the cumulative changes for 2004–2009. 

 

The multivariate analysis was carried out in order to reveal the underlying 

patterns of the productivity change across farming types and time periods. 

Specifically, the multiple correspondence analysis (MCA) was applied to 

identify the relations between farming types, years, and TFP changes. The 

package FactoMineR (Husson et al., 2010) was utilized to implement MCA. 

The MCA enables to explore the relations between the categorical variables by 

the means of the 2  distance.  

In our case we distinguished the three categories for estimates of the 

bootstrapped Malmquist productivity index and its components, namely (i) 

increase, (ii) no change, and (iii) decrease in TFP. Therefore, the seven 
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variables, , , , , , ,
k k k k k k k

o o o o o o oM EC TC PEC SEC PTC STC , were classified into the three 

groups by the means of the bootstrap confidence intervals. The two 

supplementary variables, year and farm type, were also considered in order to 

better describe the productivity change patterns. The resulting MCA plot is 

depicted in Fig. 4.1. The first two components explain some 35% of the total 

inertia.  

 

 

Fig. 4.1. The MCA plot describing relationships between Malmquist indices 

and supplementary variables. 
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As one can note, the three groups of productivity change indices 

emerged. Indeed, they were associated with a positive (NE part of the plot), 

negative (NW), or insignificant (S) change in productivity, respectively. 

Clearly, the first component axis discriminated the variables associated with a 

more stochastic TFP change pattern from those related to insignificant 

changes. The second component axis presented a gradient of productivity 

change, i. e. the TFP increased going along the latter axis. Note that the 

positive STC was associated with negative changes in TFP. The latter finding 

implies that technological progress was related to CRS technology, whereas 

technological regress featured the increasing convexity of the production 

frontier (i. e. VRS technology). A cluster of negative efficiency change 

components (EC, SC, PEC) was located further away from the origin point 

thus indicating that decease in efficiency resulted in steeper decrease in the 

TFP than decrease in other terms of the Malmquist productivity index. 

All of the farming types exhibited change in the TFP close to the average, 

although the crop farming was located in the more stochastic area, whereas the 

livestock farms appeared to be the most stable in terms of the TFP change. 

Given all of the farming types exhibited similar level of the TFP change, the 

livestock farms can be considered as those better performing. The MCA plot 

does also confirm that the period of 2006–2007 was that of increase in the 

TFP, whereas the periods of 2005–2006 and 2008–2009 were associated with 

decrease therein.  

 

4. 2. Productivity change with the sequential technology 

 

The sequential Malmquist–Luenberger (SML) index was computed in 

the spirit of Eq. 2.15 and decomposed by employing Eq. 2.16. The results are 

presented in Fig. 4.2. The total factor productivity (TFP) was decreasing 

throughout the period of 2004–2009 with exception for 2006–2007 when the 

agricultural sector had been recovering after natural shocks which took place in 
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the preceding period. Accordingly, the cumulative TFP change indicated the 

decrease of some 2.9% throughout 2004–2009. The technical change 

component, TC, stagnated in 2009, yet remained the most important factor of 

TFP growth accounting for increase of some 14% during 2004–2009. The 

cumulative scale efficiency term, SEC, fluctuated slightly above unity thus 

suggesting that certain shifts have occurred in the meantime. Farm expansion 

might be the primary cause of these developments. The decreasing pure 

technical efficiency, PEC, however, reduced the TFP by 16%. Therefore, it can 

be concluded that the structural support under Common Agricultural Policy 

together with farmers’ own investments enabled to push the production frontier 

outwards, however the largest part of the analysed farms remained inefficient 

(negative catching up effect) and thus experienced decreasing TFP. 

 

 

Fig. 4.2. The cumulative change in total factor productivity and decomposition 

of the sequential Malmquist–Luenberger index, 2004–2009. 

 

The means of components of the sequential Malmquist–Luenberger 

index were computed for each farming type. Fig. 4.3 summarizes these 

variables. As one can note, livestock experienced increase in TFP, equal to 

3.7% on average, whereas a decrease of some 2.9% was observed for the 
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sample altogether. Although efficiency change was negative for the latter 

farming type, it had the highest mean increase in technical change (frontier 

shift). The livestock farms, therefore, were probably those pushing the 

production frontier outwards. Crop and mixed farms exhibited almost equal 

TFP change (cumulative index values of 0.97 and 0.96, respectively). Crop 

farms suffered from low efficiency change gains, whereas mixed farms 

underwent meagre technical change. In accordance with these findings, public 

support should be tailored to encourage mixed farm development in terms of 

their operation scale and innovative technologies that could shift the 

technological frontier. Crop farms should seek to increase their technical 

efficiency by the means of land reclamation and modernisation of the 

productive technology. 

 

 

Fig. 4.3. Decomposition of the sequential Malmquist–Luenberger index across 

farming types (cumulative means for 2004–2009). 

 

As Oh and Heshmati (2010) pointed out the innovative DMUs, i. e. 

those pushing the production frontier outwards, satisfy the three conditions: 
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1 1 1 1

1( ) 0q t t t t

tE    

 x yx ,y ;g ,g
.   (4.3) 

The first condition (Eq. 4.1) discriminates those DMUs which have 

achieved positive technical change in between time periods t and t+1. The 

second condition (Eq. 4.2) restricts the set under analysis to those input–output 

sets of the period t+1 which were infeasible in the preceding period, t. Finally, 

the third condition (Eq. 4.3) stipulates that an innovative DMU should be fully 

efficient during the period t+1.  

With respect to Eqs. 4.1–4.3 some 13 farms were identified as being 

innovators throughout 2004–2009. Indeed, ten farms were innovators during 

the period of 2004–2005, whereas the remaining three – during 2006–2007. 

Other periods, therefore, might be specific with asymmetric shifts in 

production frontiers. Again, ten of the farms–innovators were specialized crop 

farms, whereas the remaining three were specialized livestock farms. The 

proportion between them remained virtually the same throughout the time. 

Thus the share of livestock farms fluctuated in between 20% and 33%, whereas 

these farms constituted some 9–15.5% of the analysed sample. To cap it all, 

livestock farms were more likely to become innovators pushing the production 

frontier outwards. 

 

4. 3. Application of the Hicks–Moorsteen index 

 

Changes in the total factor productivity (TFP) were estimated by employing 

Eqs. 2.16–2.18. Tables 4.2–4.5 present the dynamics of TFP change (HM) as 

well as its components, namely technical efficiency change effect (TE), 

technology change effect (T), and activity effect (AE). The activity effect was 

further decomposed into scale effect, input–mix effect, and output–mix effect.  

As Table 4.2 reports, the mean increase of TFP reached some 20% in the 

analysed sample of the Lithuanian family farms throughout 2004–2009. Note 

that the period of 2006–2008 was that of TFP growth, whereas the subsequent 

period of 2008–2009 was specific with decrease in TFP. Technology change 

(T) indicated that the production frontier moved inwards the origin point 
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during 2004–2006 and 2008–2009. This finding implies that negative climatic 

impact as well as price fluctuations specific for the latter period resulted in an 

overall decrease in productivity of the agricultural sector. As a result the 

technology change decreased TFP growth by some 4.6%. Technical efficiency 

effect caused the decrease in TFP equal to 12.2%. Indeed, the latter effect was 

negative during the whole period of 2004–2009. The activity effect (AE) 

stimulated TFP growth and thus contributed to its increase by 52%. 

Decomposition of the activity effect revealed that it was the scale effect that 

caused these developments, whereas input– and output–mix effects caused 

decrease in TFP. 

 

Table 4.2. Cumulative changes in TFP and its decomposition for the whole 

sample. 

Year HM TE T AE 

2005 0.959 0.944 0.952 1.068 

2006 0.832 0.834 0.881 1.132 

2007 1.301 0.892 1.198 1.218 

2008 1.550 0.842 1.222 1.506 

2009 1.199 0.828 0.954 1.519 

 

In order to analyse the differences in TFP dynamics across different farming 

types, Tables 4.3–4.5 focus on crop, livestock, and mixed farms, respectively. 

The crop farms were specific with higher TFP decrease arising from efficiency 

change if compared to the mean for all farming types (21% and 17%, 

respectively). This difference, however, might be an outcome of measurements 

errors. 

 

Table 4.3. Cumulative change in TFP and its decomposition for crop farms. 

Year HM TE T AE 

2005 0.918 0.920 0.938 1.063 

2006 0.771 0.803 0.850 1.130 

2007 1.308 0.876 1.243 1.202 

2008 1.584 0.812 1.280 1.523 

2009 1.200 0.793 0.995 1.521 
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The livestock farms exhibited higher increase in TFP, viz. 27% (Table 4.4), 

if compared to the mean increase of 20% for the whole sample. Indeed, it was 

only the livestock farms that managed to maintain TFP growth throughout the 

whole research period. It can therefore be assumed that livestock farms are 

more persistent to market shocks. Furthermore, livestock farms managed to 

sustain the growth of technical effect of 5.6% what does indicate that livestock 

farms benefited from the expanding production frontier. The latter process, 

though, was negatively affected by decreased livestock production prices in 

2009. Noteworthy, livestock farms were specific with a lower activity effect if 

compared to the whole sample. Nevertheless, the decomposition of the activity 

effect revealed that the livestock farms faced the lowest TFP losses caused by 

output– and input–mix changes. Thus, livestock farms are likely to adjust the 

structure of both their inputs and production in a more reasonable way if 

compared to the other farming types. The scale effect, though, was rather 

meagre.  

 

Table 4.4. Cumulative change in TFP and its decomposition for livestock 

farms. 

Year HM TE T AE 

2005 1.172 1.025 1.124 1.017 

2006 1.238 0.955 1.178 1.100 

2007 1.527 0.973 1.321 1.189 

2008 1.557 0.950 1.309 1.253 

2009 1.271 0.940 1.056 1.281 

 

The mixed farming did also experience higher than average TFP growth rate 

of 27.1% with the single period of decreasing TFP in 2005–2006 (Table 4.5). 

The mixed farms were also specific with non-decreasing technical efficiency 

which is represented by a positive efficiency effect (TE) of 0.8%. On the other 

hand, these farms did not gain too much from the shifts in production frontier 

(i. e. sector–wide changes in prices, yields etc.): the technical effect resulted in 

TFP reduction of some 20%. 
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Table 4.5. Cumulative change in TFP and its decomposition for mixed farms. 

Year HM TE T AE 

2005 1.129 1.056 0.947 1.128 

2006 0.982 0.957 0.879 1.168 

2007 1.329 0.975 1.035 1.318 

2008 1.604 0.997 1.016 1.583 

2009 1.334 1.008 0.798 1.658 

 

The variation of the productivity index and its terms can be assessed by 

analysing respective coefficients of variation (ratio of the standard deviation to 

the mean). The highest variation in Hicks–Moorsteen TFP index was observed 

for crop farms, whereas the lowest for livestock farms. The mixed farms fell in 

between thus confirming their ability to diversify market risks.  

As for the terms of the Hicks–Moorsteen TFP index, one can note that it was 

technical change that was specific with the highest variation and therefore the 

highest effect on the TFP index. Thus, the Lithuanian family farms were 

mostly impacted by external factors rather than internal ones (for instance, 

modernization), identified by efficiency change. 

What the carried out analysis of the TFP dynamics in Lithuanian family 

farms does suggest is that modernization of the agricultural practices is of high 

importance. The technical progress could be incentivized via the increased 

R&D expenditures as well as more reasonable distribution thereof, new 

education and training programmes. The activity effect is determined by scale 

changes as well as shifts in input– and output–mix. The ongoing expansion of 

large farms in Lithuania (Baležentis, 2012) might result in positive effect on 

TFP (indeed, this effect was already present during the research period), 

whereas price policy can provide a momentum for adjustments in input– and 

output–mix.  

The aforementioned issues require further analyses, especially those based 

on micro data. Specifically, bootstrapping techniques could be employed to 

tackle the statistical noise present in the data with second–stage analysis 

focused on identification of factors of TFP changes. One could also define 
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separate production frontier for respective farming types. Finally, utilization of 

different TFP indices would allow approaching higher level of robustness. 

 

4. 4. The Färe-Primont index and transitive estimates 

 

The TFP measures and indices were estimated by the virtue of the 

Färe-Primont TFP indices. Specifically, the levels of TFP measures and indices 

represent the time-specific performance of the Lithuanian family farms under a 

transitive multilateral framework, whereas the changes in TFP measures and 

indices account for dynamics thereof measured against the arbitrarily chosen 

reference farm.  

 The following Table 4.6 reports the mean values of the TFP 

measures for different farming types. Given the Färe-Primont index is a 

transitive one, all the comparisons were made with reference to year 2004 as a 

base period. In order to ensure the time reversal capability, the rates of TFP 

change were logged. As a result, the crop farms exhibited the growth of TFP of 

16.5% during 2004-2009, whereas livestock and mixed farms featured TFP 

growth of 24.3% and 39.1% respectively. Note that years 2006 and 2009 were 

those of the declining TFP for all farming types. The mean TFP levels for crop, 

livestock, and mixed farming were 0.21, 0.28, and 0.16 respectively. The 

annual logged growth rates ranged in between 3.3% and 7.8% p. a.  

The TFP efficiency was decomposed into the four terms, namely 

*TFP , ITE, ISE, and RME. The maximal TFP ( *TFP ) increased throughout the 

research period due to assumption of no negative technical change: the value of 

0.468 was observed for year 2004, 0.5223 for 2005–2007, and 0.559 for 2008–

2009. Therefore, the best performing farms managed to increase their TFP 

even further. Specifically, the technical change of some 17.7% had occurred 

during 2004–2009 (2.9% p. a.). Fig. 4.4 exhibits the kernel densities of the 

remaining efficiency measures for the three farming types. Indeed, these plots 

depict variation of the respective TFP measures for the whole period of 2004–



167 

 

2009 The Gaussian kernels (Silverman, 1986) were used to approximate the 

underlying empirical distributions.  

 

Table 4.6. Dynamics of the TFP across different farming types, 2004-2009. 
Farming 

type 
2004 2005 2006 2007 2008 2009 

Mean over 

2004-2009 

TFP levels 

Crop 0.196 0.194 0.151 0.226 0.251 0.231 0.208 

Livestock 0.235 0.259 0.242 0.306 0.347 0.300 0.281 

Mixed 0.123 0.154 0.129 0.183 0.187 0.181 0.159 
*TFP  0.468 0.522 0.522 0.522 0.559 0.559 0.525 

TFP indices (base year 2004) 

Crop 1.000 0.993 0.771 1.155 1.284 1.179  

Livestock 1.000 1.100 1.031 1.300 1.476 1.275  

Mixed 1.000 1.256 1.049 1.494 1.527 1.479  

*TFP  1.000 1.116 1.116 1.116 1.194 1.194  

Logged TFP changes (%) 

Crop 0.0 -0.7 -26.0 14.4 25.0 16.5 3.3 

Livestock 0.0 9.5 3.0 26.2 38.9 24.3 4.9 

Mixed 0.0 22.8 4.8 40.2 42.3 39.1 7.8 
*TFP  0.0 11.0 11.0 11.0 17.7 17.7 2.9 

Note: 
*TFP  denotes the level of maximal TFP. The means of TFP levels are averages, 

whereas the means of TFP changes are given as  2009 2004/ / 5ln TFP TFP .  

 

The upper left plot of Fig. 4.4 depicts the densities of the TFP 

efficiency (TFPE) scores. TFPE indicates the extent to which a certain farm is 

deviated from the point of maximal productivity: The lower TFPE, the lower 

the ratio of the observed TFP to the maximal TFP. These computations can be 

interpreted as a movement from point A towards point E in Fig. 2.3. Note that 

the point of maximal productivity, E, is located on the mix-unrestricted 

frontier. It was the livestock farms that exhibited the highest mean efficiency 

(0.53). The latter farming also exhibited the highest standard deviation (SD) of 

0.19 associated with TFPE. The coefficient of variation (CV), however, was 

the lowest one (0.37) if compared to the remaining farming types. The crop 

farming featured the mean TFPE of 0.4 and SD of 0.16. Accordingly, the CV 

approached the value of 0.41. Finally, the mixed farming was peculiar with 

rather low mean TFPE of 0.30, whereas SD remained at 0.17 and CV increased 
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up to 0.55. As the upper left plot in Fig. 4.4 suggests, the underlying density 

for the mixed farms was a bi-modal one. Therefore, at least two clusters of the 

mixed farms can be considered. The latter implies that in spite of the 

diversification, the mixed farms did not manage to maintain a substantial level 

of the TFPE as well as its variation.  

The densities for input-oriented technical efficiency (ITE) are 

depicted in the upper right plot of Fig. 4.4. ITE compares the observed TFP to 

that related to the technically efficient production plan. The latter levels of TFP 

are associated with, respectively, points A and B in Fig. 2.3. The ITE scores, 

thus can be interpreted as factors of the input contraction needed (holding the 

structure of the input-mix fixed) to ensure the technical efficiency. It is evident 

that the crop and mixed farms concentrated around the two values of the ITE 

with one of these values falling in between 0.4 and 0.6, and another 

approaching unity (i. e. technically efficient region). Indeed, the crop farming 

featured the lowest mean ITE, viz. 0.69. Furthermore, the SD of 0.19 resulted 

in the CV of 0.27, which was the highest value if compared to other farming 

types. The mixed farming was associated with more favourable ITE indicators: 

mean ITE was 0.73, SD – 0.15, and CV – 0.20. On the other hand, it was the 

livestock farms that were specific with the highest ITE. Particularly, the mode 

of the underlying density was located near the value of unity and the mean ITE 

was 0.85. In addition, the variation in the efficiency was also a low one (SD – 

0.14 and CV – 0.16).  
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TFP efficiency Input-oriented technical efficiency 

  
Input-oriented scale efficiency Residual mix efficiency 

Fig. 4.4. Densities of the efficiency scores for different farming types. 

Note: Bold, dashed, and dotted lines represent densities for crop, livestock, and mixed farms respectively. 
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The densities of the input-oriented scale efficiency (ISE) scores 

are given in the lower right plot of Fig. 4.4. ISE compares the TFP at 

technically efficient point to that prevailing at the point of mix-invariant 

optimal scale. Thus, holding input-mix fixed we further move from point B 

towards point D in terms of Fig. 2.3. As one can note, these densities are rather 

compact ones with means located around the point of efficiency. Therefore, it 

is likely that the underlying technology is a CRS one. However, this paper does 

not focus on the issue
8
. The livestock farming was associated with the highest 

mean ISE, 0.91, as well as the lowest variation thereof (SD – 0.10, CV – 0.11). 

The crop farms were specific with the mean ISE of 0.86 and a higher level of 

variation in these scores (SD – 0.17, CV – 0.20). Finally, the mixed farms 

diverged from the optimal scale to the highest degree: The mean ISE was 0.76, 

SD – 0.19, and CV – 0.26.  

The lower left plot of Fig. 4.4 presents the densities of the residual 

mix efficiency (RME) scores across the three farming types. RME measures 

the TFP gains possible due to changes in the input-mix. Specifically, the TFP 

at mix-invariant optimal scale is compared to the TFP associated with optimal 

scale of the unrestricted frontier. Therefore, we look at points D and E in 

Fig. 2.3. The livestock farms featured the highest mean RME (0.69), albeit its 

variation was the second lowest one (SD – 0.17, CV – 0.25). The crop farming 

exhibited similar mean RSE (0.67) as well as the lowest variation thereof (SD 

– 0.13, CV – 0.20). The mixed farming was associated with the lowest mean 

RSE (0.55) and the highest variation thereof (SD – 0.20, CV – 0.37). Given the 

density depicted in Fig. 4.4, the mixed farms were grouped around RME levels 

of 0.2-0.4 and 0.6-0.8. Therefore, certain sub-types of the mixed farms did not 

manage to achieve the substantial level of RSE.  

 The results do indicate that the ITE was a decisive factor causing 

decrease in TFPE for crop and mixed farms. Meanwhile, the ISE constituted a 

serious problem for mixed farms. Indeed, these farms were the smallest ones if 

                                                           
8
 The bootstrapping-based tests can be employed to test the hypotheses of returns to scale (Simar, 

Wilson, 2002). 
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compared to the remaining farming types (cf. Table C1). Finally, the mix 

efficiency was low for all farming types indicating the need for implementation 

of certain farming practices allowing for optimisation of the input-mix.  

The econometric models were further employed to analyse the 

underlying drivers of the TFP growth. The TFPE, ITE, ISE, and RME were 

regressed over the selected environmental variables describing farm specifics. 

The following factors were chosen as regressors. The utilised agricultural area 

(UAA) identified the scale size and was considered a proxy for farm size. 

Indeed, the question of the optimal farm size has always been a salient issue 

for policy makers and scientists (Alvarez, Arias 2004; Gorton, Davidova 2004; 

van Zyl et al. 1996). The ratio of crop output over the total output (CropShare) 

captures the possible difference in farming efficiency across crop and livestock 

farms. Similarly, the dummy variable for organic farms (Organic) was used to 

quantify the difference between organic and conventional farming. It is due to 

Offermann (2003) that Lithuanian organic farms exhibit 60–80% lower crop 

yields depending on crop species if compared to same values for conventional 

farming. The demographic variable, namely age of farmer (Age) was 

introduced to ascertain whether young–farmers–oriented policy measures can 

influence the structural efficiency. Finally, the effect of production subsidies 

on efficiency was estimated by considering ratios of production subsidies to 

output (SubsShare). 

 Given the analysis relied on the panel data, the F-test was 

employed to check whether the data do exhibit farm- and time-specific effects. 

The null hypothesis of insignificant effects was rejected at the significance 

level of 1%. Furthermore, the Hausman test rejected the random-effects model 

at the significance level of 1%. Accordingly, the two-way fixed-effects models 

were estimated for TFPE, ITE, ISE, and RME: 

( ) 't t t

k k k t ky u u    β z ,   (4.4) 

where y is the component of TFP ( { , , , }y TFPE ITE ISE RME ), β  is the vector 

of coefficients, t

kz  is the vector of the environmental variables, ku  is farm-
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specific effect, and tu  is time-specific effect. The elasticities can then be 

computed as follows: 

/t t t

k k kye βz ,   (4.5) 

where /t t t

k k kye βz  is a vector of elasticities of the same dimension as β  and t

kz

. The estimated models are given in Table 4.7. The ITE and RME 

were poorly explained by the selected variables ( 2R  were 0.05 and 0.10 

respectively). The results showed that the farm size had a positive effect on 

TFP, ISE, and RME. Therefore, the larger farms are more likely to increase 

their TFPE by operating at the optimal scale and adjusting their input-mixes. 

However, the ITE remained unaffected by the farm size. The crop share had a 

negative effect on TFPE, ITE, and RME. The latter finding implies that crop 

and mixed farms experienced lower technical and mix-efficiency as well as 

TFP levels. Nevertheless, these farms did not deviate from the optimal size of 

scale to a significant extent. The ratio of subsidies to the total output had a 

negative impact on TFPE, ITE, and ISE. Therefore, the increasing subsidy rate 

negatively affected the TFP as well as technical efficiency. Given the relation 

to the mix-efficiency measure (RME) was not significant, it can be concluded 

that the subsidies do accelerate farm growth but do not distort the input-mix. 

Farmer age had no significant impact on the analysed efficiency and TFP 

measures save that of RME: It turned out that older farmers manage to achieve 

higher mix-efficiency. The latter finding might be explained by the fact that 

more experienced farmers ensure the proper input-mix structure. Accordingly, 

the educational programmes for the younger farmers remain important in the 

light of results of the analysis. Finally, the organic farming was not associated 

with any significant effects on TFP and efficiency. 

 Given the environmental variables were expressed in different 

dimensions, the efficiency elasticities were computed in terms of Eq. 4.5. The 

results are given in Table 4.8. Farm size in hectares (UAA) was the least 

important factor in terms of its contribution to the efficiency and TFP levels. 

Farmer age played an important role in the context of RME. Meanwhile, the 
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negative effect of crop share outweighed those of subsidy rate and farm size. 

One can further note that organic farming practice was not associated with 

significant changes in TFP and its components. 

 

Table 4.7. Coefficients of the fixed-effects model. 

 
TFPE ITE ISE RME 

UAA 0.00021 *** 0.00003 

 

0.00014 * 0.00012 * 

CropShare -0.36191 *** -0.29410 *** -0.05598 

 

-0.17346 *** 

SubsShare -0.13163 *** -0.09888 *** -0.15401 *** -0.01435 

 Age 0.00105 

 

0.00028 

 

0.00011 

 

0.00154 . 

Organic 0.01029 

 

-0.02610 

 

0.03664 

 

-0.01305 

 
         

Adj. 
2R  0.13 0.05 0.10 0.02 

F-statistic 29.877 *** 11.4348 *** 28.6 *** 5.87311 *** 

Note: Significance codes for respective p-values: '***' – 0.001; '**' – 0.01; '*' – 0.05; '.' – 0.1. 

 

 

Table 4.8. Efficiency elasticities (E) across different models. 

  

UAA CropShare SubsShare Age Organic 

TFPE 
Mean E 0.127 -0.870 -0.201 0.151 0.002 

E at mean 0.120 -0.670 -0.100 0.113 0.001 

ITE 
Mean E 0.018 -0.705 -0.150 0.037 -0.006 

E at mean 0.017 -0.543 -0.074 0.028 -0.003 

ISE 
Mean E 0.081 -0.135 -0.235 0.017 0.009 

E at mean 0.076 -0.104 -0.117 0.012 0.004 

RME 
Mean E 0.073 -0.417 -0.022 0.222 -0.003 

E at mean 0.069 -0.321 -0.011 0.167 -0.001 

Note: Bold figures are those associated with significant regression coefficients. 

 

All in all, the TFP efficiency of the Lithuania family farms was 

mainly determined by the technical and mix-efficiency during 2004–2009. 

These measures, in turn, were better for livestock farming if compared to 

mixed and crop farming. Specifically, the increase of crop share in the total 

output of 1% caused decrease in the TFPE of 0.87% on average. An increase in 

subsidy rate of the same margin resulted in decrease in TFPE of 0.2% on 

average.  
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5. FEATURES OF THE UNDERLYING PRODUCTIVE 

TECHNOLOGY 

 

This part of the thesis aims to analyse the underlying productive 

technology of Lithuanian family farms. Therefore, the technical change is 

analysed with respect to change in the input productivity. Another important 

issue to be addressed is that of the optimal farm size (i. e. returns to scale). 

Finally, the farming types are compared with respect to the associated 

production frontiers.  

 

5. 1. Technical bias 

 

The input-biased technology change can be analysed in terms of 

certain combinations of the input-mix ratios and the IBTC component of the 

Malmquist productivity index (cf. Table 2.1). The analysis proceeds by 

considering each possible combination of two inputs. In case the technology 

change is non-neutral, two combinations are related to an input saving change, 

whereas the remaining two are related to input-consuming change for each of 

the two inputs analysed. In the sequel, therefore, we report only the outcomes, 

i. e. the nature of technology change, of the discussed combinations. The 

following Table 5.1 describes the nature of TCs observed during different 

periods across farming types.  

The crop farms exhibited labour-using TC during 2004-2009. 

Specifically, 51 percent of crop farms featured labour-using and intermediate 

consumption increasing TC. In addition, 54 percent of crop farms exhibited 

labour-using and asset-saving TC. However, 53 percent of crop farms 

underwent labour-saving and land-using TC. The latter farming type 

encountered land-using TC with respect to all remaining factors. Specifically, 

53-56 percent of crop farms exhibited land-using TC depending on the 

reference factor. The majority of crop farms (i. e. 51-56 percent) faced 

intermediate consumption saving TCs against land and labour. Though, only 
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46 percent of crop farms experienced intermediate consumption saving and 

asset-using TCs. Finally, 54-56 percent of crop farms exhibited an asset-saving 

TC depending on the reference factor. All in all, crop farming was peculiar 

with land-using and asset-saving TC, whereas labour-using and intermediate 

consumption saving TCs were observed only for certain combinations of 

inputs. However, the differences between the shares of crop farms exhibiting 

different patterns of the TCs were not large, i. e. these shares were close to 50 

percent.  

Livestock farms encountered labour-saving TC with respect to 

land and asset factors (55 percent), whereas only 47 percent of these farms 

faced a labour-saving and intermediate consumption increasing TC. One can 

further conclude that a land-using TC prevailed in the crop farming: 45 percent 

of crop farms featured land-saving and labour-using TC, 44 percent of them – 

land-saving and intermediate consumption increasing TC, whereas 52 percent 

– land-saving and asset-consuming TC. The largest share of livestock farms 

(53-57 percent depending on the reference factor) exhibited an intermediate 

consumption saving TC. Depending on the reference factor, some 52-57 

percent of livestock farms encountered an asset-consuming TC. Thus, livestock 

farms generally experienced intermediate consumption and asset saving TCs 

against all the remaining inputs, whereas labour-saving and land-using TC 

varied with the reference inputs. 

 

  



176 

 

Table 5.1. Farm structure in terms of the input-biased TC, 2004-2009 (percent). 

 

2x -

saving / 

1x -

using 

2x -

using / 

1x -

saving 

3x -

saving / 

1x -

using 

3x -

using / 

1x -

saving 

4x -saving 

/ 1x -using 

4x -

using / 

1x -

saving 

3x -

saving / 

2x -

using 

3x -

using / 

2x -

saving 

4x -

saving / 

2x -

using 

4x -

using / 

2x -

saving 

4x -

saving / 

3x -

using 

4x -

using / 

3x -

saving 

Crop farming 

2004-2005 49 51 51 49 39 61 52 48 44 56 41 59 

2005-2006 55 45 37 63 60 40 29 71 56 44 64 36 

2006-2007 26 74 32 68 40 60 54 46 52 48 48 52 

2007-2008 52 48 69 31 59 41 78 22 58 42 41 59 

2008-2009 53 47 64 36 74 26 65 35 73 27 76 24 

Average 47 53 51 49 54 46 56 44 56 44 54 46 

Livestock farming 

2004-2005 67 33 72 28 56 44 67 33 50 50 50 50 

2005-2006 60 40 56 44 48 52 36 64 36 64 44 56 

2006-2007 32 68 26 74 29 71 35 65 35 65 52 48 

2007-2008 30 70 75 25 50 50 90 10 65 35 30 70 

2008-2009 41 59 55 45 50 50 68 32 64 36 68 32 

Average 45 55 53 47 45 55 56 44 48 52 49 51 

Mixed farming 

2004-2005 54 46 58 42 75 25 54 46 79 21 58 42 

2005-2006 52 48 59 41 41 59 45 55 45 55 41 59 

2006-2007 22 78 56 44 70 30 67 33 74 26 74 26 

2007-2008 59 41 81 19 56 44 78 22 52 48 33 67 

2008-2009 35 65 94 6 100 0 87 13 94 6 90 10 

Average 44 56 70 30 69 31 67 33 69 31 60 40 

Note: xs denote respective factors: 1x  denotes labour in AWU, 2x  - UAA in ha, 3x  - intermediate consumption in Lt, and 4x  - assets in Lt.  
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The structure of mixed farms was a more uneven one if compared 

to those of the discussed farming types. Clearly, some 70 percent of mixed 

farms exhibited labour-using and asset- or intermediate consumption saving 

TCs. Some 56 percent of mixed farms, though, showed labour-saving and land-

using TC. Most of the mixed farms (i. e. 56-69 percent depending on the 

reference input) featured land-using TCs. Intermediate consumption saving 

TCs prevailed in mixed farming against labour and land (70 percent and 67 

percent, respectively), however, only 40 percent of mixed farms encountered 

an intermediate consumption saving and asset-using TC. Finally, 60-69 percent 

of mixed farms faced asset-saving TYCs with respect to labour, land, and 

intermediate consumption. Accordingly, mixed farms can be considered as 

those peculiar with increasing land use and decreasing capital consumption. 

Labour-using and intermediate consumption saving TCs did also hold for most 

of the analysed factors.  

The analysed TFP indices suggested that all the farming types 

experienced some sort of land use intensification, for the observed TC was 

land-using and labour-saving. These trends might be explained by increasing 

size of the farms engaged in the industrial farming on the one hand, and 

decreasing rural population on the other hand. However, the relative amount of 

labour decreased if compared to respective changes in the intermediate 

consumption and assets. These findings might be associated with the farm 

modernisation and subsequent increase in productivity of assets and 

intermediate consumption. Here one can also note that some 51 percent of the 

crop farms as well as 70 percent of the mixed farms exhibited growth in the 

productivity of the intermediate production during 2004-2009, whereas the 

respective proportions associated with asset to labour ratio were 54 percent and 

69 percent. As for the livestock farms, the relative amount of assets used in the 

production process generally increased with respect land or labour. The latter 

finding implies that the livestock farms might have accumulated excessive 

amounts of capital. Anyway, appropriate measures of marketing might increase 

the revenue in a longer run and thus increase the productivity of capital.  
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5. 2. Returns to scale across farming types 

 

The prevailing returns to scale were analysed with each farming 

type. The qualitative method described in the preceding section was employed 

to classify the observations with respect to the RTS.  

 The crop farms were mainly operating under a sub-optimal scale. 

Indeed, some 71% of the observations associated with the latter farming type 

exhibited IRS, whereas 22% operated under DRS and the remaining 7% 

featured CRS (i. e. they operated in the range of the MPSS). Indeed, crop farms 

exhibited a decreasing share of farms operating at the sub-optimal scale 

(Fig. 5.1): The share of suchlike farms dropped from 76% in 2004 to 68% in 

2009. The share of farms operating at CRS increased from 7% up to 9% 

throughout the same period. The share of farms operating at the DRS (i. e., the 

supra-optimal scale) increased from 18% up to 23%. The aforementioned 

developments can be explained by crop farm expansion occurred during the 

research period. 

 

 

Fig. 5.1. The structure of crop farms in terms of RTS, 2004-2009. 

 

 The mixed farms did also mainly operate in the range of the IRS 

(69% of the relevant observations). Some 16% of the observations exhibited 
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CRS, yet another 15% featured DRS. Indeed, the structure of crop farms was a 

relatively stable one in terms of RTS. Fig. 5.2 presents the mixed farm 

structure in terms of the prevailing RTS. 

 

 

Fig. 5.2. The structure of mixed farms in terms of RTS, 2004-2009. 

 

 The livestock farming exhibited high variation in RTS. The share 

of observations associated with IRS decreased from 63% down to 59% (52% 

on average). However, the years 2004 and 2009 were specific with increases in 

shares of farms operating under the sub-optimal scale: Even 59-71% of the 

livestock farms operated under IRS during those periods. Some 26% of the 

livestock farms operated at the MPSS on average. The share of the livestock 

farms operating at the supra-optimal scale varied significantly across the years 

with the average value of 22%. Fig. 5.3 presents these developments.  
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Fig. 5.3. The structure of livestock farms in terms of RTS, 2004-2009. 

 

 Results of the qualitative assessment of RTS across farming types 

did indicate that most of the analysed farms operated at a sub-optimal scale. 

The highest share of farms operating under IRS was observed for the crop and 

mixed farming (71% and 69% respectively). On the other hand, it was the 

livestock and mixed farms that exhibited the most frequent occurrences of 

DRS (22% and 15% respectively). The results revealed that the livestock farms 

can be considered as those operating at the optimal scale size to the highest 

extent (26% of observations) if compared to mixed (16%) or crop (7%) farms. 

However, the livestock farms did also exhibit the highest variation in the 

operation scale. Therefore, the agricultural policy should support consolidation 

of the crop farms to some extent. The livestock farms, though, might require 

some additional income smoothing measures.  

 

5. 3. Elasticity of scale across farming types 

 

The patterns of the prevailing returns to scale and scale elasticity 

were analysed across the three different farming types, viz. crop, mixed, and 

livestock farming. The analysis aimed at estimating the MPSS. Specifically, 
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the three main variables describing the observed scale size were chosen for the 

research: UAA in hectares, land input in AWU, and the total output in Litas.  

The relationships between each of the latter variables and scale 

elasticity were quantified by employing the log-log regression, which appeared 

to feature the best fit. The values of the scale elasticity were truncated at 3 to 

improve the visualisation. Both input- and output-oriented models were 

considered for inefficient observations. The efficient ones were treated as 

reported by Banker and Thrall (1992). Furthermore, certain ratios were then 

derived in order to analyse the labour intensity and land productivity at the 

MPSS. Note that the projections of the inefficient observations were analysed 

instead of the original data. Otherwise, the input (output) values would be 

inflated (contracted) due to technical inefficiency. Thus, one can focus solely 

on the scale efficiency by analysing the projections. 

In the sequel, we will analyse the results across the three farming 

types, viz. crop, livestock, and mixed farming. The corresponding equations 

describing the relationships between input (output) indicators and the scale 

elasticity measure were estimated. The optimal values of inputs and outputs 

were obtained by setting scale elasticity equal to one, logging both sides of the 

equation and then solving it for the variable of interest.  

For sake of brevity, the input-elasticity plots are omitted. Table 5.2 

summarises the results for the crop farms. Generally, crop farms of some 250 

ha in size appeared to be those operating in the region of CRS. However, the 

lower and upper values obtained for the efficient farms diverged from the latter 

figures to a certain extent. Noteworthy, Vasiliev et al. (2008) employed DEA 

and estimated that the optimal Estonian grain farm size should fall in the range 

of 239-341 ha. Meanwhile, Luik et al. (2009) concluded that the same figure 

should be in between 200 and 600 ha. As for the labour force, the optimal 

amount was some 3 AWU. Finally, the total output in the region of CRS was 

600-700 thousand Lt (ca. 175-200 thousand EUR).  
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Table 5.2. The most productive scale size for the crop farms (2004–2009). 

Indicators 
Inefficient farms Efficient farms 

in

t  out

t  min

t  max

t  

UAA, ha 257 255 83 409 

Labour, AWU 3 3.4 1.4 5.3 

Total output, Lt 709,137 609,460 147,413 1,011,939 

          

UAA per labour unit, ha/AWU 84 75 58 78 

Land productivity, Lt/ha 2,759 2,391 1,766 2,476 

Labour productivity, Lt/AWU 216,067 179,305 103,089 192,277 

 

 The farm size can also be analysed in terms of the relative 

indicators (i. e. ratios). The results did indicate that the amount of land per one 

unit of labour (AWU) fell in the interval of 58-84 ha. The total output 

generated per one hectare of UAA ranged in between 1.8 and 2.8 thousand Lt. 

Meanwhile, the amount the total output per unit of labour (AWU) associated 

with CRS was 100-216 thousand Lt.  

 Considering the inefficient farms, the MPSS for the livestock 

farms was achieved at some 140 ha of the UAA (Table 5.3). The labour force 

employed at the livestock farms operating at the optimal scale reached some 

4.5 AWU and, thanks to the different technology, exceeded the respective 

figure for the crop farming. Meanwhile, the total output in the region of CRS 

was 438-478 thousand Lt.  

 

Table 5.3. The most productive scale size for the livestock farms (2004–2009). 

Indicators 
Inefficient farms Efficient farms 

in

t  out

t  min

t  max

t  

UAA, ha 139 147 44 221 

Labour, AWU 4.5 4.3 2.1 6.6 

Total output, Lt 478,938 438,801 141,411 821,745 

          

UAA per labour unit, ha/AWU 32 34 20 33 

Land productivity, Lt/ha 3,438 2,988 3,240 3,719 

Labour productivity, Lt/AWU 105,460 102,868 66,337 123,720 

 

 The relative livestock farm size in the region can be described as 

follows: The amount of UAA per one unit of labour was 20-34 ha. Land 
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productivity fluctuated around some three thousand Lt, whereas labour 

productivity ranged in between 66 and 124 thousand Lt. Note that these figures 

are lower than the respective ones associated with the crop farming. 

Accordingly, livestock farming might be less appealing at least in the range of 

CRS. 

 Table 5.4 presents the main results regarding the optimal scale of 

the mixed farms. As one can note, these farms fell in between the specialised 

crop and livestock farms in terms of UAA and labour input. However, the 

mixed farms are more similar to the livestock ones: The UAA was 82-195 ha, 

whereas the labour input amounted to 2.9-4 AWU (based on inefficient 

observations).  

 

Table 5.4. The most productive scale size for the mixed farms (2004–2009). 

Indicators 
Inefficient farms Efficient farms 

in

t  out

t  min

t  max

t  

UAA, ha 195 82 59 249 

Labour, AWU 4.0 2.9 2.3 5.2 

Total output, Lt 373,434 174,804 109,866 508,227 

          

UAA per labour unit, ha/AWU 50 28 26 48 

Land productivity, Lt/ha 1,914 2,137 1,866 2,039 

Labour productivity, Lt/AWU 93,883 59,797 48,325 97,503 

 

 The ratios describing farm size at the optimal scale were more 

consistent across the approaches of measurement. The results did indicate that 

scale efficiency had been ensured at farms which maintained the ratio of UAA 

and labour force at 26-50 ha/AWU. The land productivity fell into the interval 

of 1.9-2.1 thousand Lt/ha. the mixed farms operating at CRS exhibited the 

labour productivity of 48-98 thousand Lt/AWU. 

The quantitative analysis of the returns to scale in the Lithuanian 

family farms suggested that the crop farms should be some 250 ha in size with 

labour force amounting to 3-3.4 AWU. The total output associated with the 

optimal scale was 600-700 thousand Lt.  
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The livestock farms should be smaller in terms of land (some 140 

ha), albeit larger in terms of labour (4.3-4.5 AWU). Indeed, the total output 

associated with the optimal scale of production, 438-478 thousand Lt, suggests 

that the labour productivity in livestock farming (some 100 thousand Lt/AWU 

in the region of CRS) would be lower if compared that in the crop farming 

(180-216 thousand Lt/AWU in the region of CRS). Therefore, the livestock 

farming needs certain measures aimed at increasing the total output in order to 

increase its attractiveness and viability.  

The mixed farming featured the size 82-195 ha and 2.9-4 AWU. 

The land productivity fluctuated around two thousand Lt/ha in the region of 

CRS, whereas the labour productivity ranged in between 60 and 93 thousand 

Lt/AWU. This farming type, therefore, featured the lowest land and labour 

productivity thus implying some sort of diseconomies of scope.    

 The carried out analysis revealed that the absolute measures of the 

farm size varied rather highly with the measurement approach. The relative 

measures, though, were less variant ones. Accordingly, it might be more 

reasonable to speak of farm size in terms of the relative measures, e g. the 

amount of land per worker, land productivity, labour productivity.  

 

5. 4. Program and managerial efficiency 

 

The sub-sample MEA enables to compare farming efficiency in 

terms of farming type-specific technology. Such type of efficiency is referred 

to as the managerial efficiency. It implies that slack in a certain input 

consumption may be caused by shortcomings in the managerial practice, 

whereas slacks caused by farming type specifics remain ignored. Note that this 

type of analysis is Stage 1 of the program efficiency MEA framework (see 

Section 2.3).  

 The input-specific benchmarks across the three subsamples are 

given in Tables 5.5 and 5.6. As one can note, the efficiency scores for the crop 

farms in the latter two tables are quite close to those obtained in the full sample 
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(cf. Tables 4.26 and 4.27). This means that the crop farms were mainly 

determining the pooled efficiency frontier and crop farming thus is specific 

with little program inefficiency. Assets thus remained as one of the most 

important factors of inefficiency (29–41% contraction thereof is needed for an 

average crop farm depending on the RTS assumption). The low values of land 

use efficiency under CRS stress the need for land productivity increase in crop 

and mixed farms.  

 

Table 5.5. Sub-sample MEA efficiency scores for inefficient farms (VRS). 

Farming type Labour Land 
Intermediate 

consumption 
Assets DEA 

Average 

Crop farms 0.57 0.54 0.56 0.49 0.57 

Livestock farms 0.71 0.71 0.76 0.71 0.76 

Mixed farms 0.72 0.71 0.78 0.71 0.77 

Minimum 

Crop farms 0.17 0.13 0.14 0.09 0.15 

Livestock farms 0.34 0.34 0.46 0.39 0.41 

Mixed farms 0.35 0.35 0.48 0.28 0.46 

 

Table 5.6. Sub-sample MEA efficiency scores for inefficient farms (CRS). 

Farming type Labour Land 
Intermediate 

consumption 
Assets DEA 

Average 

Crop farms 0.44 0.49 0.52 0.45 0.49 

Livestock farms 0.55 0.59 0.71 0.67 0.68 

Mixed farms 0.46 0.57 0.67 0.59 0.64 

Minimum 

Crop farms 0.03 0.04 0.10 0.04 0.07 

Livestock farms 0.21 0.21 0.31 0.36 0.36 

Mixed farms 0.16 0.23 0.31 0.23 0.32 

 

 Livestock farms were specific with the highest benchmarks in their 

sub-sample if compared to other sub-samples. This means that livestock farms 

were more homogeneous in terms of their performance and technologies. The 

CRS efficiency scores indicate that livestock farms should reduce their labour 

and land inputs by 45% and 41%, respectively.  
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The mixed farms had similar benchmarks as the livestock farms 

under VRS, although they were somehow lower for mixed farms under CRS. 

Hence, the crop farming was specific with higher variation in farm size, which 

was not followed by respective changes in output level.  

The differences observed between DEA and MEA efficiency 

scores across the full sample and farming type sub-samples indicates that the 

efficiency arose due to both managerial and program, viz. farming type, 

factors. The Stage 2 of the program efficiency MEA was employed to explore 

these issues.   

The program efficiency can be assessed by adjusting the 

observed production plans so that they become efficient ones within a certain 

program. In our case we have a sample of the Lithuanian family farms which 

focus either on livestock or crop or mixed agricultural production. 

Accordingly, the three programs correspond to the aforementioned farming 

types. First we proceed with visualization of the program efficiency in the 

Lithuanian family farm sample. Second, the Stage 2 of the program efficiency 

MEA is implemented to obtain exact estimations.  

 In order to visualise the pooled frontier (envelope) one needs to 

define the program frontiers. Two inputs, at most, can be used for the latter 

purpose. Given we have four inputs plus one output, the inputs were 

aggregated into costs by considering respective input prices. The land price 

was obtained from the Eurostat and assumed to be uniform for all farms during 

the same period. The labour price is average salary in agricultural sector from 

Statistics Lithuania. The price of capital is depreciation plus interests per one 

Litas of assets. Meanwhile, the intermediate consumption is directly 

considered as a part of total costs. Thereafter, labour and intermediate 

consumption as well as land and assets were merged into the two cost 

indicators. Subsequently, these indicators were scaled by output indicator. As a 

result, we had the two input indicators, viz. labour and intermediate 

consumption intensity, and land and asset intensity. The sub-sample MEA was 

then implemented on each of the three subsamples in terms of the two 
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aforementioned aggregate input indicators. These MEA models yielded 

optimal values of the two indicators, which virtually determined the program 

frontiers (Fig. 5.4). The CRS were implicitly assumed by employing the MEA 

model without outputs.  

 The convex pooled frontier was then defined (note the solid line in 

Fig. 5.4). It covers some parts of the sub-sample frontiers as well as an inter-

envelope. It is evident that the pooled frontier mainly consists of the crop farm 

observations. These farms, therefore, can be considered as those possessing the 

highest productive potential. Anyway, the previous results did indicate that the 

crop farms were specific with a wide range of efficiency scores, which 

indicates the lack of managerial efficiency. It is obvious that crop farms are 

also specific with a higher variation in the efficiency scores due to the nature of 

the cropping.  

The livestock farms’ frontier did also determine the shape of the 

pooled frontier. The largest part of the livestock frontier, though, remained 

enveloped by the crop frontier. This finding indicates that livestock farming 

can successfully compete with crop farming in terms of production factor 

productivity. The mixed farm frontier, nevertheless, remained totally 

dominated by crop and livestock frontiers and thus did not affect the pooled 

frontier. One can thus consider the specialized farms as those better off if 

compared to the mixed ones.  

After visualising the general trends of efficiency, we implemented 

Stage 2 of the program efficiency MEA. Specifically, the MEA was employed 

for the four inputs – one output model to assess the program efficiency in terms 

of the four inputs, namely land, labour, intermediate consumption, and assets. 

Tables 5.7 and 5.8, thus, report the estimates under VRS and CRS 

assumptions, respectively. 
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Fig. 5.4. Program frontiers and the pooled frontier based on aggregate input 

indicators. 

   

The data in Tables 5.7 and 5.8 enable to define the patterns of the 

program efficiency in a more detailed manner. The crop farms were specific 

with the lowest level of program inefficiency with efficiency scores ranging 

between 0.95 and 0.97. The CRS assumption resulted in the increased land use 

inefficiency (9%), which is, nevertheless, a low one. Meanwhile, the asset 

inefficiency of 9% under VRS and 14% under CRS was the peculiar for the 

livestock farms. The highest slack under CRS was that of labour (20%) for the 

livestock farms, which implies that larger livestock farms might be specific 

with excessive labour use. In accordance with Fig. 5.4, the mixed farms had 

the highest rates of program inefficiency across all of the inputs. Specifically, 

the labour and asset inefficiency were the two major problems in this farming 

type. 
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Table 5.7. Stage 2 of the program efficiency MEA for inefficient farms (VRS). 

Farming type Labour Land 
Intermediate 

consumption 
Assets 

Average 

Crop farms 0.95 0.97 0.95 0.95 

Livestock farms 0.85 0.88 0.90 0.81 

Mixed farms 0.81 0.80 0.81 0.76 

Minimum 

Crop farms 0.72 0.56 0.42 0.42 

Livestock farms 0.62 0.41 0.46 0.42 

Mixed farms 0.57 0.53 0.54 0.55 

 

Table 5.8. Stage 2 of the program efficiency MEA for inefficient farms (CRS). 

Farming type Labour Land 
Intermediate 

consumption 
Assets 

Average 

Crop farms 0.91 0.97 0.95 0.95 

Livestock farms 0.80 0.90 0.93 0.86 

Mixed farms 0.61 0.71 0.76 0.67 

Minimum 

Crop farms 0.32 0.51 0.45 0.57 

Livestock farms 0.44 0.55 0.54 0.40 

Mixed farms 0.29 0.36 0.51 0.31 

   

 The results of the Stage 2 do indicate that program inefficiency is 

quite acute amongst the mixed farms. Asset and labour inefficiencies there 

need to be alleviated in order to reduce the program inefficiency. Indeed, 

sector-wide measures are needed for that.  

 The two–stage MEA, therefore, enabled us to identify managerial 

and program efficiencies across different farming types and inputs. Stage 1 was 

carried out in the three sub-samples (cf. Tables 5.5 and 5.6). The managerial 

inefficiency was extremely high amidst the crop farms. Indeed, it ranged from 

51% in assets to 43% in labour under VRS. Livestock farms were specific with 

the lowest managerial inefficiency. After imposing the CRS assumption, asset 

and labour slacks were the highest ones if compared to those of other inputs. 

On the other hand, intermediate consumption remained the most efficiently 
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utilized input. Certainly, this particular input is one of the easiest observed and 

controlled. Extremely low values of intermediate consumption efficiency in the 

crop farms underlines the need for further improvements in crop mix and 

cropping practice in general. The low managerial efficiency in crop farming 

might also be related to relatively higher public support allocated to the latter 

sector. 

 The analysis of program inefficiency (Stage 2 of the program 

MEA) indicated that crop farms are those defining the pooled frontier (Fig. 5.4 

and Tables 5.7–5.8). Therefore, they have the lowest values of input–specific 

program inefficiency. Livestock farms are also partially determining the shape 

of frontier, whereas the mixed farms are determining the VRS frontier, but not 

the CRS one. The lowest program efficiency, hence, was observed for the 

mixed farms. Labour and assets are the two most problematic inputs in terms 

of program inefficiency for all farming types. Generally, the specialized 

farming appeared to be more efficient in terms of the program efficiency. 

Indeed, it is related to long-term and deeper acquisition of farming practice, 

which positively affects the quality of human capital.  

 The results indicate that benchmarking and modernization 

currently are the most important issues for the crop and, partially, mixed farms. 

These measures should reduce the managerial inefficiency specific for these 

two types of farming. That the crop farms determined the shape of the pooled 

frontier in Stage 2 MEA, and the lowest efficiency scores were observed for 

this farming type as well (cf. minima in Tables 5.5–5.6), seems to indicate that 

stochastic events like changing weather conditions could be partly to blame for 

the high variation in performance as compared to the more stable pattern of the 

livestock farms. Accordingly, income smoothing measures seems of 

importance for crop farms. The Rural Development Programme for Lithuania 

2014–2020 should opt for income smoothing measures and establish specific 

requirements which could substantially smoothen the crop farm income. 

The livestock farms seem to better off in comparison to the 

remaining farming types, although they generate lower volume of output due to 
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program inefficiency. Accordingly, livestock farmers need to be motivated to 

improve their program efficiency. This could for example be done in 

connection with production subsidies. These subsidies should be provided 

given that the farms demonstrate certain degrees of innovation in their 

production processes. In particular, the labour component seems badly utilized 

and should be improved.   

 

5. 5. Context-dependent efficiency  

 

The output-oriented context DEA model was employed to stratify the 

observations. Indeed, the input-oriented model yielded the same results. The 

farm sample was therefore divided into the nine levels of efficiency (i. e. 

strata) until no observations remained under the production frontier. The 

emerged strata contained observations associated with different farming types. 

Therefore, it is possible to quantitatively and qualitatively analyse the 

distribution of the farms in terms of their relative efficiency. Table 5.9 below 

summarizes the distribution of observations across the levels of efficiency. 

 

Table 5.9. The distribution of observations across levels of efficiency (per 

cent). 

Farming types 
Strata 

1 2 3 4 5 6 7 8 9 

Crop 7 10 12 15 37 10 6 3 1 

Livestock 18 22 26 18 16 

    Mixed 9 10 14 22 43 2 

    

The distribution of the efficiency scores can be described in terms of the 

strata, l , at which a certain observation became fully efficient, i. e.  * , 1k l  . 

Evidently, most of the observations fell into the 4
th

-5
th

 strata (i. e. efficiency 

levels). However, some differences emerged among the farming types. 

Specifically, some 37% of the crop farm observations were efficient at 

stratum 5, whereas another 15% were efficient at stratum 4. Some observations 
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did also fall in the most extreme strata. As for the livestock farms, these were 

mainly concentrated within strata 2-3. However, these observations covered 

strata 1-5 in a rather even manner. Note that the extreme strata were not 

covered by observations associated with the latter farming type. Finally, the 

mixed farms were mainly concentrated in strata 4-5. Noteworthy, the mixed 

farms were rather compact in terms of their distribution across the efficiency 

levels (strata). The results thus showed that the livestock farms were 

dominating other farming types, i. e. most of these farms appeared on the 

lower-order strata associated with higher efficiency scores.  

Identification of the underlying levels of efficiency (strata) enables one 

to quantify the differences in efficiency. Firstly, it is possible to analyse the 

efficiency scores obtained with respect to the first efficiency level, which, 

indeed, is the global production frontier. Fig. 5.5 presents the intervals of the 

(global) efficiency scores for each stratum. As one can note, livestock and 

mixed farms featured narrow ranges, whereas crop farms exhibited wider ones. 

Indeed, the minimal values of efficiency ranges were much lower for crop 

farms if compared to other farming types. 

 

 

Fig. 5.5. The ranges of the inverse Farrell output efficiency scores across 

efficiency levels. 
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The carried out context-dependent data envelopment analysis grouped 

Lithuanian family farms into certain strata associated with different 

productivity levels. As a result, the crop farms were grouped into the nine 

strata associated with different levels of efficiency, the livestock farms were 

grouped into the five strata, and the mixed farms were grouped into the six 

strata. Therefore, the crop farms appeared to be the most heterogeneous in 

terms of efficiency and productivity.  
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6. CONSISTENCY CHECK 

 

Up to now, the research employed the FADN data set for years 2004-

2009. Indeed, the end of the said period coincides with economic turmoil. We 

therefore attempted to check the consistency of the obtained results by fitting 

models used in Sections 3.3 and 3.6 to the extended data set. 

The extended data set contains the same variables as discussed in 

Section 2.4, yet the time span is increased to cover years 2004-2011. The 

extended data set is a balanced panel comprising 1304 observations in total.  

Results of non-parametric regression are presented in Fig. 6.1. As one 

can note, these virtually re-iterate those depicted in Fig. 3.17. The only 

difference is an increase in crop farm efficiency. Anyway, livestock farming 

appear to be the most efficient on average. These differences might have been 

caused by both changes in relative performance and sample structure.  

 

 

Fig. 6.1. Partial regression plots (2004-2011). 
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The following Table 3.13 presents the bandwidths and p-values. 

Obviously, all the variables were statistically significant at 1%.  

 

Table 6.1. Results of non-parametric regression analysis (2004-2011). 

 log(UAA) CropShare ordered(Year) 

Bandwidth 1.447169  0.1780017          0.04444178 

P Value <.000 *** <.000 *** <.000 *** 

Significance codes: *** – 0.001, ** – 0.01, and * – 0.05. 

 

The double bootstrap analysis was also re-iterated with the extended 

data set. The resulting truncated regression’s coefficients are given in Table 

6.2. The new results can be compared against those in Table 3.14. 

 

Table 6.2. Double bootstrap estimates for determinants of the farming 

inefficiency (2004-2011). 

Variables 
 

Sig. 
Confidence intervals 

   

aBC  method 

Time 0.175 *** 0.114 0.240 0.103 0.256 0.082 0.280 

UAA -0.073  -0.240 0.095 -0.278 0.122 -0.331 0.177 

Assets/AWU -0.167 * -0.361 -0.007 -0.397 0.024 -0.506 0.078 

Crop 0.714 *** 0.321 1.051 0.249 1.113 0.068 1.225 

Subsidies 1.520 *** 1.394 1.649 1.372 1.678 1.331 1.730 

Percentiles method 

Time 0.175 *** 0.111 0.237 0.100 0.251 0.076 0.276 

UAA -0.073  -0.242 0.094 -0.278 0.119 -0.331 0.176 

Assets/AWU -0.167  -0.347 0.006 -0.381 0.032 -0.483 0.091 

Crop 0.714 *** 0.339 1.066 0.274 1.134 0.086 1.236 

Subsidies 1.520 *** 1.392 1.646 1.370 1.676 1.322 1.721 

Significance codes: ‘***’ - 0.01, ‘**’ - 0.05, ‘*’ - 0.1  

 

Results obtained for the extended data set do not contradict to those 

based on the original data set. The only significant difference is a change in the 

direction of the time trend: The extended data set suggests a negative time 

trend. However, this can be a direct outcome of expansion of timespan. Farm 

ˆ̂


.1  .05  .01 
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size features a positive effect upon efficiency, yet the associated coefficient is 

no longer significant. The asset-labour ratio is also specific with the same 

direction of the relationship. However, it is insignificant according to the 

percentiles method. The remaining two variables, viz. crop share in the total 

output and production subsidy intensity, featured the same kind of 

relationships with the efficiency.  

The carried out analysis suggests that the extension of the time series 

did not render decisive changes in the patterns of efficiency. We utilised 

models with exactly the same variables as it was the case with the original data 

set in order to ensure the comparability. Therefore, further analyses should 

attempt to apply the methodologies proposed in this thesis with the extended 

data set in order to reveal a possible impact of inclusion of additional variables 

into analysis. 
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7. RESEARCH LIMITATIONS 

 

The time period of the research (2004-2009) should be extended in future 

researches. However, for this research we opted for the latter time-span due to 

the following reasons: 1) the FADN practice in Lithuania started on 2004; 2) 

the agricultural censuses were carried out in 2003 and 2010, thus the results of 

the research can be compared to those obtained during the censuses to a certain 

extent; 3) given the FADN sample changes every year, an increase in the time-

span would result in a decreasing number of farms in a balanced panel (in this 

particular research we had 200 family farms, whereas increase in the time-span 

of two more years would decrease that number to some 160 farms). Yet the 

results have been validated by employing the extended data set covering years 

2004-2011. 

The carried out research assumes the same underlying technology for all 

farming types in order to ensure the comparability of the results. Even though 

this is not unusual in exploratory researches, the future studies could aim at 

estimating the specific frontiers for each farming type. In the latter setting the 

application of econometric methods (viz. SFA) is particularly appealing as the 

stochastic frontiers can account for various efficiency effects and thus ensure 

even deeper insights into the underlying technology.  

Yet another shortcoming of the research lies in that it focuses on the 

family farms. Indeed, the corporate farms exhibit increasing importance in both 

the livestock and crop farming. Therefore, the avenue for further researches is 

definitely the analysis of the corporate farm performance. However, the FADN 

sample for corporate farms is rather small (some 40 observations per annum).  

The present study analyses Lithuanian family farm performance. Indeed, 

the common market prevailing in the EU implies that agricultural sectors of the 

EU Member States are to compete in certain areas of production. Therefore, it 

is important to conduct the relevant analyses aimed at international 

comparisons.  

  



198 

 

CONCLUSIONS 

 

1. Multi-criteria assessment of the agricultural sector performance based on 

the National Accounts data shows that the total factor productivity in the 

latter sector decreased after accession to the European Union. Indeed, the 

overall rank based on the multi-criteria assessment indicates that the 

agricultural sector falls within the last quartile of the analysed economic 

sectors. Therefore, there is a gap in the productivity of Lithuanian 

agricultural sector which needs to be filled in order to ensure a proper 

success in competition among the economic sectors for resources. 

2. The carried out research showed that the technical inefficiency is the most 

important obstacle for productivity increase in Lithuanian family farms, 

whereas the scale inefficiency alongside the allocative inefficiency 

remained less important causes of overall inefficiency. However, the mixed 

farms featured the lowest scale efficiency thus indicating that farm size is 

particularly misbalanced for that farming type. Therefore, the public 

support should be streamlined to provide the mixed farms with means for 

further expansion or increase in specialisation. 

3. Analysis of the efficiency factors implies that larger farms are more 

efficient, therefore the agricultural policy should pay more attention 

towards the rational farm structure in Lithuania. The crop farms appear to 

be less efficient if compared to the mixed or livestock farms. Therefore, the 

payment schemes need to be adjusted so that crop farms were not over-

subsidised. Indeed, the increasing subsidy rate is associated with a decrease 

in efficiency. The latter finding once again stresses the need for further 

improvements in the support policy. 

4. The proposed fuzzy Free Disposal Hull methodology shows that crop farms 

feature the largest spread of the fuzzy efficiency scores. Anyway, this lead 

to an unfavourable mean efficiency level in case of the highest degree of 

uncertainty. This finding implies that livestock farms perform better during 

the long run yet they achieve inferior results during the most favourable 
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periods for crop farming. Accordingly, the income support measures are 

particularly relevant for Lithuanian livestock sector.  

5. The production frontier of the family farms moved outwards as a result of 

the technological progress during the research period (in case a sequential 

technology is assumed). Though the technical change contributed to 

increase in the total factor productivity, the efficiency change did not 

follow the same pattern. Indeed, the crop farms featured the lowest 

efficiency gains. These findings are supported by those obtained by the 

means of the fuzzy Free Disposal Hull. Innovative decision making units – 

family farms – were identified in terms of distance function and 

productivity index values. The results do indicate that livestock farms are 

more likely to become innovators pushing the production frontier outwards.     

6. The analysis of program inefficiency indicates that crop farms are those 

defining the pooled production frontier. Therefore, they have the lowest 

values of input–specific program (farming type) inefficiency. Livestock 

farms are also partially determining the shape of frontier, whereas the 

mixed farms are determining the variable returns to scale frontier, but not 

the constant returns to scale one. The lowest program efficiency, hence, 

was observed for the mixed farms. Labour and assets are the two most 

problematic inputs in terms of program inefficiency for all farming types. 

Generally, the specialized farming appeared to be more efficient in terms of 

the program efficiency. Indeed, it is related to long-term and deeper 

acquisition of farming practice, which positively affects the quality of 

human capital. The results indicate that benchmarking and modernization 

currently are the most important issues for the crop and, partially, mixed 

farms. These measures should reduce the managerial inefficiency specific 

for these two types of farming. 

7. The bias-corrected Malmquist index analysis indicates that crop farming is 

peculiar with land-using and asset-saving technical change (i. e. change in 

the marginal rate of technical substitution), whereas labour-using and 

intermediate consumption saving technical changes were observed only for 
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certain combinations of inputs. As for livestock farms these generally 

experienced intermediate consumption and asset saving technical changes 

against all the remaining inputs, whereas labour-saving and land-using 

technical change varied with the reference inputs. Finally, mixed farms can 

be considered as those peculiar with increasing land use and decreasing 

capital consumption. Therefore, asset use efficiency is likely to increase 

throughout the time ceteris paribus, whereas labour remains among the 

most inefficient factors of production.  

8. The quantitative analysis of the returns to scale in the Lithuanian family 

farms suggests that the crop farms should be some 250 ha in size with 

labour force amounting to 3-3.4 AWU. The livestock farms should be 

smaller in terms of land (some 140 ha), albeit larger in terms of labour (4.3-

4.5 AWU). The mixed farming features the optimal size 82-195 ha and 2.9-

4 AWU. These findings do imply that the farm size limitations of 500 ha 

are not too restrictive with respect to Lithuanian family farms. These 

measures are based on neoclassical economic theory and therefore do not 

consider other dimensions of sustainability in an explicit manner. 

9. The variance of efficiency among crop farms could be reduced by 

introducing and encouraging novel crop rotation schemes in less favoured 

areas. An additional measure for both crop and mixed farming could be 

optimization of the tractor power, which could affect the levels of 

intermediate consumption and assets. Cooperation and further 

mechanization can be given as the key recommendations for the livestock 

farms. A web-based benchmarking system of Lithuanian family farms 

would enable farmers to fathom relative level of their performance. 

10. Further researches could focus on international comparisons based on 

growth accounting databases like EU KLEMS and the World Input-Output 

Database. Indeed, suchlike analyses would enable to identify the possible 

development paths for Lithuanian agriculture.  

 

  



201 

 

References 

 

1. Abdelsalam, O., Duygun Fethi, M., Matallín, J. C., Tortosa-Ausina, E. 

(2013). On the comparative performance of socially responsible and 

Islamic mutual funds. Journal of Economic Behavior & Organization. doi: 

10.1016/j.jebo.2013.06.011 

2. Abdulai, A., Tietje, H. (2007). Estimating technical efficiency under 

unobserved heterogeneity with stochastic frontier models: application to 

northern German dairy farms. European Review of Agricultural 

Economics, 34(3), 393–416. 

3. Afonso, A., Aubyn, M. S. (2006). Cross-Country Efficiency of Secondary 

Education Provision: A Semi-Parametric Analysis with Non-Discretionary 

Inputs. Economic Modelling, 23(3), 476–491. 

4. Afriat, S. N. (1972). Efficiency estimation of production functions. 

International Economic Review, 13(3), 568–598. 

5. Aigner, D., Lovell, C. A. A., Schmidt, P. (1977). Formulation and 

estimation of stochastic frontier production function models. Journal of 

Econometrics, 6(1), 21–37. 

6. Aitchison, J., Aitken, C. B. B. (1976). Multivariate binary discrimination 

by kernel method. Biometrika, 63, 413–420. 

7. Akinbode, S. O., Dipeolu, A. O., Ayinde I. A. (2011). An examination of 

technical, allocative and economic efficiencies in Ofada rice farming in 

Ogun State, Nigeria. African Journal of Agricultural Research, 6(28), 

6027–6035. 

8. Aldea, A., Ciobanu, A. (2011). Analysis of renewable energy development 

using bootstrap efficiency estimates. Economic Computation and Economic 

Cybernetics Studies and Research, 45(1), 77–90. 

9. Aldea, A., Ciobanu, A., Stancu, I. (2012). The renewable energy 

development: a nonparametric efficiency analysis. Romanian Journal of 

Economic Forecasting, 15(1), 5–19. 

10. Alexander, W. R. J., Haug, A. A., Jaforullah, M. (2010). A Two-Stage 

Double-Bootstrap Data Envelopment Analysis of Efficiency Differences of 

New Zealand Secondary Schools. Journal of Productivity Analysis, 34(2), 

99–110. 

11. Alvarez, A., Arias, C. (2004). Technical efficiency and farm size: a 

conditional analysis. Agricultural Economics, 30, 241–250. 

12. Andersen, P., Petersen, N. C. (1993). A procedure for ranking efficient 

units in data envelopment analysis. Management Science, 39, 1261–1264. 

13. Aragon, Y., Daouia, A., Thomas-Agnan, C. (2005). Nonparametric frontier 

estimation: a conditional quantile-based approach. Econometric Theory, 

21(2), 358–389.  

14. Aristovnik, A. (2012). The relative efficiency of education and R&D 

expenditures in the new EU member states. Journal of Business Economics 

and Management, 13(5), 832–848. 

15. Arjomandi, A., Valadkhani, A., Harvie, C. (2011). Analysing productivity 

changes using the bootstrapped Malmquist approach: The case of the 

Iranian banking industry. Australasian Accounting Business and Finance 

Journal, 5(3), 35–56.  



202 

 

16. Asmild, M., Hougaard, J. L., Kronborg, D., Kvist, H. K. (2003) Measuring 

Inefficiency via Potential Improvements. Journal of Productivity Analysis, 

19(1), 59-76. 

17. Asmild, M., Hougaard, J. L. (2006). Economic Versus Environmental 

Improvement Potentials of Danish Pig Farms. Agricultural Economics, 

35(2), 171–181. 

18. Assaf, A. G., Barros, C. (2011). Performance analysis of the gulf hotel 

industry: A Malmquist index with bias correction. International Journal of 

Hospitality Management, 30(4), 819-826.  

19. Assaf, A., Matawie, K. M., (2010). Improving the accuracy of DEA 

efficiency analysis: a bootstrap application to the health care foodservice 

industry. Applied Economics, 42, 3547–3558. 

20. Assaf, A. G., Agbola, F. W. (2011). Modelling the Performance of 

Australian Hotels: A DEA Double Bootstrap Approach. Tourism 

Economics, 17(1), 73–89. 

21. Atici K. B., Podinovski V. V. (2012). Mixed partial elasticities in constant 

returns-to-scale production technologies. European Journal of Operational 

Research, 220(1), 262–269. 

22. Atici, K. B., Ulucan, A. (2011). A Multiple Criteria Energy Decision 

Support System. Technological and Economic Development of Economy, 

17, 219–245. 

23. Aysan, A. F., Karakaya, M. M., Uyanik, M. (2011). Panel stochastic 

frontier analysis of profitability and efficiency of Turkish banking sector in 

the post crisis era. Journal of Business Economics and Management, 12(4), 

629–654. 

24. Balcombe, K., Davidova, S., Latruffe, L. (2008). The use of bootstrapped 

Malmquist indices to reassess productivity change findings: an application 

to a sample of Polish farms. Applied Economics, 40(16), 2055–2061. 

25. Balcombe, K., Fraser, I., Latruffe, L., Rahman, M., Smith, L. (2008). An 

Application of the DEA Double Bootstrap to Examine Sources of 

Efficiency in Bangladesh Rice Farming. Applied Economics, 40(15), 1919–

1925. 

26. Baležentis, A., Baležentis, T., Misiūnas, A. (2012). An integrated 

assessment of Lithuanian economic sectors based on financial ratios and 

fuzzy MCDM methods. Technological and Economic Development of 

Economy, 18(1), 34–53. 

27. Baležentis, T. (2012). Technical efficiency and expansion of Lithuanian 

Family Farms (2004–2009): Graph Data Envelopment Analysis and Rank-

Sum Test. Management Theory and Studies for Rural Business and 

Infrastructure Development, 31(2), 26–35. 

28. Baležentis, T., Baležentis, A. (2013). Estimation of the Efficiency of the 

Lithuanian Family Farms via the Order-m Frontiers. Management Theory 

and Studies for Rural Business and Infrastructure Development, 35(3), 

355–367. 

29. Baležentis, T., Baležentis, A. (2011). A multi-criteria assessment of relative 

farming efficiency in the European Union Member States. Žemės ūkio 

mokslai, 18(3), 125–135. 

30. Baležentis, T., Kriščiukaitienė, I. (2012a). Family farm efficiency across 

farming types in Lithuania and its managerial implications – data 



203 

 

envelopment analysis. Management Theory and Studies for Rural Business 

and Infrastructure Development, 1(30), 22–30. 

31. Baležentis, T., Kriščiukaitienė, I. (2012b). Application of the Bootstrapped 

DEA for the Analysis of Lithuanian Family Farm Efficiency. Management 

Theory and Studies for Rural Business and Infrastructure Development, 

34(5), 35–46. 

32. Baležentis, T., Kriščiukaitienė, I., Baležentis, A. (2014). A nonparametric 

analysis of the determinants of family farm efficiency dynamics in 

Lithuania. Agricultural Economics, 45(5), 489–499.  

33. Baležentis, T., Misiūnas, A., Baležentis, A. (2013). Efficiency and 

productivity change across the economic sectors in Lithuania (2000–2010): 

the DEA–MULTIMOORA approach. Technological and Economic 

Development of Economy, 19, S200–S222. 

34. Banker R. D., Thrall R. M. (1992). Estimation of returns to scale using data 

envelopment analysis. European Journal of Operational Research, 62, 74–

84. 

35. Banker, R. D., Charnes, A., Cooper, W. W. (1984). Some Models for 

Estimating Technical and Scale Inefficiencies in Data Envelopment 

Analysis. Management Science, 30(9), 1078–1092. 

36. Barros, C. P., Weber, W. L. (2009). Productivity growth and biased 

technological change in UK airports. Transportation Research Part E: 

Logistics and Transportation Review, 45(4), 642–653.  

37. Barros, C. P., Felício, J. A., Fernandes, R. L. (2012). Productivity analysis 

of Brazilian seaports. Maritime Policy & Management, 39(5), 503–523.  

38. Barros, C. P., Guironnet, J., Peypoch, N. (2011). Productivity growth and 

biased technical change in French higher education. Economic Modelling, 

28(1), 641–646.  

39. Barros, C. P., Managi, S., Matousek, R. (2009). Productivity growth and 

biased technological change: Credit banks in Japan. Journal of 

International Financial Markets, Institutions and Money, 19(5), 924–936.  

40. Battese, G. E., Coelli, T. J. (1988). Prediction of Firm-Level Technical 

Efficiencies With a Generalised Frontier Production Function and Panel 

Data. Journal of Econometrics, 38, 387–399. 

41. Battese, G. E., Coelli, T. J. (1995). A Model for Technical Inefficiency 

Effects in a Stochastic Frontier Production Function for Panel Data. 

Empirical Economics, 20, 325–332. 

42. Bilgin, M. H., Lau, C. K. M., Karabulut, G. (2012). Technology transfer 

and enterprise performance: a firm-level analysis in China. Journal of 

Business Economics and Management, 13(3), 489–498. 

43. Bjurek, H. (1994). Essays on Efficiency and Productivity Change with 

Applications to Public Service Production. Ekonomiska Studier 52. – 

School of Economics and Commercial Law, University of Gothenburg, 

Sweden. 

44. Bjurek, H. (1996). The Malmquist Total Factor Productivity Index. 

Scandinavian Journal of Economics, 98(2), 303–313. 

45. Bogetoft, P., Hougaard, J. L. (1999). Efficiency evaluations based on 

potential (non-proportional) improvements. Journal of Productivity 

Analysis, 12(3), 233–247. 

46. Bogetoft, P., Otto, L. (2011). Benchmarking with DEA, SFA, and R. 

Springer.  



204 

 

47. Bojnec, Š., Latruffe, L. (2008). Measures of farm business efficiency. 

Industrial Management & Data Systems, 108(2), 258–270. 

48. Bojnec, Š., Fertő, I. (2013). Farm income sources, farm size and farm 

technical efficiency in Slovenia. Post-Communist Economies, 25(3), 343–

356. 

49. Bojnec, Š., Latruffe, L. (2009). Productivity Change in Slovenian 

Agriculture during the Transition: A Comparison of Production Branches. 

Ekonomicky Casopis, 57(4), 327–343. 

50. Bojnec, S., Latruffe, L. (2011). Farm Size and Efficiency during 

Transition: Insights from Slovenian Farms. Transformations in Business 

and Economics, 10(3), 104–116. 

51. Bojnec, Š., Latruffe, L. (2013). Farm size, agricultural subsidies and farm 

performance in Slovenia. Land Use Policy, 32, 207–217. 

52. Borůvková, J., Kuncová, M. (2012). Comparison Of The Ophthalmology 

Departments Of The Vysocina Region Hospitals Using DEA Models. Acta 

Oeconomica Pragensia, 20(5), 75–84. 

53. Brauers, W. K. M., Zavadskas, E. K. (2006). The MOORA method and its 

application to privatization in a transition economy. Control and 

Cybernetics, 35, 445–469. 

54. Brauers, W. K. M., Zavadskas, E. K. (2010). Project management by 

MULTIMOORA as an instrument for transition economies. Technological 

and Economic Development of Economy, 16, 5–24. 

55. Brauers, W. K. M., Zavadskas, E. K. (2011). MULTIMOORA 

Optimization Used to Decide on a Bank Loan to Buy Property. 

Technological and Economic Development of Economy, 17, 174–188. 

56. Bravo-Ureta, B. E., Solis, D., Moreira Lopez, V. H., Maripani, J. F., 

Thiam, A., Rivas, T. (2006). Technical efficiency in farming: a meta-

regression analysis. Journal of Productivity Analysis, 27(1), 57–72. 

57. Briec, W., Peypoch, N. (2007). Biased technical change and parallel 

neutrality. Journal of Economics, 92(3), 281–292.  

58. Briec, W., Peypoch, N., Ratsimbanierana, H. (2011). Productivity growth 

and biased technological change in hydroelectric dams. Energy Economics, 

33(5), 853–858.  

59. Brümmer, B. (2001). Estimating confidence intervals for technical 

efficiency: the case of private farms in Slovenia. European Review of 

Agricultural Economics, 28(3), 285–306. 

60. Caves, D. W., Christensen, L. R., Diewert, W. E. (1982). The economic 

theory of index numbers and the measurement of input, output, and 

productivity. Econometrica, 50(6), 1393–1414.  

61. Cazals, C., Florens, J. P., Simar, L. (2002). Nonparametric frontier 

estimation: a robust approach. Journal of Econometrics, 106(1), 1–25. 

62. Chambers, R. G. (1988). Applied production analysis: a dual approach. 

Cambridge University Press. 

63. Chambers, R. G., Färe, R., Grosskopf, S. (1996). Productivity growth in 

APEC countries. Pacific Economic Review, 1(3), 181–190. 

64. Chaplin, H., Davidova, S., Gorton, M. (2004). Agricultural adjustment and 

the diversification of farm households and corporate farms in Central 

Europe. Journal of rural studies, 20(1), 61–77. 



205 

 

65. Charnes, A., Cooper, W. W., Rhodes, E. (1981). Evaluating Program and 

Managerial Efficiency: An Application of Data Envelopment Analysis to 

Program Follow Through. Management Science, 27(6), 668–697. 

66. Charnes, A., Cooper, W. W., Rhodes, E. (1978) Measuring the efficiency 

of decision making units. European Journal of Operational 

Research, 2(6), 429–444. 

67. Cheng, H., Lu, Y. C., Chung, J. T. (2010). Improved slack-based context-

dependent DEA – A study of international tourist hotels in Taiwan. Expert 

Systems with Applications, 37(9), 6452–6458.  

68. Chou, Y.C., Shao, B.B.M., Lin, W.T. (2012). Performance evaluation of 

production of IT capital goods across OECD countries: A stochastic 

frontier approach to Malmquist index. Decision Support Systems, 54(1), 

173–184. 

69. Christensen L. R., Jorgenson D. W., Lau, L. J. (1971). Conjugate Duality 

and the Transcendental Logarithmic Production Function. Econometrica, 

39, 255–256. 

70. Christensen L. R., Jorgenson D. W., Lau, L. J. (1973). Transcendental 

Logarithmic Production Frontiers. The Review of Economics and Statistics, 

55(1), 28–45. 

71. Chung, Y. H., Färe, R., Grosskopf, S. (1997). Productivity and undesirable 

outputs: A directional distance function approach. Journal of 

Environmental Management, 51(3), 229–240. 

72. Cobb, C., Douglas, P. H. (1928). A Theory of Production. American 

Economic Review, 18, 139–165. 

73. Coelli, T. J., Rao, D. S. (2005). Total factor productivity growth in 

agriculture: a Malmquist index analysis of 93 countries, 1980–2000. 

Agricultural Economics, 32(s1), 115–134. 

74. Coelli, T. J., Rao, D. S. P., O’Donnell, C. J., Battese, G. E. (2005). An 

Introduction to Efficiency and Productivity Analysis. Springer. 

75. Cooper, W. W., Seiford, L. M., Tone, K. (2007). Data Envelopment 

Analysis: A Comprehensive Text with Models, Applications, References 

and DEA–Solver Software. Second Edition. Springer. 

76. Cooper, W. W., Park, K. S., Yu, G. (1999). IDEA and AR-IDEA: Models 

for dealing with imprecise data in DEA. Management Science, 45, 597–

607. 

77. Czekaj, T. G. (2013). Measuring the Technical Efficiency of Farms 

Producing Environmental Output: Parametric and Semiparametric 

Estimation of Multi-output Stochastic Ray Production Frontiers. IFRO 

Working Paper 2013 / 21. University of Copenhagen. 

http://okonomi.foi.dk/workingpapers/WPpdf/WP2013/IFRO_WP_2013_21

.pdf 

78. Daouia, A., Simar, L. (2007). Nonparametric efficiency analysis: A 

multivariate conditional quantile approach. Journal of Econometrics, 

140(2), 375–400. 

79. Daraio, C., Simar, L. (2005). Introducing environmental variables in 

nonparametric frontier models: a probabilistic approach. Journal of 

Productivity Analysis, 24(1), 93–121. 

80. Daraio, C., Simar, L. (2007a). Advanced robust and nonparametric 

methods in efficiency analysis: methodology and applications. Vol. 4. 

Springer. 



206 

 

81. Daraio, C., Simar, L. (2007b). Conditional nonparametric frontier models 

for convex and nonconvex technologies: a unifying approach. Journal of 

Productivity Analysis, 28(1), 13–32. 

82. Davidova, S., Latruffe, L. (2007). Relationships between Technical 

Efficiency and Financial Management for Czech Republic Farms. Journal 

of Agricultural Economics, 58(2), 269–288. 

83. De Witte, K., Kortelainen, M. (2013). What explains the performance of 

students in a heterogeneous environment? Conditional efficiency 

estimation with continuous and discrete environmental variables. Applied 

Economics, 45(17), 2401–2412. 

84. Debreu, G. (1951). The Coefficient of Resource Utilization. Econometrica, 

19(3), 273–292. 

85. Department of Statistics to the Government of the Republic of Lithuania. 

(2005). Results of the Census of Agriculture 2003. Vilnius. 

86. Deprins, D. L., Simar, L., Tulkens, H. (1984). Measuring labor efficiency 

in post offices. In M. Marchand, P. Pestieau, and H. Tulkens (eds.), The 

Performance of Public Enterprises: Concepts and Measurement. 

Amsterdam: North Holland. 

87. Douarin, E., Latruffe, L. (2011). Potential impact of the EU Single Area 

Payment on farm restructuring and efficiency in Lithuania. Post-

Communist Studies, 23(1), 87–103. 

88. Efron, B., Tibshirani, R. J. (1993). An Introduction to the Bootstrap. 

Chapman & Hall. 

89. Entani, T., Maeda, Y., Tanaka, H. (2002). Dual models of interval DEA 

and its extension to interval data. European Journal of Operational 

Research, 136, 32–45. 

90. Epure, M., Prior, D. (2007). An Analysis of Strategic Paths through the 

Decomposition of Total Factor Productivity: The Case of Spanish Saving 

Banks. Departament D’Economia De L’Empresa, Universitat Autonoma 

De Barcelona. 

91. European Commission. (2011). European Competitiveness Report 2011. 

Commission staff working document SEC(2011) 1188. Luxembourg: 

Publications Office of the European Union. doi:10.2769/30346 

92. Eurostat. (2014). National accounts. 

http://epp.eurostat.ec.europa.eu/portal/page/portal/national_accounts/data/d

atabase# 

93. Färe, R., Grosskopf, S., Lovell, C. A. K. (1983). The structure of technical 

efficiency. The Scandinavian Journal of Economics, 85(2), 181–190. 

94. Färe, R., Grifell‐Tatjé, E., Grosskopf, S., Knox Lovell, C. (1997). Biased 

technical change and the malmquist productivity index. The Scandinavian 

Journal of Economics, 99(1), 119–127.  

95. Färe, R., Grosskopf, S. (1985). A nonparametric cost approach to scale 

efficiency. The Scandinavian Journal of Economics, 87(4), 594–604. 

96. Färe, R., Grosskopf, S. (1990). A Distance Function Approach to Price 

Efficiency. Journal of Public Economics, 43, 123–126. 

97. Färe, R., Grosskopf, S., Lovell, C. K. (1994). Production frontiers. 

Cambridge University Press. 

98. Färe, R., Grosskopf, S., Lindgren, B., Roos, P. (1992). Productivity 

changes in Swedish pharamacies 1980–1989: A non-parametric Malmquist 

approach. Journal of Productivity Analysis, 3(1), 85–101.  



207 

 

99. Färe, R., Grosskopf, S., Norris, M., Zhang, Z. (1994). Productivity growth, 

technical progress, and efficiency change in industrialized countries. The 

American Economic Review, 84, 66–83.  

100. Färe, R., Grosskopf, S., Margaritis, D. (2008). Efficiency and Productivity: 

Malmquist and More. In: Fried, H. O., Lovell, C. A. K., Schmidt, S. S. 

(Eds.) The Measurement of Productive Efficiency and Productivity. New 

York, Oxford University Press.  

101. Farrell, M. J. (1957). The measurement of technical efficiency. Journal of 

the Royal Statistical Society, Series A, General, 120(3), 253–281. 

102. Ferjani, A. (2011). Environmental Regulation and Productivity: A Data 

Envelopment Analysis for Swiss Dairy Farms. Agricultural Economics 

Review, 12, 45–55. 

103. Førsund, F. R., Hjalmarsson, L. (2004). Calculating scale elasticity in DEA 

models. The Journal of the Operational Research Society, 55(10), 1023–

1038. 

104. Førsund, F. R., Hjalmarsson, L., Krivonozhko, V. E., Utkin, O. B. (2007). 

Calculation of scale elasticities in DEA models: Direct and indirect 

approaches. Journal of Productivity Analysis, 28, 45–56. 

105. Fried, H. O., Lovell, C. A. K., Schmidt, S. S. (2008). Efficiency and 

productivity. In: The Measurement of Productive Efficiency and 

Productivity Growth. Oxford University Press.  

106. Fuentes, H. J., Grifell-Tatje, E., Perelman, S. (2001). A Parametric 

Distance Function Approach for Malmquist Productivity Index Estimation. 

Journal of Productivity Analysis, 15(2), 79–94. 

107. Fulginiti, L. E., Perrin, R. K. (1997). LDC agriculture: Nonparametric 

Malmquist productivity indexes. Journal of Development Economics, 53, 

373–390. 

108. Gómez-Limón, J. A., Picazo-Tadeo, A. J., Reig-Martínez, E. (2012). Eco-

efficiency assessment of olive farms in Andalusia. Land Use Policy, 29(2), 

395–406. 

109. Gorton, M., Davidova, S. (2004). Farm productivity and efficiency in the 

CEE applicant countries: a synthesis of results. Agricultural 

Economics, 30, 1–16. 

110. Greene, W. H. (2008). The Econometric Approach to Efficiency Analysis. 

In: Fried, H. O., Lovell, C. A. K., Schmidt, S. S. (Eds.) The Measurement 

of Productive Efficiency and Productivity. New York, Oxford University 

Press. 

111. Grosskopf, S. (1986). The role of the reference technology in measuring 

productive efficiency. The Economic Journal, 96, 499–513. 

112. Growitsch, C., Jamasb, T., Pollitt, M. (2009). Quality of service, efficiency 

and scale in network industries: an analysis of European electricity 

distribution. Applied Economics, 41(20), 2555–2570. 

113. Guo, P., Tanaka, H. (2001). Fuzzy DEA: A perceptual evaluation method. 

Fuzzy Sets and Systems, 119, 149–160. 

114. Hajiagha, S. H. R., Akrami, H., Zavadskas, E. K., Hashemi, S. S. (2013). 

An intuitionistic fuzzy data envelopment analysis for efficiency evaluation 

under ucertainty: case of a finance and credit institution. E & M Ekonomie 

a Management, 16(1), 128–137. 



208 

 

115. Halkos, G. E., Tzeremes, N. K. (2012). Analysing the Greek renewable 

energy sector: A Data Envelopment Analysis approach. Renewable and 

Sustainable Energy Reviews, 16, 2884–2893. 

116. Hall, P., Racine, J. S. and Li, Q. (2004) Cross-validation and the estimation 

of conditional probability densities. Journal of the American Statistical 

Association, 99, 1015–26. 

117. Hatami-Marbini, A., Emrouznejad, A., Tavana, M. (2011). A taxonomy 

and review of the fuzzy data envelopment analysis literature: two decades 

in making. European Journal of Operational Research, 214, 457–472. 

118. Hayfield, T., Racine, J. S. (2008). Nonparametric econometrics: the np 

package. Journal of Statistical Software, 27(5), 1–32. 

119. Henningsen, A. (2009). Why is the Polish farm sector still so 

underdeveloped? Post-Communist Economies, 21(1), 47–64. 

120. Henningsen, A., Kumbhakar, S. (2009). Semiparametric stochastic frontier 

analysis: An application to Polish farms during transition. Paper presented 

at the European Workshop on Efficiency and Productivity Analysis 

(EWEPA) in Pisa, Italy, June 24. 

121. Hoang, V. N., Alauddin, M. (2012). Input-Orientated Data Envelopment 

Analysis Framework for Measuring and Decomposing Economic, 

Environmental and Ecological Efficiency: An Application to OECD 

Agriculture. Environmental & Resource Economics, 51, 431–452. 

122. Hoff, A. (2006). Bootstrapping Malmquist indices for Danish seiners in the 

North Sea and Skagerrak. Journal of Applied Statistics, 33(9), 891–907.  

123. Hoff, A. (2007). Second Stage DEA: Comparison of Approaches for 

Modelling the DEA Score. European Journal of Operational Research, 

181, 425–435. 

124. Horta, I. M., Camanho, A. S., Johnes, J., Johnes, G. (2013). Performance 

trends in the construction industry worldwide: An overview of the turn of 

the century. Journal of Productivity Analysis, 39(1), 89–99.  

125. Hougaard, J. L., Kronborg D., Overgård, C. (2004) Improvement Potential 

in Danish Elderly Care. Health Care Management Science, 7(3), 225–235. 

126. Hougaard, J. L. (2005). A simple approximation of efficiency scores of 

fuzzy production plans. Fuzzy Sets and Systems, 152, 455–465. 

127. Hougaard, J. L. (1999). Fuzzy scores of technical efficiency. European 

Journal of Operational Research, 115, 529–541. 

128. Hougaard, J. L., Baležentis, T. (2014). Fuzzy efficiency without convexity. 

Fuzzy Sets and Systems, 255, 17–29. 

129. Huang, Z., Li. S. X. (2001). Stochastic DEA models with different types of 

input-output disturbances. Journal of Productivity Analysis, 15(2), 95–113. 

130. Husson, F., Lê, S., Pages, J. (2010). Exploratory multivariate analysis by 

example using R. Computer sciences and data analysis. Chapman & 

Hall/CRC.  

131. Ippoliti, R., Falavigna, G. (2012). Efficiency of the medical care industry: 

Evidence from the Italian regional system. European Journal of 

Operational Research, 217, 643–652. 

132. Jack, L., Boone, J. (2009). Sustainable Change and Benchmarking in the 

Food Supply Chain. In: Jack, L. (Ed.). Benchmarking in Food and 

Farming. Gower. 



209 

 

133. Jahanshahloo, G. R., Kazemi Matin, R., Hadi Vencheh, A. (2004). On FDH 

efficiency analysis with interval data. Applied Mathematics and 

Computation, 159), 47–55. 

134. Jaraitė, J., Di Maria, C. (2011). Efficiency, productivity and environmental 

policy: A case study of power generation in the EU. Energy Economics, 34, 

1557–1568.  

135. Jin, S., Ma, H., Huang, J., Hu, R., Rozelle, S. (2010). Productivity, 

efficiency and technical change: measuring the performance of China’s 

transforming agriculture. Journal of Productivity Analysis, 33, 191–207. 

136. Jurkėnaitė, N. (2012). Lietuvos ūkininkų ūkių ekonominio gyvybingumo 

palyginamoji analizė. Žemės ūkio mokslai, 19(4), 288–298. 

137. Kalirajan, K. P., Shand, R. T. (2002). Frontier production functions and 

technical efficiency measures, Journal of Economic Surveys, 13(2), 149–

172. 

138. Kao, C., Liu, S. T. (2000). Fuzzy efficiency measures in data envelopment 

analysis. Fuzzy Sets and Systems, 113, 427–437. 

139. Kao, C. (2006). Interval efficiency measures in data envelopment analysis 

with imprecise data. European Journal of Operational Research, 174, 

1087–1099. 

140. Kaufmann, A., Gupta, M. M. (1991). Introduction to Fuzzy Arithmetic: 

Theory and Applications. Van Nostrand Reinhold, New York. 

141. Kerstens, K., Hachem, B. A. M., Van de Woestyne, I. (2010). Malmquist 

and Hicks-Moorsteen Productivity Indices: An Empirical Comparison 

Focusing on Infeasibilities. Working Papers 2010/31. Hogeschool-

Universiteit Brussel, Faculteit Economie en Management. 

142. Khan, F., Salim, R., Bloch, H. (2014). Nonparametric estimates of 

productivity and efficiency change in Australian Broadacre Agriculture. 

Australian Journal of Agricultural and Resource Economics. DOI: 

10.1111/1467-8489.12076 

143. Kirner, L., Kratochvil, R. (2006): The Role of Farm Size in the 

Sustainability of Dairy Farming in Austria: An Empirical Approach Based 

on Farm Accounting Data. Journal of Sustainable Agriculture, 28(4), 105–

124. 

144. Knežević, N., Trubint, N., Macura, D., Bojović, N. (2011). A Two-level 

Approach for Human Resource Planning towards Organizational Efficiency 

of a Postal Distribution System. Journal of Economic Computation and 

Economic Cybernetics Studies and Research, 45(4), 155–168. 

145. Koopmans, T. C. (1951). An analysis of production as an efficient 

combination of activities. In: Koopmans, T. C. (ed.). Activity Analysis of 

Production and Allocation. Cowles Commission for Research in 

Economics. Monograph No. 13. New York: Wiley.  

146. Kriščiukaitienė, I., Tamošaitienė, A., Andrikienė, S. (2007). Racionalaus 

dydžio ūkių modeliavimas. Žemės ūkio mokslai, 14(Priedas), 78–85. 

147. Krivonozhko, V. E., Utkin, O. B., Volodin, A. V., Sablin, I. A., Patrin, M. 

(2004). Constructions of economic functions and calculations of marginal 

rates in DEA using parametric optimization methods. Journal of the 

Operational Research Society, 55, 1049–1058. 

148. Kruse, R., Doering, C., Lesot, M. J., 2007. Funadamentals of fuzzy 

clustering. In: J. Valente de Oliveira, W. Pedrycz, eds., Advances in Fuzzy 

Clustering and Its Applications. John Wiley & Sons. 



210 

 

149. Kuliešis, G., Šalengaitė, D., Kozlovskaja, A. (2011). Apleista žemė: 

problemos ir sprendimo būdai [Abandoned Land: Problems and Solutions]. 

Vilnius, Lietuvos agrarines ekonomikos institutas. 

150. Kumar, S. (2006). A decomposition of total productivity growth: A 

regional analysis of Indian industrial manufacturing growth. International 

Journal of Productivity and Performance Management, 55(3/4), 311–331.  

151. Kumbhakar, S. C., Lien, G., Hardaker, J. B. (2014). Technical efficiency in 

competing panel data models: a study of Norwegian grain farming. Journal 

of Productivity Analysis, 41(2), 321–337.  

152. Kuosmanen, T., Kortelainen, M. (2012). Stochastic non-smooth 

envelopment of data: semi-parametric frontier estimation subject to shape 

constraints. Journal of Productivity Analysis, 38(1), 11–28. 

153. Kuosmanen, T., Kuosmanen, N. (2009). Role of benchmark technology in 

sustainable value analysis: An application to Finnish dairy farms. 

Agricultural and Food Science, 18(3-4), 302–316. 

154. Lambarra, F., Kallas, Z. (2010). Policy impact on technical efficiency of 

Spanish olive farms located in less-favored areas. Food Economics – Acta 

Agriculturae Scandinavica, Section C, 7(2-4), 100–106. 

155. Land, K. C., Lovell, C. A., Thore, S. (1993). Chance‐constrained data 

envelopment analysis. Managerial and Decision Economics, 14(6), 541–

554. 

156. Larsén, K. (2010). Effects of machinery-sharing arrangements on farm 

efficiency: evidence from Sweden. Agricultural Economics, 41, 497–506. 

157. Latruffe, L., Balcombe, K., Davidova, S., Zawalinska, K. (2005). Technical 

and scale efficiency of crop and livestock farms in Poland: does 

specialization matter? Agricultural Economics, 32(3), 281–296.  

158. Latruffe, L. 2010. Competitiveness, Productivity and Efficiency in the 

Agricultural and Agri-Food Sectors. OECD Food, Agriculture and 

Fisheries Working Papers, No. 30, OECD Publishing. doi: 

10.1787/5km91nkdt6d6-en 

159. Latruffe, L., Balcombe, K., Davidova, S., Zawalinska, K. (2004). 

Determinants of technical efficiency of crop and livestock farms in Poland. 

Applied Economics, 36(12), 1255–1263. 

160. Latruffe, L., Davidova, S., Balcombe, K. (2008). Application of a Double 

Bootstrap to Investigation of Determinants of Technical Efficiency of 

Farms in Central Europe. Journal of Productivity Analysis, 29(2), 183–191. 

161. Latruffe, L., Davidova, S., Balcombe, K. (2008). Productivity change in 

Polish agriculture: an illustration of a bootstrapping procedure applied to 

Malmquist indices. Post-Communist Economies, 20, 449–460. 

162. Latruffe, L., Fogarasi, J., Desjeux, Y. (2012). Efficiency, productivity and 

technology comparison for farms in Central and Western Europe: The case 

of field crop and dairy farming in Hungary and France. Economic Systems, 

36(2), 264–278. 

163. Lèon, T., Liern, V., Ruiz, J. L., Sirvent, I. (2003). A fuzzy mathematical 

programming approach to the assessment of efficiency with DEA models. 

Fuzzy Sets and Systems, 139, 407–419. 

164. Lertworasirikul, S., Fang, S. C., Joines, J. A., Nuttle, H. L. W. (2003). 

Fuzzy data envelopment analysis (DEA): a possibility approach. Fuzzy Sets 

and Systems, 139, 379–394. 



211 

 

165. Li, Q., Racine, J. S. (2007). Nonparametric Econometrics: Theory and 

Practice. Princeton University Press, Princeton. 

166. Li, Q., Racine, J. S. (2008). Nonparametric estimation of conditional CDF 

and quantile functions with mixed categorical and continuous data. Journal 

of Business and Economic Statistics, 26, 423–434. 

167. Li, Q., Maasoumi, E., Racine, J. S. (2009). A Nonparametric Test for 

Equality of Distributions with Mixed Categorical and Continuous Data. 

Journal of Econometrics, 148, 186–200. 

168. Lim, S. (2012). Context-dependent data envelopment analysis with cross-

efficiency evaluation. Journal of the Operational Research Society, 63, 38–

46.  

169. Lithuanian Institute of Agrarian Economics. 2010. Ūkių veiklos rezultatai 

(ŪADT tyrimo duomenys) 2009 [FADN Survey Results 2009]. Vilnius, 

Lietuvos agrarinės ekonomikos institutas. 

170. Liu, J. S., Lu, L. Y. Y., Lu, W. M., Lin, B. J. Y. (2013). Data envelopment 

analysis 1978–2010: A citation-based literature survey. Omega, 41(1), 3–

15. 

171. Lovell, C. A. K. (2003). The Decomposition of Malmquist Productivity 

Indexes. Journal of Productivity Analysis, 20(3), 437–458. 

172. Luik, H., Seilenthal, J., Värnik, R. (2009). Measuring the input-orientated 

technical efficiency of Estonian grain farms in 2005–2007. Food 

Economics - Acta Agriculturae Scandinavica, Section C, 6(3-4), 204–210. 

173. Maddala, G. S. (2001). Introduction to Econometrics. Third Edition. John 

Wiley & Sons. 

174. Mahlberg, B., Luptacik, M., Sahoo, B. K. (2011). Examining the drivers of 

total factor productivity change with an illustrative example of 14 EU 

countries. Ecological Economics, 72, 60–69. 

175. Malmquist, S. (1953). Index numbers and indifference surfaces. Trabajos 

de Estadistica y de Investigacion Operativa, 4(2), 209–242.  

176. Managi, S., Karemera, D. (2004). Input and output biased technological 

change in US agriculture. Applied Economics Letters, 11(5), 283–286.  

177. Mancebón, M. J., Calero, J., Choi, Á., Ximénez-de-Embún, D. P. (2012). 

The efficiency of public and publicly subsidized high schools in Spain: 

Evidence from PISA-2006. Journal of the Operational Research Society, 

63, 1516–1533. 

178. Margono, H., Sharma, S. C., Sylwester, K., Al-Qalawi, U. (2011). 

Technical efficiency and productivity analysis in Indonesian provincial 

economies. Applied Economics, 43(6), 663–672. 

179. Matei, M., Spircu, L. (2012). Ranking regional innovation systems 

according to their technical efficiency-a nonparametric approach. 

Economic Computation and Economic Cybernetics Studies and Research, 

46(4), 31–49. 

180. Mathijs, E., Vranken, L. (2001). Human capital, gender and organisation in 

transition agriculture: Measuring and explaining the technical efficiency of 

Bulgarian and Hungarian farms. Post-communist Economies, 13(2), 171–

187.  

181. Meeusen, W., van den Broeck, J. (1977). Efficiency Estimation from Cobb-

Douglas Production Functions with Composed Error. International 

Economic Review, 18(2), 435–444. 



212 

 

182. Mendes, A. B., Soares da Silva, E. L. D. G., Azevedo Santos, J. M., eds. 

(2013). Efficiency Measures in the Agricultural Sector. With Applications. 

Springer. 

183. Minviel, J. J., Latruffe, L. (2014). Meta-regression analysis of the impact of 

agricultural subsidies on farm technical efficiency. Paper prepared for 

presentation at the EAAE 2014 Congress ‘Agri-Food and Rural 

Innovations for Healthier Societies’, August 26 to 29, 2014, Ljubljana, 

Slovenia. 

184. Morita, H., Hirokawa, K., Zhu, J. (2005). A slack-based measure of 

efficiency in context-dependent data envelopment analysis. Omega, 33(4), 

357–362. 

185. Morita, H., Zhu, J. (2007). Context-Dependent Data Envelopment Analysis 

and its Use. In: Modeling Data Irregularities and Structural Complexities 

in Data Envelopment Analysis. Springer. 

186. Mugera, A. W., Langemeier, M. R. (2011). Does Farm Size and 

Specialization Matter for Productive Efficiency? Results from Kansas. 

Journal of Agricultural and Applied Economics, 43(4), 515–528. 

187. Mugera, A. W., Langemeier, M. R., Featherstone, A. M. (2012). Labor 

productivity growth in the Kansas farm sector: A tripartite decomposition 

using a non-parametric approach. Agricultural and Resource Economics 

Review, 41(3), 298–312.  

188. Mugera, A. W., Langemeier, M. R., Featherstone, A. M. (2012). Labor 

productivity convergence in the Kansas farm sector: a three-stage 

procedure using data envelopment analysis and semiparametric regression 

analysis. Journal of Productivity Analysis, 38, 63–79. 

189. Murillo-Zamorano, L. R. (2004). Economic Efficiency and Frontier 

Techniques. Journal of Economic Surveys, 18(1), 33–45. 

190. Nauges, C., O‘Donnell, C. J., Quiggin, J. (2011). Uncertainty and technical 

efficiency in Finnish agriculture: a state-contingent approach. European 

Review of Agricultural Economics, 38(4), 449–467. 

191. Nin, A., Arndt, C., Preckel, P. V. (2003). Is agricultural productivity in 

developing countries really shrinking? New evidence using a modified 

nonparametric approach. Journal of Development Economics, 71(2), 395–

415.  

192. Odeck, J. (2009). Statistical precision of DEA and Malmquist indices: A 

bootstrap application to Norwegian grain producers. Omega, 37(5), 1007–

1017.  

193. O'Donnell, C. J. (2008). An aggregate quantity-price framework for 

measuring and decomposing productivity and profitability change. School 

of Economics, University of Queensland, Australia. 

194. O'Donnell, C. J. (2011a). The sources of productivity change in the 

manufacturing sectors of the US economy. School of Economics, 

University of Queensland, Australia. 

195. O'Donnell, C. J. (2011b). DPIN version 3.0: a program for decomposing 

productivity index numbers. School of Economics, University of 

Queensland, Australia. 

196. O’Donnell, C. J. (2012). An aggregate quantity framework for measuring 

and decomposing productivity change. Journal of Productivity Analysis, 

38(3), 255–272. 



213 

 

197. O’Donnell, C. J. (2012). Nonparametric Estimates of the Components of 

productivity and Profitability Change in U. S. Agriculture. American 

Journal of Agricultural Economics. doi: 10.1093/ajae/aas023 

198. OECD, FAO. (2011), OECD-FAO Agricultural Outlook 2011–2020. 

OECD Publishing. doi: 10.1787/agr_outlook-2011-en. 

199. Offermann, F., (2003). Quantitative Analyse der sektoralen Auswirkungen 

einer Ausdehnung des ökologischen Landbaus in der EU. Berliner 

Schriften zur Agrar- und Umweltökonomik. Berlin. 

200. Oh, D. H., Heshmati, A. (2010). A sequential Malmquist–Luenberger 

productivity index: Environmentally sensitive productivity growth 

considering the progressive nature of technology. Energy Economics, 32, 

1345–1355. 

201. Olson, K., Vu, L. (2009). Economic Efficiency in Farm Households: 

Trends, Explanatory Factors, and Estimation Methods. Agricultural 

Economics, 40(5), 587–599. 

202. O'Mahony, M., Timmer, M. P. (2009). Output, input and productivity 

measures at the industry level: The EU KLEMS database. The Economic 

Journal, 119(538), F374-F403. 

203. Perelman, S., Serebrisky, T. (2012). Measuring the technical efficiency of 

airports in Latin America. Utilities Policy, 22, 1–7.  

204. Petrick, M., Kloss, M. (2012). Drivers of agricultural capital productivity 

in selected EU member states. Factor Markets, Working Paper 30. 

Brussels: Centre for European Policy Studies. 

205. Peypoch, N., Sbai, S. (2011). Productivity growth and biased technological 

change: The case of Moroccan hotels. International Journal of Hospitality 

Management, 30(1), 136–140.  

206. Piesse, J., Thirtle, C. (2000). A Stochastic Frontier Approach to Firm Level 

Efficiency, Technological Change, and Productivity during the Early 

Transition in Hungary. Journal of Comparative Economics, 28, 473–501. 

207. Pilyavsky, A., Staat, M. (2008). Efficiency and productivity change in 

Ukrainian health care. Journal of Productivity Analysis, 29(2), 143–154. 

208. Podinovski V. V., Førsund F. R., Krivonozhko V. E. (2009). A simple 

derivation of scale elasticity in data envelopment analysis. European 

Journal of Operational Research, 197, 149–153. 

209. Racine, J. S., Li, Q. (2004) Nonparametric estimation of regression 

functions with both categorical and continuous data. Journal of 

Econometrics, 119, 99–130. 

210. Racine, J. S. (2008). Nonparametric econometrics: a primer. Foundations 

and Trends in Econometrics, 3(1), 1–88. 

211. Racine, J. S., Hart, J., Li, Q. (2006). Testing the significance of categorical 

predictor variables in nonparametric regression models. Econometric 

Reviews, 25, 523–544. 

212. Rahman, S., Salim, R. (2013). Six decades of total factor productivity 

change and sources of growth in Bangladesh agriculture (1948–2008). 

Journal of Agricultural Economics. doi:10.1111/1477-9552.12009 

213. Ramanathan, R. (2003). An Introduction to Data Envelopment Analysis: A 

Tool for Performance Measurement. Sage Publications.  

214. Rasmussen, S. (2011). Estimating the technical optimal scale of production 

in Danish agriculture, Food Economics - Acta Agriculturae Scandinavica, 

Section C, 8(1), 1–19. 



214 

 

215. Ray, S. C. (2004). Data Envelopment Analysis: Theory and Techniques for 

Economics and Operations Research. Cambridge University Press. 

216. Ray, S. C., Desli, E. (1997). Productivity growth, technical progress, and 

efficiency change in industrialized countries: Comment. The American 

Economic Review, 87, 1033–1039.  

217. Rezitis, A., Tsiboukas, K., Tsoukalas, S. (2009). Effects of the European 

Union farm credit programs on efficiency and productivity of the Greek 

livestock sector: A stochastic DEA application. 8th Annual EEFS 

Conference Current Challenges in the Global Economy: Prospects and 

Policy Reforms, University of Warsaw, Faculty of Economic and Science.  

218. Rimkuvienė, D., Laurinavičienė, N., Laurinavičius, J. (2010). ES šalių 

žemės ūkio efektyvumo įvertinimas. LŽŪU mokslo darbai, 87(40), 81–89. 

219. Samarajeewa, S., Hailu, G., Jeffrey, S. R., Bredahl, M. (2012). Analysis of 

production efficiency of beef/calf farms in Alberta. Applied Economics, 44, 

313–322. 

220. Seiford, L. M., Zhu J. (2003). Context-dependent data envelopment 

analysis-Measuring attractiveness and progress. Omega, 31, 397–408. 

221. Shepard, R. W. (1953). Cost and Production Functions. Princeton, New 

Jersey: Princeton University Press.  

222. Shepard, R. W. (1970). Theory of Costs and Production Functions. 

Princeton, New Jersey: Princeton University Press.  

223. Shetty, U., Pakkala, T. P. M. (2010). Ranking efficient DMUs based on 

single virtual inefficient DMU in DEA. OPSEARCH, 47(1), 50–72. 

224. Portela, S., Conceição A., M., Thanassoulis, E. (2001). Decomposing 

school and school-type efficiency. European Journal of Operational 

Research, 132(2), 357–373.  

225. Silverman, B. W. (1986). Density Estimation. London, Chapman and Hall. 

226. Simar, L., Wilson, P. W. (1998a). Productivity Growth in Industrialized 

Countries. CORE Discussion Paper 1998036. Université Catholique de 

Louvain. 

227. Simar, L., Wilson, P. W. (1998b). Sensitivity analysis of efficiency scores: 

How to bootstrap in nonparametric frontier models. Management Science, 

44(1), 49–61.  

228. Simar, L., Wilson P. W. (1999). Estimating and bootstrapping Malmquist 

indices. European Journal of Operational Research, 115(3), 459–471. 

229. Simar, L., Wilson, P. W. (2000a). Statistical inference in nonparametric 

frontier models: the state of the art. Journal of Productivity Analysis, 13, 

49–78. 

230. Simar, L., Wilson, P. W. (2000b). A general methodology for 

bootstrapping in non-parametric frontier models. Journal of Applied 

Statistics, 27(6), 779–802.  

231. Simar, L., Wilson, P. W. (2002). Non-parametric tests of returns to scale. 

European Journal of Operational Research, 139, 115–132. 

232. Simar, L., Wilson, P. W. (2007). Estimation and inference in two-stage, 

semi-parametric models of production processes. Journal of Econometrics, 

136(1), 31–64. 

233. Simar, L., Wilson, P. W. (2008). Statistical inference in nonparametric 

frontier models: Recent developments and perspectives. In: H. O. Fried, C. 

A. K. Lovell, S. S. Schmidt, eds., The Measurement of Productive 

Efficiency, 2nd ed. Oxford: Oxford University Press. 



215 

 

234. Simar, L., Vanhems, A. (2012). Probabilistic characterization of directional 

distances and their robust versions. Journal of Econometrics, 166(2), 342–

354. 

235. Simar, L., Zelenyuk, V. (2006). On testing equality of distributions of 

technical efficiency scores. Econometric Review, 25, 497–522. 

236. Simon, J., Simon, C., Arias, A. (2011). Changes in productivity of Spanish 

university libraries. Omega, 39(5), 578–588.  

237. Soleimani-Damaneh, M., Jahanshahloo, G. R., Mehrabian, S., Hasannasab, 

M. (2009). Scale elasticity and returns to scale in the presence of 

alternative solutions. Journal of Computational and Applied Mathematics, 

233(2), 127–136. 

238. Solow, R. M. (1957). Technical Change and the Aggregate Production 

Function. Review of Econometrics and Statistics, 39(3), 312–320. 

239. Statistics Lithuania. (2010). Agriculture in Lithuania 2009. Vilnius.  

240. Statistics Lithuania. (2012). Results of the Agricultural Census of the 

Republic of Lithuania 2010. Vilnius. 

241. Statistics Lithuania. (2014). Official Statistics Portal. Available from 

internet: < http://osp.stat.gov.lt/en/>.  

242. Sufian, F. (2011). Financial Repression, Liberalization and Bank Total 

Factor Productivity: Empirical Evidence from the Thailand Banking Sector. 

Journal of Economic Computation and Economic Cybernetics Studies and 

Research, 45(4), 31–52. 

243. Thanassoulis, E., Portela, M.C.S., Despic, O. (2008). Data Envelopment 

Analysis: The Mathematical Programming Approach to Efficiency 

Analysis. In: Fried, H.O., Lovell, C.A.K., Schmidt, S.S. (Eds.) The 

Measurement of Productive Efficiency and Productivity. Oxford University 

Press, New York. 

244. Thiele H., Brodersen C. M. (1999). Differences in farm efficiency in 

market and transition economies: empirical evidence from West and East 

Germany. European Review of Agricultural Economics, 26(3), 331–347.  

245. Thomson Reuters. 2014. Web of Knowledge Database. 

http://webofknowledge.com  

246. Timmer, M., Erumban, A. A., Gouma, R., Los, B., Temurshoev, U., de 

Vries, G. J., Arto, I. (2012). The world input-output database (WIOD): 

contents, sources and methods. http://www.wiod.org 

247. Tohidi, G., Razavyan, S., Tohidnia, S. (2012). A Global Cost Malmquist 

Productivity Index Using Data Envelopment Analysis, Journal of the 

Operational Research Society, 63, 72–78. 

248. Tone, K. (2001). A slack-based measure of efficiency in data envelopment 

analysis. European Journal of Operational Research, 130(3), 498–509. 

249. Tone, K. (2002). A slack-based measure of super-efficiency in data 

envelopment analysis. European Journal of Operational Research, 143(1), 

32–41. 

250. Tone, K. (1996). A Simple Characterization of Returns to Scale in DEA. 

Journal of Operations research Society of Japan, 39(4), 604–613. 

251. Townsend, R. F., Kirsten, J., Vink, N. (1998). Farm size, productivity and 

returns to scale in agriculture revisited: a case study of wine producers in 

South Africa. Agricultural Economics, 19, 175–180. 



216 

 

252. Triantis, K., Girod, O. (1998). A mathematical programming approach for 

measuring technical efficiency in a fuzzy environment. Journal of 

Productivity Analysis, 10, 85–102. 

253. Triantis, K., Vanden Eeckaut, P. (2000). Fuzzy pair-wise dominance and 

implications for technical efficiency performance assessment. Journal of 

Productivity Analysis, 13, 207–230. 

254. Triantis, K., Sarangi, S., Kuchta, D. (2003). Fuzzy pairwise dominance and 

fuzzy indices: An evaluation of productive performance. European Journal 

of Operational Research, 144, 412–428. 

255. Tulkens, H. (1993). On FDH analysis: Some methodological issues and 

applications to retail banking, courts and urban transit. Journal of 

Productivity Analysis, 4, 183–210. 

256. Tulkens, H., Vanden Eeckaut, P. (1995). Non-parametric efficiency, 

progress and regress measures for panel data: Methodological aspects. 

European Journal of Operational Research, 80, 474–499. 

257. Tzouvelekas, V., Pantzios, C.J., Fotopoulos, C. (2001). Technical 

efficiency of alternative farming systems: the case of Greek organic and 

conventional olive-growing farms. Food Policy, 26, 549–569. 

258. Ulucan A., Atici K. B. (2010). Efficiency evaluations with context-

dependent and measure-specific data envelopment approaches: An 

application in a World Bank supported project. Omega, 38(1), 68–83. 

259. van Zyl, J., Miller, W., Parker, A. (1996). Agrarian structure in Poland: the 

myth of large farm superiority. Policy Research Working Paper No 1596. 

The World Bank, Washington, DC. 

260. Vasiliev N., Astover A., Motte M., Noormets M., Reintam E., Roostalu H. 

(2008). Efficiency of Estonian grain farms in 2000–2004. Agricultural and 

Food Science, 17, 31–40. 

261. Votápková, J., Žák, M. (2013). Institutional efficiency of selected EU & 

OECD countries using DEA-like approach. Prague Economic Papers, (2), 

206–223. 

262. Wang, K., Wei, Y. M., Zhang, X. (2013). Energy and emissions efficiency 

patterns of Chinese regions: A multi-directional efficiency analysis. 

Applied Energy, 104, 105–116. 

263. Wang, Y. M., Luo, Y., Liang, L. (2009). Ranking decision making units by 

imposing a minimum weight restriction in the data envelopment analysis. 

Journal of Computational and Applied Mathematics, 223, 469–484. 

264. Wang, Y. M., Greatbanks, R., Yang, J. B. (2005). Interval efficiency 

assessment using data envelopment analysis. Fuzzy Sets and Systems, 153, 

347–370. 

265. Weber, W. L., Domazlicky, B. R. (1999). Total factor productivity growth 

in manufacturing: A regional approach using linear programming. Regional 

Science and Urban Economics, 29(1), 105–122.  

266. Wei, C. K., Chen, L. C., Li, R. K., Tsai, C. H., Huang, H. L. (2012). A 

study of optimal weights of Data Envelopment Analysis–Development of a 

context-dependent DEA-R model. Expert Systems with Applications, 39(4), 

4599–4608. 

267. Wheelock, D. C., Wilson, P. W. (1999). Technical progress, inefficiency, 

and productivity change in US banking, 1984-1993. Journal of Money, 

Credit, and Banking, 31, 212–234.  



217 

 

268. Wheelock, D. C., Wilson, P. W. (2003). Robust nonparametric estimation 

of efficiency and technical change in U.S. commercial banking. Working 

Paper 2003-037A. – Federal Reserve Bank of St. Louis. 

269. Wheelock, D. C., Wilson, P. W. (2008). Non-parametric, unconditional 

quantile estimation for efficiency analysis with an application to Federal 

Reserve check processing operations. Journal of Econometrics, 145(1), 

209–225. 

270. Wilson, P. (2008). FEAR: A software package for frontier efficiency 

analysis with R. Socio-Economic Planning Sciences, 42(4), 247–254. 

271. Yatchew, A. (1998). Nonparametric regression techniques in economics. 

Journal of Economic Literature, 36(2), 669-721. 

272. Zavadskas, E. K., Turskis, Z. (2011). Multiple criteria decision making 

(MCDM) methods in economics: an overview. Technological and 

Economic Development of Economy, 17(2), 397–427. 

273. Zavadskas, E. K., Kirvaitis, R., Dagienė, E. (2011). Scientific Publications 

Released in the Baltic States. Scientometrics, 88, 179–190. 

274. Zelenyuk, V. (2012). A Scale Elasticity Measure for Directional Distance 

Function and its Dual: Theory and DEA Estimation. Working Paper Series 

No. WP07/2012. Centre for Efficiency and Productivity Analysis, School 

of Economics, University of Queensland. 

275. Zerafat Angiz, L. M., Mustafa, A., Emrouznejad, A. (2010). Ranking 

efficient decision–making units in data envelopment analysis using fuzzy 

concept. Computers & Industrial Engineering, 59, 712–719. 

276. Zhou, P., Ang, B. W., Han, J. Y. (2010). Total factor carbon emission 

performance: A Malmquist index analysis. Energy Economics, 32(1), 194–

201.  

277. Zhu, J. (2003). Context-dependent Data Envelopment Analysis. In: 

Quantitative Models for Performance Evaluation and Benchmarking. 

Springer.  

278. Zschille, M. (2014). Nonparametric measures of returns to scale: an 

application to German water supply. Empirical Economics, 47(3), 1029–

1053. 

 

 

  



218 

 

Annex A. Abbreviations and initial data for multi-criteria assessment. 

Table A1. Aggregates of Statistical Classification of Economic Activities 

(NACE Rev. 2) used in the research. 

 

NACE code Economic activity 

A Agriculture, forestry and fishing 

B Mining and quarrying 

C10_TO_C12 Manufacture of food products, beverages and tobacco 

C13_TO_C15 Manufacture of textiles, wearing apparel, leather and related products 

C16_TO_C18 Manufacture of wood, paper, printing and reproduction 

C20 Manufacture of chemicals and chemical products 

C21 Manufacture of basic pharmaceutical products and pharmaceutical preparations 

C22_C23 Manufacture of rubber and plastics products 

C24_C25  Manufacture of basic metals and fabricated metal products, except machinery 

C26 Manufacture of computer, electronic and optical products 

C27 Manufacture of electrical equipment 

C28 Manufacture of machinery and equipment n.e.c. 

C29_C30  Manufacture of transport equipment 

C31_TO_C33  Manufacture of furniture; jewellery, musical instruments, toys 

D Electricity, gas, steam and air conditioning supply 

E Water supply; sewerage, waste management and remediation activities 

F Construction 

G Wholesale and retail trade; repair of motor vehicles and motorcycle 

H Transportation and storage 

I Accommodation and food service activities 

J58_TO_J60  Publishing, motion picture, broadcasting activities 

J61 Telecommunications 

J62_J63 IT services 

K Financial and insurance activities 

L Real estate activities 

M69_TO_M71  Legal and accounting activities; activities of head offices 

M72  Scientific research and development 

M73_TO_M75  Advertising and market research; other professional activity 

N Administrative and support service activities 

O Public administration and defence; compulsory social security 

P Education 

Q86 Human health activities 

Q87_Q88 Residential care activities; social work activities without accommodation 

R Arts, entertainment and recreation 

S Other service activities 
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Table A2. Decision matrix for multi–criteria decision making. 

 

1. Mean 

TE 

2. CV 

(TE) 

3. Mean 

TFP 

change 

4. CV 

(TFP) 

 

MAX MIN MAX MIN 

A 0.739 0.180 0.953 0.169 

B 0.775 0.160 0.957 0.094 

C10_TO_C12 0.665 0.124 1.013 0.081 

C13_TO_C15 0.676 0.171 0.985 0.087 

C16_TO_C18 0.666 0.095 0.999 0.101 

C20 0.731 0.302 1.076 0.180 

C21 1.000 0.000 1.126 0.209 

C22_C23 0.665 0.176 1.014 0.122 

C24_C25  0.502 0.151 1.038 0.088 

C26 0.407 0.249 1.054 0.144 

C27 0.500 0.205 0.985 0.103 

C28 0.580 0.144 1.022 0.123 

C29_C30  0.614 0.190 1.031 0.101 

C31_TO_C33  0.639 0.139 1.022 0.067 

D 0.634 0.169 1.030 0.113 

E 0.419 0.062 1.017 0.073 

F 0.756 0.161 0.997 0.070 

G 1.000 0.000 0.986 0.038 

H 0.932 0.102 1.005 0.060 

I 0.844 0.066 0.992 0.036 

J58_TO_J60  0.585 0.115 0.967 0.098 

J61 0.951 0.079 1.000 0.076 

J62_J63 0.741 0.165 1.005 0.177 

K 0.684 0.273 1.035 0.196 

L 1.000 0.000 0.994 0.050 

M69_TO_M71  0.956 0.067 1.022 0.118 

M72  0.945 0.149 1.003 0.339 

M73_TO_M75  0.833 0.094 1.035 0.059 

N 0.626 0.121 1.030 0.106 

O 0.805 0.051 0.997 0.103 

P 1.000 0.000 0.998 0.095 

Q86 0.796 0.036 0.997 0.077 

Q87_Q88 0.633 0.230 1.018 0.135 

R 0.513 0.140 0.999 0.125 

S 0.857 0.167 0.951 0.169 
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Annex B. Partial regression plots for the output order-m efficiency 

measures. 

 

 

Fig. B1. Results of the non-parametric regression (variables held at the first quartile). 
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Fig. B2. Results of the non-parametric regression (variables held at their medians). 
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Fig. B3. Results of the non-parametric regression (variables held at the third quartile). 
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Annex C. Descriptive statistics. 

 

Table C1. Descriptive statistics for input/output and context variables. 

 

UAA, ha 

Labour 

input, 

AWU 

Intermediate 

consumption, 

LTL 

Assets, 

LTL 

Total 

output, 

LTL 

Age 
Crop 

share 

Subsidy 

share 

Assets per 

AWU 

Average 

Crop 286 4 325853 949286 512539 47 0.96 0.33 269053 

Livestock 130 4 224338 1031422 457454 46 0.23 0.24 241612 

Mixed 122 3 142240 521821 237848 50 0.48 0.41 136315 

Average 244 4 287793 897037 466648 47 0.81 0.33 246784 

Standard deviation 

Crop 234 3 325126 1129777 559449 9 0.08 0.38 271595 

Livestock 89 2 195030 934411 398492 10 0.07 0.19 191573 

Mixed 122 2 173447 753183 292032 11 0.09 0.42 124295 

Average 220 3 302653 1072942 520993 9 0.28 0.37 251403 

Minimum 

Crop 13 1 11347 14900 5857.383 20 0.66 0.00 7450 

Livestock 23 1 17440.15 75030.4 31164.4 32 0.05 0.08 26225 

Mixed 12 1 12262.45 26985.46 10305.58 22 0.35 0.00 13493 

Average 12 1 11347 14900 5857.383 20 0.05 0.00 7450 

Maximum 

Crop 1343 24 2366977 9573987 4305269 75 1.00 3.94 3244696 

Livestock 381 13 1013102 4917426 1653348 71 0.34 1.44 1238746 

Mixed 544 13 855155.7 5040197 1421075 74 0.66 4.23 884245 

Average 1343 24 2366977 9573987 4305269 75 1.00 4.23 3244696 
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Table C2. Descriptive statistics of the efficiency measures. 

 Unconditional Conditional 

Average 1.29 1.27 

Min 0.69 1.00 

Max 6.02 4.93 

Standard deviation 0.51 0.42 

Coefficient of variation 0.39 0.33 

 

 


