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Abstract. In this work, we perform an extensive theoretical and experimental analysis of the charac-
teristics of five of the most prominent algebraic modelling languages (AMPL, AIMMS, GAMS, JuMP,
and Pyomo) and modelling systems supporting them. In our theoretical comparison, we evaluate
how the reviewed modern algebraic modelling languages match the current requirements. In the
experimental analysis, we use a purpose-built test model library to perform extensive benchmarks.
We provide insights on which algebraic modelling languages performed the best and the features
that we deem essential in the current mathematical optimization landscape. Finally, we highlight
possible future research directions for this work.
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1. Introduction

Many real-world problems are routinely solved using modern optimization tools (e.g. Ab-
hishek et al., 2010; Fragniere and Gondzio, 2002; Groër et al., 2011; Paulavičius and
Žilinskas, 2014; Paulavičius et al., 2020a, 2020b; Pistikopoulos et al., 2015). Internally,
these tools use the combination of a mathematical model with an appropriate solution
algorithm (e.g. Cosma et al., 2020; Fernández et al., 2020; Gómez et al., 2019; Lee et
al., 2019; Paulavičius and Žilinskas, 2014; Paulavičius et al., 2014; Paulavičius and Ad-
jiman, 2020; Stripinis et al., 2019, 2021) to solve the problem at hand. Thus, the way
mathematical models are formulated is critical to the impact of optimization in real life.

Mathematical modelling is the process of translating real-world business problems
into mathematical formulations whose theoretical and numerical analysis can provide in-
sight, answers, and guidance beneficial for the originating application (Kallrath, 2004), in-
cluding the current Covid-19 pandemic (Rothberg, 2020). Algebraic modelling languages
(AMLs) are declarative optimization modelling languages, which bridge the gap between

∗Corresponding author.

https://doi.org/10.15388/21-INFOR447


284 V. Jusevičius et al.

model formulation and the proper solution technique (Fragniere and Gondzio, 2002). They
enable the formulation of a mathematical model as a human-readable set of equations
while not requiring to specify how the described model should be solved or what specific
solver should be used.

Models written in an AML are known for the high degree of similarity to the math-
ematical formulation. This aspect distinguishes AMLs from other types of modelling
languages, like object-oriented (e.g. OptimJ), solver specific (e.g. LINGO), or general-
purpose (e.g. TOMLAB) modelling languages. Such an algebraic design approach allows
practitioners without specific programming or modelling knowledge to be efficient in de-
scribing the problems to be solved. It is also important to note that AML is then responsi-
ble for creating a problem instance that a solution algorithm can tackle (Kallrath, 2004).
Since many AMLs are integral parts of a specific modelling system, it is essential to iso-
late a modelling language’s responsibilities from the overall system. In general, AMLs
are sophisticated software packages that provide a crucial link between an optimization
model’s mathematical concept and the complex algorithmic routines that compute opti-
mal solutions. Typically, AML software automatically reads a model and data, generates
an instance, and conveys it to a solver in the required form (Fourer, 2013).

From the late 1970s, many AMLs were created (e.g., GAMS, McCarl et al., 2016,
AMPL, Fourer, 2003) and are still actively developed and used today. Lately, new open-
source competitors to the traditional AMLs started to emerge (e.g., Pyomo, Hart et al.,
2017, 2011, JuMP, Dunning et al., 2017; Lubin and Dunning, 2015). Therefore, we feel
that a review and comparison of the traditional and emerging AMLs are needed to examine
how the current landscape of AMLs looks.

The remainder of the paper is organized as follows. In Section 2, we review the essen-
tial characteristics of AMLs and motivate our selection of AMLs for the current review.
In Section 3, we investigate how the requirements for a modern AML are met within each
of the chosen languages. In Section 4, we examine the characteristics of AMLs using an
extensive benchmark. In Section 5, we investigate the presolve impact on solving. Finally,
we conclude the paper in Section 6.

2. Algebraic Modelling Languages

The first algebraic modelling languages, developed in the late 1970s, were game-changers.
They allowed separating the model formulation from the implementation details (Kallrath,
2004) while keeping the notation close to the problem’s mathematical formulation (Frag-
niere and Gondzio, 2002). Since the data appears to be more volatile than the problem
structure, most modelling language designers insist on the data and model structure being
separated (Hürlimann, 1999). Therefore, the central idea in modern AMLs is the differen-
tiation between abstract models and concrete problem instances (Hart et al., 2011). A spe-
cific model instance is generated from an abstract model using data. This way, the model
and data together specify a particular instance of an optimization problem for which a so-
lution can be sought. This is realized by replicating every entity of an abstract model over
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the different elements of the data set. Such a feature often is referred to as a set-indexing
ability of the AML (Fragniere and Gondzio, 2002).

Essential characteristics of a modern AML could be defined in the following way
(Kallrath, 2004):

1. problems are represented in a declarative1 way;
2. there is a clear separation between problem definition and the solution process;
3. there is a clear separation between the problem structure and its data.

Besides, the support for mathematical expressions and operations needed for describing
non-linear models is often considered an important feature of an AML (Kallrath, 2004).
Moreover, it is worth observing that most interpreters included in today’s AMLs are based
on automatic differentiation (Fragniere and Gondzio, 2002), a process in which the model-
ing language can compute the derivatives of problems from the model description without
the assistance of the user (Kallrath, 2004). This motivates us to include automatic differ-
entiation as an additional, important feature of a modern AML.

The algebraic expressions are useful in describing individual models and describing
manipulations on models and transformations of data. Thus, almost as soon as AML be-
came available, users started finding ways to adapt model notations to implement sophis-
ticated solution strategies and iterative schemes. These efforts stimulated the evolution
within AMLs of scripting features, including statements for looping, testing, and assign-
ment (Fourer, 2013). Therefore, scripting capabilities are an integral part of AMLs.

For this review, we have chosen five AMLs: AIMMS,AMPL, GAMS, JuMP, and Pyomo.
The selection was based on the following criteria:

• AMLs which won 2012 INFORMS Impact Prize award2 dedicated to the origina-
tors of the five most important algebraic modelling languages: AIMMS, AMPL, GAMS,
LINDO/LINGO, and MPL;

• the popularity of AMLs based on NEOS Server model input statistics for the year 2020;3

• open-source options that are attractive for the academic society or in situations where
budgets are tight.

We have chosen to include GAMS and AMPL based on NEOS Server popularity, re-
spectively, with 49% and 47% share of jobs executed via the NEOS platform in 2020.
AIMMS was added as an example of AML with a graphical application development en-
vironment. JuMP and Pyomo were included as the most prominent open-source AMLs.
We have decided to exclude MPL since it has not been updated for the last five years. We
have also excluded LINGO as a solver specific modelling language.

1Specifying the problem’s properties: space, set of constraints and optimality requirements.
2https://www.informs.org/About-INFORMS/News-Room/Press-Releases/INFORMS-Impact-Prize-

2012.
3NEOS Server. Solver Access Statistics: https://neos-server.org/neos/report.html.

https://www.informs.org/About-INFORMS/News-Room/Press-Releases/INFORMS-Impact-Prize-2012
https://www.informs.org/About-INFORMS/News-Room/Press-Releases/INFORMS-Impact-Prize-2012
https://neos-server.org/neos/report.html
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3. Comparative Analysis of AMLs Characteristics

In the following section, we investigate how each of the chosen languages meets the re-
quirements for a modern AML defined in the previous section. The websites of the AMLs
and vendor documentation are used for this comparison. Any support of the identified fea-
tures and capabilities are validated against the documentation the suppliers of the AMLs
provide. Besides, an in-depth survey concluded by Robert Fourer in Linear Programming
Software Survey (Fourer, 2017) is also used as a reference. Later on, a more practical
comparison of AML characteristics is conducted to identify the potential ease of use of
AML in daily work.

3.1. Comparative Analysis of the Features

We start by analysing how selected AMLs satisfy the three essential characteristics defined
in the previous Section 2. In all reviewed AMLs, optimization problems are represented in
a declarative way. Furthermore, since all of them are part of a specific modelling system,
a clear separation between problem definition and the solution process in the context of
the modelling system exists. The separation between the problem structure and its data
is supported in all reviewed languages. It should be noted that GAMS, JuMP, and Pyomo
also allow initiating data structures during their declaration, while AIMMS and AMPL only
support it as a separate step in the model instance building process. However, while it
might be convenient for building a simple model, we do not consider the lack of direct
data structure initiation as an advantage since, in real-world cases, it is rarely needed.
Therefore, we can conclude that all reviewed languages fulfill the essential characteristics
of modern AMLs.

Next, in Table 1, we provide an overview of the key features each AML supports.
For creating such a summary, we used the information provided by the AML vendors
on their websites. All reviewed AMLs allow modelling problems in a solver independent
manner. Additionally, AIMMS, JuMP, and Pyomo provide a more powerful way to define
advanced algorithms using R, Julia, or Python programming languages. The ease of data
input for the model differs among AMLs. While all of them support input from a flat file,
some more advanced scenarios such as reading data from relational databases are more
straightforward in AIMMS, JuMP, or Pyomo. AMPL and GAMS require a complicated
setup instead (e.g. using ODBC drivers) to access the database. Wherein JuMP or Pyomo,
a standard Julia or Python driver could be used to get data from relational and any other
type of database supported by Python or Julia. Manipulation (e.g. transformation) of data
is only supported by AIMMS, JuMP, and Pyomo.

When it comes to solver support, AMPL is the one supporting the most. However, it
should be noticed that the categorization of solvers by supported problem types is different
among vendors. Thus, in this comparison, we have reflected the information available
from vendors harmonizing it across all of them. Solvers supported by JuMP and Pyomo
require additional explanation. First, both AMLs support solvers compatible with AMPL
(via AmplNLWriter package or ASL interface). Therefore, any solver that is equipped with
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Table 1
Overview of AMLs features.

Feature AIMMS AMPL GAMS JuMP Pyomo

Modelling Independent Yes Yes Yes Yes Yes
Scripting Yes Limited Limited Yes Yes

Data Input Yes Limited Limited Yes Yes
Manipulation Yes No No Yes Yes

Solvers Total 13 47 35 14 25
Global 1 4 9 2 1
LP 8 17 21 9 10
MCP 2 1 5 1 1
MINLP 3 6 15 3 6
MIP 5 14 16 6 8
MIQCP 5 5 20 3 4
NLP 6 19 17 7 10
QCP 6 9 21 6 6

Presolving Yes Yes No No No

Visualization Yes No No No No

License General Paid Paid Paid Free Free
Academic Paid Free Free Free Free

an AMPL interface can be used by JuMP or Pyomo. This could allow us to state that JuMP
and Pyomo support all AMPL solvers. However, we have excluded solvers supported via
the AMPL interface. It might be needed for some commercial solvers to request a particular
version from the solver’s vendor that comes with the AMPL interface. Second, since both
AMLs are open-source, multiple third-party packages add support for specific solvers for
each of AMLs. In Section 1, we counted only the solvers mentioned on the official JuMP
and Pyomo websites.

Presolving capabilities are only available in AIMMS and AMPL. JuMP and Pyomo
have programming interfaces for creating custom presolvers, however, none of them are
provided out of the box. Only AIMMS provides a visualization of the solver results out of
the box. Using Python or Julia libraries, it is possible to visualize the results produced by
Pyomo and JuMP. However, it requires custom development, and none of the standard
JuMP or Pyomo libraries are supporting that.

It is important to conclude that JuMP and Pyomo are open-source AMLs built on top
of general-purpose programming languages, making them fundamentally different from
the competitors. This allows researchers familiar with Julia or Python to learn, improve,
and use JuMP or Pyomo much more comfortably. At the same time, it is practically im-
possible to introduce improvements to commercial counterparts.

3.2. Practical Comparison of AMLs

For the first practical comparison of the selected AMLs, a classical Dantzig Transportation
Problem was chosen (Dantzig, 1963). In this problem, we are given the factories’ supplies
and the markets’ demands for a single commodity. We have also given the unit costs of
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Table 2
Comparison of transportation problem models.

Criteria AIMMS AMPL GAMS JuMP Pyomo

Size in bytes 2229 683 652 632 1235
Lines of code 68 24 31 18 29
Primitives used 9 5 8 4 6

shipping the product from factories to the markets. The goal is to find the least costly
shipping schedule that meets the requirements at markets and supplies at factories.

The transportation problem formulated as a model in all five considered AML is com-
pared based on the following criteria:

• model size in bytes;
• model size in the number of code lines;
• model size in the number of language primitives used;
• model instance creation time.

Since the transportation problem is a linear programming (LP) type of problem, we
have chosen to measure the model instance creation time as the time needed to export
a concrete model instance to MPS4 format supported by most LP solvers. The following
sources provided sample implementations of the transportation problem for the AMLs
under consideration:

• AIMMS Wikipedia page;5
• AMPL model in GNU Linear Programming Kit;6
• GAMS Model Library;7
• JuMP Examples;8
• Pyomo Gallery.9

Transportation problem models in all five AMLs are given in Appendix B, Listings 3–6.
It should be noted that the textual representation of an AIMMS model presents the model
as a tree of attributed identifier nodes. It reflects how the model is given to the modeller
in the AIMMS IDE and is typically generated by the AIMMS IDE. Moreover, it is worth
noting that for the sake of simplicity, the problem model samples are concrete models, i.e.
data of the model instance is described alongside the model structure.

A comparison of the sample Transportation Problem model’s characteristics in all re-
viewed AMLs is given in Table 2. The simplification of the model implementations pro-
vided in the literature sources is made in the following way:

• all optional comments, explanatory texts, and documentation are removed;

4http://lpsolve.sourceforge.net/5.5/mps-format.htm.
5https://en.wikipedia.org/w/index.php?title=AIMMS&oldid=836119826.
6https://github.com/cran/glpk/blob/master/inst/doc/transport.mod.
7https://www.gams.com/latest/gamslib_ml/libhtml/index.html.
8https://github.com/jump-dev/JuMP.jl/tree/master/examples.
9https://github.com/Pyomo/PyomoGallery.

http://lpsolve.sourceforge.net/5.5/mps-format.htm
https://en.wikipedia.org/w/index.php?title=AIMMS&oldid=836119826
https://github.com/cran/glpk/blob/master/inst/doc/transport.mod
https://www.gams.com/latest/gamslib_ml/libhtml/index.html
https://github.com/jump-dev/JuMP.jl/tree/master/examples
https://github.com/Pyomo/PyomoGallery
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Table 3
Characteristics of the created transportation model instances.

Characteristic AMPL GAMS JuMP Pyomo

Constraints 6 6 6 6
Non zero elements 13 19 13 13
Variables 7 7 7 7

• all empty lines are excluded;
• parts of the code responsible for calling the solver and displaying results are omitted;
• while counting AML primitives generic functions (sum, for), data loading directives

(data), arithmetical and logical operators are excluded.

It can be seen from Table 2 that models implemented in AMPL, GAMS, and JuMP are
the most compact ones, while the model written in AIMMS is much more verbose, and
Pyomo lies in the middle. AIMMS propagates the creation of models using a graphical
user interface (GUI) while keeping the model’s source code hidden from the modeller.
Naturally, there is not much focus on how the model is stored. We can argue that while the
GUI-based approach might be convenient to some modellers, it enforces greater vendor
lock-in and makes the model’s extensibility and maintainability harder.

While comparing the number of language primitives required to create a model, JuMP
and AMPL showed the best results, which allows us to predict that these modelling lan-
guages might have a more gentle learning curve. Therefore, we can conclude that in the
context of the reviewed algebraic modelling languages, JuMP allows formulating an op-
timization problem most concisely.

The creation time of the transportation problem model instance defined in each AMLs
was used to measure a model loading. The process was done in the following steps:

1. loading model instance from a problem definition written in the native AML;
2. exporting model instance to MPS format;
3. measuring total execution time;
4. investigating characteristics of an instance model.

Since the AIMMS system’s creators did not respond to an academic license request, we
could not include AIMMS in the benchmark. Generated model instances in MPS format
can be found in our GitHub repository’s models directory (Jusevičius and Paulavičius,
2019).

The characteristics of the created model instances can be seen in Table 3. We can con-
clude that all modelling languages have created a model instance using the same amount
of variables and constraints. However, the definition of nonzero elements is different be-
tween GAMS and other modelling systems.

In Table 4, the benchmark results of model instance creation time are provided. We
have tried to run multiple consecutive model instance creations (10 runs, 100 runs) to
identify if the modelling system uses any caching. We can exhibit that AMPL showed
significantly better results compared to others. This allows concluding that AMPL is the
most optimized from a performance point of view. On the other hand, the poor JuMP
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Table 4
Total time of consecutive transportation model instance creation runs.

No. of runs AMPL GAMS JuMP Pyomo

1 run 30 ms 170 ms 28341 ms 720 ms
10 runs 220 ms 1730 ms 32199 ms 7280 ms
100 runs 2130 ms 16490 ms 58151 ms 79600 ms

performance confirms the Dunning et al. (2017) statement that JuMP has a noticeable
start-up cost10 of a few seconds even for the smallest instances. In our case, only the
initialization of the JuMP package took around 7 seconds. We also observed a significant
speed-up in multiple consecutive model instances creation, which also confirms (Dunning
et al., 2017) results. When a family of models is solved multiple times within a single
session, this compilation cost is only paid for the first time that an instance is solved.

4. Performance Benchmark of AMLs

All examined AMLs support all types of traditional optimization problems; however, it is
unclear how efficiently each AML can handle large model loading and what optimizations
are applied during model instance creation. It would also be of great value to analyse how
each of the modelling languages performs within an area of the specific type of optimiza-
tion problems (e.g. linear, quadratic, nonlinear, mixed-integer). To give such a comparison
and thoroughly examine characteristics of AMLs, a more extensive benchmark involving
much larger optimization problem models is needed. Therefore, a large and extensive li-
brary of sample optimization problems for the analysed AMLs has to be used.

4.1. AMLs Testing Library

We have chosen the GAMS Model Library11 as a reference for creating such a sample
optimization problem suite against which future research will be done. Automated shell
script gamslib-convert.shwas created to build such a library. It can be found in the
tools directory of our GitHub repository (Jusevičius and Paulavičius, 2019). A detailed
explanation of how the test library creation tool works and the issues identified in the
GAMS Library are provided in Appendix A. As a result of the transformation, we com-
piled a library consisting of 296 sample problems in AMPL, GAMS, JuMP, and Pyomo
scalar model formats.

4.2. Model Instance Creation Time

The generated library was used to determine the amount of time each modelling sys-
tem requires to create a model instance of a particular problem. We wrote load-

10Start-up cost consists of the precompilation and caching time required to prepare JuMP environment.
11https://www.gams.com/latest/gamslib_ml/libhtml/index.html.

https://www.gams.com/latest/gamslib_ml/libhtml/index.html
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Fig. 1. Average model instance creation time.

benchmark.sh shell script available in the tools directory of our GitHub reposi-
tory (Jusevičius and Paulavičius, 2019), which loads each model into the particular mod-
elling system and then exports it to the format understandable by the solvers. We have
chosen the .nl (Gay, 2005) format as the target format acceptable by the solvers, as .nl
supports a wide range of optimization problem types. The benchmark measures the time
the modelling system takes to perform both model instance creation and export operations.

We have chosen to exclude sample problems with conversion errors from the bench-
mark (more information about them in Appendix A). Only the models that were success-
fully processed by all modelling systems were compared. This reduced the scope of our
benchmark to 268 models.

Benchmark methodology, hardware, and software specifications can be found in our
GitHub repository (Jusevičius and Paulavičius, 2019). Detailed results are available in the
model-loading-times.xlsx workbook in the benchmark section of our GitHub
repository (Jusevičius and Paulavičius, 2019). We have provided a summary of the aver-
age model instance creation time split by the problem type in Fig. 1. We can see the trend
exhibited in the transportation problem model benchmark persists. AMPL is still a definite
top performer, while JuMP and Pyomo perform the worst. There are no significant vari-
ations between different optimization problem types except for JuMP, where the model
instance creation time tends to vary significantly while working with different types of
problems. Moreover, as confidence intervals show, the variation between different mod-
els of the same type is also more significant once using JuMP We tend to believe this
is caused by Julia’s dynamic nature and the mix of run time compilation and caching of
similar JuMP models.

We have observed that the average difference between AMPL and other contenders
increases when the models become larger. Comparing instance creation times of large
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Fig. 2. Average large model instance creation time

models (models having more than 500 equations, 8 such models in the testing library)
reveals 11 times the difference between AMPL and GAMS, 38 times the difference between
AMPL and Pyomo, and close to 100 times the difference between AMPL and JuMP. The
difference between GAMS and Pyomo stayed roughly the same – around 3.5 times. The
summary of the large model instance creation time can be seen in Fig. 2.

Thus, we can conclude that out of the reviewed AMLs, AMPL is a clear top-performing
AML when it comes to the model instance creation time.

4.3. JuMP Benchmark

A similar time benchmark of the model instance creation has already been con-
ducted (Dunning et al., 2017), where a smaller set of large models is used. While some of
the trends exhibited in our benchmark persist (AMPL is the fastest, GAMS comes second),
JuMP performance in our and Dunning et al. (2017) benchmarks differs significantly. This
leads us to compare the benchmark methodology and results by conducting the benchmark
described by Dunning et al. (2017).

First of all, our and their time benchmark methodologies differ. In comparison, we
are trying to be solver independent and instruct AML to export the generated model in-
stance to NL file, Dunning et al. (2017) attempt to solve the model using Gurobi solver
and measure the time until Gurobi reports model characteristics. We believe that while
our approach can be impacted by the system’s input/output performance, using a specific
solver heavily depends on how the solver interface is implemented for a particular AML.

In the following, we have conducted two benchmarks – one as described in the original
article and the second one using our method of exporting to a NL file. Results of the
benchmarks can be seen in Tables 5, 6.
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Table 5
JuMP benchmark using Dunning et al. (2017) method (in milliseconds).

Model AMPL GAMS Pyomo JuMP (DIRECT) JuMP (CACHE)

lqcp-500 2093 2271 17000 17388 37317
lqcp-1000 8075 11995 139201 24590 44575
lqcp-1500 18222 38813 322604 39370 66566
lqcp-2000 32615 93586 575406 57597 88833
fac-25 407 480 7442 17517 39245
fac-50 2732 2884 43106 21331 47735
fac-75 9052 12422 150550 31582 57432
fac-100 20998 29144 393200 61326 93129

Table 6
JuMP benchmark using export to NL method (in milliseconds).

Model AMPL GAMS Pyomo JuMP

lqcp-500 2716 3265 39988 20424
lqcp-1000 10503 14394 161404 80578
lqcp-1500 25402 49822 307121 483268
lqcp-2000 42780 125564 >10 min >10 min
fac-25 409 502 9420 8163
fac-50 2837 2993 43087 31799
fac-75 10879 13457 143286 219548
fac-100 23474 32128 328170 >10 min

Before running the benchmarks, we had to rewrite some parts of the sample lqcp and
facility JuMP models since syntax changes were introduced between JuMP v0.12
(used by Dunning et al. (2017)) and JuMP v0.21.5 (used by us, the latest version at the
time of writing). Our benchmark was also conducted using newer versions of other AMLs–
AMPL Version 20190207, GAMS v.32, Pyomo 5.7 (Python 3.8.3), Gurobi 9.0.

Additionally, we wanted to test JuMP’s new abstraction layer’s performance for
working with solvers called MathOptInterface.jl (MOI). Therefore, we have tried both
CachingOptimizer and DIRECT modes. As seen in Table 5, the DIRECT mode
performed much better than the CachingOptimizer mode for both lqcp and fa-
cilitymodels. An average difference in the instance creation time is close to two times,
which leads us to suggest modellers evaluate MOI type choice based on specific use cases
carefully.

Overall, both benchmarks confirmed our observation that JuMP suffers from the long
warm-up time required to pre-compile JuMP libraries. Results were also consistent with
the patterns exhibited during the full gamslib benchmark performed earlier. We could
not reproduce the JuMP performance metrics reported by Dunning et al. (2017), where
JuMP always outperforms Pyomo. Using the original benchmark method, JuMP outper-
formed Pyomo only once the model size increased. However, while using our export to
NL file method, JuMP, on the contrary, started to fall behind Pyomo once model size
increased.

The reported differences between our and the original benchmark (Dunning et al.,
2017) might be caused by multiple factors such as different JuMP versions used, improved
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Table 7
AMPL model presolving.

Type # models # infeasible Presolved (%) Constraints reduced (%) Variables reduced (%)

CNS 4 0 100.00% 14.63% 31.39%
DNLP 5 0 20.00% 0.00% 7.41%
LP 57 0 36.84% 17.81% 9.66%
MCP 19 0 89.47% 47.00% 8.56%
MINLP 21 1 61.90% 16.32% 9.30%
MIP 61 0 60.66% 19.06% 11.50%
MIQCP 5 2 60.00% 0.00% 2.38%
MPEC 1 0 100.00% 50.00% 0.00%
NLP 101 2 47.52% 9.71% 11.55%
QCP 10 0 60.00% 7.10% 2.55%
RMIQCP 2 0 0.00% 0.00% 0.00%

Total 286 5 52.80% 18.42% 10.73%

Pyomo performance, or different Gurobi versions. It is important to stress that JuMP is
a very actively developed AML that underwent significant changes during the last years.
We think that it could be valuable to explore why the performance could have degraded
and the reasons for such slow I/O operations performance revealed during writing to a NL
file benchmark.

5. Presolving Benchmark

Another performance-related feature of AMLs is the ability to presolve a problem be-
fore providing it to the solver. The presolver can preprocess problems and simplify, i.e.
reduce the problem size or determine the unfeasible problem. Only two of the reviewed
algebraic modelling languages provide presolving capabilities – AMPL (Fourer, 2003) and
AIMMS.12 Since we did not have the opportunity to evaluate the AIMMS modelling lan-
guage practically, we could only examine AMPL presolving capabilities.

5.1. Presolving in AMPL

To assess AMPL’s presolving performance, we gathered presolving characteristics while
performing the model instance creation time benchmark. We have used 286 models that
were successfully converted from GAMS original model to the AMPL scalar model.

A detailed report of the presolving applied to the specific model can be seen in the
benchmark section of our GitHub repository (Jusevičius and Paulavičius, 2019), while
the summary of it can be found in Table 7. We observed that AMPL presolver managed to
simplify the models in 52.8% of the cases, out of which 5 times it could determine that
the problem solution is not feasible, thus not even requiring to call the solver. On average,
once applied, the AMPL presolver managed to reduce the model size by removing 18.42%
of constraints and 10.73% of variables.

12https://aimms.com/english/developers/resources/webinars/webinars-demand/algorithms/aimms-
presolver/.

https://aimms.com/english/developers/resources/webinars/webinars-demand/algorithms/aimms-presolver/
https://aimms.com/english/developers/resources/webinars/webinars-demand/algorithms/aimms-presolver/
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We can conclude that AMPL presolver is an efficient way to simplify larger problems,
leading to improved solution finding performance once invoking a solver with an already
reduced problem model instance. Moreover, determining not feasible models can help
modellers debug the problem definition process and find errors in the model definition.
This allows us to argue that presolving is an important capability of any modern AML.

5.2. Presolve Impact on Solving

To evaluate if AMPL presolving has a positive impact on problem-solving, an additional
benchmark was conducted. The benchmark included 146 out of 151 models to which
AMPL has applied presolve in the model instance creation benchmark. Five models that
AMPL presolve determined to be not feasible were excluded from the benchmark. Shell
script solve-benchmark.sh provided in the tools directory of our GitHub reposi-
tory (Jusevičius and Paulavičius, 2019) was created for executing such a benchmark. The
script solves each model using one of the solvers and gathers output statistics to a report
file.

We have chosen to solve the models using Gurobi and BARON solvers. Gurobi
Optimizer (v.8.1.0) was chosen for solving LP, MIP, QCP, and MIQCP type
of problems. At the same time, BARON (v.18.11.12) global solver was chosen for
solving NLP, MINLP, MCP, MPEC, CNS, and DNLP problems. The solvers’ choice
was motivated by the support for particular problem types.13 and the popularity of solvers
based on NEOS Server statistics.14 Two attempts to solve each model were made. One
with AMPL presolver turned on (default setting), and the second one with AMPL presolver
turned off. After each run, solvers statistics, including iterations count, solve time (pure
solve phase execution time), and objective, were gathered.

It is important to note that both BARON and Gurobi solvers have their presolve mech-
anisms (Puranik and Sahinidis, 2017; Achterberg et al., 2019). Thus the provided model
is simplified by the solver too. This might result in very similar models being solved by
the solver despite the AMPL presolve being turned on or off. However, the focus was on
estimating AMPL presolve impact in real-life situations; therefore, a full benchmark was
executed without changing the default solver behaviour. Later on, an additional benchmark
was made to estimate the impact of AMPL presolve once solver presolve functionality is
turned off.

Detailed AMPL presolve impact on solving report can be found in our GitHub repos-
itory’s (Jusevičius and Paulavičius, 2019) file ampl-solving-times.xlsx sheet
Benchmark 1. Table 8 summarizes the positive and negative impact AMPL presolve had
on solving the problems iteration and time-wise. Positive impact means fewer iterations
or time was needed to solve a problem once the presolve was turned on. A negative impact
means the opposite that more iterations or time was required. The impact is considered
neutral if the number of iterations did not change or the required time was within the
one-second tolerance level.

13Gurobi Optimizer Reference Manual: http://www.gurobi.com; BARON User Manual: http://www.minlp.
com/downloads/docs/baron%20manual.pdf.

14https://neos-server.org/neos/report.html.

http://www.gurobi.com
http://www.minlp.com/downloads/docs/baron%20manual.pdf
http://www.minlp.com/downloads/docs/baron%20manual.pdf
https://neos-server.org/neos/report.html
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Table 8
Summary of AMPL presolve impact on solving.

Iteration-wise Time-wise Iteration-wise (%) Time-wise (%)

Positive 37 67 26.43% 47.86%
Neutral 74 40 52.86% 28.57%
Negative 29 33 20.71% 23.57%

Table 9
AMPL presolve impact with Gurobi presolve on.

Iteration-wise Time-wise Iteration-wise (%) Time-wise (%)

Positive 18 39 28.57% 61.90%
Neutral 34 0 53.97% 0.00%
Negative 11 24 17.46% 38.10%

Table 10
AMPL presolve impact with Gurobi presolve off.

Iteration-wise Time-wise Iteration-wise (%) Time-wise (%)

Positive 33 44 54.10% 72.13%
Neutral 10 0 16.39% 0.00%
Negative 18 17 29.51% 27.87%

During this benchmark, 6 models failed to be solved due to solver limitations. Two
models were deemed to be not feasible, and two were solved during the AMPL pre-
solve phase. Solvers were capable of solving 41 models during the solver’s presolve
phase. Moreover, for six models, the mismatching objective was found with AMPL pre-
solve turned on and off. Overall, AMPL presolve positively impacted 26.43% of the cases
iteration-wise and 47.86% time-wise. However, it hurt 20.71% of cases iteration-wise and
23.57% time-wise.

As mentioned earlier, both BARON and Gurobi solvers have their presolve mech-
anisms. An additional benchmark was made to test the impact of AMPL presolve with
disabled solvers presolving. Since only Gurobi allows the user to disable presolve func-
tionality, a subset of models previously solved with Gurobiwas chosen. Detailed bench-
mark results can be seen in our GitHub repository’s (Jusevičius and Paulavičius, 2019) file
ampl-solving-times.xlsx sheet Benchmark 2. The summary of the bench-
mark is provided in Tables 9, 10. Gurobi could not solve two MIP problems (clad and
mws) in a reasonable time once Gurobi’s presolve functionality was turned off. Those
models were excluded from the benchmark.

As seen once comparing these results in Tables 9 and 10, the AMPL presolve had a
greater positive effect both iteration-wise (+25.5%) and time-wise (+10.2%) once Gurobi
presolve was turned off. AMPL presolve also had a less neutral impact once the solver
presolving was off, thus leading to the conclusion that during the first benchmark, some
models were simplified to very similar ones before actually solving them.

As we can see from the benchmarks, presolving done by AML has inconclusive effects
on the actual problem solving both iterations and time-wise. However, a positive impact
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is always more significant than the negative one, and it especially becomes evident once
the solver does not have or use its problem presolving mechanisms. This allows us to con-
clude that the presolving capability of AML is an important feature of a modern algebraic
modelling language. We can also advise choosing AML having presolving capabilities in
cases the solver used to solve the problem does not have its presolving mechanism.

6. Conclusions and Future Work

From the research, we can conclude that AMPL allows us to formulate an optimization
problem in the shortest and potentially easiest way while also providing the best perfor-
mance in model instance loading times. It also leverages the power of model presolving,
which helps the modellers in both problem definition and efficient solution finding pro-
cesses.GAMS is a powerful runner-up providing very similar toAMPL problem formulation
capabilities although running behind in the model instance creation time. AIMMS can be
considered as being in the class of its own as it has taken a purely graphical user interface
based approach. Since we could not examine the performance characteristics of AIMMS
due to a lack of academic license, the performance aspect remains unclear. Open-source
alternatives JuMP and Pyomo are on par with commercial competitors in the problem
definition process. However, the performance of model instance creation is a bit behind
compared to its competitors. JuMP suffers from noticeable environment start-up costs,
while Pyomo performance tends to downgrade once the model’s size increases.

We plan to continue our research in this area by including performance comparison
on automatic differentiation, adding even more large problems to our test library, and
exploring the potential of parallel model instance creation support by AMLs.

Data Access Statement

Data underlying this article can be accessed on Zenodo at https://zenodo.org/record/
4106728, and used under the Creative Commons Attribution license.

A. Creation of AMLs Testing Library

The automated shell script gamslib-convert.sh is available in the tools directory
of our GitHub repository (Jusevičius and Paulavičius, 2019) was created to generate the
AMLs testing library. The script uses GAMS Convert tool v.3215 to convert the
GAMS proprietary format model to a scalar model in AMPL, GAMS, JuMP, and Pyomo
formats. Characteristics of the sample problem models (number of equations, variables,
discrete variables, non-zero elements, and non-zero nonlinear elements) are automatically

15https://www.gams.com/latest/docs/S_CONVERT.html.

https://zenodo.org/record/4106728
https://zenodo.org/record/4106728
https://www.gams.com/latest/docs/S_CONVERT.html
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Listing 1. Transportation problem converted to GAMS scalar model.

Listing 2. Example of a GAMS Convert error.

extracted and noted. Sample problems are also grouped based on optimization problem
types.

The script has two execution modes – one for converting a single model and another
for converting all GAMS Library models. An example of the transportation problem from
GAMS Model Library16 converted to GAMS scalar format is shown in Listing 1.

At the time of writing, there were 423 models in the GAMS Model Library. Out
of them, we eliminated 66 models using GAMS proprietary modeling techniques (e.g.
MPSGE, BCH Facility), 20 using general-purpose programming language features
(e.g. cycles), four models tightly coupled to CPLEX and DECIS solvers. It is important to
note that 35 models failed to be loaded by a fully licensed GAMS Convert tool due to
execution or compilation errors. This meaning, some models in the GAMS Library are not
compatible with the GAMS modelling system itself. While performing the model instance
creation benchmark, we have identified that 12 AMPL, 11 JuMP, and 29 Pyomo models
generated by the GAMS Convert tool had errors in them. Most of the Pyomo errors
were caused by an incorrect GAMS Convert tool behaviour where the definition of the
Suffix primitive uses AMPL but not Pyomo semantics. Similar issues were observed
in some of the JuMP models. An example of what GAMS Convert generates and the
correct Pyomo syntax can be seen in Listing 2.

16https://www.gams.com/latest/gamslib_ml/libhtml/index.html.

https://www.gams.com/latest/gamslib_ml/libhtml/index.html
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B. Transportation Problem Models

Listing 3. Transportation problem defined in AMPL format.
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Listing 4. Transportation problem defined in GAMS format.
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Listing 5. Transportation problem defined in Pyomo format.
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Listing 6. Transportation problem defined in JuMP format.
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