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Deuteron–deuteron elastic scattering and transfer reactions in the energy regime above four-nucleon 
breakup threshold are described by solving exact four-particle equations for transition operators. Several 
realistic nuclear interaction models are used, including the one with effective many-nucleon forces 
generated by the explicit �-isobar excitation; the Coulomb force between protons is taken into account as 
well. Differential cross sections, deuteron analyzing powers, outgoing nucleon polarization, and deuteron-
to-neutron polarization transfer coefficients are calculated at 10 MeV deuteron energy. Overall good 
agreement with the experimental data is found. The importance of breakup channels is demonstrated.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The pursuit for numerical solutions of the three- and four-
nucleon scattering problems has been, since the early seventies of 
the last century, one of the most challenging endeavors in nuclear 
reaction theory, following the development of formal exact N-body 
equations using momentum or configuration space representations 
[1,2]. Progress advanced slowly at first and limited to the use of 
separable representations of subsystem operators, but with the 
advent of powerful computational tools, both in terms of algo-
rithms (spline interpolation, Padé summation, special integration 
meshes and weights, etc.) and hardware advances, three-nucleon 
(3N) calculations with realistic nucleon–nucleon (NN) force models 
reached state-of-the-art status in the early 1990s due to the effort 
of a number of independent groups [3–7]. Due to its higher di-
mensionality and multichannel complexity, the four-nucleon (4N) 
scattering problem took twenty years longer to reach the same 
status as the three-nucleon system except for the calculation of 
breakup amplitudes. These developments are mainly due to the 
works of the Pisa [8–11], Grenoble–Strasbourg [12–15], and Lisbon 
[16–19] groups. Because the first two groups use the coordinate-
space representation, they were able to include, not only realistic 
two-body interactions, but also realistic three-body force models. 
Nevertheless they have had a major difficulty in calculating mul-
tichannel reactions and going beyond breakup threshold, particu-
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larly when the Coulomb interaction is included between protons. 
The Lisbon group uses the momentum space Alt, Grassberger and 
Sandhas (AGS) equations for transition operators [2] that can be 
solved for multichannel reactions both below and above breakup 
and with the Coulomb force included. The only stumbling block 
has been the inclusion of irreducible three-body forces. As alterna-
tive the nuclear force model with explicit excitation of a nucleon to 
a � isobar was used. This coupling generates both effective three-
and four-nucleon forces (3NF and 4NF) that have been successfully 
included in 4N calculations by the Lisbon–Hannover Collaboration
[20]. The calculations using potentials derived from chiral effective 
field theory have been performed as well [16,17] but so far includ-
ing only the NN part of the interaction.

In the last 40 years progress in nuclear reaction theory has 
most often succeeded experimental developments to the point 
that, when calculations achieved a solid ground, the instrumen-
tation that gave rise to the data was no longer in operation. 
Therefore inconsistencies between different data cannot anymore 
be resolved by repeating the experiments or developing new ones 
guided by the theoretical predictions. The 4N scattering problem 
has suffered from this much more than the 3N system for the 
reasons mentioned above. Nevertheless, new 4N scattering calcula-
tions are worth pursuing because they lead the way to the solution 
on complex multiparticle scattering problems, not just in nuclear 
physics but also in cold atom physics [21].

In this work we present first results for 4N reactions initiated 
by the collision of two deuterons (d) at energies above four-particle 
breakup threshold. In this energy domain there are a few shallow 
resonances [22]; therefore one does not expect the same problems 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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as encountered in n-3H and n-3He near threshold. However, in two 
aspects the theoretical description of the d + d scattering is even 
more interesting and challenging. First, since deuterons are loosely 
bound and spatially large systems, the scattering of two deuterons 
looks like the collision of two identical halo nuclei. The coupling 
to breakup channels in such a system is considerably stronger than 
in nucleon–trinucleon scattering. This makes the d + d reactions 
computationally more difficult since open breakup channels lead 
to most complicated singularities in the kernel of scattering equa-
tions and, furthermore, a larger number of partial waves is needed. 
Second, the deuteron being a spin one particle also provides the 
opportunity to calculate a number of tensor observables, both in 
d + d elastic as well as in 2H(d, p)3H and 2H(d, n)3He transfer 
reactions for which there is experimental data. The most abun-
dant set of the experimental data for d + d reactions exists at 
deuteron energy Ed = 10 MeV where not only differential cross 
section and analyzing powers but also deuteron-to-neutron polar-
ization transfer coefficients have been measured [23] establishing 
the 2H(d, n)3He reaction as an efficient source for polarized neu-
trons.

In Section 2 we explain the AGS equations we use and how to 
solve them. In Section 3 we show results for d +d elastic scattering, 
while in Section 4 results for 2H(d, p)3H and 2H(d, n)3He transfer 
reactions are presented. Conclusions are drawn in Section 5.

2. Deuteron–deuteron scattering equations

As in our previous studies of 4N scattering [16,24,19], we take 
advantage of the isospin symmetry and treat protons and neutrons 
as identical fermions. This enables the symmetrization of the tran-
sition operators Uβα thereby reducing the number of components 
that are distinct according to two-cluster partitions [16]. As usual, 
α = 1 labels the 3 + 1 partition (12,3)4, while α = 2 stands for the 
2 + 2 partition (12)(34). To ensure the required full antisymme-
try of the four fermion system, the employed basis states have to 
be antisymmetric under the exchange of two particles in subsys-
tem (12), and also in the subsystem (34) for the 2 +2 partition. The 
4N transition operators Uβ2 describing deuteron–deuteron scatter-
ing obey the AGS integral equations

U12 = (G0tG0)
−1 − P34U1G0tG0U12 + U2G0tG0U22, (1a)

U22 = (1 − P34)U1G0tG0U12. (1b)

Here P34 is the permutation operator of particles 3 and 4,

t = v + vG0t (2)

is two particle transition operator for the pair (12) interacting via 
potential v , while U1 and U2 are symmetrized transition operators 
for 3 + 1 and 2 + 2 subsystems, respectively [16]. The dependence 
of all transition operators on the available energy E arises through 
the free four-particle resolvent

G0 = (E + iε − H0)
−1, (3)

with H0 being the free Hamiltonian. The finite imaginary part iε
is introduced in the complex energy method to avoid singularities 
in the kernel of AGS equations, but the limit ε → +0 is needed 
for physical amplitudes, that are given by the on-shell matrix el-
ements of the transition operators Uβα [16]. The ε → +0 limit is 
obtained by the analytic continuation of the finite ε results us-
ing the point method [25]. The analytic continuation, however, is 
only accurate when using sufficiently small ε values at which the 
kernel of the AGS equations, although formally being nonsingular, 
still shows a quasisingular behavior [18]. These quasisingularities 
reflect the presence of open p + 3H, n + 3He, d + d, d + n + p, 
and n + n + p + p channels. Their treatment is taken over from 
Ref. [18] where a special method for numerical integration ab-
sorbing the quasisingular factor into the integration weights was 
developed. This way the quasisingularities can be integrated accu-
rately without increasing significantly the number of grid points. 
In the present calculations we obtain well converged results us-
ing ε between 1.2 and 3.0 MeV in 0.3 MeV steps and about 30 
grid points for the discretization of each momentum variable. Note 
that due to a larger weight of breakup channels a bit more ε val-
ues (about 6) are needed for a reliable ε → +0 extrapolation as 
compared to previous calculations [18,26].

Although we explore the isospin symmetry, we also account for 
the isospin violation effects due to the pp Coulomb repulsion and 
the hadronic charge dependence (CD) of the nuclear force. These 
effects cause the two-nucleon transition matrix t to couple the 
states with different total isospin in both 3N and 4N systems. In 
3N or 4N total isospin basis, the two-nucleon transition matrix t
is given by linear combinations of pp, np, and nn transition oper-
ators as described in Ref. [27]. For the pp pair beside the nuclear 
force also the screened Coulomb potential is added, enabling rigor-
ous inclusion of the Coulomb interaction in the deuteron–deuteron 
scattering via the method of screening and renormalization [28,29,
24]. We obtain fully converged results calculating the Coulomb-
distorted short-range part of the amplitudes with the screening 
radius R = 13 fm. The direct unscreened Coulomb amplitude is 
present only in the elastic scattering; it is added after the renor-
malization of the short-range amplitude. The direct Coulomb am-
plitude causes the d + d elastic differential cross section to diverge 
in the forward and backward direction but is absent for transfer re-
actions that are only distorted by Coulomb [24]. Other electromag-
netic effects as the magnetic moment interaction are not explicitly 
included in the calculations, however, their short-range part is im-
plicitly included in the employed NN potentials that are fitted to 
the NN data. They are not isolated in the present work but, based 
on previous studies [17,30] where they have been found to affect 
the vector analyzing powers only and to decrease with increasing 
energy, at 10 MeV one could expect only minor effects.

We solve the AGS equations in the momentum-space partial-
wave framework following the methodology developed in Refs. [16,
18]. In this framework the AGS equations constitute a large sys-
tem of coupled integral equations in three continuous Jacobi mo-
mentum variables. The integrals are discretized using Gaussian 
quadratures with special (standard) weights for quasisingular (non-
singular) integrands, leading to a huge system of linear algebraic 
equations. Beside the number of grid points that can be kept mod-
erate, the size of the resulting system depends also on the number 
of included angular momentum states. With respect to the num-
ber of partial waves needed for achieving convergence, the d + d
reactions are more demanding than those initiated by the p + 3H
or n + 3He collisions already calculated in Refs. [19,27]. In terms 
of the basis states defined in Refs. [31,27], when solving the AGS 
equations we include 4N partial waves with orbital angular mo-
menta lx up to 6 and l y, lz up to 7, total angular momenta of 
the 2N subsystem jx, j y up to 6, total angular momentum of the 
3N subsystem J y up to 13

2 , and total 4N angular momentum J
up to 7. Once the AGS equations are solved, for the calculation 
of elastic observables it is sufficient to include only the initial 
and final d + d states with lz ≤ 4. In contrast, transfer reactions 
2H(d, p)3H and 2H(d, n)3He require lz at least up to 6 in the chan-
nel states.

3. Elastic scattering

As in our previous calculations of nucleon–trinucleon scatter-
ing, we use several realistic nuclear force models, enabling us to 
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Fig. 1. Differential cross section of d + d elastic scattering at 10.5 and 12.3 MeV 
deuteron energy. Results calculated using INOY04 potential are compared with ex-
perimental data from Refs. [35] (�), [36] (�), and [37] (×).

study the sensitivity of the predictions to the dynamic input. Be-
side two purely nucleonic interaction models, the inside-nonlocal 
outside-Yukawa (INOY04) potential by Doleschall [32,13] and the 
CD Bonn potential [33], we also use the two-baryon potential CD 
Bonn + � [34] that is the coupled-channel extension of CD Bonn, 
explicitly allowing virtual excitation of a nucleon to a � isobar 
and thereby yielding mutually consistent effective three- and four-
nucleon forces. This model, however, is not fitted to the trinucleon
binding energy (BE), yielding 7.53 (8.28) MeV for 3He (3H) which 
is increased relative to the CD Bonn BE result of 7.26 (8.00) MeV. 
Only the INOY04 model, predicts the BE of 3He (3H) to be 7.73 
(8.49) MeV, nearly reproducing the experimental value of 7.72 
(8.48) MeV. Since the p + 3H and n + 3He threshold positions 
depend on the respective BE, some scattering observables are ex-
pected to correlate with the BE, thereby establishing INOY04 as a 
reference potential. Of course, the dependence of the observables 
on the used interaction model is in general much more compli-
cated, but in particular cases simple correlations with nonmeasur-
able bound state properties such as the deuteron D-wave probabil-
ity P D may take place. For the INOY04 potential P D = 3.60% while 
CD Bonn and CD Bonn + � have P D = 4.85%.

In the present work we concentrate on the d + d scattering at 
deuteron energy Ed = 10 MeV where the most abundant set of ex-
perimental data exists, both for elastic and transfer reactions. The 
differential cross section dσ/dΩ for elastic d +d scattering is, how-
ever, an exception. We therefore show dσ/dΩ as a function of the 
center of mass (c.m.) scattering angle Θc.m. in Fig. 1 at Ed = 10.5
and 12.3 MeV. Solely the INOY04 potential is used for predictions 
but, based on the study at Ed = 10 MeV, the sensitivity of this 
observable to the force model is small. The angular dependence 
of dσ/dΩ is simple, with forward and backward peaks, where 
dσ/dΩ diverges due to the long-range Coulomb amplitude, and 
a minimum at Θc.m. = 90◦ . This shape remains almost constant 
while the absolute value of the differential cross section decreases 
with increasing energy. Regarding the description of the experi-
mental data, the picture is a bit contradictory. At Ed = 10.5 MeV
there is a good agreement with the data from Ref. [36] while the 
data from Ref. [35] are slightly overpredicted, by 3% at Θc.m. = 90◦ . 
At Ed = 12.3 MeV the data from Ref. [37] are well reproduced by 
the calculations at Θc.m. < 65◦ but slightly underpredicted around 
the minimum, by 4% at Θc.m. = 90◦ . These findings suggest that 
more calculations over a wider energy range need to be performed 
and compared with the available data to determine the discrepan-
cies between theory and experiment and find out possible incon-
sistencies between data sets.

In Fig. 2 we present results for deuteron vector analyzing power 
iT11 and tensor analyzing powers T20, T21, and T22 in d + d elas-
tic scattering at Ed = 10 MeV. The predictions are obtained using 
the potential models INOY04, CD Bonn + �, and CD Bonn. These 
spin observables are very small in their absolute value, of the or-
Fig. 2. Deuteron analyzing powers in d + d elastic scattering at Ed = 10 MeV. Re-
sults obtained with potentials INOY04 (solid curves), CD Bonn + � (dashed–dotted 
curves), and CD Bonn (dotted curves) are compared with data from Refs. [38] (•) 
and [39] (�).

der of 0.02. Due to the identity of the two deuterons the angular 
distributions of elastic observables in the c.m. frame are either 
symmetric (dσ/dΩ , T20, T22) or antisymmetric (iT11, T21) with 
respect to Θc.m. = 90◦ . The overall description of the experimental 
data is good. The data have relatively large error bars, especially 
in the iT11 case where two data sets [38,39] are available. The 
symmetric analyzing powers T20 and T22 are most sensitive to the 
employed force model. However, the results obtained with differ-
ent potentials do not correlate with the properties of 2N and 3N 
bound states such as binding energies or deuteron D-state prob-
ability. The data are reproduced best by the predictions using the 
CD Bonn + � potential. The �-isobar effect is especially signifi-
cant and beneficial for T20. The antisymmetric analyzing powers 
iT11 and T21 show less sensitivity to the employed potential. At 
least to some extent this is due to kinematic reasons, since iT11
are T21 vanish exactly at Θc.m. = 90◦ where dσ/dΩ has its min-
imum and the model dependence of symmetric analyzing powers 
reaches its maximum.

4. Transfer reactions

We calculate the transfer reactions 2H(d, p)3H and 2H(d, n)3He
using the same nuclear interaction models, i.e., INOY04, CD Bonn 
+ �, and CD Bonn. In Fig. 3 we present results at Ed = 10.0
and 12.3 MeV for the differential cross section dσ/dΩ as func-
tion of the nucleon scattering angle Θc.m. in the c.m. frame. For 
both 2H(d, p)3H and 2H(d, n)3He reactions, dσ/dΩ has very simi-
lar shape but is slightly higher for the latter. The differential cross 
section is symmetric with respect to Θc.m. = 90◦ but has a more 
complicated angular and energy dependence than in the case of 
elastic scattering. At both considered energies there are forward 
and backward peaks as well as local minima around Θc.m. = 45◦
and 135◦ . At Ed = 10.0 MeV there is just a local maximum located 
at Θc.m. = 90◦ which evolves into a shallow local minimum as the 
energy increases to 12.3 MeV; meanwhile two local maxima ap-
pear around Θc.m. = 70◦ and 110◦ . Such a behavior is seen also in 
the experimental data [37,40–42]. The overall agreement between 
theoretical results and the data is good, except at intermediate 
angles where dσ/dΩ is small and the data are slightly under-
predicted by the INOY04 results, roughly by 6% at Θc.m. = 90◦ . 
The sensitivity to the employed potential models is studied at 
Ed = 10.0 MeV and is visible around the extrema of dσ/dΩ . While 
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Fig. 3. Differential cross section of 2H(d, p)3H (left) and 2H(d, n)3He (right) transfer 
reactions at 10.0 and 12.3 MeV deuteron energy. Curves are as in Fig. 2. The data 
are from Refs. [40] (•), [37] (×), [41] (�), and [42] (�).

Table 1
Predicted total cross sections for 2H(d, p)3H and 2H(d, n)3He transfer reactions 
and for breakup, labeled σp , σn , and σb , respectively, all in millibarns, at 10 MeV 
deuteron energy.

σp σn σb

CD Bonn 83.4 87.1 110
CD Bonn + � 79.8 83.9 113
INOY04 77.6 81.3 112

at forward and backward peaks and central maximum the predic-
tions roughly scale with the trinucleon BE as already observed in 
previous calculations below breakup threshold [24,43], at the min-
ima CD Bonn and CD Bonn + � results are indistinguishable. This 
may indicate a possible sensitivity to two-nucleon isospin singlet 
partial waves since there CD Bonn and CD Bonn + � potentials 
are identical.

The resulting total cross sections σp and σn at Ed = 10 MeV
are collected in Table 1 for all three potentials. The total transfer 
cross sections scale quite well with the trinucleon BE. In addition 
we present also the total breakup cross section σb , including both 
three- and four-cluster channels. It is calculated using the opti-
cal theorem with finite screening radius R before subtraction and 
renormalization of the elastic scattering amplitude because trans-
fer and breakup operators are short-ranged and the respective total 
cross sections are unchanged by renormalization phases [44]. Al-
ready at Ed = 10 MeV σb exceeds σp and σn , indicating the impor-
tance of breakup in d +d collisions. Note that in n + 3He scattering 
breakup becomes the dominant inelastic channel only above the 
neutron laboratory energy of 23 MeV which roughly corresponds 
to Ed = 28 MeV.

Next we consider single-polarization spin observables in
2H(d, p)3H and 2H(d, n)3He reactions at Ed = 10 MeV. In Fig. 4
we show vector analyzing power iT11, tensor analyzing powers 
T20, T21, and T22, and outgoing nucleon polarization P y calculated 
using INOY04, CD Bonn + �, and CD Bonn potentials. All deuteron 
analyzing powers exhibit a complex angular dependence with sev-
eral local minima and maxima. They show no symmetry with 
respect to Θc.m. = 90◦ , in contrast to P y which is antisymmetric. 
The differences between 2H(d, p)3H and 2H(d, n)3He observables 
are quite small but visible, e.g., around second maximum of T20. 
For most observables several measurements exist [40,45–49,23]
that are at variance in particular cases, especially for iT11. Nev-
ertheless, the overall description of the experimental data by our 
calculations is successful with only few small or at most moder-
Fig. 4. Deuteron analyzing powers and outgoing nucleon polarization of 2H(d, p)3H
(left) and 2H(d, n)3He (right) transfer reactions at 10 MeV deuteron energy. Curves 
are as in Fig. 2. The data are from Refs. [40] (+), [45] (�), [46] (×), [47] (�), [48]
(◦), [49] (•), and [23] (�).

ate disagreements, mostly in the vector observables: the minima of 
iT11 are underpredicted while the positive peak of P y is shifted to 
larger angles. The sensitivity to the used interaction model is quite 
small; it is most visible for iT11. It is not a simple scaling with 
trinucleon BE since often CD Bonn and CD Bonn + � predictions 
stay quite close together with INOY04 being further away. This may 
again indicate the dominance of NN isospin singlet partial waves. 
It may even indicate partial correlation of the observables with 
the deuteron D-state probability P D , but more detailed studies are 
needed to confirm or reject this speculation.

Finally we show the results for double-polarization observables. 
Deuteron-to-neutron polarization transfer coefficients K x′

x , K z′
x , K x′

z , 
K z′

z , K y′
y , and K y′

yy in the 2H(d, n)3He reaction at Ed = 10 MeV have 
been measured in Ref. [23]. These data and our predictions based 
on three nuclear interaction models are compared in Fig. 5. The 
polarization transfer coefficients exhibit a very complex angular 
dependence having up to six local extrema. Given such a compli-
cated behavior of the observables the found agreement between 
theory and experiment is impressive. There are only small dis-

crepancies such as a slight underestimation of K y′
y at intermediate 

angles. The model dependence of the polarization transfer coeffi-
cients is quite weak and qualitatively the same as already seen for 
single-polarization observables.
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Fig. 5. Deuteron-to-neutron polarization transfer coefficients of 2H(d, n)3He reaction 
at 10 MeV deuteron energy. Curves are as in Fig. 2. The data are from Ref. [23].

5. Conclusions

We perform calculations for elastic and transfer reactions initi-
ated by deuteron–deuteron collisions above four-nucleon breakup 
threshold. This process mimics the scattering of two halo nuclei. 
As dynamic input we use several realistic two-nucleon potentials 
and include the proton–proton Coulomb force via the screening 
and renormalization method. Exact four-particle scattering equa-
tions in the integral form for symmetrized transition operators are 
solved in the momentum-space framework where the presence of 
open breakup channels leads to a kernel with a highly nontrivial 
singularity structure. The complex energy method with special in-
tegration weights is successfully applied to deal with this difficulty. 
Compared to previous calculations of nucleon–trinucleon scatter-
ing, the relatively weak binding of deuteron and its large spatial 
size lead to additional complications such as a slower partial-
wave and complex-energy convergence. Nevertheless, we obtain 
fully converged results for d + d elastic scattering as well as for 
2H(d, p)3H and 2H(d, n)3He transfer reactions. For these reactions 
at 10 MeV deuteron energy we calculate the differential cross sec-
tion and all deuteron analyzing powers; the former observable 
is predicted also at Ed = 12.3 MeV. Furthermore, for transfer re-
actions we calculate also the outgoing nucleon polarization and, 
in the 2H(d, n)3He case, deuteron-to-neutron polarization trans-
fer coefficients. The overall description of the experimental data is 
good, even for the most complicated double-polarization observ-
ables. The comparison of predictions based on INOY04, CD Bonn 
+ �, and CD Bonn potential models may indicate the dominance 
of NN isospin singlet partial waves for most spin observables in 
transfer reactions, but not in the case of elastic scattering. We also 
predicted the total breakup cross section and demonstrated the in-
creased importance of breakup channels in d + d reactions.

Together with the previous achievements in the nucleon–
trinucleon scattering, the present work demonstrates that numer-
ically exact calculations of all two-cluster reactions in the four-
nucleon system are now possible in a fully converged way using 
realistic nuclear interactions and including the pp Coulomb repul-
sion.
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