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Abstract: In the present work, Cr-substituted Mg3Al1−xCrx layered double hydroxides (LDHs) were
synthesised through the phase conversion of sol-gel-derived mixed-metal oxides in an aqueous
medium. The chromium substitution level in the range of 1 to 25 mol% was investigated. It was
demonstrated that all synthesised specimens were single-phase LDHs. The results of elemental analy-
sis confirmed that the suggested synthetic sol-gel chemistry approach is suitable for the preparation of
LDHs with a highly controllable chemical composition. The surface microstructure of sol-gel-derived
Mg3Al1−xCrx LDHs does not depend on the chromium substitution level. The formation of plate-like
agglomerated particles, which consist of hexagonally shaped nanocrystallites varying in size from
approximately 200 to 300 nm, was observed. Optical properties of the synthesised Mg3Al1−xCrx

LDHs were investigated by means of photoluminescence. All Cr-containing powders exhibited
characteristic emission in the red region of the visible spectrum. The strongest emission was observed
for the sample doped with 5 mol% Cr3+ ions. However, the emission intensity of samples doped
with 1–10 mol% Cr3+ ions was relatively similar. A further increase in the Cr3+ ion concentration to
25 mol% resulted in severe concentration quenching.

Keywords: layered double hydroxides; Mg3Al1; substitution effects; chromium; photoluminescence

1. Introduction

Layered double hydroxides (LDHs) are compounds composed of positively charged
brucite-like layers with an interlayer gallery containing charge-compensating anions and
water molecules. The metal cations occupy the centres of shared oxygen octahedra whose
vertices contain hydroxide ions that connect to form infinite two-dimensional sheets [1–3].
The chemical formula of layered double hydroxides is expressed as (M2+

xM3+
1−x(OH)2xA·zH2O),

where M2+ and M3+ are divalent and trivalent metal ions, respectively, and A− is an
intercalate anion that compensates the positive charge created by the partial substitution
of M2+ by M3+ + ions in brucite-type layers [1–3]. LDH structures containing Mg2+, Zn2+,
Co2+, Ni2+, Cu2+ or Mn2+ + ion as divalent cations and Al3+, Cr3+, Co3+, Fe3+, V3+, Y3+ or
Mn3+ + ion as trivalent ones are known. LDHs with many different anionic species have
been reported: both inorganic anions (carbonate, chloride, nitrate, sulphate, molybdate,
phosphate, etc.) and organic anions (terephthalate, acrylate, lactate, etc.). LDHs are widely
used as adsorbents, catalyst support precursors, anion exchangers, acid residue scavengers,
flame retardants, osmosis membranes, sensors and others [4–12]. After calcination at
temperatures from 300 to 600 ◦C, LDHs are converted to mixed-metal oxides (MMOs)
with a high specific surface area and basic properties. The ability of MMOs to recover the
original layered structure is a property known as the memory effect [4,9]. When MMOs are
immersed in an aqueous solution that contains some anions, the layered structure can be
recovered with those anions intercalated into the interlayer.
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As mentioned before, chromium-containing LDHs have also been synthesised, and
these compounds show interesting chemical and physical properties. For example, chromium-
containing Mg-Cr and Ni-Cr LDHs have already been used as precursors to synthesise
pillared derivatives with decavanadate anions without the use of any preswelling agent [13].
The decomposition products of these LDHs were successfully applied as adsorbents [14].
Zn-Cr LDH samples were synthesised using the classical co-precipitation approach from
aqueous solution [15]. The adsorption capacities of the synthesised samples were inves-
tigated performing experiments with Indigo Carmine as the model of organic pollutant.
Moreover, Zn-Cr and Zn-Cr LDHs, intercalated with the Keggin ion, showed a high
adsorption capacity for effective removal of iron (II) from aqueous solution [16].

M(II)-Cr (M = Co, Ni, Cu and Zn) LDHs also show interesting photocatalytic properties
and have been used for photocatalytic degradation of organic pollutants [17,18]. The
decomposition products of different LDHs containing chromium have also been tested as
catalysts [19,20]. It was also demonstrated that Mg-Cr LDHs containing composites can be
used for the preparation of coatings that show optimal corrosion protection [21].

Considerable attention has been focused on incorporating different elements into LDH
host layers to develop new functional materials that resemble designed optical properties.
The effect of sensitising anions [22], multiwavelength luminescence [23], the size effect [24]
and the influence of carboxylate [25] and terephtalate [26] on the optical properties of
lanthanide-containing LDHs was investigated. Moreover, series of LDHs and mixed-
metal oxides with different lanthanide cations were also prepared [27]. Smalenskaite et al.
focused on the characterisation of LDHs doped with Tb3+ [28], Nd3+ [29] and Eu3+ [30].
Chromium was also used as a substituent in different LDHs for various reasons. For
instance, Cr-substituted Mg-Al LDHs were successfully used as a catalyst in aldose-ketose
isomerisation processes [31]. Mixed oxides, obtained by thermal decomposition of Cr-
substituted LDHs, were studied in the reaction of hydrocarbon steam reforming for the
production of hydrogen [32]. Rodriguez-Rivas et al. [33] recently suggested to use Cr-
substituted Zn-Al LDHs as UV–VIS light photocatalysts for NO gas removal from the
urban environment. Finally, the spectral emission of natural LDHs was studied by cathodo-
and photoluminescence (PL) techniques [34]. It was concluded that the presence of Cr3+

ion activators induces characteristic PL emission peaks in the red-infrared region at 681,
688 and 696 nm linked to 2E→4A2 transitions. However, the luminescent properties of
Cr-doped or Cr-substituted Mg-Al LDHs have not been investigated so far to the best of
our knowledge.

A sol-gel method based on in situ generation of mixed-metal chelates by complexing
metal ions with various complexing agents in aqueous media was successfully used to
prepare different monophasic inorganic compounds and nanostructures, such as biomate-
rials [35] and magnetic [36] and optical [37,38] materials. Previously, for the preparation
of Mg-Cr and related LDHs, the non-aqueous sol-gel chemistry approach has been ex-
plored using metal alkoxides as starting materials [39,40]. We recently developed the
indirect aqueous sol-gel method for the preparation of LDHs. We demonstrated that the
synthesis of LDHs using this simple and environmentally benign method ensures the
formation of homogeneous, monophasic samples having particles with a narrow size dis-
tribution [4,9,11,41]. It is well known that application of a synthesis method also depends
on the chemical composition of the compound to be synthesised. The aim of this work
was to synthesise Mg3Al1−xCrx LDH samples for the first time using an aqueous sol-gel
method and to investigate the effect of Cr3+ substitution on phase purity, morphological
and luminescent properties of obtained end products. The luminescent properties of sol-
gel-derived Cr-substituted Mg-Al LDHs was also investigated for the first time to the best
of our knowledge.

2. Results and Discussion

The XRD patterns of Mg3Al1 and Mg3Al1−xCrx LDHs with different chromium sub-
stitution levels (1–25 mol%) are shown in Figure 1. Characteristic diffraction peaks for
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the LDH structure were observed at 2θ angles at ca. 11.5◦ (003), 23◦ (006) and 34.5◦

(009). Besides, two additional LDH peaks were clearly displayed at about 60.5◦ and 61.5◦,
which correspond to reflections from the (110) and (113) planes [4]. No diffraction lines
attributable to the side phases could be observed in the XRD patterns of sol-gel-derived
LDH samples. Less important reflections (015) and (018) visible at about 38–39◦ and
47–49◦, respectively, were also attributed to the LDH phase. It is interesting to note that
only 9 mol% of chromium was introduced to Mg3Al1−xCrx LDHs when the impregna-
tion method (adsorption) was used for the preparation [31]. It was also observed that
aluminium substitution by chromium reduces the crystallinity of LDHs synthesised by the
co-precipitation method [32].
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Figure 1. X-ray diffraction (XRD) patterns of Cr-substituted Mg3Al1−xCrx LDHs.

The calculated values of d-spacing and lattice parameters of Mg3Al1−xCrx LDHs are
summarised in Table 1. As seen, both d values and lattice parameters slightly increased
with increasing amounts of chromium in the LDH structure. This was expected, since a
smaller Al3+ ion (0.535 Å, CN = 6) was monotonically replaced by a larger Cr3+ ion (0.615 Å,
CN = 6) [42]. The calculated crystallite sizes of the Mg3Al1 and Mg3Al1−xCrx LDHs were
independent of the amount of chromium and varied in the range of 21.8–26.7 nm.

Table 1. The values of d-spacing and lattice parameters of Mg3Al1−xCrx layered double hydroxides
(LDHs) calculated by the Le Bail method.

Sample d (003), Å d (006), Å d (110), Å
Lattice Parameters, Å

a c

Mg-Al 7.6033 3.8017 1.5187 3.0374 22.8100

Mg-Al/Cr 1 mol% 7.7470 3.8735 1.5242 3.0484 23.2408

Mg-Al/Cr 5 mol% 7.7748 3.8876 1.5276 3.0551 23.3248

Mg-Al/Cr 7.5 mol% 7.8028 3.9015 1.5314 3.0627 23.4094

Mg-Al/Cr 10 mol% 7.8373 3.9187 1.5367 3.0733 23.5122

Mg-Al/Cr 25 mol% 7.8774 3.9475 1.5579 3.1158 23.6586
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As seen from Table 1, the calculated lattice parameters also monotonically increased
with increasing amounts of chromium: from 3.0374 to 3.1158 Å (a parameter) and from
22.8100 to 23.6586 Å (c parameter) with increasing amounts of chromium from 0% to
25%, respectively.

The FT-IR spectra of Cr-substituted Mg3Al1−xCrx LDHs are presented in Figure 2.

Figure 2. The Fourier transform infrared (FT-IR) spectra of Cr-substituted Mg3Al1−xCrx LDHs.

Figure 2 clearly shows that all IR spectra were almost identical, i.e., independent
of the chromium substitution level. The broad absorption bands visible in the range of
3650–3250 cm−1 could be attributed to the stretching vibrations of hydroxyl (-OH) groups
and water molecules located between the layers in the LDH crystal structure [43]. The
low-intensity bands observed at 1630–1600 cm−1 confirmed the presence of adsorbed
molecular water on the surface of sol-gel-derived LDHs. The intense absorption bands
located at about 1350 cm−1 could be attributed to the asymmetric vibration modes of
carbonate ions (CO3

2−) [43]. Finally, the pronounced absorption bands observed at about
600 and 480 cm−1 were attributable to metal–oxygen vibrations [11,43]. These results are
in a good agreement with X-ray diffraction (XRD) analysis data confirming the formation
of Cr-substituted Mg3Al1−xCrx LDHs. Similar results were observed during FT-IR studies
of sol-gel-derived Mg3Al1−xCrx [4] or Mg2-xMx/Al1 (M = Ca, Sr, Ba) [41] LDH samples.

SEM micrographs of Cr-substituted Mg3Al1−xCrx LDHs prepared by the sol-gel method
are depicted in Figure 3. Again, the surface microstructure of sol-gel-derived Mg3Al1−xCrx
LDHs did not depend on the chromium substitution level. Moreover, the characteristic
features of LDHs could be observed in all presented SEM micrographs [4,9,11,28–30,41,43].
The formation of plate-like agglomerated particles, which consist of hexagonally shaped
nanocrystallites varying in size from approximately 200 to 300 nm, was observed.
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Elemental analysis of synthesised Cr-substituted Mg3Al1−xCrx LDHs was performed
prior to investigation of luminescent properties. ICP-OES and EDX were used for the
determination of chromium, magnesium and aluminium in the synthesised LDH samples.
The results of elemental analysis are presented in Table 2. The summarised results indicate
that the molar ratios of Mg, Al and introduced amounts of Cr are in a good agreement with
those obtained by both analysis methods and coincide with nominal ones.

Table 2. Inductively coupled plasma–optical emission spectrometry (ICP-OES) and the energy-
dispersive X-ray (EDX) analysis results of elemental analysis of synthesised Mg3Al1−xCrx LDHs (n
is mole).

Sample
ICP-OES EDX

n(Cr), % n(Mg):n(Al + Cr) n(Cr), % n(Mg):n(Al + Cr)

Mg-Al/Cr 1 mol% 1.12 3:0.994 1.43 3:0.993

Mg-Al/Cr 5 mol% 5.39 3:0.990 7.22 3:1.06

Mg-Al/Cr 7.5 mol% 7.91 3:0.988 7.77 3:1.02

Mg-Al/Cr 10 mol% 10.5 3:0.997 12.9 3:0.875

Mg-Al/Cr 25 mol% 25.8 3:1.01 26.3 3:1.02

Thus, this study for the first time demonstrated that the previously developed sol-gel
technique is suitable for the preparation of Cr-substituted LDHs.

The reflection spectra of Mg3Al1−xCrx LDHs as a function of Cr3+ concentration are
given in Figure 4a. All the spectra contained two broad absorption bands with maxima
at ca. 550 and 380 nm. These bands could be assigned to the Cr3+ optical transitions of
4A2g→4T2g(4F) and 4A2g→4T1g(4F), respectively [44,45]. The increase in the Cr3+ concen-
tration in the samples resulted in increased absorption.
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Excitation spectra (λem = 685 nm) of the synthesised specimens are shown in Figure 4b.
Similar to the reflection spectra, there were several broad bands in the excitation spectra
as well. One band possessed the maximum at ca. 545 nm and was attributed to the
4A2g→4T2g(4F) optical transition, whereas the other band peaked at ca. 420 nm and could
be assigned to the 4A2g→4T1g(4F) optical transition of Cr3+ ions. It is interesting to note
that excitation spectrum of the 1% Cr3+-doped sample (Mg-Al/Cr 1 mol%) contained the
third band at ca. 310 nm. This band arose from the 4A2g→4T1g(4P) transitions of Cr3+ ions.

Emission spectra of Mg3Al1−xCrx LDHs samples are depicted in Figure 4c. There
were several relatively sharp emission lines in the range of 660–740 nm that could be
assigned to the 2Eg→4A2g optical transition of Cr3+ ions. The strongest emission was
observed for the sample doped with 5% Cr3+ ions. Surprisingly, the highest intensity
of the 5D0→7F2 transition for Mg3Al1−xCex LDHs was observed for the specimen with
0.05 mol% of Ce3+ [4]. It turned out that the emission intensity decreased with increasing
concentration of Ce3+ up to 1 mol%. In the case of Mg3Al1−xNdx LDHs, the luminescence
of Nd3+ was observed only with intercalation of terephthalate in the interlayer spacing [29].

However, the emission intensity of samples doped with 1–10% Cr3+ was relatively
similar. A further increase in the Cr3+ concentration to 25% resulted in severe concentration
quenching. These results correlate with Mg3Al1−xCrx LDHs’ PL decay curves given in
Figure 4d. The PL decay curves of samples doped with 1% to 10% Cr3+ were packed close
together, indicating similar PL lifetime values. This was not, however, true for the PL decay
curve of samples doped with 25% Cr3+. This curve was much steeper, indicating lower PL
lifetime values. The effective PL lifetime values were calculated according to the following
equation [46]:

τe f f =

∫ ∞
0 I(t)tdt∫ ∞
0 I(t)dt

(1)

Here, I(t) is the PL intensity at the given time t. The obtained effective PL lifetime
values (τeff) for 1%, 5%, 7.5%, 10% and 25% Cr3+-doped samples were 23.0, 22.4, 20.6, 19.2
and 13.5 µs, respectively. Obviously, the τeff values gradually decreased with increasing
Cr3+ concentration, which indicates that the internal efficiency of Cr3+ ions decreases as
well. The results obtained clearly show that Mg3Al1−xCrx LDHs are suitable for electro-



Molecules 2021, 26, 1848 7 of 10

optical application. For instance, the material can be potentially applied as a red light-
emitting diode (LED) [47]. Besides, these compounds show potential as imaging systems
for biomedical applications.

3. Materials and Methods
3.1. Materials

For the synthesis of Cr-substituted Mg3Al1−xCrx LDH samples, aluminium nitrate
nonahydrate (Al(NO3)3·9H2O, 98.5%, Chempur, Plymouth, MI, USA), magnesium nitrate
hexahydrate (Mg(NO3)2·6H2O), 99.0%, Chempur, Plymouth, MI, USA) and chromium
nitrate nonahydrate (Cr(NO3)3·9H2O, 99.0%, Aldrich, Darmstadt, Germany) were used as
starting materials. Citric acid (C6H8O7·H2O, 99.5%, Chempur, Plymouth, MI, USA) and
1,2-ethanediol (C2H6O2, 99.8%, Chempur, Plymouth, MI, USA) were used as complexing
agents. The reconstruction of MMO powders to LDHs was performed in distilled water.

3.2. Synthesis

Cr-substituted Mg3Al1−xCrx LDH samples (x = 0.0, 0.01, 0.05, 0.075, 0.1 and 0.25) were
synthesised using Al(NO3)3·9H2O, Mg(NO3)2·6H2O and Cr(NO3)3·9H2O. The aqueous
solution of starting materials was mixed with 0.2 M solution of citric acid and 2 mL of 1,2-
ethanediol under continuous stirring at 80 ◦C for 1 h. Next, the temperature of the magnetic
stirrer was raised to 150 ◦C until complete evaporation of the solvent. The obtained gels
were kept at 105 ◦C for 24 h. Mixed-metal oxides (MMOs) were obtained by calcination of
the gels at 650 ◦C for 4 h. Mg3Al1−xCrx LDHs were obtained by reconstruction of MMOs
powders in distilled water at 50 ◦C for 6 h under stirring. The schematic representation of
the sol-gel processing is illustrated in Figure 5.
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ides (LDHs).

3.3. Characterisation

For characterisation of the phase purity of the synthesised materials, powder X-ray
diffraction (XRD) analysis was performed in the 2θ range from 10◦ to 70◦ (step size of
0.02◦) with a scanning speed of 2◦/min using a MiniFlex II diffractometer (Rigaku, the
Woodlands, TX, USA) (Cu Kα radiation). The size of crystallites was calculated by the
Scherrer equation:

τ =
0.9λ

Bcosθ
(2)

where τ is the mean crystallite size, λ is the X-ray wavelength, B is the line broaden-
ing of full width at half maximum (FWHM) intensity and θ is the Bragg angle. Fourier
transform infrared (FT-IR) spectra were collected using an Alpha spectrometer (Bruker,
Inc., Billerica, MA, USA). All spectra were recorded at ambient temperature in the range
of 4000–480 cm−1. The operational mode was transmittance (%). The morphology of
synthesised LDH samples was investigated using a scanning electron microscope (SEM)
(Hitachi SU-70, Tokyo, Japan). The energy-dispersive X-ray (EDX) analysis of the speci-
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mens was performed using a SEM Hitachi TM 3000. The reflection, photoluminescence
emission (PL) and excitation (PLE) spectra were recorded on an Edinburg Instruments
FLS980 modular spectrometer (Edinburgh Instruments Ltd., Kirkton Campus, Livingstone
UK). The spectrometer was equipped with a 450 W Xe lamp (Edinburgh Instruments Ltd.,
Kirkton Campus, Livingstone, UK) as an excitation source, a cooled (−20 ◦C) photomul-
tiplier (Hamamatsu, Iwata, Japan) (R928P) and double-grating excitation and emission
monochromators. Both excitation and emission spectra were corrected for the instrument
spectral response. Elemental analysis of the synthesised samples was performed by induc-
tively coupled plasma–optical emission spectrometry (ICP-OES) using an Optima 7000DV
spectrometer (Perkin-Elmer, Waltham, MA, USA). The samples were dissolved in 5% nitric
acid (HNO3, Rotipuran® Supra 69%, Carl Roth) and diluted to an appropriate volume.
Calibration solutions were prepared by an appropriate dilution of stock standard solutions
(single-element ICP standards 1000 mg/L, Carl Roth, Karlsruhe, Germany).

4. Conclusions

In conclusion, Mg3Al1−xCrx layered double hydroxides (LDHs) within the substi-
tution range of chromium from 1 to 25 mol% were successfully synthesised for the first
time by an aqueous sol-gel processing route. XRD analysis and FT-IR spectroscopy re-
sults confirmed that the synthesised Mg3Al1−xCrx LDHs were predominant crystalline
phases in the end products. The calculated values of d-spacing and lattice parameters of
Mg3Al1−xCrx LDHs slightly increased with increasing amounts of chromium. The sol-gel-
derived Mg3Al1−xCrx LDHs consisted of characteristic hexagonally shaped nanoparticles
200–300 nm in size regardless of the chromium substitution level. All Cr-containing pow-
ders exhibited characteristic emission in the red region of the visible spectrum. The major
emission lines of Mg3Al1−xCrx LDHs excited at 545 nm peaked in the red spectral region
at 680–695 nm, originating from the 2Eg→4A2 transition. The highest intensity of emission
was observed for the Mg3Al1−xCrx LDH specimen containing 5% of Cr3+. With further
increasing the chromium content up to 25%, concentration quenching was observed. Con-
centration quenching was also confirmed by the calculated PL effective lifetime values
(τeff), which decreased from 22.4 µs for the 5% Cr3+-doped sample to 13.5 µs for the 25%
Cr3+-doped sample.
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