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ABSTRACT In recent years, distributed ledger technologies, and especially blockchain, have gained
tremendous interest from academia, government, and industry. Although various blockchain-based solutions
were created, the lack of tools to evaluate these complex distributed systems may hinder the development
of the field. Many advantages of blockchain systems can be demonstrated only at large scales, e.g., using
thousands of nodes. An investigation of different implementations and design choices is complicated and
hardly feasible on real systems. Meanwhile, blockchain simulators give the possibility to repeat the complex
real-world processes at a low cost. This work provides the first and an up-to-date systematic review and
empirical analysis of blockchain simulators. Simulators are easily extensible and can test the performance of
distributed ledgers using different settings and parameters on a single computer. The features and limitations
of selected simulators are summarized and experimentally validated. Finally, recommendations for potential
future research directions in the field are provided.

INDEX TERMS Bitcoin, distributed ledger technology, blockchain, simulators, systematic review.

I. INTRODUCTION
Since its first introduction in cryptocurrency, Bitcoin [1],
blockchain has been recognized as a breakthrough tech-
nology and has attracted much attention from academia,
government, and industry alike [2]–[4]. The distributed and
decentralized nature of blockchain enables tamper-evident
and tamper-resistant control of the transfer of assets. Today,
blockchain technology has been applied to a broad field
of various innovative solutions beyond cryptocurrencies
(see, e.g., [3]–[7] and references given therein). However,
compared to traditional centralized solutions, blockchain’s
decentralized nature limits its performance [8], and this
becomes a significant constraint on applying blockchain in
productionmore broadly [9].Moreover, blind development of
blockchain-based systems without initial performance evalu-
ation may have an immense negative impact during the actual
deployment stage [10]. Therefore, performance evaluation
is a crucial topic for blockchain and all distributed ledger
technologies (DLTs).

The architecture of DLTs is complex; even its simpli-
fied abstraction consists of five-layers (we discuss this in
detail in Section II): network layer, consensus layer, data
layer, execution layer, and application layer. The evaluation
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of how various modifications of each layer influence the
performance of other layers and the entire system is valuable
for both industry and academia. Not coincidentally, there is
increasing interest in the performance evaluation techniques
of distributed ledger systems. The performance evaluation
solutions based on analytical modeling (e.g., Markov chains,
queuing models, stochastic Petri nets) leverage mathematical
tools to formalize a blockchain system and provide analytical
evidence of blockchain performance evaluation. Meanwhile,
benchmarking, monitoring, and experimental analysis are
specific performance evaluation solutions of DLT systems
and stem from empirical analysis. However, all these prac-
tical evaluation strategies require the availability of existing
systems. We refer interested readers to recent reviews [9],
[11] for a more detailed analysis of performance evaluation
techniques.

The complexity of large-scale, distributed ledger systems
makes the performance evaluation process challenging.
Excluding simple experiments, e.g., conducted on a sin-
gle or a few nodes, experiments on blockchain systems are
costly, thus rare. The preparation of a node for testing in a
public blockchain network is needed to collect the informa-
tion from the entire vast area. Moreover, examining solutions
in testnets requires considerable effort to encourage users
to participate. When a private experimental network is con-
structed, the information of the whole system can be obtained
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easier. However, the preparation of many nodes is expen-
sive, and experimental conditions and network configuration
cannot be easily modified. In this context, the simulation of
DLT systems becomes a very promising evaluation approach.
Moreover, simulation often emerges as the only alternative to
realistically evaluate blockchain performance under different
scenarios since neither formal modeling nor deployment of
thousands, or even tens of thousands of nodes (e.g., there are
more than 11,000 reachable nodes in Bitcoin [12]) would be
possible.

Blockchain simulation software – blockchain simulators –
give the possibility to repeat real-word processes at a low
cost. Blockchain simulators attempt to reproduce a real sys-
tem’s performance and progress over time by implementing
and running a simulation model [13]. Simulation models
are a particular type of mathematical model of a system.
They may be classified as static or dynamic, deterministic
or stochastic, discrete or continuous (see [14] for more infor-
mation on this). Blockchain simulators implement different
models for specific resources (e.g., network latency, band-
width), and each of these models is described by a set of
specific parameters [13]. By changing the simulated model
variables and conditions, the simulated system can be thor-
oughly investigated without the need to implement an entire
system [10]. This way, blockchain simulators allow users to
quickly test system performance using different settings and
parameters, study its behavior under various operational sce-
narios, and, in turn, to better define the proper configuration
settings. Therefore, simulators are valuable tools in the devel-
opment of blockchain protocols and systems. Unfortunately,
the design and development process of blockchain simulators
is complex. Thus, most blockchain simulators are devel-
oped to realistically reproduce only one or several aspects
of the system (e.g., mining and miners’ behavior, attacks on
the network, or data dissimulation). The implementation of
other processes (e.g., fixed network delays or approximation
of hashing power with Gaussian distribution) is simplified,
while some features (e.g., Merkle trees) may be skipped
entirely.

Consequently, the selection of the most suitable simu-
lator may be a challenging task. Although recent reviews
of blockchain performance evaluation methods and solu-
tions have covered analytical and empirical approaches (see,
e.g., [9], [10]), there is still a lack of a review and an in-depth
analysis of blockchain simulators. To address this, a system-
atic review and comparison of blockchain simulators in terms
of their features, scope, and limitations is necessary and is
the primary motivation for this work. Moreover, we analyze
the key features of different simulators and experimentally
validate the selected simulators. This study will be relevant
for researchers and practitioners when developing secure and
effective blockchain systems or analyzing specific features of
interest.

The contributions of this paper are the following:
• It provides the first systematic review of existing
blockchain simulators.

• It presents an experimental analysis of selected
blockchain simulators, and assesses the quality of the
simulation results.

• It identifies the current limitations of existing simulators
and provides suggestions for future research.

The remainder of the paper is organized as follows.
Section II presents an overview of distributed ledger
technologies, categorization, and multi-layered abstraction.
Section III provides a systematic review and comparison
of existing blockchain simulators. Section IV comments
on the preparation of input data and parameters required
by simulators to reflect the current blockchain networks.
Section V experimentally validates selected simulators.
Finally, Section VI concludes our work.

II. AN OVERVIEW OF DISTRIBUTED LEDGER
TECHNOLOGIES
A blockchain is a distributed ledger in which trustless nodes
across a peer-to-peer network maintain transactions and
stores them in a series of back-linked sequential blocks.
Blockchain technology is just one way to apply a distributed
ledger but is a significant player among all distributed ledger
technologies. In this section, we review the categorization
of DLTs and blockchain designs from the perspective of
abstraction layers.

A. TAXONOMY OF DLTs
In [9], the authors propose a taxonomy of existingDLTs based
on the ledger features. According to this taxonomy, all exist-
ing DLTs can be classified into three categories depending on
the data architecture:
• Blockchain (e.g., Bitcoin [1], Ethereum [15]).
• Directed acyclic graph (DAG) (e.g., IOTA [16],
Nano [17]).

• Others (e.g., Corda [18], Radix [19]).
In Blockchain, data (transactions) is stored in blocks linked
via their hash values, forming a kind of a linked list that is
immutable, while in DAGs, like IOTA, transactions are linked
using reference relations, forming a directed graph.

Based on the accessibility (private and public) and permis-
sions (permissioned and permissionless) of the ledger, DLTs
can be classified into the following four categories:
• Public Permissionless (e.g., Bitcoin, Ethereum).
• Public Permissioned (e.g., EOS [20], Ripple [21]).
• Private Permissionless (e.g., Holochain [22], LTO Net-
work [23]).

• Private Permissioned (e.g., Hyperledger [24],
Corda [25]).

In public permissionless distributed ledgers, anyone can
participate anonymously, without any restrictions. In public
permissioned, participants must be identified, and all partic-
ipants can read and validate transactions. In private permis-
sionless, only authorized participants can read data, initiate
transactions, and participate in the consensus mechanism.
Finally, in private permissioned, access is restricted, and only
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the network operator can initiate transactions and participate
in the consensus mechanism, while authorized participants
can only read data [26].

B. MULTI-LAYERED ABSTRACTION OF DLTs
The authors in [27] define a multi-layered blockchain design
comprised of four abstraction layers. The consensus layer
defines how nodes agree on a ledger and resolve inconsisten-
cies, the data model layer defines how data is stored, the exe-
cution engine layer defines how a distributed ledger becomes
an execution environment for computer programs, and the
application layer defines what type of applications can be
built on top of DLT. Similarly, a slightly different four-layer
hierarchical structure, consisting of network (defines how
nodes are connected), protocol (analogous to the consensus
layer), ledger (analogous to the data layer), and application
layers, was defined in [4].

The five-layer abstraction of blockchain, including net-
work, consensus, data, execution, and application layers,
was defined in several recent works, see e.g., [2], [9], [11].
To describe the architecture and functionality of blockchain
simulators, we adapt the five-layer abstraction of DLT,
as shown in Fig. 1. We now discuss these five layers in turn
(i.e., network layer, consensus layer, data layer, execution
layer, and application layer).

1) NETWORK LAYER
At the bottom of the multi-layered DLT stack is the foun-
dation of a DLT system, a peer-to-peer (P2P) network
(see Fig. 1), where participants/peers share resources in a
decentralized way, i.e., without central entities. Although all
participants in a P2P network are considered equal, there are
two basic types of nodes: full nodes and lightweight/light
nodes. Full nodes keep a complete copy of the ledger and
take care of mining, transaction validation, and execution
of consensus rules. Lightweight nodes (e.g., wallets) only
store all block headers and act as clients to issue transac-
tions. The network layer is critical and takes care of peer
discovery, transactions and block propagation. For public
blockchains (e.g., Bitcoin or Ethereum), where the network
is vast, the speed of peer discovery, ledger synchronization,
package loss rate, and network delay and propagation may
have a tremendous impact on the performance of DLT [9].

2) CONSENSUS LAYER
The role of the consensus layer is to get all nodes in the system
to reach an agreement on the DLT system state. Most of the
existing consensus algorithms fall into one of the following
three categories [11]: i) proof-based, ii) vote/Byzantine Fault
Tolerance (BFT)-based, and iii) DAG-based consensuses.

Proof-based consensus algorithms (e.g., Proof-of-Work
(PoW) [1], [28]) are prevalent among public permis-
sionless DLTs as they can provide high security, scal-
ability, and decentralization in a trustless environment.
Unfortunately, the traditional PoW consensus is energy
demanding and has a low transaction throughput and

confirmation speed. Therefore, various modifications (e.g.,
Proof-of-Stake (PoS) [29], Proof-of-Authority (PoA)) have
been proposed tomaintain the same level of safety but provide
better performance.

BFT-based consensus algorithms (e.g., Practical Byzantine
Fault Tolerance (PBFT) [30]) are commonly used among
private permissioned DLTs. Contrary to PoW, BFT-based
consensuses supply deterministic results in synchronous and
partially synchronous networks and achieve better perfor-
mance. However, high communication costs cause low net-
work scalability and centralization [31].

DAG-based distributed ledgers [32] organize transac-
tions or blocks in a form of a directed graph instead of
a traditional blockchain data structure (see Fig. 1). Based
on this, many DAG-based distributed ledgers introduced
their consensus mechanisms. For IOTA, a node in a DAG
structure called tangle is a transaction, instead of a block,
and it is validated directly or indirectly by new trans-
actions. In this way, initial transactions are more confi-
dent as more new transactions are referring to them. Also,
a DAG structure allows parallel transaction/block generation
and inclusion. Therefore, DAG-based consensuses ensure
high network scalability and transaction throughput. Adding
transactions to a DAG-based distributed ledger is easy, but
DAG-based consensus is vulnerable to malicious participants
who validate their transactions. The current workaround,
i.e., introducing a trusted validator, is at the expense of losing
decentralization, [11].

To sum up, there is no ‘‘one-size-fits-all’’ consensus.
Therefore, the optimization of existing and the design of new
consensus algorithms remain an actively ongoing research
direction in DLT. The interested readers may refer to recent
excellent surveys for more information on blockchain con-
sensus algorithms [31], [33]–[35].

3) DATA LAYER
At the data (or storage) layer, the transaction model, the data
model, the Merkle tree structure [36], the hash function algo-
rithm (e.g., SHA-256 v.s. Ethash), and the encryption algo-
rithm (e.g., ECC v.s. RSA) should be defined. The elementary
unit of a distributed ledger is a transaction. The unspent
transaction output (UTXO) and account-based are two of
the most commonly used transaction models. Using UTXO,
the sender (owner) transfers value by signing a transaction
to transfer the UTXO to the receiver. The total ‘‘balance’’
of a user is the sum of all UTXOs which the user’s pri-
vate key controls. The account-based data model is more
straightforward and updates two accounts in one transaction.
For traditional blockchains (e.g., Bitcoin), transactions are
gathered into blocks, and each block is linked to the previous
block by embedding the hash of the previous block’s header
(see Fig. 2). Hashes of transaction pairs within a block are
computed using the Merkle tree data structure and stored
as Merkle Root, which guarantees integrity of the transac-
tions. Previous hash and Merkle Root, combined with other
metadata, namely version, timestamp, difficulty target, and
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FIGURE 1. The abstraction of DLT as a multi-layered system.

nonce, are used for Bitcoin’s mining process. While such
blockchains proved to have good security properties, they
also have some well-known drawbacks, e.g., slow transaction
processing and energy-demanding mining.

A possible solution to the scalability and efficiency
problems is storing blocks/transactions in a DAG data
structure, instead of a blockchain. DAG allows mining
parallelism – given that enough nodes exist, a new node can
be linked without forming a cycle. DAGs can be transaction-
based, where transactions are directly linked with each
other, and block-based, where blocks that contain transac-
tions can have multiple predecessors and successors. As a
result, a DAG-based system has a comparative advantage in
performance and scalability over a blockchain. In terms of
security, however, it has been shown that fewer resources are
needed to launch a double-spending attack on DAG-based
systems [11].

Besides the factors mentioned above, there are other design
parameters on the data layer, e.g., the type of database used to
store states or snapshots. We refer the readers to [9] for more
information on this.

4) EXECUTION LAYER
At the execution level, we have runtime environments such as
virtual machines (VMs), containers, and compilers installed
on DLT network nodes. The level is used to execute smart
contracts (introduced by Szabo [37]) or low-level machine
code (bytecode). Indeed, all blockchains have built-in smart
contracts that implement their transaction logic. The exe-
cution of smart contracts is determined by the predefined
transition rules that will change the contract’s state and assets.
In Bitcoin, ‘smart contracts‘ are limited functionality scripts,
while Ethereum has its machine language (bytecode) and a
virtual machine (EVM) developed to run them. Moreover,
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FIGURE 2. The simplified Bitcoin blockchain data structure.

in Ethereum, smart contracts are programmed in a high-
level Turing-complete language, Solidity. Hyperledger Fabric
takes a step forward and allows smart contracts (chain-code)
to be programmed using general high-level programming
languages (Go, node.js, and Java). However, not all DLTs
support smart contracts, e.g., DAG-based IOTA does not
support them yet.

In summary, smart contracts make DLT platforms useful
not only for cryptocurrencies but also for various real-world
applications. Therefore, the runtime environment used to exe-
cute them needs to be efficient and ensure the determinism.

5) APPLICATION LAYER
At the top level, we find various built-in interfaces (APIs) to
implement decentralized applications on top of the underly-
ing DLTs. The most popular DLT application remains cryp-
tocurrency. Other popular examples include crypto-money
wallets, smart contracts, and various decentralized applica-
tions (DApps), such as decentralized autonomous organiza-
tions (DAOs) in Ethereum.Most smart contracts are related to
cryptocurrency, but in general, they are designed to digitally
facilitate, verify, or enforce the execution of any contract in
a DLT environment. This layer is in charge of presenting
the final results; therefore, the performance evaluation of the
application layer reflects the overall performance of DLT [9].

III. SYSTEMATIC REVIEW OF BLOCKCHAIN SIMULATORS
This section systematically reviews and compares the existing
blockchain simulators, considering their technical features
and providing references for selecting the most suitable
blockchain simulator to evaluate specific features of a
blockchain system.

A. METHODOLOGY
To identify the key publications on blockchain simulators,
we performed a literature search in scientific databases fol-
lowing the PRISMA (Preferred Reporting Items for Sys-
tematic Reviews and Meta-Analyses) methodology [38]
with minor modifications. The analysis covered the lead-
ing publishers of computer science journals and confer-
ences: IEEE Xplore, Springer Link, ACM Digital Library,
ScienceDirect, Wiley, SAGE Journals Online, as well as
publications in WoS and Scopus databases. To find relevant
publications for our research, we used the following search
string: ((Blockchain OR Bitcoin OR Ethereum
OR Hyperledger OR DAG) AND (Simulator)).
The search was performed in titles, abstracts, and keywords.
We considered only peer-reviewed, high-quality papers pub-
lished in conferences, workshops, symposiums, books, and
journals related to the research topic. All the searches were
conducted in November 2020.

In total, a set of 157 potentially relevant publications,
excluding grey literature and pre-prints, was found. Poten-
tial duplicates were removed, leaving 111 sources. The
titles, keywords, and abstracts were then analyzed to identify
publications describing a blockchain system simulation
tool/framework or approach. As a result, a provisional col-
lection of 48 publications was composed. Next, the new ref-
erences found within this collection were analyzed, resulting
in 64 publications. Once the literature collection process was
completed, we read the selected sources and identified the
existing blockchain simulators and their extensions. A com-
plete flowchart of the literature search and selection process
is presented in Fig. 3.
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FIGURE 3. The flowchart of the literature search strategy.

B. SUMMARY OF FINDINGS OF LITERATURE REVIEW
In Table 1, we summarize 27 publications that present
the identified blockchain simulators and their extensions.
This table includes the following information: simulator
name, authors, publication title, year of publication, and
the total number of citations in Google Scholar. The first
publications introducing blockchain simulators appeared
in 2013, while most works (17 out of 27) were published
in 2019 and 2020. The vast majority of these works (22 out
of 27) were published in conference proceedings. The most
cited publications are devoted to Bitcoin protocol
simulator, Bitcoin-Simulator, and ‘‘Bitcoin
privacy simulator.’’ These works are also among the
oldest, which could have impacted the total number of cita-
tions. Unfortunately, only the last of these publications has a
publicly available source code (see Table 2).

To sum up, the field of development and application of
blockchain simulators has received more attention from the
research community only recently, and requires significantly
more consideration.

C. OVERVIEW OF BLOCKCHAIN SIMULATORS
In Table 2, we provide further information related to the
identified blockchain simulators: the type(s) of platform sim-
ulated, blockchain layers analyzed, model type, language and
framework (if any) used in the implementation, link to source
code (if provided), and the date of the last commit.

PoW-based blockchains still dominate the sector, and
account for almost 80% of the total market capitalization1

(a drop frommore than 90% in 2016 [44]). Therefore, it is not
surprising that most simulators (21 out of 26) are intended to
simulate various PoW-based blockchain platforms where the
Bitcoin network simulation is the primary focus.

Usually, simulators’ architecture follows the multi-layered
blockchain paradigm and consists of several layers (see
Subsection II-B). Simulation models are used to imple-
ment the behavior of different layers and their interaction;
however, some of them are very simplified. Thus, in the
column ‘‘Layer(s)’’ we note only those layers that have more
sophisticated models and could be investigated under vari-
ous parameters and scenarios. Notably, only three simulators
– Shadow Bitcoin, Blocksim:Faria, and SIMBA
(which is the extension of Blocksim:Faria) – can sim-
ulate three layers: consensus, data, and network. Our more
in-depth investigation revealed that simulators covering fewer
layers usually have more sophisticated models (for more
details, see Table 3). Only one simulator, the I-Green
simulator, includes the application layer and focuses on
the simulation of a system dedicated to distributed renewable
energy.

Blockchain simulators typically follow a discrete-event
system simulation (18 out of 22 simulators that specified
this information) in which states change at a discrete set of
points in time. Only three simulators are agent-based. The
most utilized programming language is Python, used to build
11 simulators, while five simulators were developed using
C++ and Java. Source codes of 17 simulators are publicly
available, and eight were updated within the last year.

D. COMPARATIVE ANALYSIS
In this subsection, we perform an in-depth analysis and fea-
ture comparison of five selected simulators.

In the selection of blockchain simulators for our anal-
ysis, the main criteria were: (a) availability of the source
code; (b) ability to explore a wide range of features
of a simulated blockchain network; and (c) possibil-
ity to update input data and parameters to reflect cur-
rent situation in blockchain networks. Following these
criteria, five PoW-based blockchain simulators were
selected: Bitcoin-Simulator, BlockSim:Faria,
SimBlock, BlockSim:Alharby, and VIBES.

Then, after carefully studying the related literature, source
codes, and running various examples, we determined a set of
possible input and output parameters (see column ‘‘Parame-
ter’’ in Table 3). The main criteria were the simulator’s ability
to simulate blockchain networks and provide sufficient output
results realistically. In Table 3, we aggregate our observations
and note the existing features using 3, while the missing
functions are marked using 7.

Considering the network layer, Bitcoin-Simulator
has the most developed simulation model, providing various

1https://cryptoslate.com/cryptos/proof-of-work/
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TABLE 1. Identified publications presenting blockchain simulators and their extensions (in ascending order by the year of publication).

input parameters and outputs of various calculated met-
rics. SimBlock and Blocksim:Faria are also rich
in features and can simulate, e.g., the network layer by
taking into account the geographical distribution of the
nodes and the geographical bandwidth and latency distribu-
tions. Nevertheless, an important limitation of SimBlock

is that it does not separate full nodes and miners.
VIBES and Blocksim:Alharby lack the ability to sim-
ulate network behavior realistically, e.g., both use fixed
block and transaction propagation delays. At the moment,
BlockSim:Faria simulator is suitable only for inves-
tigations with a small number of nodes. Authors of
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TABLE 2. Overview of existing blockchain simulators and their extensions.
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TABLE 3. Key features of selected simulators.

Bitcoin-Simulator, VIBES, and SimBlock declared
the ability to simulate large networks. However, in the case
of VIBES, simulations of real-size public networks con-
sisting of more than 10,000 nodes (as in Bitcoin [12] and
Ethereum [65]) are complicated as this simulator utilizes a
centralized coordinator, which is a severe performance bot-
tleneck. The drawback of all simulators is that they typically
use a fixed number of nodes, which is not in line with public
blockchain networks.

Analyzing the features through the consensus layer
perspective, most of the simulators focus solely on
PoW algorithms and only SimBlock has the simula-
tion ability of abstracted PoS. Some simulators, e.g.,
BlockSim:Alharby and SimBlock, assume that all
nodes are honest; thus, they cannot be used to explore the
strategies of the nodes’ malicious behaviors (e.g., selfishmin-
ing, double-spending). In contrast, Bitcoin-Simulator
and VIBES can be used to test PoW consensus security
and investigate the potential of attacks on various PoW

blockchain networks. Unfortunately, no simulator imple-
ments dynamic difficulty adjustment during the mining.

As for the data layer, BlockSim:Faria, VIBES,
and Blocksim:Alharby support transaction simulation.
However, this process is limited, as simulators do not imple-
ment any transaction accounting model (UTXO or account-
based). Themain limitations ofBitcoin-Simulator and
SimBlock are that they simulate a blockchain network only
at the block level, i.e., the propagation of transactions is not
considered.

Finally, the total number of available input and out-
put parameters (features) was calculated for each simula-
tor. Bitcoin-Simulator has the most features, while
BlockSim:Faria and SimBlock take the second and
third place accordingly.

To sum up, there is no universal simulator that could
be applied to a wide range of scenarios. The capa-
bilities of existing simulators are limited as they are
designed to simulate a few critical aspects of an actual
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blockchain, keeping the rest simplified. Therefore, for an
in-depth experimental validation in Section V, we selected
three of the most promising (based on the comparative
analysis provided in this section) PoW-type simulators –
Bitcoin-Simulator [44], SimBlock [51], [66], and
BlockSim:Alharby [50]) – and tested them versus the
current Bitcoin network.

IV. EXPERIMENTAL SETUP
The validation of simulators requires the input data to reflect
the actual blockchains. In this section, we comment on
preparing the input data corresponding to the present situation
of the Bitcoin network.

A. INPUT DATA FOR NETWORK LAYER
Simulators are useful only if the simulated network resembles
the real-world network [67]. Below, we provide details on
the input data used for the network layer simulation by the
selected simulators.

1) BLOCK SIZE DISTRIBUTION
Tomeasure block size distribution in Bitcoin, we used Python
library python-bitcoinlib [68]. The period of three
months (September-November 2020) was considered, and
different block size intervals (see Fig. 4) were extracted from
a full Bitcoin node (Bitcoin Core2). Our analysis shows that
the average block size in 2020 is 1.19Megabytes (MB), while
the standard deviation is 0.26 MB. More than 82% of the
generated blocks fit in intervals between 1.1 and 1.5 MB.
Note that Bitcoin’s block size distribution in recent years
has changed substantially. Thus, the situation in 2020 dif-
fers significantly from the situation in, e.g., 2016. Accord-
ing to [44], the average block size in 2016 was 535 KB.
However, the original block size limit of 1,000,000 bytes
(1 MB) changed with the introduction of SegWit (Segregated
Witness) [69] and its activation in 2017 [70]. A new weight
parameter was defined, and now blocks are allowed to have
up to 4 million block ‘‘weight units’’. In practice, ‘‘weight
units’’ are bytes, therefore the maximum block size is the
same as the block weight limit.

Finally, let us note that for simulators that support only a
fixed block size, the average value of 1.19 MB was used in
our experimental validation and comparison (see Table 7 and
Section V-B).

2) GEOGRAPHIC NETWORK LATENCY AND
BANDWIDTH DISTRIBUTIONS
Network latency and bandwidth play a vital role in the overall
performance of blockchains. Latency is especially critical for
mining nodes since they need to be working on top of the
most recent block. Moreover, when a new block is found,
it must be shared with all other nodes. If the communi-
cation of new blocks takes too long, the stale block rate
increases, which reduces the security of an entire blockchain

2https://bitcoin.org/en/bitcoin-core/

FIGURE 4. The proportion of generated blocks in Bitcoin within each
0.1 Megabyte (MB) size interval.

system. Therefore, the input data corresponding to the net-
work latency and bandwidth should correspond to the real
situation.

Two out of three simulators (Bitcoin-Simulator and
SimBlock) establish connections between nodes by creat-
ing point-to-point channels characterized by network latency
and bandwidth (see Tables 3 and 7). Realistic network laten-
cies and bandwidth are taken into account by adopting the
global IP latency statistics from Verizon [71] and bandwidth
distribution from testmy.net.3 In Tables 4 and 5, we pro-
vide the data on network latency (in ms) and bandwidth
(download and upload speeds in Mbps) in 2016 (taken from
the source-code of Bitcoin-Simulator [72]) and 2019
(taken from the source-code of SimBlock [73]) according
to geographical location. As the difference in network latency
and bandwidth in 2019 and 2020 is negligible, the data from
2019 will be used as representative of the current situation.

3) GEOGRAPHICAL DISTRIBUTION OF NODES AND MINERS
In Bitcoin, there are two types of nodes: (i) regular nodes
and (ii) miners. In Figs 5 and 6, we present the geograph-
ical distribution of regular nodes and miners. The data on
regular nodes in 2016 is taken from [44], while the situation
in 2020 was retrieved from [12]. In 2020, the real geographi-
cal location of more than a quarter of nodes was unknown as
these nodes operated under the Tor network. To use realistic
network parameters (e.g., network latency and bandwidth),
Bitcoin-Simulator automatically splits the percentage
of ‘Other’ between the regions based on existing proportions
(see Table 6). To have comparable results, we have used this
modified geographic distribution as the input for other sim-
ulators. Among the simulators considered for experimental
validation, this was relevant to SimBlock.

3https://testmy.net/country
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TABLE 4. Comparison of network latencies (in ms) according to geographical location. Data for 2016 is taken from the source-code of
Bitcoin-Simulator [72], while data for 2019 is taken from the source-code of SimBlock [73].

TABLE 5. Comparison of network bandwidth (download and upload
speeds in Mbps) according to geographical location. Data for 2016 is
taken from the source-code of Bitcoin-Simulator [72], while data for
2019 is taken from the source-code of SimBlock [73].

TABLE 6. Geographical node distributions in the actual Bitcoin network
and values obtained using Bitcoin-Simulator with the input data and
parameters corresponding to 2020.

The mining pool’s geographic distribution in 2016 is
taken from [44], while the new data for 2020 was retrieved
from [74] and represents the aggregate geolocation data based
on hashers’ IP addresses connected to mining pools.4

Finally, in two of the selected simulators (SimBlock
and Bitcoin-Simulator), the number of neighbor con-
nections per node and per miner follows the distribution
described in [75].

B. INPUT DATA FOR CONSENSUS LAYER
1) BLOCK INTERVAL DISTRIBUTION
The block interval (or the block generation time) defines the
latency at which content is written to the blockchain.
The shorter the block interval is, the faster transactions

4https://cbeci.org/mining_map/methodology

FIGURE 5. Comparison of the geographical distribution of Bitcoin nodes.
Distribution of nodes in 2016 is taken from [44], while distribution
in 2020 is calculated based on data from [12].

FIGURE 6. Comparison of the geographical distribution of Bitcoin miners
(mining pools) hashrate. Distribution in 2016 is taken from [44], while
distribution in 2020 is calculated based on data from [74].

are confirmed, but this results in a higher probability of
stale blocks [44]. The block generation time in PoW-type
blockchains directly relates to the difficulty change of the
underlying PoW protocol. For example, Bitcoin’s difficulty
target (256-bit hash) is adjusted every 2,016 blocks (around
every two weeks) based on the time it took to mine the
previous 2,016 blocks. This way, the protocol seeks that the
average block generation time stays around ten minutes.
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We measured Bitcoin’s block interval distribution using
the same data collection strategy as for measuring the block
size distribution. The time intervals between the genera-
tion of consecutive blocks were extracted. Our analysis
shows that the average block generation time is 595 seconds
(approximately 10 minutes), while the standard deviation is
600 seconds (10 minutes). Therefore, only 64% of the blocks
were generated in less than 10 minutes, while the remaining
36% required between 10 minutes and 2 hours.

In [76], the authors show that the block generation distri-
bution in Bitcoin could be modeled with a shifted geomet-
ric distribution. Let the time be divided into time intervals
(t0, t1], . . . , (tn−1, tn], . . . of equal size 1, where 1 = ti −
ti−1,∀i = 1, 2, . . . , and t0 = 0 denotes the time of the last
block generation. Additionally, let the random variable Xk
denote the event of success, i. e., a new block being generated
within the time interval k = (tk−1, tk ]:

Xk =

{
1, if a new block is mined within (tk−1, tk ]
0, otherwise.

If the probability of successfully generating a new block
within each time interval k is Prob(Xk = 1) = p, and
0 < p ≤ 1, then the probability that the new block will be
generated within the time interval k (assuming the failure of
this during the previous k − 1 time intervals) is

Prob(Xk = 1) ·
k−1∏
i=1

Prob(Xi = 0) = p · (1− p)k−1. (1)

Authors in [76] show that assuming two-minute time intervals
(i.e., 1 = 2), the block generation distribution follows a
shifted geometric distribution (1) with the success probability
p = 0.19.
A generation of new blocks in Bitcoin-Simulator

[44] is based on this result. Therefore, we tested if this is a
valid assumption in 2020. For our experiment, we considered
1 to be the same 2 minutes as in [76]. In Fig. 7, we depict the
distribution of generated blocks within each two-minute time
interval (see in Fig. 7) and the shifted geometric distribu-
tion with p = 0.19 (see in Fig. 7). This graph confirms
that the Bitcoin block generation distribution in 2020 still
matches the shifted geometric distribution with p = 0.19.

2) MINING POWER DISTRIBUTION OF
MINERS (MINING POOLS)
For the selected simulators (see Table 7), we adopted the
distribution of mining power (hashrate) of Bitcoin miners
(mining pools) based on the data from [77] (see Fig. 8).

C. SUMMARY OF INPUT PARAMETERS
For our experimental validation of simulators, we used the
prepared input data and set additional input parameters
to reflect the current characteristics of actual blockchains.
In Table 7, we summarize the values used for each
selected simulator; these values represent the Bitcoin sit-
uation in 2020. We also provide additional information

FIGURE 7. The proportion of generated blocks in Bitcoin within each
2-minute time interval, and a shifted geometric distribution with success
probability p = 0.19.

FIGURE 8. Hashrate distribution among the largest mining pools [77].

about modified variables in the source-code, when no
interface has been made to update them, e.g., using the
command line parameters. Additionally, more detailed tech-
nical descriptions of existing parameters, default values
and other important information related to input param-
eters of selected simulators’ are provided in Appendix,
Tables 9 to 11.

V. VALIDATION OF SIMULATORS IN BITCOIN
The development of real blockchain networks is very active.
Unfortunately, this is not the case with blockchain simulators
as most of the developed simulators are not actively main-
tained or updated (see column ‘‘Last commit’’ in Table 2).
This section’s primary goal is to experimentally validate
whether existing (selected) simulators can realistically sim-
ulate current blockchains by limiting this investigation to the
Bitcoin network.

VOLUME 9, 2021 38021



R. Paulavičius et al.: Systematic Review and Empirical Analysis of Blockchain Simulators

TABLE 7. Description of input parameters and values set for selected blockchain simulators. Values specified here correspond to the situation in 2020.

A. COMPARISON CRITERIA
In this section, we comment on the comparison criteria used
for the evaluation of blockchain simulators.

1) BLOCK PROPAGATION TIME (DELAY)
The average block propagation time is the average time
needed for a new block to reach most network nodes. Block
propagation time is one of the critical factors that impact a
blockchain system’s scalability and affect the stale block rate.
The Bitcoin network monitoring website [78] confirms that
block propagation delay has decreased significantly in recent

years. For example, since 2015, themedian block propagation
delay (the amount of time until 50% of peers have processed a
block) has decreased from more than six seconds to less than
one. Moreover, the block propagation delay for the 90th per-
centile has decreased from more than 15 seconds in 2015 to
around three seconds in 2020. There are several principal
reasons behind this development [67]: i) the emergence of
relay networks [79], such as FIBRE [80] and Falcon [81],
capable of transmitting blocks at very high transmission rates;
ii) extensions of Bitcoin protocol, e.g., the introduction of the
compact block relay [82], which enables faster propagation of
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TABLE 8. Comparison of the average block size sB (in kilobytes, KB),
the 50th and 90th percentile of the block propagation delay tBPD (in
seconds), and the stale block rate rs (in percents) in the Bitcoin network
and using simulators with different input data corresponding to Bitcoin’s
network situation in a specific ‘Year’.

blocks by sending only transaction IDs instead of all transac-
tions contained in a block; iii) performance improvements in
client implementations, e.g., the use of hardware optimization
for SHA256 hashing; and iv) significant improvement of
network parameters such as bandwidth and latency.

2) STALE BLOCK RATE
Stale blocks refer to mined blocks that are not included in
the longest chain due to, e.g., concurrency, conflicts, or net-
work propagation delays. Note that in Ethereum, uncle blocks
correspond to stale blocks with parents that are ancestors
(max. 6 blocks back) of the included block [83]. Unfortu-
nately, a well-known website5 provides inaccurate informa-
tion regarding the current stale block rate (rs). Therefore,
the current stale block rate was measured based on the infor-
mation provided in [84], where a total of 10 stale blocks
were reported throughout more than three months (i. e., out
of around 16,000 blocks; see Table 8).

5https://www.blockchain.com/charts/n-orphaned-blocks

TABLE 9. Summary of available input parameters for Bitcoin-Simulator.
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TABLE 10. Summary of available input parameters for SimBlock.

3) AVERAGE BLOCK SIZE
Low transaction throughput is one of the key challenges
for Bitcoin and other PoW-based blockchains. Transaction
throughput attained by the system is practically limited by a
parameter known as the maximum block size. This parameter
indirectly defines the maximum number of on-chain trans-
actions carried within a single block. Over the history of
Bitcoin, various solutions to increase or obliterate the maxi-
mum block size have been proposed. Authors in [44] showed
(using Bitcoin-Simulator) that simply shortening the
block generation interval or increasing the maximum block
size does not solve the low transaction throughput prob-
lem. Both such strategies improve the blockchain through-
put. However, larger blocks incur slower propagation, while
shorter block generation intervals cause inconsistencies of
the system, increasing the stale block rate and weakening the
blockchain system’s security [44], [66].

The following section compares the current block propa-
gation delay and the stale block rate in the existing Bitcoin
network with the simulated values obtained using the selected
simulators. In this way, we seek to investigate whether the

existing simulators follow the progress of and manage to
realistically simulate the present Bitcoin network.

B. SIMULATION RESULTS AND DISCUSSION
To experimentally validate the selected simulators, we com-
pared the Bitcoin network in 2016, 2019, and 2020 with
their respective simulated counterparts. Specifically, we com-
pared the average block size sB (measured in kilobytes, KB),
the 50th and 90th percentiles of the block propagation delay
tBPD (measured in seconds), and the stale block rate rs (mea-
sured in percents) in the actual Bitcoin network with the
same parameter values obtained using the simulators. Each
simulator was run 10 times, generating 10,000 blocks each
time, and all experiments were carried out on a computer with
a 64-bit AMDRyzen 5 2600XSix-Core@3.6GHz Processor,
16 GB RAM, and running Ubuntu Linux OS.

The results of the simulations using the three tested sim-
ulators and the values measured in the real Bitcoin net-
work are summarized in Table 8. First, we note that using
the same conditions, we were able to reproduce results
very close to those reported in the literature, i.e., for
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TABLE 11. Summary of available input parameters for BlockSim:Alharby.

Bitcoin-Simulator as reported in [44] (see the fifth
and sixth rows in Table 8), for SimBlock as reported
in [66] (see the ninth and tenth rows in Table 8), and for
BlockSim as reported in [85] (see the twelfth and thirteenth
rows in Table 8).

Next, we observe that all simulators were able to simulate
the Bitcoin network in 2016 very accurately. Unfortunately,
one of the most promising and functional simulators (see
Table 3), Bitcoin-Simulator is currently outdated and
cannot accurately simulate the current Bitcoin network (see
simulation results and measured values for 2020). The recent
extensions to the Bitcoin protocol, such as the compact block
relay [82], have dramatically decreased the stale block rate
and the block propagation delay. This can be observed in sim-
ulation results obtained using SimBlock, which supports
the compact block relay [66]. We can state that SimBlock
managed to reproduce the Bitcoin network of 2019 and
2020 at an acceptable level – the simulations resulted in
higher t50thBPD and rs values than the measured ones, but lower
t90thBPD values. However, without simulating transactions prop-
agation, it is not entirely clear how accurate and realistic the
simulation process is.

In contrast, BlockSim can simulate transactions, but
its simulation of the network layer is greatly simplified.

This simulator cannot simulate the block propagation delay
and requires fixed values as the input parameters. Note that
the simulated block rate for 2016 is higher than the real one.
However, for 2020, a very close value was obtained even
with simplified network layer implementation. Therefore,
again, it is not entirely clear how realistic the simulation
process is.

VI. CONCLUSION AND POSSIBLE FUTURE
RESEARCH DIRECTIONS
This paper conducted a systematic review and a detailed
comparative analysis of the state-of-the-art blockchain simu-
lators as well as provided the information needed for selecting
the best available simulator for specific simulation purposes.
We identified that distributed ledger simulation is still in the
early stages and the existing simulators are limited to specific
abstraction levels. The most advanced existing simulators are
intended to simulate various PoW-based blockchains. Unfor-
tunately, most of them are not actively developed and remain
outdated. This is one of the main reasons why new blockchain
projects have not actively used simulators to advance initial
deployment.

Our experimental validation of the selected PoW simula-
tors revealed that there is no ‘‘one-size-fits-all’’ simulator that
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could accurately simulate all layers of a PoW blockchain.
Further improvement of existing and the design of new
blockchain simulators seem a vital research direction in the
DLT field. Moreover, outdated simulators could no longer
simulate the current actively developing blockchain net-
works.

One possible future research direction could be a com-
parative analysis of the simulators designed to study spe-
cific aspects of a blockchain system (i.e., security) or an
investigation of blockchain simulators that support layers
not considered in this study. Another research avenue could
be the development of simulators or their extensions that
support modern consensus algorithms. Our analysis revealed
a need for simulators supporting other types of consensus
algorithms, such as PoS or various BFT variations. Finally,
continuous development and improvement of existing sim-
ulators are needed to accurately simulate the most recent
blockchain networks.

APPENDIX. CONFIGURATION OPTIONS FOR SELECTED
BLOCKCHAIN SIMULATORS
A. BITCOIN-SIMULATOR
In Table 9 we list the configuration parameters6 along
with their default values available in the latest version of
Bitcoin-Simulator [72]. Configuration options should
be specified via command line arguments.

B. SIMBLOCK
In Table 10 we list the configuration parameters7 defined
in the latest version of SimBlock [73]. Configuration
options can be specified in clasesNetworkConfiguration.java
and SimulationConfiguration.java, where default values are
already specified for simulating Bitcoin, Litecoin, and Doge-
coin blockchain networks.

C. BLOCKSIM: ALHARBY CONFIGURATION OPTIONS
In Table 11 we list the configuration parameters8 defined
in the latest version of BlockSim:Alharby [50]. Con-
figuration options can be specified in file NInputsConfig.py
and where default values are already specified for simulating
Bitcoin and Ethereum blockchain networks.
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