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Abstract: The asymptotic behaviour of the tail expectation E
(
(Sξ

n)
α
1{Sξ

n>x}

)
is investigated, where

exponent α is a nonnegative real number and Sξ
n = ξ1 + . . . + ξn is a sum of dominatedly varying and

not necessarily identically distributed random summands, following a specific dependence structure.
It turns out that the tail expectation of such a sum can be asymptotically bounded from above and
below by the sums of expectations E

(
ξα

i 1{ξi>x}
)

with correcting constants. The obtained results are
extended to the case of randomly weighted sums, where collections of random weights and primary
random variables are independent. For illustration of the results obtained, some particular examples
are given, where dependence between random variables is modelled in copulas framework.

Keywords: tail expectation; asymptotic bound; quasi-asymptotic independence; heavy-tailed distri-
bution; dominated variation; copula

MSC: 91G05; 91G10; 60G70

1. Introduction

Let n ∈ N := {1, 2, . . .} and let us consider two collections of random variables
(r.v.s): heavy-tailed (see definition in Section 2) r.v.s {ξ1, . . . , ξn}, called primary r.v.s, and
nonnegative, non-degenerate at zero r.v.s {θ1, . . . , θn}, called random weights. In this paper,
we investigate the asymptotic behaviour of the sums of primary r.v.s

Sξ
n :=

n

∑
k=1

ξk = ξ1 + . . . + ξn, (1)

and their weighted counterparts, namely randomly weighted sums

Sθξ
n :=

n

∑
k=1

θkξk = θ1ξ1 + . . . + θnξn. (2)

Asymptotics of (1) and (2) have been studied extensively during recent years in the
literature of applied probability under various different assumptions about collections
{ξ1, . . . , ξn}, {θ1, . . . , θn} and their dependence structures. In particular, there are many
papers addressing the asymptotic behaviour of the tail probabilities

P
(

Sξ
n > x

)
and P

(
Sθξ

n > x
)

(3)

expressing them by the sums of tail probabilities of individual summands, i.e.,
∑n

k=1 P(ξk > x) and ∑n
k=1 P(θkξk > x), respectively (see, e.g., [1–11]). The main results

from the majority of the aforementioned papers are reviewed in detail in Section 3. In line
with the tail probabilities P

(
Sξ

n > x
)

and P
(

Sθξ
n > x

)
, asymptotics of the tail expectations
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E
(

Sξ
n1{Sξ

n>x}

)
and E

(
Sθξ

n 1{Sθξ
n >x}

)
are investigated in the literature; however, the number

of papers is relatively scarce (see [6,7,12] and the references therein).
In this paper, inspired by the recent results by Leipus et al. [7], we are particularly

interested in the asymptotics of the tail expectations

E
((

Sξ
n

)α
1{Sξ

n>x}

)
and E

((
Sθξ

n

)α
1{Sθξ

n >x}

)
, (4)

where α is a nonnegative real number. We assume that r.v.s ξ1, . . . , ξn are not necessar-
ily identically distributed, belong to the class of dominatedly varying distributions (see
Section 2.2), a subclass of heavy-tailed distributions, and follow a specific dependence
structure, called pairwise quasi-asymptotic independence (see Section 2.3). We seek to
asymptotically bound the tail expectations (4) by the sums of individual tail expecta-
tions E

(
ξk

α
1{ξk>x}

)
and E

(
(θkξk)

α
1{θkξk>x}

)
, respectively, with some specific correcting

constants (see Theorems 3 and 4).
Although our paper is more of a theoretical kind, it is worth noting that sums of the

form (1) and, especially, (2) are often encountered in the practical applications of probability
in financial and actuarial context. One example stems from the so-called discrete time risk
model, in which primary r.v. ξk could correspond to the net losses (total claim amount
minus total premium income) of an insurance company during period (k− 1, k], calculated
at the moment k, and random weight θk could correspond to the stochastic discount factor,
from the moment k to the present moment 0, for all k = 1, . . . , n. In such a scenario, sum
Sθξ

n could be treated as the present value of a total discounted net loss of a company in the
time interval (0, n] (for more details, see, e.g., [5,8,10,13–16]).

Other insurance related application is based on the individual risk model [17]. Say
that an insurance company has a portfolio consisting of n policies. Then, we could interpret
Sθξ

n as the total claim amount incurred from the whole insurance portfolio. Here, θkξk,
k ∈ {1, . . . , n} would correspond to the claim amount from the kth policy. Since there is a
possibility that no claim will be incurred, θk is an indicatory Bernoulli r.v. which represents
the occurrence of the kth claim (θk = 1 if the claim has occurred and zero otherwise) and
r.v. ξk corresponds to the claim size of the kth policy given that the payment was made
(see [18] and Chapter 4 of [19] as well).

Tang and Yuan [15] considered an example related to the construction of investment
portfolio and capital allocation. Suppose that there are n distinct asset classes or lines
of business, from which the portfolio is formed. Then, r.v. ξk could correspond to the
loss incurred from the kth instrument. As for the role of random weights, there could be
different viewpoints: θk could be treated as a stochastic discount factor of the kth asset class
or, for instance, as a weight corresponding to the kth instrument in the portfolio. Then,
random sum Sθξ

n would correspond to the present value of total loss of a portfolio at the
present moment in the former case, and total weighted portfolio loss in the latter.

Highly related to the portfolio construction discussed above are various risk measures
quantifying the underlying risk of the portfolio—we list several of them below, which are
commonly encountered in the literature of risk management (see, e.g., [20,21]) and in which
the asymptotic results concerning tail probabilities and tail expectations could be useful:

• Value-at-Risk (VaR) at level q ∈ (0, 1):

VaRq

(
Sξ

n

)
= inf

{
x ∈ R | P

(
Sξ

n > x
)
6 1− q

}
.

• Conditional tail expectation (CTE) at level q ∈ (0, 1):

CTEq

(
Sξ

n

)
= E

(
Sξ

n | Sξ
n > VaRq(S

ξ
n)
)

.

For the above risk measures, the asymptotic behaviour is mainly considered as
q ↑ 1. Nevertheless, as mentioned in [22]: “as the excessive prudence of the current reg-
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ulatory framework requires a confidence level close to 1, the notion of Extreme Value Theory
becomes appropriate”. In other words, q being close to 1 results in large VaRq

(
Sξ

n

)
values.

For more about the estimation of the aforementioned risk measures, see the works of
Yang et al. [12], Tang and Yuan [15], Asimit et al. [22], Hua and Joe [23] and Wang et al. [24]
(and the references therein).

The rest of the paper is structured as follows. In Section 2, we review the basic defini-
tions of the heavy-tailed distributions and introduce the reader to the specific dependence
structure used in this paper. In Section 3, we discuss the related results in literature. In
Section 4, our main results, which allow to asymptotically bound the tail expectations
(4), are presented and later proved in Section 5. Finally, as applications of our result, in
Section 6, we provide three different examples of random sums, for which dependence is
controlled via a copula, in a bivariate setting.

2. Definitions and Preliminaries
2.1. Notational Conventions

Before delving into more details, we briefly introduce the notations used throughout
the paper. All limiting relationships and asymptotic estimates, unless stated otherwise, are
understood as x approaches infinity. For two positive functions f and g, we write:

• f (x) . g(x) if lim sup f (x)
g(x) 6 1

• f (x) = o(g(x)) if lim f (x)
g(x) = 0

• f (x) = O(g(x)) if lim sup f (x)
g(x) < ∞

• f (x) ∼ g(x) if lim f (x)
g(x) = 1

• f (x) � g(x) if 0 < lim inf f (x)
g(x) 6 lim sup f (x)

g(x) < ∞

For any r.v. X, by FX(x), we denote the distribution function (d.f.) of X, i.e., FX(x) =
P(X 6 x). By F(x), we denote the tail function of d.f. F, i.e., F(x) = 1− F(x). By F∗n(x),
we write the n-fold convolution of a d.f. F. That is, if X1, . . . , Xn are independent copies of
X, then F∗nX (x) = P(X1 + . . . + Xn 6 x), and F∗nX (x) = P(X1 + . . . + Xn > x).

We say that r.v. X has an infinite right support if FX(x) > 0 for all x ∈ R. In addition,
we say that d.f. F is supported on R if F(x) > 0 for all x ∈ R. We write 1A to denote the
indicator function of an event A. For any r.v. X, by X+ and X−, we denote its positive and
negative parts, respectively: X+ = max{X, 0}, X− = max{−X, 0}. For a given x ∈ R, by
bxc, we denote the integer part of x and, by x̂ = x− bxc, we denote the fractional part of x.

2.2. Heavy-Tailed Distributions

In this subsection, we recall the main classes of heavy-tailed distributions. At first,
we present the class of dominatedly varying distributions D, which is a central one in
this paper.

• A d.f. F supported onR is said to be dominatedly varying (belong to classD) if lim sup
x→∞

F(xy)
F(x)

<

∞ for any (for some) y ∈ (0, 1).

As noted in [25], Peter and Paul distribution is an example of a distribution belonging
to the class D. We say that r.v. X is distributed according to the generalised Peter and Paul
distribution with parameters (a, b), where b > 1, a ∈ (0, ∞), if its tail is characterised by
the following equality

FX(x) = (ba − 1) ∑
k>1, b k>x

b−ak.

Since FX(x) = (b−a)blogb xc for x > 1, we get that

lim sup
x→∞

FX(xy)
FX(x)

= lim sup
x→∞

(
b−a)blogb x+logb yc−blogb xc 6

(
b−a)blogb yc−1.
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for any y ∈ (0, 1), implying FX ∈ D.
Class D is not the only subclass of heavy-tailed distributions. Below, we briefly recall

the other classes of heavy-tailed distributions and describe the relationships between them.

• A d.f. F is said to be heavy-tailed (belong to classH) if for any α > 0∫ ∞

−∞
eαxdF(x) = ∞.

• A d.f. F is said to be long tailed (belong to class L) if for any y > 0 F(x + y) ∼ F(x).
• A d.f. F supported on R is said to be subexponential (belong to class S) if F ∈ L and

F∗2(x) ∼ 2F(x).
• A d.f. F is said to be regularly varying with coefficient α > 0 (belong to classRα) if for any

y > 0

lim
x→∞

F(xy)
F(x)

= y−α.

• A d.f. F is said to be consistently varying (belong to class C) if

lim
y↑1

lim sup
x→∞

F(xy)
F(x)

= 1.

The class of consistently varying distributions C is the largest subclass of a class D.
The following example of a distribution belonging to C \⋃α>0Rα is given in [26]. Let Y

and N be independent r.v.s such that Y d
=U ([0, 1]) and N is geometric r.v. with parameter

p ∈ (0, 1), i.e., P(N = k) = (1− p)pk for k = 0, 1, . . .). Then, r.v. ξ defined by

ξ = (1 + Y)2N (5)

belongs to the class C but not to the class
⋃

α>0Rα. This fact can be derived from the
expression

Fξ(x) = (1− p)

(
1− pblog2 xc

1− p
+

(
x

2blog2 xc − 1
)

pblog2 xc
)
1{x>1}. (6)

In summary, the interrelationships of the heavy-tailed distribution classes can be
expressed by the following relations

R :=
⋃

α>0
Rα ( C ( L ∩D ∩ S ( L ( H; D ( H; D 6⊂ S .

Some of the above relationships follow directly from the definitions, while proofs of
the others can be found in, e.g., [25,27–30], ([31] Sections 6.1 and 6.2) and [32].

The classes C and D can be characterised by specific indices. We recall these important
indices. The first one is a so-called L-index, used in, e.g., [6,7,11,33,34]. The LF index for d.f.
F is

LF := lim
y↓1

lim inf
x→∞

F(xy)
F(x)

.

The second important index is the upper Matuszewska index introduced in [35]. In this
paper, we stick with the slightly different but equivalent formulation given in [36] and used
in many other articles (e.g., [2,6,8,11,34]). For a d.f. F, the upper Matuszewska index J+F is

J+F := inf
y>1

{
− 1

log y
log
{

lim inf
x→∞

F(xy)
F(x)

}}
.
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The aforementioned indices give important characterisations for dominatedly varying
and consistently varying d.f.s (see, e.g., [33], Proposition 1.1):

LF > 0 ⇔ F ∈ D ⇔ J+F < ∞; LF = 1 ⇔ F ∈ C.

For a r.v. ξ with d.f. Fξ , we write for brevity: Lξ = LFξ
and J+ξ = J+Fξ

. More information
on classes C and D can be found in Chapter 2 of [36] and the discussion in Section 3 of [27].

2.3. QAI Dependence Structure

We now introduce the main dependence assumption about r.v.s ξ1, . . . , ξn used in this
paper, so-called pairwise quasi-asymptotic independence, which is due to Chen and Yuen [2].

• R.v.s {ξ1, . . . , ξn} with infinite right supports are called pairwise quasi-asymptotically inde-
pendent (pQAI) if for any k, l ∈ {1, . . . , n}, k 6= l,

lim
x→∞

P
(
ξ+k > x, ξ+l > x

)
P
(
ξ+k > x

)
+ P

(
ξ+l > x

) = lim
x→∞

P
(
ξ+k > x, ξ−l > x

)
P
(
ξ+k > x

)
+ P

(
ξ+l > x

) = 0. (7)

Let us construct two examples of r.v.s possessing such a dependence structure using
copulas.

Example 1. Let {ξ1, . . . , ξn} be r.v.s with infinite right supports and corresponding marginal d.f.s
{F1, . . . , Fn}. Consider the Farlie–Gumbel–Morgenstein (FGM) copula:

Cϑ(u, v) = uv + ϑuv(1− u)(1− v), u, v ∈ [0, 1], ϑ ∈ [−1, 1].

Let r.v.s ξi, ξ j have a joint d.f. P
(
ξi 6 x1, ξ j 6 x2

)
= Cϑi (Fi(x1), Fj(x2)) with some

ϑi ∈ [−1, 1] if max{i, j} −min{i, j} = 1, min{i, j} = 2k − 1 for some k ∈ N and be inde-
pendent otherwise. Then, r.v.s {ξ1, . . . , ξn} are pQAI.

It follows from Sklar’s theorem (see [37,38] Theorem 2.3.3)) that for any given marginal
d.f.s F1, F2 and an arbitrary copula C(u1, u2), function F(x1, x2) := C(F1(x1), F2(x2))
is a bivariate d.f. with marginal d.f.s F1, F2. If ξi, ξ j, i, j = 1, . . . n are independent,
then obviously they are pQAI. If max{i, j} −min{i, j} = 1, min{i, j} = 2k− 1 for some
k ∈ N, then

P
(
ξi > x, ξ j > x

)
P(ξi > x) + P

(
ξ j > x

) =
1− Fi(x)− Fj(x) + Cϑi

(
Fi(x), Fj(x)

)
Fi(x) + Fj(x)

=
Fi(x)Fj(x)

(
1 + ϑiFi(x)Fj(x)

)
Fi(x) + Fj(x)

6 2Fi(x). (8)

Similarly, by observing that

P
(

ξi > x, ξ−j > x
)
6 P

(
ξi > x, ξ−j > x

)
= P

(
ξ j 6 −x

)
− P

(
ξi 6 x, ξ j 6 −x

)
for positive x, we get

P(ξi > x, ξ−j > x)

P(ξi > x) + P
(
ξ j > x

) 6
Fj(−x)− Cϑi

(
Fi(x), Fj(−x)

)
Fi(x) + Fj(x)

=
Fi(x)Fj(−x)

(
1− ϑiFi(x)Fj(−x)

)
Fi(x) + Fj(x)

6 2Fj(−x). (9)

Estimates (8) and (9) imply (7). Consequently, r.v.s {ξ1, . . . , ξn} in Example 1 are pQAI.

In a more general setting, one can consider n-dimensional (n > 2) Farley–Gumbel–
Morgenstein (FGM) distributions (for a detailed treatment on this type of distributions see,



Mathematics 2021, 9, 824 6 of 26

e.g., [39]). For r.v.s {ξ1, . . . , ξn} with corresponding marginal d.f.s {F1, . . . , Fn}, n-variate
FGM d.f. is defined as follows:

P(ξ1 6 x1, . . . , ξn 6 xn) =
n

∏
i=1

Fi(xi)

(
1 + ∑

16i<j6n
ϑijFi(xi)Fj(xj)

)
, (10)

where parameters ϑij, i, j ∈ {1, . . . , n} should satisfy the following condition

1 + ∑
16i<j6n

εiε jϑij > 0, (11)

for all εi = − supx∈R{Fi(x)}\{0, 1} or εi = 1− infx∈R{Fi(x)}\{0, 1} (see [39] Chapter 44,
Section 13). Necessary condition (11) is required for (10) to be a well defined d.f..

Note that, if we assume that random vector (ξ1, . . . , ξn) is distributed according to
(10) in our example, r.v.s ξ1, . . . , ξn are still pQAI, since bivariate marginal distributions of
random vectors (ξi, ξ j), i, j ∈ {1, . . . , n}, i < j are distributed according to a bivariate FGM
distribution with marginal d.f.s Fi, Fj and FGM copula. Indeed, from (10), we get

P
(
ξi 6 x1, ξ j 6 x2

)
= P

(
ξ1 6 ∞, . . . , ξi 6 x1, . . . , ξ j 6 x2, . . . , ξn 6 ∞

)
= Fi(x1)Fj(x2)

(
1 + ϑijFi(x1)Fj(x2)

)
.

Example 2. Let ξ1, ξ2 be r.v.s with corresponding d.f.s F1, F2 and let random vector (ξ1, ξ2) have
a bivariate d.f. F(x1, x2) := Cϑ(F1(x1), F2(x2)), where Cϑ is the Ali–Michail–Haq copula [40]:

Cϑ(u, v) =
uv

1− ϑ(1− u)(1− v)
, u, v ∈ [0, 1], ϑ ∈ (−1, 1).

Similarly to in Example 1, it can be shown that r.v.s ξ1, ξ2 are QAI.

Indeed, for positive x, we have

P(ξ1 > x, ξ2 > x)
P(ξ1 > x) + P(ξ2 > x)

=
1− F1(x)− F2(x) + Cϑ(F1(x), F2(x))

F1(x) + F2(x)

=
F1(x)F2(x)

(
1 + ϑ

(
F2(x)− F1(x)

))
(F1(x) + F2(x))(1− ϑF1(x)F2(x))

6
2F2(x)

1− ϑF1(x)F2(x)
.

In the same fashion for positive x, we obtain

P(ξ1 > x, ξ−2 > x)
P(ξ1 > x) + P(ξ2 > x)

6
F2(−x)− Cϑ(F1(x), F2(−x))

F1(x) + F2(x)

=
F2(−x)F1(x)

(
1− ϑF2(−x)

)
(F1(x) + F2(x))(1− ϑF1(x)F2(−x))

6
2F2(−x)

1− ϑF1(x)F2(−x)
.

The derived estimates imply that r.v.s ξ1 and ξ2 are QAI.

For more about copulas applications in problems related to modelling dependence
of heavy-tailed distributions, the reader may refer to the works of Albrechter et al. [41],
Asimit et al. [22], Fang et al. [42], Yang et al. [43] and Wang et al. [24] (and the references
therein). For a systematic treatment of copulas theory see, for instance, the work of
Nelsen [38]. In the next section, we recall briefly more similar dependence structures
between r.v.s and examine their relations to pQAI condition (7).

3. Related Results

In this section, we briefly review some of the related results found in the literature,
regarding the asymptotic behaviour of the tail probability and tail expectation of random
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sums in the form of either (1) or (2). Throughout the section, unless mentioned otherwise,
we assume that the collections of r.v.s {ξ1, . . . , ξn} and {θ1, . . . , θn} are independent.

3.1. Asymptotics of Tail Probabilities

There are many papers in which r.v.s ξ1, . . . , ξn are assumed to be independent
or identically distributed, see, for instance, the works of Tang and Tsitshiashivili [8],
Goovaertz et al. [5], Wang et al. [9] and Wang and Tang [10] (and the references therein). In
this subsection, however, we concentrate on the results in which such restrictive assump-
tions have been weakened.

We start with several results in which the exact asymptotic equivalence

P
(

Sξ
n > x

)
∼

n

∑
k=1

Fξk (x) (12)

was obtained.
Geluk and Tang [4] achieved (12) for distributions Fξk ∈ D ∩ S (see [4] Theorem 3.1).

It was assumed that r.v.s ξ1, . . . , ξn satisfy the so-called Assumption A (as in [4]), which was
referred to later as a strong quasi-asymptotic independence in other articles (e.g., [6,7,16,44]),
as well.

• R.v.s ξ1, . . . , ξn with infinite right supports are called pairwise strongly quasi-asymptotically
independent (pSQAI) if for any k, l ∈ {1, . . . n}, k 6= l,

lim
min{xk ,xl}→∞

P(|ξk| > xk | ξl > xl) = 0.

Nearly at the same time, Chen and Yuen [2] achieved (12) (see [2] Theorem 3.1) in
the smaller class C, but this time the pSQAI condition was replaced by the similar pQAI
condition (see Section 2.3). We observe that pSQAI condition implies pQAI. Indeed, by
arbitrarily choosing ξk, ξl , 1 6 k 6= l 6 n, we get that

P(|ξk| > xk | ξl > xl) = P(ξ+k > xk | ξl > xl) + P(ξ−k > xk | ξl > xl)→ 0,

as min{xk, xl} → ∞. Thus, it follows that

lim
x→∞

P(ξ+k > x, ξ+l > x)
P(ξ+k > x) + P(ξ+l > x)

6 lim
x→∞

P(ξk > x | ξl > x) = 0,

and, in the same way,

lim
x→∞

P(ξ−k > x, ξ+l > x)
P(ξ+k > x) + P(ξ+l > x)

6 lim
x→∞

P
(
ξ−k > x | ξl > x

)
= 0.

Moreover, in the same article by Chen and Yuen, the results are extended to the case
of randomly weighted sums (see [2] Theorem 3.2), resulting in relation

P
(

Sθξ
n > x

)
∼

n

∑
k=1

Fθkξk (x)

under the following moment condition on random weights:

max{Eθ
p
1 . . . ,Eθ

p
n} < ∞ for some p > max{J+ξ1

, . . . , J+ξn
}. (13)

Later, inspired by the results of Chen and Yuen, Yi et al. [11] considered the tail
probability asymptotics of the randomly weighted sum Sθξ

n , when r.v.s ξ1, . . . , ξn belong to
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the class D and follow the same pQAI structure (see [11] Theorems 1 and 2). It was shown
that under (13) and additional tail assumption

lim
x→∞

Fξ−k
(x)

Fξk (x)
= 0 for all k ∈ {1, . . . , n}, (14)

the following asymptotic bounds hold:

Lξ
n

n

∑
k=1

Fθkξk (x) . P
(

Sθξ
n > x

)
.

1

Lξ
n

n

∑
k=1

Fθkξk (x), (15)

where Lξ
n := min

{
Lξ1 , . . . , Lξn

}
. Cheng [3] managed to tighten the bounds in (15) (see [3]

Theorems 1.1 and 1.2) by putting the L-indices inside the sums and obtaining

n

∑
k=1

Lξk Fθkξk (x) . P
(

Sθξ
n > x

)
.

n

∑
k=1

1
Lξk

Fθkξk (x),

where Fξk ∈ D for all k ∈ {1, . . . , n}. The assumption (13) was substituted by a weaker
condition (see [3] Assumption C and Remark 1.1):

lim
x→∞

Fθkξk (x)
Fξk (x)

= 0 for all k ∈ {1, . . . , n}.

Moreover, instead of pQAI, two other dependence structures, namely pairwise tail
quasi-asymptotic independence (see [3] Assumption B) and pairwise asymptotic independence,
together with condition (14) (see [3] Assumption A) were considered.

• R.v.s ξ1, . . . , ξn with infinite right supports are called pairwise tail quasi-asyptotically inde-
pendent (pTQAI) if for any k, l = 1, . . . , n, k 6= l,

lim
min{xk ,xl}→∞

P(ξ+k > xk, ξ+l > xl)

P(ξ+k > xk) + P(ξ+l > xl)
= lim

min{xk ,xl}→∞

P(ξ−k > xk, ξ+l > xl)

P(ξ+k > xk) + P(ξ+l > xl)
= 0.

• R.v.s ξ1, . . . , ξn with infinite right supports are called pairwise asymptotically independent
(pAI) if for any k, l = 1, . . . , n, k 6= l,

lim
x→∞

P(ξk > x, ξl > x)
P(ξk > x)

= lim
x→∞

P(ξk > x, ξl > x)
P(ξl > x)

= 0.

As noted in [3], implication pTQAI⇒ pQAI follows trivially, by allowing xk and xl to
attain the same value x in the definition of pTQAI. It is easy to see that pAI implies pQAI if
r.v.s ξ1, . . . , ξn are nonnegative. Nonetheless, (14) is a sufficient condition for pAI⇒ pQAI
to hold in the general case because, for any 1 6 k 6= l 6 n,

lim
x→∞

P(ξk > x, ξl
− > x)

P(ξk > x) + P(ξl > x)
6 lim

x→∞

Fξl (−x)
Fξl (x)

= 0.

Quite recently, Jaunė et al. [6] reconsidered the asymptotic behaviour of tail probability
P
(

Sθξ
n > x

)
under the pQAI condition on r.v.s ξ1, . . . , ξn in the class D. The statement of

Lemma 1 from [6] extends mainly the results of Yi et al. [11], resulting in (15) under the
moment condition (13), but without the additional assumption (14).
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3.2. Asymptotics of Tail Expectations

Having reviewed the main results about the asymptotic behaviour of tail probabilities
(3), we now turn to the asymptotics of tail expectation of random sums Sξ

n and Sθξ
n which is

the main object of this paper. Tang and Yuan [15] obtained the relation

E
(

θ1ξ11{Sθξ
n >x}

)
∼ E

(
θ1ξ11{θ1ξ1>x}

)
for i.i.d. r.v.s ξ1, . . . , ξn from the class D ∩ S and random weights θ1, . . . , θn, satisfying
Eθ

pk
k < ∞, pk > J+ξk

, Fθkξk (x) = O(Fθ1ξ1(x)) for all k ∈ {1, . . . , n} (see [15] Theorem 4). It
was noted by Yang et al. [12] that, under additional condition Fθkξk (x) � Fθ1ξ1(x) for all
k ∈ {1, . . . , n}, relation

E
(

Sθξ
n 1{Sθξ

n >x}

)
∼

n

∑
k=1

E
(

θkξk1{θkξk>x}

)
(16)

holds.
Jaunė et al. [6] later weakened the i.i.d. condition of the previous result, allowing

pQAI or pSQAI dependence structures among primary r.v.s ξ1, . . . , ξn, at the cost of exact
asymptotics in (16).

Now, we turn to the recent result by Leipus et al. [7], which inspired our investigation.
Before stating the relevant theorems, we note that, in [7], the new dependence structure
called Assumption B, regarding r.v.s ξ1, . . . , ξn, is used.

Assumption B. R.v.s ξ1, . . . , ξn have infinite right supports and, for all k, l = 1, . . . , n, k 6= l
satisfy

lim
x→∞

sup
u>x

P
(
ξ+k > x | ξ+l > u

)
= lim

x→∞
sup
u>x

P
(
ξ−k > x | ξ+l > u

)
= lim

x→∞
sup
u>x

P
(
ξ+k > x | ξ−l > u

)
= 0.

Similarly, as in the case pSQAI⇒ pQAI, we can show that assumption B implies the
pQAI condition because for any ξk, ξl , 1 6 k 6= l 6 n,

lim
x→∞

P(ξ+k > x, ξ+l > x)
P(ξ+k > x) + P(ξ+l > x)

6 lim
x→∞

sup
u>x

P
(
ξ+k > x | ξ+l > u

)
= 0,

lim
x→∞

P(ξ−k > x, ξ+l > x)
P(ξ+k > x) + P(ξ+l > x)

6 lim
x→∞

sup
u>x

P
(
ξ−k > x | ξ+l > u

)
= 0.

The following assertion is the main result in [7].

Theorem 1 (See [7] Theorem 4). Let ξ1, . . . , ξn be r.v.s satisfying assumption B such that
Fξ1 ∈ D, E|ξ1|m < ∞ for some m ∈ N and Fξk (x) � Fξ1(x), Fξ−k

(x) = O
(

Fξ1(x)
)
, for all

k = 2, . . . , n. Then,

Lξ
n

n

∑
k=1

E
(

ξm
k 1{ξk>x}

)
. E

((
Sξ

n

)m
1{Sξ

n>x}

)
.

1

Lξ
n

n

∑
k=1

E
(

ξm
k 1{ξk>x}

)
.

Moreover, the results were extended to the general case of weighted sums. This time,
however, a quite restrictive assumption about random weights was made; namely, it was
supposed that random weights θ1, . . . , θn are bounded.

Theorem 2 (See [7] Theorem 5). Let ξ1, . . . , ξn be r.v.s satisfying assumption B such that
Fξ1 ∈ D, E|ξ1|m < ∞ for some m ∈ N. Let θ1, . . . , θn be nonnegative, non-degenerate at zero,
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bounded r.v.s, independent of θ1, . . . , θn. If Fθkξk (x) � Fθ1ξ1(x), Fθkξ−k
(x) = O

(
Fθ1ξ1(x)

)
, for all

k = 2, . . . , n. Then,

Lξ
n

n

∑
k=1

E
(
(θkξk)

m
1{θkξk>x}

)
. E

((
Sθξ

n

)m
1{Sθξ

n >x}

)
.

1

Lξ
n

n

∑
k=1

E
(
(θkξk)

m
1{θkξk>x}

)
.

4. Main Results

In this section we present the main results of this paper. Theorem 3 states the asymp-
totic bounds for the tail expectation of a random sum Sξ

n and Theorem 4 is mainly a
generalisation to the case of randomly weighted sums Sθξ

n .
We note that Theorems 3 and 4 improve previous results in several ways. For instance,

compared to Theorems 1 and 2, we put individual L-indices inside the sums in (17) and (18),
thus obtaining more accurate asymptotic bounds. Moreover, we weaken the condition for
exponent, from being a nonnegative integer to any nonnegative real number. In addition,
assumption B considered in [7] is substituted by a weaker pQAI structure and random
weights θ1, . . . , θn need not to be bounded as in Theorem 2. In addition, it is worth noting
that, by setting α = 0 in Theorems 3 and 4, we obtain asymptotics for the tail probabilities
(3) (see Remark 2 as well), thus our results can be compared with those discussed in
Section 3.1.

Theorem 3. Let ξ1, . . . , ξn be pQAI real-valued r.v.s. If E|ξk|α < ∞, Fξk ∈ D for all k ∈
{1, . . . , n} and some α ∈ [0, ∞), then

n

∑
k=1

LξkE
(

ξα
k1{ξk>x}

)
. E

((
Sξ

n

)α
1{Sξ

n>x}

)
.

n

∑
k=1

1
Lξk

E
(

ξα
k1{ξk>x}

)
. (17)

Theorem 4. Let ξ1, . . . , ξn be pQAI real valued r.v.s, such that Fξk ∈ D for all k ∈ {1, . . . , n},
and let θ1, . . . , θn be arbitrarily dependent, nonnegative, non-degenerate at zero r.v.s with

max{Eθ
p
1 , . . . ,Eθ

p
n} < ∞ for some p > max{J+ξ1

, . . . , J+ξn
}.

If collections {ξ1, . . . , ξn} and {θ1, . . . , θn} are independent and E(θk|ξk|)α < ∞ for all
k ∈ {1, . . . , n} and some α ∈ [0, ∞), then

n

∑
k=1

LξkE
(
(θkξk)

α
1{θkξk>x}

)
. E

((
Sθξ

n

)α
1{Sθξ

n >x}

)
.

n

∑
k=1

1
Lξk

E
(
(θkξk)

α
1{θkξk>x}

)
. (18)

Remark 1. By narrowing the classD to the class C of consistently varying distributions (for which
the L-index is unit), we get the exact asymptotic equivalence in (18). That is, if Fξk ∈ C for all
k ∈ {1, . . . , n} and all other conditions of Theorem 4 hold, then

n

∑
k=1

E
(
(θkξk)

α
1{θkξk>x}

)
∼ E

((
Sθξ

n

)α
1{Sθξ

n >x}

)
.

Remark 2. When α = 0, from (18), we obtain asymptotic bounds for tail probabilities:

n

∑
k=1

Lξk Fθkξk (x) . P
(

Sθξ
n > x

)
.

n

∑
k=1

1
Lξk

Fθkξk (x). (19)
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Remark 3. Under the same conditions as in Theorem 4, we can obtain asymptotic bounds for the
conditional expectation E

((
Sθξ

n
)α
| Sθξ

n > x
)

. Namely, combining (18) with (19) we obtain the
following asymptotic bounds:

∑n
k=1 LξkE((θkξk)

α
1{θkξk>x})

∑n
k=1

1
Lξk

Fθkξk (x)
. E

((
Sθξ

n

)α
| Sθξ

n > x
)

.
∑n

k=1
1

Lξk
E((θkξk)

α
1{θkξk>x})

∑n
k=1 Lξk Fθkξk (x)

. (20)

In addition, by using the min–max inequality (22), we can express (20) fully in conditional
expectations at the cost of tightness of the initial bounds:

min
16k6n

{
L2

ξk
E((θkξk)

α | θkξk > x)
}
. E

((
Sθξ

n

)α
| Sθξ

n > x
)

. max
16k6n

{
1

L2
ξk

E((θkξk)
α | θkξk > x)

}
.

5. Proofs of Main Results

To prove Theorem 3, we need some auxiliary assertions. The lemma below is proved
in [7].

Lemma 1. Let ξ be a real-valued r.v. If E(ξ+)α < ∞ for some α ∈ [0, ∞), then for all x > 0.

E(ξα
1{ξ>x}) = xαP(ξ > x) + α

∫ ∞

x
uα−1P(ξ > u)du.

The next lemma is crucial for the proof of Theorem 3.

Lemma 2. Let ξ1, . . . , ξn be pQAI real-valued r.v.s, such that Fξk ∈ D for all k ∈ {1, . . . , n}.
Then,

n

∑
k=1

Lξk Fξk (x) . P(Sξ
n > x) .

n

∑
k=1

1
Lξk

Fξk (x). (21)

Proof. The case n = 1 in (21) follows trivially from the definition of coefficient Lξ1 . Let
n > 2. First, let us consider the upper asymptotic bound in (21).

For an arbitrary δ ∈ (0, 1),

P(Sξ
n > x) 6

n

∑
k=1

Fξk ((1− δ)x) + P
(

Sξ
n > x,

n⋂
k=1

{ξk 6 (1− δ)x}
)

=:
n

∑
k=1

Fξk ((1− δ)x) +A(x, δ).

By observing that for all k ∈ {1, . . . , n}{
Sξ

n > x, ξk 6 (1− δ)x
}
⊆
{

Sξ
n − ξk > δx

}
,

we can estimate the term A(x, δ) as follows:

A(x, δ) 6
n

∑
k=1

P
(

ξk >
x
n

, Sξ
n − ξk > δx

)
6

n

∑
k=1

P

ξk >
x
n

,
n⋃

l=1,l 6=k

{
ξl >

δx
n− 1

}
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6
n

∑
k=1

n

∑
l=1,l 6=k

P(ξk > δ1x, ξl > δ1x),

where in the last inequality δ1 = δ1(δ) = min{1/n, δ/(n− 1)}.
Consequently,

P
(

Sξ
n > x

)
∑n

k=1
1

Lξk
Fξk (x)

6
∑n

k=1 Fξk ((1− δ)x)

∑n
k=1

1
Lξk

Fξk (x)
+

∑n
k=1 ∑n

l=1,l 6=k P(ξk > δ1x, ξl > δ1x)

∑n
k=1

1
Lξk

Fξk (x)

=: I1(x, δ) + I2(x, δ).

Using the min–max inequality,

min
{

a1

b1
, . . . ,

am

bm

}
6

a1 + . . . + am

b1 + . . . + bm
6 max

{
a1

b1
, . . . ,

am

bm

}
, (22)

provided that m ∈ N and ai > 0, bi > 0 for i = 1, . . . , m, we get

I1(x, δ) 6 max
16k6n

{
Lξk

Fξk ((1− δ)x)
Fξk (x)

}
.

Taking into account (22) and observing that

n

∑
k=1

n

∑
l=1,l 6=k

(
Fξk (δ1x) + Fξl (δ1x)

)
6 2(n− 1)

n

∑
k=1

Fξk (δ1x),

we similarly obtain

I2(x, δ) =
∑n

k=1 ∑n
l=1,l 6=k P(ξk > δ1x, ξl > δ1x)

∑n
k=1 ∑n

l=1,l 6=k
(

Fξk (δ1x) + Fξl (δ1x)
)

×
∑n

k=1 ∑n
l=1,l 6=k

(
Fξk (δ1x) + Fξl (δ1x)

)
∑n

k=1
1

Lξk
Fξk (x)

6 max
16k 6=l6n

{
P(ξk > δ1x, ξl > δ1x)
Fξk (δ1x) + Fξl (δ1x)

}
× 2(n− 1) max

16k6n

{
Lξk

Fξk (δ1x)
Fξk (x)

}
. (23)

The fact that Fξk ∈ D for all k ∈ {1, . . . , n} and condition of pQAI for r.v.s {ξ1, . . . , ξn}
implies:

lim sup
x→∞

I1(x, δ) 6 max
16k6n

{
Lξk lim sup

x→∞

Fξk ((1− δ)x)
Fξk (x)

}
, (24)

lim sup
x→∞

I2(x, δ) 6 2(n− 1) max
16k 6=l6n

{
lim sup

x→∞

P(ξk > δ1x, ξl > δ1x)
Fξk (δ1x) + Fξl (δ1x)

}

× max
16k6n

{
Lξk lim sup

x→∞

Fξk (δ1x)
Fξk (x)

}
= 0. (25)

Therefore, by letting δ ↓ 0, from estimates (24), (25) and definition of indices Lξk , we
get the upper bound in (21):

lim sup
x→∞

P(Sξ
n > x)

∑n
k=1

1
Lξk

Fξk (x)
6 1.
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Let us consider the lower asymptotic bound in (21). Again, choose arbitrary δ ∈ (0, 1).
By the Bonferroni inequality, for this δ, we get

P
(

Sξ
n > x

)
> P

(
Sξ

n > x,
n⋃

k=1

{ξk > (1 + δ)x}
)

>
n

∑
k=1

P
(

Sξ
n > x, ξk > (1 + δ)x

)
−

n

∑
k=1

n

∑
l=1,l 6=k

P(ξk > (1 + δ)x, ξl > (1 + δ)x)

=: A1(x, δ)−A2(x, δ). (26)

For the first summand in (26), we obtain

A1(x, δ) >
n

∑
k=1

P
(

Sξ
n − ξk > −δx, ξk > (1 + δ)x

)
=

n

∑
k=1

Fξk ((1 + δ)x)−
n

∑
k=1

P
(

Sξ
n − ξk 6 −δx, ξk > (1 + δ)x

)
=: A11(x, δ)−A12(x, δ). (27)

For the second term in (27), we get

A12(x, δ) 6
n

∑
k=1

P

 n⋃
l=1,l 6=k

{
ξl 6 −

δx
n− 1

}
, ξk > (1 + δ)x


6

n

∑
k=1

n

∑
l=1,l 6=k

P
(

ξk > (1 + δ)x, ξ−l >
δx

n− 1

)

6
n

∑
k=1

n

∑
l=1,l 6=k

P
(
ξk > δ2x, ξ−l > δ2x

)
, (28)

where δ2 = δ2(δ) = δ/2(n− 1) in the last inequality.
We have from (26), (27) and (28) that

P(Sξ
n > x)

∑n
k=1 Lξk Fξk (x)

>
A11(x, δ)

∑n
k=1 Lξk Fξk (x)

−
∑n

k=1 ∑n
l=1,l 6=k P

(
ξk > δ2x, ξ−l > δ2x

)
∑n

k=1 Lξk Fξk (x)

− A2(x, δ)

∑n
k=1 Lξk Fξk (x)

=: J1(x, δ)−J2(x, δ)−J3(x, δ).

Now, we estimate each term Ji(x, δ), i ∈ {1, 2, 3}, separately. For the case i = 1, using
inequality (22), we get

J1(x, δ) > min
16k6n

{
Fξk ((1 + δ)x)

Lξk Fξk (x)

}
.

For J2(x, δ), similarly to in the derivation of (23), we obtain

J2(x, δ) 6 2(n− 1) max
16k 6=l6n

{
P
(
ξk > δ2x, ξ−l > δ2x

)
Fξk (δ2x) + Fξl (δ2x)

}
max

16k6n

{
Fξk (δ2x)
Lξk Fξk (x)

}
.
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Finally,

J3(x, δ) 6 2(n− 1) max
16k 6=l6n

{
P(ξk > (1 + δ)x, ξl > (1 + δ)x)
Fξk ((1 + δ)x) + Fξl ((1 + δ)x)

}

× max
16k6n

{
Fξk ((1 + δ)x)

Lξk Fξk (x)

}

6 max
16k6n

{
2(n− 1)

Lξk

}
max

16k 6=l6n

{
P(ξk > (1 + δ)x, ξl > (1 + δ)x)
Fξk ((1 + δ)x) + Fξl ((1 + δ)x)

}
.

From the fact that Fξk ∈ D for all k ∈ {1, . . . , n} and condition of pQAI for r.v.s
{ξ1, . . . , ξn}, we get the following estimates:

lim inf
x→∞

J1(x, δ) > min
16k6n

{
1

Lξk

lim inf
x→∞

Fξk ((1 + δ)x)
Fξk (x)

}
, (29)

lim sup
x→∞

J2(x, δ) 6 2(n− 1) max
16k 6=l6n

{
lim sup

x→∞

P
(
ξk > δ2x, ξ−l > δ2x

)
Fξk (δ2x) + Fξl (δ2x)

}

× max
16k6n

{
1

Lξk

lim sup
x→∞

Fξk (δ2x)
Fξk (x)

}
= 0, (30)

lim sup
x→∞

J3(x, δ) 6 max
16k6n

{
2(n− 1)

Lξk

}
× max

16k 6=l6n

{
lim sup

x→∞

P(ξk > (1 + δ)x, ξl > (1 + δ)x)
Fξk ((1 + δ)x) + Fξl ((1 + δ)x)

}
= 0. (31)

Thus, letting δ ↓ 0 from the estimates (29), (30), (31) and definition of indices Lξk , we
obtain the lower asymptotic bound in (21):

lim sup
x→∞

P(Sξ
n > x)

∑n
k=1 Lξk Fξk (x)

> 1.

This finish the proof of Lemma 2.

Proof of Theorem 3. The special case, when α = 0, is covered by Lemma 2. Consider
α > 0. The case n = 1 follows trivially from the definition of index Lξ1 . Let n > 2. First,
observe that, by Lemma 1 and the min–max inequality (22), we have

E
((

Sξ
n
)α
1{Sξ

n>x}

)
∑n

k=1
1

Lξk
E
(

ξα
k1{ξk>x}

) =
xαP

(
Sξ

n > x
)
+ α

∫ ∞
x uα−1P

(
Sξ

n > u
)
du

∑n
k=1

1
Lξk

(
xαFξk (x) + α

∫ ∞
x uα−1Fξk (u)du

)
6 max

 P
(
Sξ

n > x
)

∑n
k=1

1
Lξk

Fξk (x)
,

∫ ∞
x uα−1P

(
Sξ

n > u
)
du∫ ∞

x uα−1 ∑n
k=1

1
Lξk

Fξk (u)du


=: max{C1(x), C2(x)}. (32)

By Lemma 2, we obtain lim sup
x→∞

C1(x) 6 1, and, for the term C2(x), we have that

lim sup
x→∞

C2(x) = lim sup
x→∞

∫ ∞
x uα−1P

(
Sξ

n > u
)
du∫ ∞

x uα−1P
(
Sξ

n > u
)∑n

k=1
1

Lξk
Fξk

(u)

P
(

Sξ
n>u
) du
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6 lim sup
x→∞

sup
u>x

P
(
Sξ

n > u
)

∑n
k=1

1
Lξk

Fξk (u)

= lim sup
x→∞

P
(
Sξ

n > x
)

∑n
k=1

1
Lξk

Fξk (x)
6 1,

where the last estimate follows from Lemma 2 as well. The desired upper estimate in (17)
follows now from (32).

The asymptotic lower bound in (17) follows similarly. Indeed, in the same fashion,
we obtain

E
((

Sξ
n
)α
1{Sξ

n>x}

)
∑n

k=1 LξkE
(

ξα
k1{ξk>x}

) > min

{
P
(
Sξ

n > x
)

∑n
k=1 Lξk Fξk (x)

,

∫ ∞
x uα−1P

(
Sξ

n > u
)
du∫ ∞

x uα−1 ∑n
k=1 Lξk Fξk (u)du

}

=: min{C3(x), C4(x)}. (33)

Using Lemma 2, we have that lim inf
x→∞

C3(x) > 1 and

lim inf
x→∞

C4(x) = lim inf
x→∞

∫ ∞
x uα−1P

(
Sξ

n > u
)

du∫ ∞
x uα−1P

(
Sξ

n > u
)∑n

k=1 Lξk
Fξk

(u)

P
(

Sξ
n>u
) du

> lim inf
x→∞

inf
u>x

P
(
Sξ

n > u
)

∑n
k=1 Lξk Fξk (u)

= lim inf
x→∞

P
(
Sξ

n > x
)

∑n
k=1 Lξk Fξk (x)

> 1,

which implies the lower estimate in (17) due to (33). Theorem 3 is proved.

To prove Theorem 4, we need the following two additional lemmas from [2,6,27].

Lemma 3 (See Lemma 3.1 of [27] and Lemma 3 of [6]). If ξ and θ are two independent r.v.s
such that Fξ ∈ D and θ is nonnegative, non-degenerate at zero r.v., then d.f. Fθξ of product θξ
belongs to the class D. If, in addition, Eθp < ∞ for some p > J+ξ , then the inequality Lθξ > Lξ

holds for L-indices.

Lemma 4 (See [6] Lemma 4). Let two pairs of r.v.s {ξ1, ξ2} and {θ1, θ2} be independent. Let
ξ1, ξ2 be QAI r.v.s such that Fξk ∈ D, k ∈ {1, 2}, and let θ1, θ2 be two arbitrarily dependent,
nonnegative, non-degenerate at zero r.v.s with max{Eθ

p
1 ,Eθ

p
2} < ∞ for some p > max{J+ξ1

, J+ξ2
}.

Then, r.v.s θ1ξ1 and θ2ξ2 are QAI as well.

Proof. Although the proof of this lemma can be found in [6], we present a more detailed
derivation based on the proof of Lemma 3.1 from [2]. Firstly, we need one result from [8].
Namely, by Lemma 3.7 of [8], we have that

P
(

θi > x1−ε
)
= o

(
Fξi (x)

)
(34)

for i ∈ {1, 2} and ε ∈ (0, 1−max{J+ξ1
, J+ξ2
}/p).

It is obvious that, for a given ε̂ = (1−max{J+ξ1
, J+ξ2
}/p)/2,

P(θ1ξ1 > x, θ2ξ2 > x)
Fθ1ξ1(x) + Fθ2ξ2(x)

=
P(θ1ξ1 > x, θ2ξ2 > x, max{θ1, θ2} > x1−ε̂)

Fθ1ξ1(x) + Fθ2ξ2(x)
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+
P(θ1ξ1 > x, θ2ξ2 > x, max{θ1, θ2} 6 x1−ε̂)

Fθ1ξ1(x) + Fθ2ξ2(x)

:= L1(x, ε̂) + L2(x, ε̂). (35)

Using (22), we estimate the first term in the following way:

L1(x, ε̂) 6
P(θ1 > x1−ε̂) + P(θ2 > x1−ε̂)

Fθ1ξ1(x) + Fθ2ξ2(x)
6 max

i∈{1,2}

{
P(θi > x1−ε̂)

Fξi (x)
Fξi (x)

Fθiξi (x)

}
.

Therefore,

lim sup
x→∞

L1(x, ε̂) = 0 (36)

because of (34) and

lim sup
x→∞

Fξi (x)
Fθiξi (x)

6 lim sup
x→∞

Fξi (x)
P(ξia > x, θi > a)

6
1

P(θi > a)
lim sup

x→∞

Fξi (x)
Fξi (x/a)

< ∞, (37)

provided that Fξi ∈ D and P(θi > a) > 0 for some positive a.
For the second term of (35), using (22) once again, we get

L2(x, ε̂) =

∫∫
{0<u1,u26x1−ε̂}

P
(

ξ1 > x
u1

, ξ2 > x
u2

)
dP(θ1 6 u1, θ2 6 u2)

Fθ1ξ1(x) + Fθ2ξ2(x)

6

∫∫
{0<u1,u26x1−ε̂}

P
(

ξ1 > x
max{u1,u2}

, ξ2 > x
max{u1,u2}

)
dP(θ1 6 u1, θ2 6 u2)

Fθ1ξ1(x) + Fθ2ξ2(x)

6
P(max{θ1, θ2}ξ1 > x) + P(max{θ1, θ2}ξ2 > x)

Fθ1ξ1(x) + Fθ2ξ2(x)

× sup
{0<u1,u26x1−ε̂}

P
(

ξ1 > x
max{u1,u2}

, ξ2 > x
max{u1,u2}

)
Fξ1

(
x

max{u1,u2}

)
+ Fξ2

(
x

max{u1,u2}

)
6 max

i∈{1,2}

{
P(max{θ1, θ2}ξi > x)

Fξi (x)
Fξi (x)

Fθiξi (x)

}

× sup
z>xε

P(ξ1 > z, ξ2 > z)
Fξ1(z) + Fξ2(z)

.

Since ξ1, ξ2 are QAI r.v.s and E(max{θ1, θ2})p < ∞, the last estimate and relations
(34), (37) imply that

lim sup
x→∞

L2(x, ε̂) = 0. (38)

By substituting relations (36) and (38) into (35), we get

lim
x→∞

P(θ1ξ1 > x, θ2ξ2 > x)
Fθ1ξ1(x) + Fθ2ξ2(x)

= 0.

The equality

lim
x→∞

P((θ1ξ1)
− > x, θ2ξ2 > x)

Fθ1ξ1(x) + Fθ1ξ1(x)
= 0
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follows analogously, by observing that

P((θ1ξ1)
− > x, θ2ξ2 > x)

Fθ1ξ1(x) + Fθ1ξ1(x)
=

P(θ1ξ−1 > x, θ2ξ2 > x)
Fθ1ξ1(x) + Fθ1ξ1(x)

and replacing ξ1 by ξ−1 in the given proof. The lemma is proved.

Proof of Theorem 4. Since we have that max{Eθ
p
1 . . . ,Eθ

p
n} < ∞ for some p > max

{J+ξ1
, . . . , J+ξn

}, Lemma 3 implies that Fθkξk ∈ D and Lθkξk > Lξk for all k ∈ {1, . . . , n}.
Additionally, by Lemma 4, we have that for any k, l ∈ {1, . . . , n}, k 6= l, r.v.s θkξk, θlξl are
QAI. In other words, r.v.s θ1ξ1, . . . , θnξn are pQAI. Thus, we only need to apply Theorem 3
for r.v.s θ1ξ1, . . . , θnξn to obtain the desired result.

6. Examples

In this section, we present three examples illustrating Theorem 3. For the sake of sim-
plicity, in this section, we consider sums consisting of exactly two summands, i.e., we only
consider bivariate distributions (ξ1, ξ2). Furthermore, we assume that their dependence
structure is defined by the FGM copula described in Example 1 of Section 2.3. To illustrate
the behaviour of dominatedly varying summands better, we consider three different cases
of marginal distributions from the disjoint subclasses of D.

Example 3. Let the vector (ξ1, ξ2) coordinates follow a bivariate FGM copula with a parameter ϑ,
and let ξ1 and ξ2 be distributed according to the Pareto distribution with parameters {γ1,κ1} and
{γ2,κ2} (case of classR), i.e.,

Fξ1(x) =
(

1−
(κ1

x

)γ1
)
1{x>κ1}, Fξ2(x) =

(
1−

(κ2

x

)γ2
)
1{x>κ2}.

For the parameter values γ1 = 4,κ1 = 5, γ2 = 2,κ2 = 5 and ϑ ∈ {−0.8, 0, 0.8}, we
compare simulated values of the moment tail E

(
(ξ1 + ξ2)

1/2
1{ξ1+ξ2>x}

)
with its asymptotic

values obtained via Theorem 3.

Example 4. Let ξ1, ξ2 be dependent r.v.s which dependence is controlled by the bivariate FGM
copula as in the previous example. In addition, let ξ1 and ξ2 be distributed according to the
generalised Peter and Paul distribution described in Section 2.2 with parameters {a1, b1} and
{a2, b2} (case of class D \ L), i.e.,

Fξ1(x) = 1{x<1} +
(

b−a1
1

)blogb1
xc
1{x>1}, Fξ2(x) = 1{x<1} +

(
b−a1

1

)blogb1
xc
1{x>1}.

For the parameter values a1 = 1, b1 = 2, a2 = 1/2, b2 = 2 and ϑ ∈ {−0.8, 0, 0.8}, we
compare simulated values of the moment tail E

(
(ξ1 + ξ2)

0.06
1{ξ1+ξ2>x}

)
with its asymptotic

bounds derived from Theorem 3.

Example 5. Let us suppose that r.v.s ξ1, ξ2 is dependent with the dependence structure generated
by the bivariate FGM copula as in the previous examples, and let ξ1 and ξ2 be distributed according
to the Tang distribution described in Section 2.2 with parameters p1 and p2 case of class C), i.e.,

ξ1 = (1 + Y)2N1 , ξ2 = (1 + Y)2N2 , Y d
=U ([0, 1]),

P(N1 = k) = (1− pi)pk
i , k ∈ N0, i = {1, 2}.

For the parameter values p1 = 0.2, p2 = 0.3 and ϑ ∈ {−0.8, 0, 0.8}, we compare simulated
values of the moment tail E

(
(ξ1 + ξ2)

0.8
1{ξ1+ξ2>x}

)
with its asymptotic values derived from

Theorem 3.
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Even though we can usually derive the analytic expression of an expectation
E(ξα

1{ξ>x}) knowing the distribution of a r.v. ξ, finding an analytic expression for E((ξ1 +
ξ2)

α
1{ξ1+ξ2>x}) might be unfeasible if we assume that r.v.s ξ1 and ξ2 are not independent.

For this reason, in all the examples of this section, we derive the exact analytic expres-
sions for the asymptotic bounds in (17) and find values of the moments tails of sums of
r.v.s using the Monte-Carlo simulation method. Before turning to the final results for the
Examples 3–5, which are stated in Section 6.3, we present some preliminaries.

6.1. Sampling Procedure

To obtain samples of r.v.s having arbitrary distributions using pseudo-random num-
bers generator, we use the so-called inverse probability integral transform property.

Lemma 5 (Inverse probability integral transform). Let U d
=U ([0, 1]) and X be an arbitrary

r.v. with d.f. F. Then, F←(U)
d
= X, where, by F←(y), we denote the generalised inverse function

(g.i.f.) of a d.f. F
F←(y) := inf{x | F(x) > y}.

The proof of this lemma, as well as some additional properties of g.i.f.s, can be
found in [45]. Further, in this subsection, we derive the expressions of g.i.f.s of d.f.s in
Examples 3–5.

• G.i.f. of the Pareto d.f. Consider the regularly varying Pareto d.f. F with parameters
{γ,κ}, i.e.,

F(x) =
(

1−
(κ

x

)γ
)
1{x>κ}. (39)

Since F is strictly monotone and increasing on interval [κ, ∞), one can derive that
F←(y) = F−1(y) and, therefore, for all y ∈ [0, 1)

F←(y) = κ(1− y)1/γ.

• G.i.f. of the Peter and Paul d.f. Recall that Peter and Paul distribution with parameters
{a, b}, b > 1, a ∈ (0, ∞) is defined by the following d.f.

F(x) = (ba − 1) ∑
k>1, bk6x

b−ak =
(

1− (b−a)blogb xc
)
1{x>1}. (40)

To find the g.i.f. F←(y) we need to find the smallest x, for which F(x) > y. Since

1− (b−a)blogb xc > y ⇔
⌊
logb x

⌋
> −1

a
logb(1− y),

we get that

F←(y) = bd−
1
a logb(1−y)e,

for all y ∈ [0, 1), where symbol d..e denotes the ceiling function.

• G.i.f. of d.f. of the Cai–Tang (5) distribution. In Section 2.2, we show that the d.f. of the r.v.

(1 + Y)2N with independent Y d
=U [0, 1] and geometric N with parameter p ∈ (0, 1),

is the following

F(x) = (1− p)

(
1− pblog2 xc

1− p
+

(
x

2blog2 xc − 1
)

pblog2 xc
)
1{x>1}.

To find the g.i.f. F←, we observe that the d.f. F is continuous, strictly monotone on
the interval [1, ∞) and linearly increasing on intervals [2k, 2k+1), k ∈ {0, 1, . . .}. Hence, g.i.f.
F← coincides with F−1.
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Suppose that, for a given y ∈ (0, 1), variable x ∈ [2k, 2k+1) is such that F(x) = y. In
such situation, we have

F(x) = (1− p)

(
1− pk

1− p
+
( x

2k − 1
)

pk

)
= y ⇔ x =

2k
(

y− 1 + pk(2− p)
)

pk(1− p)
. (41)

Since F(2n) = 1− pn for all n ∈ {0, 1, . . .}, we obtain

F←(y) =
2blogp(1−y)c

(
y− 1 + pblogp(1−y)c(2− p)

)
pblogp(1−y)c(1− p)

for all y ∈ [0, 1).
Similarly to the case described in Lemma 5, one can draw samples from multivariate

distributions which marginals are not necessarily mutually independent. The procedure is
mainly based on the so-called Rosenblatt transformation presented in [46]. According to
the results of Rosenblatt [46], Brockwell [47], for an arbitrary random vector (X1, . . . , Xn)
with absolutely continuous distribution, the collection

{F1(X1), F2(X2 | X1), . . . , Fn(Xn | Xn−1, . . . , X1)}

consists of independent r.v.s which are uniformly distributed on interval [0, 1], where

F1(x1) = P(X1 6 x1), F2(x2 | x1) = P(X2 6 x2 | X1 = x1),

Fk(xk | xk−1, . . . , x1) = P(Xk 6 xk | Xk−1 = xk−1, . . . , X1 = x1), k ∈ {3, . . . , n}.

For any copula C(u, v) = P(U 6 u, V 6 v), the conditional distribution function of U
for the given event {V = v} is defined by equality

Cv(u) := P(U 6 u | V = v) = lim
δ↓0

C(u, v + δ)− C(u, v)
δ

=
∂

∂v
C(u, v).

By Theorem 2.2.7 of [38], it follows that the partial derivative in the last expression
exists for almost all v in the interval [0, 1]. To sample from a bivariate copula, we follow the
algorithm presented in Section 2.9 of [38].

• Algorithm N . Generation of samples from a bivariate distribution characterised by marginal
d.f.s F1, F2 and copula C(u, v).

Step 1: Generate two independent realisations {t∗, v∗} of distribution U ([0, 1]).
Step 2: To induce the copula implied dependence, transform t∗ into u∗ = C←v∗ (t

∗),
where C←v (t) is the g.i.f. of the conditional distribution Cv(u). In such a way, we obtain the
realisation (u∗, v∗) from copula C(u, v).

Step 3: Obtain the realisation of the desired distribution using Lemma 5 by transform-
ing (u∗, v∗) into

(
F←1 (u∗), F←2 (v∗)

)
.

In what follows, we derive the conditional distribution function Cv(u) and its gener-
alised inverse C←v (t) for the bivariate FGM copula which is used in Examples 3–5.

• Inverse conditional distribution of bivariate FGM copula.

FGM copula is described in Section 2.3. Since

Cϑ(u, v) = uv + ϑuv(1− u)(1− u), θ ∈ [−1, 1],

for u, v ∈ [0, 1], we get that

Cϑ,v(u) = u(1− ϑ + 2vϑ) + u2(ϑ− 2vϑ).
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To obtain the inverse C←θ,v(t), we observe that equation

x2(ϑ− 2vϑ) + x(1− ϑ + 2vϑ)− t = 0, t ∈ (0, 1),

has two roots

x1,2 =
−(1− ϑ + 2vϑ)±

√
(1− ϑ + 2vϑ)2 − 4t(ϑ− 2vϑ)

2(ϑ− 2vϑ)
.

We are interested in C←ϑ,v(t) ∈ (0, 1). Consequently,

C←ϑ,v(t) =
−(1− ϑ + 2vϑ) +

√
(1− ϑ + 2vϑ)2 − 4t(ϑ− 2vϑ)

2(ϑ− 2vϑ)
.

6.2. Analytic Expressions of Individual Summands’ Tail Expectations

To obtain exact analytic expressions of the bounding functions in (17), we need to find
the tail expectations E(ξα

1{ξ>x}) for all marginal distributions considered in Examples 3–5
together with L-indices in the case of the generalised Peter and Paul r.v.s. Note that both
the Pareto distribution and the Cai–Tang distribution (5) defined in Section 2.2 belong to
the class C. Hence, the L-indices for both distributions are equal to units, and we obtain
the exact asymptotic equivalences in (17).

• Truncated expectation of the Pareto distribution. Let us consider r.v. ξ having the Pareto
distribution with parameters {γ,κ} presented in Equation (39). If γ > α, then it is
obvious that

E
(

ξα
1{ξ>x}

)
=

γκγ max{x,κ}α−γ

γ− α
,

• Truncated expectation and L-index of Peter and Paul distribution. If r.v. ξ has the generalised
Peter and Paul distribution (40) with parameters {a, b}, α < a, then

E
(

ξα
1{ξ>x}

)
=

∞

∑
k=1

(ba − 1)bk(α−a)
1{bk>x} =

∞

∑
k=blogb xc+1

(ba − 1)bk(α−a)

= (ba − 1)
bblogb xc(α−a)

ba−α − 1
.

In addition, for any y > 1,

lim inf
x→∞

Fξ(xy)
Fξ(x)

= lim inf
x→∞

(
b−a)blogb yc+bl̂ogb x+l̂ogb yc

=
(
b−a)blogb yc+1,

where the symbol ẑ denotes the fractional part of z. Hence, L-index of r.v. ξ

Lξ = lim
y↓1

lim inf
x→∞

Fξ(xy)
Fξ(x)

= lim
y↓1

(
b−a)blogb yc+1

= b−a.

• Truncated expectation of the Cai–Tang distribution. Let ξ be r.v. defined by Equation (5).
If α < log2(1/p), then according to (6) and (41), we get

E
(

ξα
1{ξ>x}

)
=

1− p
α + 1

(
2α+1 − 1
1 + 2α p

)
1{x<1} +

1− p
α + 1

(( p
2

)blog2 xc(
2dlog2 xe(α+1) − xα+1

)
+

(
2α+1 − 1

)
(2α p)dlog2 xe

1− 2α p

)
1{x>1},
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because for x < 1

E
(

ξα
1{ξ>x}

)
= E(ξα) =

∫
[1,∞)

uαdFξ(u)

= (1− p)
∫
[1,∞)

uαd

(
1− pblog2 uc

1− p
+

(
u

2blog2 uc − 1
)

pblog2 uc
)

= (1− p)
∞

∑
k=0

∫
[2k ,2k+1)

uαd

(
1− pblog2 uc

1− p
+

(
u

2blog2 uc − 1
)

pblog2 uc
)

= (1− p)
∞

∑
k=0

∫
[2k ,2k+1)

uαd

(
1− pk

1− p
+
( u

2k − 1
)

pk

)

= (1− p)
∞

∑
k=0

( p
2

)k ∫
[2k ,2k+1)

uαdu

= (1− p)
∞

∑
k=0

( p
2

)k (2k)
α+1(

2α+1 − 1
)

α + 1

=

(
2α+1 − 1

)
p(1− p)

(α + 1)(1− 2α p)
,

and for x > 1

E
(

ξα
1{ξ>x}

)
=
∫
(x,2dlog2 xe)

uαdFξ(u) +
∫
[2dlog2 xe ,∞)

uαdFξ(u) =: K1 +K2,

with

K1 =
∫
(x,2dlog2 xe)

uαd

(
(1− p)

(
1− pblog2 uc

1− p
+

(
u

2blog2 uc − 1
))

pblog2 uc
)

=
∫
(x,2dlog2 xe)

uαd

(
(1− p)

(
1− pblog2 xc

1− p
+

(
u

2blog2 xc − 1
))

pblog2 xc
)

= (1− p)
( p

2

)blog2 xc ∫
(x,2dlog2 xe)

uαdu

= (1− p)
( p

2

)blog2 xc 2dlog2 xe(α+1) − xα+1

α + 1

and

K2 =
∫
[2dlog2 xe ,∞)

uαd

(
(1− p)

(
1− pblog2 uc

1− p
+

(
u

2blog2 uc − 1
))

pblog2 uc
)

= (1− p)
∞

∑
k=0

( p
2

)dlog2 xe+k ∫
[2dlog2 xe+k ,2dlog2 xe+k+1)

uαdu

= (1− p)
∞

∑
k=0

( p
2

)dlog2 xe+k 2(dlog2 xe+k)(α+1)(2α+1 − 1
)

α + 1

=
(1− p)

(
2α+1 − 1

)
(2α p)dlog2 xe

(α + 1)

∞

∑
k=0

(2α p)k

=
(1− p)

(
2α+1 − 1

)
(2α p)dlog2 xe

(α + 1)(1− 2α p)
.
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6.3. Simulation Procedure and Results

We performed three different simulation studies described in Examples 3–5. We speci-
fied the concrete d.f.s of r.v.s ξ1, ξ2 and exponent α in (17). For every case, we considered
three different scenarios defined by parameter ϑ of the FGM copula. In particular, we chose
θ = 0 to include independent case of ξ1, ξ2 and two other cases, namely θ = −0.8 and
θ = 0.8, to reflect how imposed dependence affect the overall asymptotic behaviour. For all
three cases of bivariate distributions, we calculated asymptotic bounds in (17) for various x
values to see how quickly the theoretical asymptotics are attained as x tends to infinity.

• Under the conditions of Example 3, we get from Theorem 3 that

E
(
(ξ1 + ξ2)

1/2
1{ξ1+ξ2>x}

)
∼

2

∑
k=1

E
(

ξ1/2
k 1ξk>x

)[
=

100
3x3/2

(
1 +

150
7x2

)
, x > 5

]
for all ϑ ∈ {−0.8, 0, 0.8}, according to the expressions of truncated moments derived in
Section 6.2. The results of simulated values of E

(
(ξ1 + ξ2)

1/2
1{ξ1+ξ2>x}

)
together with

the values of the derived asymptotic formula are presented in Figure 1.
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Figure 1. Simulated and asymptotic values for the truncated expectation of Example 3. Solid red

line represents the exact asymptotic values of
2
∑

k=1
E
(

ξ1/2
k 1{ξk>x}

)
.

• The conditions of Example 4 and Theorem 3 imply that

E
(
(ξ1 + ξ2)

0.06
1{ξ1+ξ2>x}

)
.

2

∑
k=1

1
Lξk

E
(

ξ0.06
k 1{ξk>x}

)
[
=

2
20.94 − 1

2−0.94blog2 xc +
2−
√

2
20.44 − 1

2−0.44blog2 xc, x > 1

]
,

E
(
(ξ1 + ξ2)

0.06
1{ξ1+ξ2>x}

)
&

2

∑
k=1

LξkE
(

ξ0.06
k 1{ξk>x}

)
[
=

1
2(20.94 − 1)

2−0.94blog2 xc +
(
√

2− 1)√
2(20.44 − 1)

2−0.44blog2 xc, x > 1

]

due to the formulas derived in Section 6.2. The results of the simulated values of
E
(
(ξ1 + ξ2)

0.06
1{ξ1+ξ2>x}

)
together with the asymptotic values are presented in Figure 2.



Mathematics 2021, 9, 824 23 of 26

0.0

0.1

0.2

0.3

0.4

0 1000 2000 3000 4000 5000

x

ϑ :

-0.8

0

0.8

Figure 2. Simulated and asymptotic values for the truncated expectation of Example 4. Red area

represents the region bounded by
2
∑

k=1
Lξk

E
(

ξ0.06
k 1{ξk>x}

)
and

2
∑

k=1
L−1

ξk
E
(

ξ0.06
k 1{ξk>x}

)
. Cyan area

reflects the additional error using bounding coefficients Lξ
2 = min{Lξ1 , Lξ2} and (Lξ

2)
−1.

• Under the conditions of Example 5, Theorem 3 implies that E
(
(ξ1 + ξ2)

0.8
1{ξ1+ξ2>x}

)
can be approximated by sum

2

∑
k=1

E
(

ξ0.8
k 1ξk>x

)
=

4
9

(
10−blog2 xc

(
21.8dlog2 xe − x1.8

)
+

(21.8 − 1)(24/5/5)dlog2 xe

1− 24/5/5

)

+
7

18

[(
3
10

)blog2 xc(
2dlog2 xe − x1.8

)
+

(21.8 − 1)(24/53/10)dlog2 xe

1− 24/53/10

]
, x > 1,

for large x and for all three parameter ϑ values. The simulated values of
E
(
(ξ1 + ξ2)

0.8
1{ξ1+ξ2>x}

)
and its asymptotic values are presented in Figure 3.
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Figure 3. Simulated and asymptotic values for the truncated expectation of Example 5. Solid red

line represents the exact asymptotic values of
2
∑
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E
(
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k 1{ξk>x}

)
.
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From the presented graphs, we can see that the tail expectationsE((ξ1 + ξ2)
α
1{ξ1+ξ2>x})

are approximated quite accurately by their asymptotic values in all three examples. In
addition, the effect of the copula dependence implied by the parameter ϑ quickly becomes
negligible, as x attains larger values. In addition, we observe that the scale of the horizontal
axis is different in each of the graphs, which reflects the different rate of convergence in the
three examples.

To perform Monte Carlo simulations evaluating E((ξ1 + ξ2)
α
1{ξ1+ξ2>x}) for each of

the three examples, we firstly generated two samples consisting of M = 2× 107 uniform
random variates, namely vectors (t1, . . . , tM) and (v1, . . . , vM), and transformed them ac-
cording to Algorithm N to induce the FGM copula dependence. Then, we modified each of
the resulting vectors (u1, . . . , uM) and (v1, . . . , vM) according to the inverse probability inte-

gral transform described in Section 6.1, obtaining samples
{

F←ξ1
(uk), F←ξ2

(vk)
}M

k=1
from dis-

tributions Fξ1 and Fξ2 . Finally, we replaced elements of the collection{
(F←ξ1

(uk) + F←ξ2
(vk))

α
}M

k=1
exceeding given threshold x by zeroes and calculated the em-

pirical mean of the resulting vector.
All simulations were computed in the statistical programming package R [48]. Apart

from the base R functions, several others from the tictoc [49], tikzDevice [50], furrr [51] and
tidyverse [52] libraries were used.

7. Conclusions

In this paper, we investigate the asymptotic behaviour of tails of the moments for
randomly weighted sums with possibly dependent dominatedly varying summands. Our
results improve and generalise other related findings in the literature. Firstly, by putting
the L-indices of individual summands inside the bounding sums, we achieve sharper
asymptotic bounds under pQAI dependence structure. Moreover, we relax the condition
for the exponent, allowing it to be any fixed nonnegative real number. Finally, in the case
of randomly weighted sums, we substitute the boundedness condition on random weights
by a less restrictive moments condition.

To illustrate and further validate the obtained results, we performed a Monte Carlo
simulation study in which we considered three concrete examples of random sums from
disjoint subclasses of dominatedly varying distributions. The simulations confirmed our
derived asymptotic relations.
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