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1. INTRODUCTION

A fast-paced development of high-intensity lasers paves a way to
disruptive innovations in particle acceleration, development of table-top X-
ray and y-sources. High-energy physics research pushes the frontiers of
fundamental understanding of matter and fosters the advances of knowledge
at subatomic and attosecond scale. X-ray and y-sources based on large
accelerator facilities are widely used for material science, biochemistry
research and offer new opportunities in the emerging field of nuclear
photonics. Construction costs of a conventional radio accelerator reach several
hundreds of millions of euros and are hardly affordable for modest research
labs and industrial applications. Laser Wakefield Accelerators (LWFA) allow
to achieve much higher values of the accelerating electric field and shorten the
acceleration distance by hundreds of times. The formation of the electric field
in LWFA, parameters of accelerated particles, and secondary radiation are
defined by the interaction of propagating laser beam with plasma medium.
The control of plasma is challenging, as the fluence of accelerating laser
exceeds the limits of laser damage threshold of solid-state materials by several
orders of magnitude. The laser-plasma interaction can be controlled by
focusing and shaping of the laser beam and changing the properties of plasma
targets.

In this work, the structured plasma concentration profiles are used for the
acceleration of electron beams and X-ray generation. Tailored profiles are
defined by the arrays of supersonic gas jets and intersecting shock waves. The
gas jets are formed by the micronozzle arrays manufactured from a single
fused silica block using 3D laser microfabrication. The secondary betatron X-
ray radiation is generated by the transversal oscillation of electrons in the ion
channel of the laser wake.

The thesis is divided into seven chapters. The first three chapters comprise
the introduction, statements to defend, approbation, literature review and
methods. In chapter 4, the results of Particle-in-Cell simulation of LWFA
using structured plasma concentration profiles are presented. In chapter 5, the
fluid dynamics of supersonic jets is modelled. In chapter 6, the results of laser
microfabrication and nozzle characterization are described. In chapter 7, the
experimental results of LWFA and secondary radiation excitation are
discussed. At the end of the thesis, the summary of principal findings,
references and list of used symbols are presented.
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1.1. The Aim of the Research

The aim of the research was to investigate the properties of secondary X-
ray radiation using high-intensity laser fields and its implementation for
imaging applications in material science. Two tasks were set to achieve the
goal:

1. Research of dependence of injection of number of electrons into the
LWFA and secondary X-ray radiation on structured plasma concentration
profiles.

2. Investigation of new manufacturing methods of micronozzle
structures enabling the formation of required plasma concentration profiles.

1.2. Practical Value and Novelty

1.2.1. The Novelty of Research Results

1. The novel method of the control of electron injection in Laser
wakefield accelerators (LWFA) and secondary X-ray radiation using
structured plasma concentration profiles in injector and wiggler geometry was
experimentally demonstrated. Electron acceleration and excitation of
secondary radiation were numerically simulated.

2. For the formation of tailored plasma concentration profiles, the new
approach of intersecting supersonic gas jets built by micronozzle arrays was
proposed. The gas jets were numerically simulated and experimentally
characterized.

3. For the manufacturing of micronozzle arrays, the new hybrid method
of fused silica processing was introduced, enabling the fast material removal
and precise handling of micrometric structures and ensuring the required
quality of surface roughness.

1.2.2. Practical Value of Thesis

1. The proposed injection method increases the charge and lowers the
energy dispersion of LWFA accelerated electrons. It can be used for the
control of parameters of the electron beam in the secondary sources of
betatron, Bremsstrahlung and Inversed Compton Scattering of X-ray and
y - radiation.

2. Structured plasma concentration profiles in wiggler geometry
increase the transversal oscillation of electrons and brightness of secondary
betatron X-ray radiation. The secondary X-ray sources can be implemented

12



for the imaging of micrometric objects in biomedicine, material science and

investigation of femtosecond transient phenomena.
3. The proposed approach of formation of plasma concentration profiles

can be implemented for electron acceleration using various lasers of Terawatt
and Petawatt peak power and is of particular interest for the few-cycle lasers

with kHz repetition rate. Micrometric plasma targets of subcritical density can
be implemented for the ion acceleration using high-repetition-rate lasers

systems.

1)

2)

3)

4)

1.3. Statements to Defend

The charge of accelerated electrons can be increased and the
energy dispersion of the electrons can be lowered using combined
ionization and density down-ramp triggered injection of structured
plasma concentration profiles in injector geometry.

The number of photons and brightness of betatron X-ray radiation
can be raised by structured plasma concentration profiles in
wiggler geometry increasing the transversal oscillations of
electrons.

Structured plasma concentration profiles in injector and wiggler
geometry can be formed by intersecting shock waves of supersonic
gas jets of arrays of converging-diverging micronozzles and
micronozzles of fixed diameter.

Micronozzle arrays of micrometric dimensions resistant to optical
damage can be manufactured from transparent materials, such as
fused silica, combining fast high-volume removal laser
nanosecond rear side processing and high-precision Femtosecond
laser-assisted selective etching (FLSE) technique.

1.4. Approbation

The thesis is based on results published in 4 scientific peer-reviewed papers
and presented in 7 contributions to conferences as well as in 2 national patent
applications.
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2. LITERATURE REVIEW
2.1. High-Intensity Lasers

The laser intensity has grown revolutionary by more than 14 orders of
magnitude over the past 50 years since the discovery of laser in 1960 (Fig. 1).
The growth rate exceeded even the predictions of Moore’s law stating that the
number of transistors in dense integrated circuit doubles about every two
years [1-3]. The peak power of lasers increased rapidly with the introduction
of Q-switching and mode-locking allowing to shorten the pulse durations from
the microsecond domain to the few-femtosecond regime. It enabled to reach
maximum obtainable power around 1 GW and intensity of about 10'* W/cm?.
Further, the intensity was raised by 8 orders magnitude by the implementation
of Chirped Pulse Amplification (CPA) technique and Optical Parametric
Chirped Pulse Amplifiers (OPCPA) [4]. Starting from an intensity exceeding
10" W/cm?, the electromagnetic field produced by a laser allowed to
accelerate electrons to relativistic energies.

eEi A= 2mc?
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Figure 1. Moore’s law of light [1,6]

The high-intensity laser can accelerate electrons and ions, generate
coherent and incoherent X-ray or y - radiation and produce ultra-short pulses
at the attosecond scale. Laser-driven sources of ionizing radiation are used in
medical imaging, ultrafast radiation biology, material science, and time-
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resolved studies of high-resolution atomic physics [5]. New therapies
implementing high-energy energy electrons, protons and heavier ions are
developed. Laser-driven y- and neutron sources are used for radiography, non-
destructive detection and assay of nuclear materials as well as production and
transmutation of radioisotopes.

Present systems deliver Petawatt peak power and focused intensity in the
range of 10% - 10> W/cm?. The lasers with intensities around 10%> W/cm? are
planned to be launched at Extreme Light Infrastructure (ELI) in the near
future [7]. At such extreme fields, the exotic physics such as radiation reaction
(RR) effects, strong-field vacuum polarization and nonlinear Quantum
Electrodynamics (QED) can be investigated. When an external electric field
at the Schwinger limit is applied to the vacuum, the real electron-positron pairs
can be produced. The electric field at Schwinger limit is Es = 1.3 x 10'® V/m
and requires laser intensities Is = 2.3x10%° W/cm? hardly reachable with the
help of nowadays technology. However, by using two counterpropagating
circularly polarized laser beams, the QED effects are predicted to play a role
already at the laser intensities of the order of 10** W/cm?[3].

2.2. Sources of lonizing Radiation

Depending on the available intensity, high-intensity lasers can drive a
variety of secondary sources of ionizing radiation. At laser intensities of the
order of 10'* W/cm?, coherent XUV radiation in the energy range of tens and
hundreds of electronvolt (eV), can be produced using High-Order Harmonics
Generation (HHG) from gas targets [8]. At laser intensities on the order of
10'® W/cm?, a short pulses of Ka-line subnanometer wavelength radiation
from laser-solid target interaction can be generated [9,10]. It is not collimated,
however, and the radiation has isotropic angular distribution. At the intensities
above 10" W/cm?, LWFA can accelerate electrons to relativistic energies.
Accelerated electrons enable the development of femtosecond X-ray and v-
sources [5].

X-ray radiation, discovered more than a century ago, traditionally was
generated by an X-ray tube. It uses a high voltage to accelerate the electrons
released by cathode to a high velocity, and hit a metal target, creating the X-
rays. The maximum energy of the produced X-ray photons is limited by the
energy of the incident electrons in the hundred keV range depending on the
anode voltage of approximately 20-150 kV. The photons of higher energy
were produced using y- sources based on the emission of radioactive nuclei.

X-ray tube radiation consists from characteristic X-ray emission of
electron transitions from the upper shells to the K-shell (called K., Kg lines),
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and from Bremsstrahlung of electrons scattered by the strong electric field
near the high-Z nuclei. The highest brightness of X-ray tube radiation is
produced using Liquid-Metal-Jet-Anode X-ray tube Sources [11].

Medical linear accelerators accelerate monoenergetic electron beams to the
energies between 5 and 30 MeV. The electrons can be used directly or collided
at a target such as tungsten to produce y-ray beam in 9-15 MeV range [12].
Modern X-rays sources are based on synchrotron radiation from electrons
accelerated radially using bending magnets, undulators or wigglers. The
highest brightness of X-ray radiation is achieved using Free Electron Lasers
(FEL) [13]. The electron radiation in the field of bending magnet is continuous
with characteristic critical wavelength A.pens defined as:

dm,c
3eBbend72 ’ (1)

chend

where vy is the Lorentz factor of the electron, e is the electron charge, c is
the speed of light in vacuum, By« is the magnetic field of bending magnet. In
practical units, the corresponding critical photon energy of synchrotron
radiation in keV can be calculated using the relation:
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where W. is the electron energy in GeV.
The fundamental harmonics of undulator radiation is described by the
relation:

2
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where /, is the spatial period of the undulator magnets, &, is the angle of
undulator radiation relative to the electron beam axis, and K, is the undulator
strength parameter defined as:
eB 1
K =—""=0.934B [T]A [cm
S ame ATV lem], 0
where B, is the magnetic field, and 4, is the spatial period of the undulator
magnets in cm. The photon energy of the fundamental harmonics of undulator
radiation in keV W,, can be estimated as:
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where W, is the electron energy in GeV. For K~1, the oscillation amplitude
of the motion is small, and the radiation is generated at specific undulator
harmonics being multiple of A.... If K>>1, the oscillation amplitude is bigger,
and it leads to broad-spectrum wiggler radiation. Synchrotron X-ray sources
have an average brightness of 10?2, and the peak brightness of FEL is around
10* photons/s/mm?/mrad®/0.1%BW (0.1%BW means - 10~ of bandwidth
centred around the corresponding frequency). It exceeds many orders of
magnitude the brightness of X-ray tubes being approximately of 107
ph/s/mm?/mrad?/0.1%BW. A synchrotron producing X-rays requires particle
energies of a few GeV. X-ray FEL operates at the energy level of 8-17.5 GeV
and produces X-rays up to 20keV. Each GeV of energy requires
approximately 100 m of acceleration length. It leads to the construction of
large facilities with the cost of hundreds of millions of euros.
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Figure 2. Moore’s law of particle accelerators [14-16]

With the decreasing of the wavelength of accelerating electromagnetic
waves, the electric field increases within the distance of one wave period
(Fig. 2). However, the limiting factor of Radio Frequency (RF) accelerators is
the ionization of the cavity material, causing the breakdown of resonators. A
plasma can support arbitrarily high electric fields limited only by the critical
plasma concentration allowing the propagation of a laser beam. The central
wavelength of current high-power laser systems is typically in the range of
0.8-1.0 pm. Therefore, the maximal electric field is limited to Eppax ~ 1 TV/m.
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It exceeds by more than 3 orders of magnitude the highest field of RF-based
cavities in the range of 200 -400 MV. At the relativistic intensity of
approximately 10" W/cm?, the laser electric field exceeds the electric field
reached in plasma accelerators by one or two orders of magnitude. However,
the electron interacting with homogenous electromagnetic laser field in a
vacuum with no boundaries in the infinite region does not gain the
energy [17]. To enable the Direct Laser Acceleration (DLA) of electrons,
additional measures, such as the implementat<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>