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ABSTRACT
Background Inhibitory control (IC) is critical to 
keep long- term goals in everyday life. Bidirectional 
relationships between IC deficits and obesity are behind 
unhealthy eating and physical exercise habits.
Methods We studied gut microbiome composition 
and functionality, and plasma and faecal metabolomics 
in association with cognitive tests evaluating inhibitory 
control (Stroop test) and brain structure in a discovery 
(n=156), both cross- sectionally and longitudinally, and 
in an independent replication cohort (n=970). Faecal 
microbiota transplantation (FMT) in mice evaluated the 
impact on reversal learning and medial prefrontal cortex 
(mPFC) transcriptomics.
Results An interplay among IC, brain structure (in 
humans) and mPFC transcriptomics (in mice), plasma/
faecal metabolomics and the gut metagenome was 
found. Obesity- dependent alterations in one- carbon 
metabolism, tryptophan and histidine pathways were 
associated with IC in the two independent cohorts. 
Bacterial functions linked to one- carbon metabolism 
(thyX,dut, exodeoxyribonuclease V), and the anterior 
cingulate cortex volume were associated with IC, cross- 
sectionally and longitudinally. FMT from individuals with 
obesity led to alterations in mice reversal learning. In an 
independent FMT experiment, human donor’s bacterial 
functions related to IC deficits were associated with 
mPFC expression of one- carbon metabolism- related 
genes of recipient’s mice.
Conclusion These results highlight the importance of 
targeting obesity- related impulsive behaviour through 
the induction of gut microbiota shifts.

INTRODUCTION
Executive function constitutes one of the six 
key domains of cognition and mainly comprises 

reasoning, problem solving and component skills 
management, required for real- world adaptive 
success.1 Executive functions are critical to keep 
long- term goals in everyday life.2 Detrimental effects 
of excess weight on executive functions determine 
the individual’s ability to break ingrained actions 
such as unhealthy eating and physical exercise 
habits in obese conditions.3 Very preliminary small 
studies showed impaired executive function linked 
to the gut microbiota composition, suggesting that 

Summary box

What is already known on this subject?
 ► Inhibitory control is fundamental to keep long- 
term goals in everyday life.

 ► In subjects with obesity, this cognitive domain 
is impaired.

What are the new findings?
 ► Gut microbiome composition and functionality 
was linked to several tests evaluating inhibitory 
control in subjects with and without obesity.

 ► Brain structures associated with this cognitive 
domain was also associated with gut 
microbiome alterations.

 ► The impairment of inhibitory control from the 
donors was phenocopied in recipient mice 
through a faecal microbiota transplantation, 
resulting in alterations of reversal learning and 
changes in brain transcriptomics.

How might it impact on clinical practice in the 
foreseeable future?

 ► The adherence to diet could be improved by 
modifications in the gut microbiome.
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the deleterious effects of adiposity on cognition are not merely 
mediated by the metabolic complications.4

We here aimed to study the interplay among IC, brain struc-
ture (in humans) and medial prefrontal cortex (mPFC) tran-
scriptomics (in mice), plasma/faecal metabolomics and the gut 
metagenome and their transmission to mice through microbiota 
transplantation.

MATERIALS AND METHODS
Clinical study
Discovery cohort, cohort 1 (Ironmet): this is a cross- sectional 
case- control study setting at the Endocrinology Department of 
Josep Trueta University Hospital. The recruitment of subjects 
started in January 2016 and finished in October 2017. Consec-
utive middle- aged subjects, 27.2–66.6 years, were included. 
Patients with obesity (body mass index (BMI) ≥30 kg/m2) and 
age- matched and sex- matched subjects without obesity (BMI 
18.5–<30 kg/m2), were eligible. Exclusion criteria were type 2 
diabetes mellitus, chronic inflammatory systemic diseases, acute 
or chronic infections in the previous month; use of antibiotic, 
antifungal, antiviral or treatment with proton pump inhibi-
tors; severe disorders of eating behaviour or major psychiatric 
antecedents; neurological diseases, history of trauma or injured 
brain, language disorders and excessive alcohol intake (≥40 g 
OH/day in women or 80 g OH/day in men).

Longitudinal cohort (Ironmet study): cognitive tests and MRI 
variables were collected again in 69 consecutive subjects after 1 
year of follow- up.

Replication cohort, cohort 2: the study participants were 
recruited to evaluate the role of intestinal microflora in non- 
alcoholic fatty liver disease. The cohort included 24 subjects, 
12 participants with obesity (BMI ≥30 kg/m2) and 12 without 
obesity (BMI <30 kg/m2). The exclusion criteria were systemic 
diseases, infection in the previous month, serious chronic illness, 
ethanol intake >20 g/day or use of medications that might 
interfere with insulin action. All control subjects were normo-
tensive and were selected on the basis of similarity in age and 
sex compared with subjects with obesity and the absence of 
a personal history of inflammatory diseases or current drug 
treatment.

Replication cohort, cohort 3 (Imageomics): the Ageing 
Imageomics Study is an observational study including partic-
ipants from two independent cohort studies (MESGI50 and 
MARK). Detailed description of the cohorts can be found else-
where.5 Briefly, the MESGI50 cohort included a population aged 
≥50 years, while the MARK cohort included a random sample 
of patients aged 35–74 years with intermediate cardiovascular 
risk. Elegibility criteria included age ≥50 years, dwelling in the 
community, no history of infection during the last 15 days, no 
contraindications for MRI and consent to be informed of poten-
tial incidental findings.

Clinical and laboratory parameters: body composition 
was assessed using a dual energy X- ray absorptiometry (GE 
lunar, Madison, Wisconsin). Fasting plasma glucose, lipids 
profile and high- sensitivity C reactive protein (hsCRP) 
levels were measured using an analyzer (Cobas 8000 c702, 
Roche Diagnostics, Basel, Switzerland). Glycated haemo-
globin was determined by performance liquid chromatog-
raphy (ADAMA1c HA- 8180V, ARKRAY, Kyoto, Japan). 

Study of insulin sensitivity: Insulin sensitivity was determined 
by the hyperinsulinemic euglycemic clamp. The procedure 
consists in create in fasting conditions, a hyperinsulinemic state 

with an insulin infusion of predetermined fixed dosage and a 
variable rate glucose infusion. Glucose levels should be main-
tained constant at normal fasting (5 mmol/L) or any pre- existing 
(isoglycaemic) level adjusting the infusion rate of a 20% glucose 
solution. A steady state is usually reached in the last 40 minutes 
after 2 hours. Under these conditions the glucose infusion rates 
equal the glucose disposal rate, M (µmol・ kg-1・min-1), a 
measurement of overall insulin sensitivity.

Dietary pattern: the dietary characteristics of the subjects 
were collected in a personal interview using a validated food- 
frequency questionnaire.6

The MRI acquisition and image preprocessing, the cognitive 
assessment (through the Stroop Color and Word Test (SCWT), 
Iowa Gambling Task (IGT) and the Wisconsin Card Sorting Test 
(WCST)), the extraction of faecal genomic DNA and whole- 
genome shotgun sequencing, plasma metabolomics analyses and 
animal experiments, including transcriptomics of the mPFC are 
described as online supplemental methods.

Statistical analyses
First, normal distribution and homogeneity of variances were 
tested. Results are expressed as number and frequencies for cate-
gorical variables, mean and SD for normal distributed contin-
uous variables and median and IQR for non- normal distributed 
continuous variables. To determine differences between study 
groups, we used χ2 for categorical variables, unpaired Student’s 
t- test in normal quantitative and Mann- Whitney U test for non- 
normal quantitative variables. Spearman’s analysis was used 
to determine the correlation between quantitative variables. 
All statistical analyses were performed with SPSS, V.19 (SPSS, 
Chicago, Illinois, USA).

Differential abundance analyses for taxa and Kyoto Encyclo-
pedia of Genes and Genomes (KEGG)- based metagenome func-
tions associated with the SCWT, the anterior cingulate cortex 
(ACC) volume and the recipient’s mice mPFC gene transcripts 
were performed using the DESeq2 R packages, controlling 
for age, sex and education years. Fold change (FC) associated 
with a unit change in the corresponding variable and Benjamin- 
Hochberg adjusted p values were plotted for each taxon. Signifi-
cantly different taxa were coloured according to phylum. Taxa 
and bacterial functions were previously filtered so that only 
those with >10 reads in at least two samples were selected. 
Manhattan- like plot were used to show significantly expressed 
KEGG metagenome functions. The −log10(pFDR) values were 
multiplied by the FC sign to take into account the direction of 
the association. Bars were coloured according to the pFDR. A 
significance <0.05 was established unless otherwise indicated. 
DESeq2 was also used to identify recipient’s mice mPFC genes 
associated with donor’s metagenomic functions linked to the 
SCWT test controlling for donor’s age, sex and education years. 
Gene Ontology (GO) and Reactome pathway analyses of differ-
entially expressed genes were performed using the clusterPro-
filer R package7 and the ConsensusPathDB,8 respectively. The p 
value of each term was assessed using an hypergeometric test and 
significantly enriched terms were determined based on a q value 
(Storey correction) cut- off of 0.1, to account for multiple testing. 
GO terms were visualised using the goplot function from the 
enrichplot R package, and significant reactome pathways were 
visualised using a gene overlap plot.

Metabolomics data were analysed using machine learning (ML) 
methods. In particular, we adopted an all- relevant ML variable 
selection strategy applying a multiple random forest (RF)- based 
method as implemented in the Boruta algorithm.9 It has been 
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recently proposed as one of the two best- performing variable 
selection methods making use of RF for high- dimensional omics 
datasets.10 The Boruta algorithm is a wrapper algorithm that 
performs feature selection based on the learning performance 
of the model.9 It performs variables selection in three steps: (a) 
randomisation, which is based on creating a duplicate copy of 
the original features randomly permutate across the observa-
tions; (b) model building, based on RF with the extended data 
set to compute the normalised permutation variable importance 
measure (VIM) scores; (c) statistical testing, to find those rele-
vant features with a VIM higher than the best randomly permu-
tate variable using a Bonferroni corrected two- tailed binomial 
test and (d) iteration, until the status of all features is decided. We 
run the Boruta algorithm with 500 iterations, a confidence level 
cut- off of 0.005 for the Bonferroni adjusted p values, 5000 trees 
to grow the forest (ntree) and a number of features randomly 
sampled at each split given by the rounded down number of 
features/3 (the mtry recommended for regression).

RESULTS AND DISCUSSION
We initially evaluated the SCWT in a cohort of subjects with and 
without obesity. As expected, lower SCWT scores, indicative of 
impaired inhibitory control, were found in subjects with obesity 
(table 1, figure 1A). Inhibitory control was associated with the 
gut microbiota composition. Differential abundance of species 
associated with the SCWT were identified from raw read count 
data adjusted by age, sex and education years using the DESeq2 
package in R. We identified 297 species (pFDR <0.1) associated 
with the SCWT (figure 1A; online supplemental table S1). In all 
subjects as a whole, positive associations with executive perfor-
mance were found with Eubacterium sp CAG:603 and Firmic-
utes bacterium CAG:238; whereas most of the species negatively 
linked to SCWT scores belonged to the Bacteroidetes phylum: 
Bacteroides plebeius, Bacteroides gallinarum, Bacteroides mediter-
ranensis, Desulfovibrio fairfieldensis, Lachnospiraceae bacterium 
5_1_57FAA and Lachnospiraceae bacterium 6_1_37FAA. As both 
inflammation and insulin resistance may play a role in cognitive 
function and neurodegenerative disorders, we further analysed 
the data controlling for hsCRP, a marker of inflammation, and 

the hyperinsulinaemic- euglycaemic clamp (he- clamp), the gold- 
standard method to assess insulin sensitivity. Notably, ~85% of 
the species associated with the SCWT were still significant after 
adjusting for both parameters. We could reproduce these results 
in an independent cohort (n=24) (table 2) using two measures of 
executive function (the IGT and the WCST): several Bacteroides 
sp and Alistipes sp were also associated with the scores of these 
tests (figure 1B, online supplemental figure S1A, online supple-
mental tables S2 and S3).

Metagenome functional analyses based on KEGG pathways 
controlling for age, sex and education years also revealed signif-
icant associations of several bacterial pathways with the SCWT 
(figure 1C, online supplemental table S6), which were also repli-
cated in an independent cohort (figure 1D). Further analysis 
controlling for hs- CRP and he- clamp revealed no effect of either 
inflammation or insulin sensitivity. Thus, >98% of the species 
associated with the SCWT were still significant after controlling 
for these additional variables. Notably, three bacterial functions 
related to nucleotide metabolism (dUTP pyrophosphatase, dut; 
thymidylate synthase, thyX and exodeoxyribonuclease V) had 
the strongest negative associations with the SCWT. Both dut 
and thyX participate in folate- mediated one- carbon metabolism. 
Consistently, dut correlated significantly with the plasma folic 
acid concentration (R=0.32, p=7×10-4, online supplemental 
figure S1B). It could seem counterintuitive that plasma folic acid 
was positively associated with a function linked to worse cognitive 
function. However, circulating unmetabolised folic acid implies 
that the body’s capacity to convert folic acid to the metabolically 
active 5- methyltetrahydrofolate has been overwhelmed and that 
folic acid has passively diffused intact into the circulation.11 In 
addition, thyX had a negative correlation with plasma uric acid 
levels (R=−0.20, p=0.034, online supplemental figure S1C). 
Alterations in folate- mediated one- carbon metabolism have been 
associated with increased risk for cognitive decline.11 In line with 
these findings, other functions related to folate- mediated one- 
carbon metabolism (phosphoribosylglycinamideformyltrans-
ferase 2, purT) or folate biosynthesis (2- amino- 4- hydroxy- 6- hyd
roxymethyldihydropteridine diphosphokinase, folK; dihydrone-
opterin triphosphate diphosphatase, nudB) were also negatively 

Table 1 Clinical and neuropsychological data of the human discovery cohort

  
Total population
(n=114)

Without obesity
(n=51)

With obesity
(n=63) P value

Age (years) 50.4 (41.8–58.6) 53.9 (44.4–59.0) 48.6 (40.7–57.5) 0.096

Females n (%) 79 (69.3) 34 (66.7) 45 (71.4) 0.584

Education (years) 12.5 (11–17) 15 (12–17) 12 (9–14) 1.9×10–5

BMI (kg/m2) 34.6 (25.3–43.3) 24.9 (2.6) 43.1 (6.7) 6.8×10–33

Waist (cm) 110 (92–126) 89.8 (9.6) 125.5 (14.0) 5.8×10–29

Fat mass (%) 43.5 (33.8–50.2) 32.4 (7.2) 49.7 (5.5) 2.7×10–24

SBP (mmHg) 132.8 (20.2) 124.3 (15.8) 139.5 (20.9) 2.6×10–5

DBP (mmHg) 74.8 (11.6) 71.2 (10.9) 77.7 (11.4) 0.003

HDL- C (mg/dL) 56 (45–68) 66.0 (17.0) 51.0 (12.9) 4.1×10–7

Triglycerides (mg/dL) 90.5 (65.8–135.3) 79 (58–96) 124 (82–156) 4.0×10–5

FPG (mg/dL) 96 (90–103) 95 (89–101) 97 (93–105) 0.155

HbA1c (%) 5.5 (0.3) 5.5 (5.3–5.6) 5.6 (5.3–5.8) 0.021

hsCRP (mg/dL) 1.8 (0.7–5.9) 0.7 (0.4–1.3) 4.9 (2.7–9.5) 1.6×10–13

SCWT (score) 43.1 (10.1) 45.9 (9.6) 40.8 (10.0) 0.006

Results are expressed as number and frequencies for categorical variables, mean and SD for normal distributed continuous variables and median and IQR for non- normal 
distributed continuous variables. To determine differences between study groups, we used χ2 for categorical variables, unpaired Student’s t- test in normal quantitative and Mann- 
Whitney U test for non- normal quantitative variables. P value determines differences between subjects with obesity (BMI ≥30 kg/m2) and without obesity (BMI 18.5–30 kg/m2).
BMI, body mass index; DBP, diastolic blood pressure; FPG, fasting plasma glucose; HbA1c, glycated haemoglobin; HDL- C, high- density lipoprotein cholesterol; hsCRP, high- 
sensitivity C reactive protein; SBP, systolic blood pressure; SCWT, Stroop Color and Word Test.
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Figure 1 A microbiota taxonomic and functional signature is associated with inhibitory control. (A) Volcano plot of differential bacterial abundance 
(pFDR <0.05) associated with the Stroop Color Word Test (SCWT) as calculated by DESeq2 from shotgun metagenomic sequencing in the IRONMET 
cohort (n=114), adjusting for age, sex and education years. Fold change (FC) associated with a unit change in the SCWT and Benjamini- Hochberg 
adjusted p values (pFDR) are plotted for each taxon. Significantly different taxa are coloured according to phylum. In the same graph, the violin plots 
for the SCWT scores in patients with and without obesity are also shown. Differences between groups were analysed by a Wilcoxon tests. (B) Volcano 
plot of differential bacterial abundance (pFDR <0.1) associated with Iowa Gambling Test (IGT) as calculated by DESeq2 from shotgun metagenomic 
sequencing in an independent cohort (n=24), adjusting for age, sex and education years. (C) Manhattan- like plot of significantly expressed KEGG 
metagenome functions associated with the SCWT (pFDR <0.020) identified from DESeq2 analysis in the IRONMET cohort (n=114) adjusted for age, 
sex and educations. The −log10(pFDR) values are multiplied by the FC sign to take into account the direction of the association. Bars are coloured 
according to the pFDR. (D) Manhattan- like plot of significantly expressed KEGG metagenome functions associated with the IGT (pFDR <0.05) 
identified from DESeq2 analysis in an independent cohort (n=24) adjusted for age, sex and educations.
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associated with the SCWT. In addition, several functions related 
to vitamins involved in the folate and one- carbon metabolism, 
specifically vitamin B6 (4- hydroxythreonine- 4- phosphate dehy-
drogenase, pdxA), vitamin B12 (vitamin B12 transporter, btuB) 
and vitamin B2 (5,6- dimethylbenzimidazole synthase, bluB; 
3,4- dihydroxy 2- butanone 4- phosphate synthase, ribBA; ribo-
flavin synthase, ribE), were also negatively associated with the 
SCWT.

Notably, the associations between the SCWT and bacterial 
composition were different in subjects with and without obesity. 
Negative associations with Bacteroides nordii, Fusobacterium 
varium, Prevotella sp CAG:279 and Prevotella timonensis were 
observed in subjects with obesity, while Bacteroides ovatus 
CAG:22, Bacteroides sp CAG:462, Alistipes sp CAG:157, Rikenel-
laceae sp and Acidaminococcus sp were associated negatively in 
subjects without obesity (figure 2A,B, online supplemental tables 
S4 and S5). In the latter, we also observed positive associations 
with Roseburia sp CAG:471, Clostridum sp CAG:632, Pasteu-
rellaceae sp and Butyrivibrio sp CAG:318. Similarly, the associ-
ations at the functional level were also different in subjects with 
and without obesity. In particular, the association of the SCWT 
with the one- carbon metabolism- related functions thyX and dut 
was specifically significant among individuals without obesity 
(figure 2C, online supplemental table S7), white the link with 
exodeoxyribonuclease V was prominent among subjects with 
obesity (figure 2D, online supplemental table S8). Remarkably, 
most of these metagenomic composition and functional associ-
ations were replicated longitudinally after 1 year of follow- up 
(online supplemental figure S1D,E and tables S9 and S10). In 
addition to exodeoxyribonuclease V, dut, thyX and kinB, the 
SCWT performance at follow- up had a relatively strong nega-
tive association with nicotinamide phosphoribosyltransferase. 
The knockdown of this gene in mice has shown to recapitulate 
hippocampal cognitive phenotypes in old mice.12

We then used a multiple RF models- based ML variable selec-
tion strategy, as implemented in the Boruta R package, to iden-
tify plasma and faecal metabolites predictive of the SCWT. 
Among the plasma metabolites positively associated with 

SCWT performance, tryptophan and 4- hydroxyphenyllactic 
acid (4- HPLA, a tyrosine catabolite) were the most important 
(figure 3A,B). Tryptophan and tyrosine are the precursors for 
the synthesis of the neurotransmitters serotonin and dopa-
mine, respectively. In healthy adults, low tryptophan levels 
were associated with a decrease in the Stroop interference 
effect,13 14 although the results are somewhat inconsistent.15 16 
Previous research has also suggested that inhibitory control also 
relies on dopaminergic signalling.17 Stimulation of dopamine 
D2 receptors has shown to decrease Stroop interference.18 
A higher dopaminergic uptake was also linked to less WCST- 
related activation in the PFC.19 Increased 4- HPLA acid levels 
may indicated that tyrosine is diverted from dopamine synthesis. 
Interestingly, 4- HPLA is a microbial- derived tyrosine catabolite 
that has shown to decrease reactive oxygen species production 
in both mitochondria and neutrophils.20 Alterations in trypto-
phan and tyrosine metabolism in relation to SCWT performance 
were also observed in faecal samples (figure 3C,D). Hence, 
5- hydroxyindoleacetic acid (5- HIAA), the end- product of sero-
tonin metabolism, tyrosine itself and some microbial- derived 
tyrosine metabolites (2- phenylpropanoic acid) had consistent 
associations with the SCWT. The associations between the 
SCWT and alterations in tryptophan metabolism were repli-
cated in the Imageomics cohort (n=970), where plasma levels of 
tryptophan and some microbial- derived tryptophan catabolites 
(indolepropionamide) were positively associated with the SCWT 
performance (figure 3F,G). Remarkably, these alterations in 
tryptophan metabolism were only observed in individuals with 
obesity in both the Ironmet (figure 4A- J) and Imageomics cohorts 
(figure 4K- M). This is in line with recent studies reporting alter-
ations in tryptophan metabolic pathways in obesity in associa-
tion with systemic inflammation.21 A summary of these findings 
can be found in figure 5A.

The purine, thymidylate and methionine cycles encom-
pass the one- carbon metabolism in the cytosol, which largely 
rely on B vitamins, specifically vitamins B2, B6, folate (B9) and 
vitamin B12.

22 In agreement with alterations in the metagenomic 
functions involved in the two former cycles and one- carbon 

Table 2 Clinical and neuropsychological data of the human replication cohort

  
Total population
(n=24)

Without obesity
(n=12)

With obesity
(n=12) P value

Age (years) 53.5 (44.3–57.8) 52 (39–58.3) 53.5 (48.5–57.8) 0.478

Females n (%) 15 (62.5) 7 (58.3) 8 (66.7) 0.673

Education (years) 16 (15–17) 17 (14–17) 16 (15–17) 1.9×10–5

BMI (kg/m2) 29.9 (23.2–45.1) 23.2 (21.3–25.5) 44.3 (38.6–47.7) 3.2×10–5

Waist (cm) 96 (81–127) 82 (72.8–87.8) 127 (121–136) 7.1×10–5

Fat mass (%) 37.4 (29.2–45.3) 29.6 (21.3–34.9) 45.2 (39.6–51.3) 2.8×10–4

SBP (mmHg) 123.5 (115–136.8) 116 (108–121.3) 135.5 (124.5–148.3) 0.001

DBP (mmHg) 69.5 (64.3–78.8) 64.5 (59.5–69.5) 78 (69.3–150.8) 0.003

HDL- C (mg/dL) 56 (43–76) 67 (58.3–77) 44.5 (40–52.8) 0.043

Triglycerides (mg/dL) 73 (48.8–117.5) 57.5 (42.3–98.5) 93 (68.5–150.8) 0.069

FPG (mg/dL) 94.5 (84–103.8) 92 (84–102) 99 (85.3–103.8) 0.418

HbA1c (%) 5.5 (5.3–5.8) 5.5 (5.3–5.7) 5.7 (5.3–6.3) 0.147

hsCRP (mg/dL) 0.2 (0–0.5) 0.1 (0–0.2) 0.5 (0.2–0.8) 0.009

IGT (score) 45 (42–49) 44.5 (39–48.3) 45.5 (43.3–49.8) 0.271

WCST (score) 11 (11–12) 11 (10.5–12.5) 11 (11–12) 0.918

Results are expressed as number and frequencies for categorical variables, mean and SD for normal distributed continuous variables and median and IQR for non- normal 
distributed continuous variables. To determine differences between study groups, we used χ2 for categorical variables, unpaired Student’s t- test in normal quantitative and Mann- 
Whitney U test for non- normal quantitative variables. P value determines differences between subjects with obesity (BMI ≥30 kg/m2) and without obesity (BMI 18.5–30 kg/m2).
BMI, body mass index; DBP, diastolic blood pressure; FPG, fasting plasma glucose; HbA1c, glycated haemoglobin; HDL- C, high- density lipoprotein cholesterol; hsCRP, high- 
sensitivity C reactive protein; IGT, Iowa Gambling Test; SBP, systolic blood pressure; WCST, Wisconsin Card Sorting Test.
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metabolism- related vitamins in relation to the SCWT scores, we 
found negative associations between the faecal levels of methi-
onine and microbial- derived methionine catabolites (dimethyl 
sulfone)23 in the Ironmet cohort (figures 3D,E and 5B). 

Interestingly, these alterations in the methionine cycle were only 
observed in individuals without obesity (figure 4E- I), who also 
had alterations in betaine (figure 4E), which serves as a methyl 
donor in the reaction converting homocysteine to methionine 

Figure 2 The microbiota taxonomic and functional signature linked to inhibitory control is modulated by obesity. (A, B) Volcano plot of differential 
expressed (pFDR <0.1) bacterial abundance and (C, D) bacterial functions associated with the Stroop Color and Word Test (SCWT) as calculated by 
DESeq2 from shotgun metagenomic sequencing in the patients without and with obesity from the IRONMET cohort, respectively, controlling for age, 
sex and education years. Fold change associated with a unit change in the SCWT and Benjamini- Hochberg adjusted p values (pFDR) are plotted for 
each taxon. Significantly different taxa are coloured according to phylum.
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Figure 3 Plasma and faecal metabolomics linked to inhibitory control in the Ironmet and Imageomics cohorts. Bar plots of normalised variable 
importance measure (VIM) for the metabolites associated with the Stroop Color and Word Test (SCWT) in (A, B) plasma and (C–E) faecal samples 
identified by HPLC- ESI- MS/MS in positive mode (n=130), negative mode (n=130) and NMR (n=156), respectively, in the Ironmet cohort. Bar plots of 
VIM for the metabolites associated with the SCWT in plasma samples of the Imageomics cohort (n=970) identified by HPCL- ESI- MS/MS in (F) positive 
and (G) negative mode. In all cases, metabolites were identified using a multiple random forest- based machine learning variable selection strategy 
using the Boruta algorithm with 5000 trees and 500 iterations. All metabolites were identified based on exact mass, retention time and MS/MS 
spectrum, except those with (*) that were only identified based on exact mass and retention time. Unidentified metabolites are shown as exact mass 
at retention time. 2- PPA, 2- phenylpropanoic acid; 4- HPLA, 4- hydroxyphenyllactic acid; 5- HIAA, 5- hydroxyindoleacetic acid; DMSO2, dimethyl sulfone; 
FA, fatty acid; IPAM, indolepropionamide; MA, methylamine; TMA, trimethylamine.
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Figure 4 Plasma and faecal metabolomics linked to inhibitory control in the Ironmet and Imageomics cohorts according to obesity status. Bar plots 
of normalised variable importance measure (VIM) for the metabolites associated with the Stroop Color and Word Test (SCWT) in (A–D) plasma and 
(E–J) faecal samples identified by HPLC- ESI- MS/MS in positive mode (n=130), negative mode (n=130) and NMR (n=156), respectively, in the Ironmet 
cohort in patients with and without obesity. Bar plots of VIM for the metabolites associated with the SCWT in plasma samples of the Imageomics 
cohort (n=970) identified by HPCL- ESI- MS/MS in (K) positive and (L, M) negative mode in patients with and without obesity. The above colour bar 
indicates the sign of the association among the metabolites and the SCWT, with red indicating negative correlation and green positive correlation. In 
all cases, metabolites were identified using a multiple random forest- based machine learning variable selection strategy using the Boruta algorithm 
with 5000 trees and 500 iterations. All metabolites were identified based on exact mass, retention time and MS/MS spectrum, except those with 
(*) that were only identified based on exact mass and retention time. Unidentified metabolites are shown as exact mass at retention time. 4- 
HPLA, 4- hydroxyphenyllactic acid; BA1, Bile acid1: 4,4- dimethyl- 5-α-cholesta- 8,14- dien- 3β-ol; EPA, eicosapentaenoic acid; FA, fatty acid; IPAM, 
indolepropionamide; MA, methylamine; TMA, trimethylamine.
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(figure 5B). These results are in agreement with the observed 
associations among one- carbon metabolism related metagenomic 
functions (thyX and dut) and SCWT only in individuals without 
obesity. These alterations in betaine levels are also consistent 

with the significant associations between the SCWT and bacte-
rial betaine transport functions (proW, betaine/proline trans-
port system permease protein; proV betaine/proline transport 
system ATP- binding protein; proX, betaine/proline transport 

Figure 5 Main metabolic pathways involved in the associations among metagenomics, metabolomics and the Stroop Color and Word Test 
(SCWT). (A) Overview of the main catabolic pathways of tryptophan and tyrosine. Tryptophan and tyrosine are the precursors for the synthesis 
of the neurotransmitters serotonin and dopamine, respectively. The gut microbiota can also metabolise tryptophan and tyrosine to indoles and 
hydroxyphenolic acids, respectively. Dietary tryptophan is mostly metabolised via the Kynurenine pathway, which is activated by inflammation. 
(B) Overview of the folate- mediated one- carbon metabolism. The folate cycle (green) is required for the synthesis of DNA (pink and blue) as 
well as methylation reaction (DNA, proteins and lipids) through the methionine cycle (orange). Histidine (purple), choline and betaine are two 
sources of 1C units feeding into the one- carbon metabolism. Bacterial pathways have been shaded in red. Metabolites involved in the one- carbon 
metabolism and significantly associated with the SCWT are highlighted in bold in a yellow box. Bacterial functions participating in the one- carbon 
metabolism and significantly associated with the SCWT are highlighted in bold in a red box. AICAR, 5- aminoimidazole- 4- carboxamide 1-β-D- 
ribofuranoside; bgtB, arginine/lysine/histidine/glutamine transport system substrate- binding and permease protein; bluB, 5,6- dimethylbenzimidazole 
synthase; btuB, vitamin B12 transporter; DHF, dihydrofolate; DMA, dimethylamine; DMSO2, dimethylsulfone; dut, dUTP pyrophosphatase; FAICAR, 
5- formamidoimidazole- 4- carboxamide ribotide; FGAR, 5’-phosphoribosyl- N- formylglycineamide; FIGlu, N- Formimino- glutamate; folK, 2- amino- 4- 
hydroxy- 6- hydroxymethyldihydropteridine diphosphokinase; GAR, 5’-phosphoribosylglycineamide; hisB, imidazoleglycerol- phosphate dehydratase; 
IGP, imidazole glycerol- phosphate; IMP, inosine 5’-monophosphate; MA, methylamine; nudB, dihydroneopterin triphosphate diphosphatase; pdxA, 
4- hydroxythreonine- 4- phosphate dehydrogenase; proV, glycine betaine/proline transport system ATP- binding protein; proW, glycine betaine/proline 
transport system permease protein; proX, glycine betaine/proline transport system substrate- binding protein; purT, phosphoribosylglycinamide 
formyltransferase 2; ribBA, 3,4- dihydroxy 2- butanone 4- phosphate synthase/GTP cyclohydrolase II; ribE, riboflavin synthase; SAH, S- 
adenosylhomocysteine; SAM, S- adenosylmethionine; THF, tetrahydrofolate; thyX, thymidylate synthase; TMA, trimethylamine.
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system substrate- binding protein) (online supplemental table 
S6, figure 5B). It is also worth noting that both betaine and its 
precursor (choline) can be metabolised by the gut microbiota 
to trimethylamine (TMA) and eventually methylamine (MA), 
which were also only associated with the SCWT in individuals 
without obesity (figure 4G).

Another one- carbon donor that contributes to the pool of 
1C units in the folate- bound one- carbon metabolism is histi-
dine (figure 5B).24 Again, in agreement with the above findings, 
plasma histidine was positively associated with SCWT in indi-
viduals without obesity in the Imageomics cohort (figure 4L). 
Histidine is an important precursor of histamine, which acts as a 
neurotransmitter in the brain and has been involved in anxiety, 
stress response, learning and memory.25 Consistently, we also 
found negative associations between faecal histamine and SCWT 
(figure 4G). Notably, vitamin B6 acts as a cofactor for histidine 
decarboxylase, the sole enzyme responsible for the conversion of 
histidine to histamine. Histidine can alternatively be converted 
to urocanic acid, which was significantly associated with the 
SCWT performance in individuals with obesity (figure 4J). 
Urocanate has recently shown to cross the blood- brain barrier 
and promote glutamate biosynthesis and release in various brain 
regions, thereby enhancing learning and memory.26 Therefore, 
histidine might be metabolised differently in obesity.

We further analysed the associations among the metabolome 
and those bacterial functions most negatively associated with the 
SCWT. ML analyses revealed consistent associations with trypto-
phan, 4- HPLA, 3- methyl- 2- oxovalerate, FA(16:1) and FA(18:2) 
(online supplemental figure S2 A–C). These functions also had 
positive associations with betaine, reflecting the involvement of 
these functions in the one- carbon metabolism.

We next questioned whether these associations could have 
a structural correlate. Both the anterior cingulate and the PFC 
are thought to be critically involved in the performance of the 
Stroop task. In agreement with previous findings,27 we found 
that the grey matter volume of the ACC was positively linked to 
SCWT scores (figure 6A,B). Interestingly, in line with inhibitory 
control- bacterial relationships, we found negative associations of 
different Bacteroides sp, Anaerovibrio sp RM50 and Selenom-
onas sp Oral taxon 478 with ACC volume (figure 6C, online 
supplemental table S11). Conversely, bacterial species positively 
associated with better inhibitory control were also directly 
linked to ACC volume (Clostridium sp CAG:226, Roseburia sp 
CAG:182 and Ruminococcus sp CAG:417). The strongest nega-
tive associations between the bacterial functions and the ACC 
volume were with kinB, dut and thyX, that were precisely the 
bacterial function negatively associated with SCWT in subjects 
without obesity (figure 6D). Other bacterial functions involved 
in pyrimidine metabolism were positively linked (pseudou-
ridylate synthase, psuG; TYMP thymidine phosphorylase, deoA; 
5’-deoxynucleotidase, yfbR) (figure 6D,E, online supplemental 
table S12). An increased frequency of red meat consumption 
was associated with those bacterial functions negatively related 
to inhibitory control (online supplemental figure S3A). Of note, 
dut and kinB had the strongest negative associations with the 
ACC volume at baseline, and after 1 year of follow- up (online 
supplemental figure S3B).

The correlates of cognitive flexibility of humans and mice are 
often measured using reversal learning (RL) paradigm experi-
ments, in which subjects need to overcome established associa-
tions and learn new ones based on feedback.28 RL also provides a 
measure of inhibition and impulsiveness.29 In a faecal microbiota 
transplantation experiment, microbiota from n=22 humans 
donors (n=11 with BMI <30 kg/m2 and n=11 with BMI ≥30 

kg/m2 matched for age, sex and education years) was orally 
delivered to recipient mice (figure 7A, online supplemental 
table S13). Mice receiving the microbiota from the subjects with 
obesity with lower inhibitory control had significantly lower RL 
performance at day 18 evaluated as the number of lever- presses 
in the inverted active lever (figure 7A). Remarkably, several 
human donor’s bacterial species (figure 7B, online supplemental 
table S1) and functions (figure 7C, online supplemental table S6) 
associated with the SCWT in humans were also associated with 
the recipient’s mice RL task performance.

PFC activity is known to affect inhibitory control, and inhib-
itory control- related activity in regions of the PFC have been 
found to correlate inversely with BMI and weight increase.30 31 
Therefore, in an independent faecal microbiota transplantation 
experiment, we performed an RNA sequencing of the mPFC of 
mice that received microbiota from human donor’s with either 
low or high SCWT scores matched for age, gender and education 
years (figure 7D, online supplemental table S14). DESeq2 anal-
yses adjusted for donor’s age, sex and education years, revealed 
several mPFC genes from recipient’s mice associated with the 
SCWT- related human’s donor bacterial functions (figure 7E,F, 
online supplemental table S15 and S16). In particular, dut 
had significative positive associations with the expression of 
Kcne2, Prlr, Folr1, Cldn2, Slc4a5, Sostdc1 and borderline asso-
ciations (pFDR <0.11) with Tmem72, F5 and Ttr (figure 7E). 
Remarkably, all these genes were found among the top 25 genes 
changing the hippocampal expression after contextual fear 
conditioning.32 Enrichment analysis of differentially expressed 
genes based on GO revealed over- representation of biological 
processes related to neuron development and histone methyl-
ation (online supplemental figure S4A). The genes involved in 
these processes included Folr1, Mecp2, Auts2, Mfrp and Hipk1. 
It is particularly noticeable, the significant association between 
this donor’s bacterial function involved in folate- mediated one- 
carbon metabolism and the expression of the folate receptor 1 
(Folr1) and methyl- CpG binding protein 2 (Mecp2) in the recip-
ient mice mPFC. This is in agreement with our previous findings 
and further highlights the key role of the one- carbon metabo-
lism and its involvement in DNA methylation. The Mecp2 has 
a well- established function in neurodevelopment33 and has also 
been linked to autism and Alzheimer’s disease.34 On the other 
hand, exodeoxyribonuclase V was significantly associated with 
the expression of 152 PFC genes, with transthyretin having the 
strongest FC by far (figure 7F). Ttr is one of the major amyloid 
β peptide- binding proteins acting as a neuroprotector in Alzhei-
mer’s disease.35 This bacterial function also had a significant 
association with methylenetetrahydrofolate dehydrogenase 
1- like (Mthfd1l) gene, which encodes for an enzyme that has an 
important role in folate- mediated one- carbon metabolism. Dele-
tion of one allele of Mthfd1 resulted in impaired cue- conditional 
learning in mice.36 Finally, enrichment analyses based on reac-
tome pathways revealed a network of pathways related to netrin 
signalling, which has recently shown to play an important role in 
synaptic plasticity and memory formation.37

Next, we also searched for relevant genes in the PFC of recip-
ient’s mice that were able to predict the human’s donor SCWT 
using an ML- based variable selection strategy. After application 
of the Boruta algorithm, we identified Ms4a4a and the mono-
carboxylic acid transporter 12 (Slc16a12) as the main predic-
tors of SCWT (figure 7G). Interestingly, the later gene has been 
recently described to be linked to folate status.38 Monocarbox-
ylate transporter transports lactate to the brain and promotes 
neurogenesis.39 In addition, this is the transporter for creatine. 
Spontaneous mutations in creatine transporters and creatine 
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Figure 6 The gut microbiota is associated with the brain area involved in inhibitory control. (A, B) The anterior cingulate cortex (ACC) volume 
was positively associated with the Stroop Color and Word Test (SCWT) in the Ironmet cohort (n=95) after controlling for age, sex, education years 
and total intracranial volume. (C) Volcano plots of differential bacterial abundance and (D) KEGG metagenome functions associated with the ACC 
volume as calculated by DESeq2 controlling for previous covariates. Fold change (FC) associated with a unit change in the corresponding volumes 
and Benjamini- Hochberg adjusted p values (pFDR) are plotted for each taxon. (E) Manhattan- like plot of significantly expressed KEGG metagenome 
functions associated with the ACC volume highlighting those bacterial functions also associated with the SCWT in blue. The −log10(pFDR) values are 
multiplied by the FC sign to take into account the direction of the association. Bars are coloured according to the pFDR.
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transporter knockout mice show impairments of short- term and 
long- term memory,40 and severe deficits in cognitive function.41 
Recently, Ms4a4a has also been identified as a key modulator of 
soluble TREM2 and Alzheimer’s disease risk.42 We then used 

DESeq2 to identify those SCWT- related bacterial functions 
that were associated with the expression of these two genes 
(figure 7H,I, online supplemental tables S17 and S18). Inter-
estingly, both genes were significantly associated with dut 

Figure 7 Faecal microbiota transplantation (FMT) mice studies. (A) Experimental design for the first FMT study. The microbiota from human donors 
without obesity (body mass index (BMI) <30 kg/m2, n=11) and with obesity (BMI ≥30 kg/m2, n=11) was delivered to recipient mice pretreated with 
antibiotics for 14 days. Reversal learning tests (RLT) were performed after 18 days. Violin plot for the recipient’s mice RLT scores at 18 days based 
on human donor obesity status. (B) Volcano plot of differential human donor bacterial abundance associated with the recipient’s mice RLT at day 
18, identified from DESeq2 analysis controlling for donor’s age, sex and education years. Fold change (FC) associated with a unit change in the 
corresponding memory test and Benjamini- Hochberg adjusted p values (pFDR) are plotted for each taxon. Significantly different taxa are coloured 
according to phylum. (C) Manhattan- like plot showing only the significantly expressed KEGG metagenome functions associated with the recipient’s 
mice RLT (pFDR <0.1) that were also associated with the Stroop Color and Word Test (SCWT) in humans. The −log10(pFDR) values are multiplied by the 
FC sign to take into account the direction of the association. Bars are coloured according to the pFDR. (D) Experimental design for the second FMT 
study. The microbiota from human donors with low (n=11) and high (n=11) SCWT scores was delivered to recipient mice pretreated with antibiotics 
for 14 days. RNA sequencing of the medial prefrontal cortex (mPFC) was performed after 4 weeks. Violin plots for the SCWT according to the human 
donor scores. (E) Volcano plots of recipient’s mice differential mPFC genes associated (pFDR <0.1) with the human’s donor metagenome functions 
dUTP pyrophosphatase and (F) exodeoxyribonuclease V controlling for donor’s age, sex and education years. FC associated with a unit change in the 
expression of the corresponding bacterial function and the Benjamini- Hochberg adjusted p values (pFDR) are plotted for each gene. (G) Bar plot of the 
normalised variable importance measure (VIM) for the recipient’s mice mPFC genes associated with the human donor’s SCWT identified by machine 
learning using multiple random forest- based variable selection strategy with the Boruta algorithm with 5000 trees and 500 iterations. (H) Volcano plot 
of differential human donor’s KEGG metagenome functions associated with recipient’s mice Ms4a4a and (I) Slc16a12 genes. FC associated with a unit 
change in the expression of both genes and Benjamini- Hochberg adjusted p values (pFDR) are plotted for each metagenome function.
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and thyX, which we had identified as the main contributors the 
SCWT.

Inhibitory control, a fundamental component of executive 
function,2 overrules automatic intentions to directly respond 
to stimuli without thought.3 We here describe multiple inter-
actions among the gut microbiota taxonomy and functionality, 
and plasma and faecal- microbiota metabolites, with inhibitory 
control in humans with obesity that were partially transmissible 
to mice. This may have therapeutic implications for the disen-
gagement of ongoing behaviours, including the suppression of 
impulsive food reward- related choices in subjects with obesity.3
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