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gintaras.tamosauskas@ff.vu.lt

* Correspondence: giedrius.sinkevicius@ftmc.lt

Abstract: Pockels cells used as electro-optical modulators in high-power high-repetition lasers suffer
from piezoelectric ringing phenomenon due to piezoelectric properties of the crystals. A new method
for active suppression of the piezoelectric ringing in Pockels cells is proposed in this work. It is based
on symmetric control of Pockels cell using burst of short positive and negative voltage pulses with the
same amplitude instead of a single long pulse for light polarization modulation. Rising and falling
edges of pulses of the burst induce symmetrical acoustic waves of the opposite phase and cancel
the piezoelectric ringing of the crystal. A new high voltage driver capable of generating positive
and negative pulses of tens of nanoseconds of 3 kV magnitude was developed for this purpose. The
amplitude of laser beam intensity pulsations caused by the piezoelectric ringing can be reduced
up to five times when active suppression method is used for the deuterated potassium dihydrogen
phosphate (DKDP) Pockels cell. Such crystals like DKDP, LiNbO3, and LiTaO3 may benefit from the
proposed method and find new use in lasers of high repetition rate where piezoelectric ringing is a
major limiting factor.

Keywords: laser cavity; DKDP Pockels cell; piezoelectric ringing; high voltage driver

1. Introduction

High power laser systems are increasingly used in material processing. The so-called
Q-switching technique is used to produce high power laser pulses. Many methods for
implementation of Q-switching have been developed [1–8]. However, for high laser power
applications only a few methods are applied. One of the most commonly used methods
is based on electro-optical modulators, also known as Pockels cells. Pockels cells excel
among other modulator types due to their high optical contrast ratio [9], which is the main
parameter of the electro-optic modulator.

To control the Pockels cell, high voltage (few kilovolt) pulses have to be applied. Volt-
age pulses change the refractive index of the Pockels cell material and, as a consequence,
induces changes in the polarization of the laser beam [10–12]. Change in the polariza-
tion changes the intensity of the output beam after the polarizer, which is a part of the
Q-switching system based on the Pockels cell. Optical contrast ratio is measured by placing
a Pockels cell between crossed polarizers (Figure 1a). Polarizer splits the transmitted beam
into two beams and directs them in different directions, depending on the polarization of
incident beam. The contrast ratio is determined as a ratio of split beams’ intensities [13,14].
Beam intensity is measured using a detector that produces a signal (voltage Ud) propor-
tional to the light intensity and this signal we call optical response. Voltage of the detector
proportional to the optical response of the Pockels cell when a continuous wave laser is
used, is presented in Figure 1a.
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Figure 1. Timing diagram of operation of Pockels cell in: (a) extracavity mode; (b) intracavity mode (Ud is detector
output voltage).

Pockels cells mainly find application as an electrically controlled optical gate when
combined with the polarizer. This is a very effective method to achieve nanosecond pulse
generation in lasers. Pockels cells are used inside regenerative amplifiers and out of the
cavity to manipulate pulses such as for single pulse selection, pulse train formation, and
repetition division. However, a phenomenon called piezoelectric ringing significantly
reduces the optical contrast ratio in the Pockels cells. It is caused by acoustic waves
inside the crystal, which are induced by high voltage pulses used to control the Pockels
cell [15–18]. Acoustic waves cause modification of the refractive index of the crystal, thus
modulating polarization of the laser beam and, as a result, reduce the optical contrast
ratio [19–23].

In this paper we address the problem of the piezoelectric ringing, which arises when
a laser operates at high switching frequency in the range from 10 kHz to 10 MHz. At
high switching frequency, acoustic waves excited in the Pockels cell crystal have no time
to naturally dissipate until the next high voltage pulse is applied, and, therefore, the
contrast decreases [19–23]. Since the processes of electro-optical switching and generation
of acoustic wave are of different response symmetry, it is possible to keep the first one going
and to cancel the second one if mean voltage is zero or positive–negative control symmetry
is achieved. Though this is a simplistic explanation, it is at the core of present research.

Two situations are presented in Figure 1 to demonstrate the influence of the piezoelec-
tric ringing phenomenon on the operation of the Pokels cell: first, when the cell is outside
the laser cavity (extracavity); second, when it is inside the cavity (intracavity) [10,12,24].
The scales of the axis in the Figure 1 are given for example purposes only.

Extracavity mode (Figure 1a) is used to generate the train of optical pulses. In this
mode, the laser system is in one of the following states: “active time”, when voltage is
not applied to the Pockels cell (there is no optical pulse), and “idle time”, when voltage is
applied to the Pockels cell (optical pulse is present). In the active time mode high voltage
is applied to the Pockels cell, which allows the optical beam to propagate directly through
the polarizer. Optical pulse intensity is measured using the detector, which provides the
voltage Ud proportional to light intensity. The graphs presented in Figure 1a demonstrate
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how piezoelectric ringing can disturb the train of optical pulses and, as a consequence,
reduce the optical contrast.

Intracavity operating mode (Figure 1b) presumes the amplification of the optical
signal. During the “active time” the single optical pulse of pulsed seed laser is trapped
between the two mirrors and is amplified by the lasing medium (not shown in the picture)
with each round trip. The amplified pulse circulating inside the two mirrors is shown
in Figure 1b as an “intracavity pulse”. It is necessary to ensure high optical contrast in
the intracavity operating mode to achieve high gain and prevent false seeding. Fast high
voltage driver can change the Pockels cell voltage polarity without tiggering false seeding.
However, optical contrast has been reduced by piezoelectric ringing and cause the false
seeding shown in Figure 1b.

A new method for active suppression of the piezoelectric ringing in Pockels cells is
proposed in this work. It is based on symmetric control of Pockels cells using burst of short
(tens of nanoseconds) positive and negative high voltage pulses with the same amplitude,
instead of a single continuous pulse, as is the current practice. We suggest that the falling
edges of short pulses in the burst induce symmetrical acoustic waves of the opposite phase,
which could cancel the piezoelectric ringing in the Pockels cell.

A new high voltage driver capable of generating a burst of short duration high voltage
pulses was developed. The proposed active suppression method using high voltage
Pockels cells driver allows us to increase the versatility of crystals with strong piezoelectric
properties, such as LiNbO3 and LiTaO3.

2. High Voltage Driver for Active Suppression of Piezoelectric Ringing

The high voltage drivers for the Pockels cells are based on the metal-oxide-semiconductor
field-effect transistor (MOSFET) [25,26] or bipolar avalanche transistor [27] switches. Both
concepts require transistor connection in series to handle high voltages. However, high volt-
age drivers, which have to operate at frequencies higher than 100 kHz can be implemented
just using the MOSFET transistor concept.

The circuit diagram of the developed high voltage driver is given in Figure 2. The
driver contains two arms. Each arm includes 4 transistor switches (Q1–Q4 and Q5–Q8,
respectively), forming the symmetric high voltage driver circuit called H-bridge. The
output of the H-bridge is loaded by the Pockels cell.
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The Silicon Carbide (SiC) MOSFETs were used for the realization of switches of the high
voltage driver. The SiC MOSFETs, due to a smaller chip, are characterized by lower parasitic
capacitances, therefore, they provide higher dV/dt and dI/dt [28,29], i.e., they allow us to
achieve better dynamic characteristics and, as a consequence, allow us to generate HV
pulses with a shorter transition time compared to ordinary high voltage drivers based
on Silicon (Si) MOSFETs [30]. Additionally, SiC MOSFETs are characterized by higher
breakdown voltage and lower on-state resistance when compared to Si MOSFETs [31].
Every switch consists of two transistors connected in series. Series connection of the
MOSFETs is used to share voltage in high-voltage applications [32,33]. In our case, the
breakdown voltage of every used SiC MOSFET was 1.7 kV. The high voltage driver is able
to generate high voltage pulses of up to 3 kV amplitude with a rising edge duration of
7.6 ns. Photos of the developed high voltage driver are presented in Figure 3.

Symmetry 2021, 13, x FOR PEER REVIEW 4 of 11 
 

 

 

Figure 2. Circuit diagram of developed high voltage driver. 

The Silicon Carbide (SiC) MOSFETs were used for the realization of switches of the 

high voltage driver. The SiC MOSFETs, due to a smaller chip, are characterized by lower 

parasitic capacitances, therefore, they provide higher dV/dt and dI/dt [28,29], i.e., they 

allow us to achieve better dynamic characteristics and, as a consequence, allow us to 

generate HV pulses with a shorter transition time compared to ordinary high voltage 

drivers based on Silicon (Si) MOSFETs [30]. Additionally, SiC MOSFETs are characterized 

by higher breakdown voltage and lower on-state resistance when compared to Si 

MOSFETs [31]. Every switch consists of two transistors connected in series. Series 

connection of the MOSFETs is used to share voltage in high-voltage applications [32,33]. 

In our case, the breakdown voltage of every used SiC MOSFET was 1.7 kV. The high 

voltage driver is able to generate high voltage pulses of up to 3 kV amplitude with a rising 

edge duration of 7.6 ns. Photos of the developed high voltage driver are presented in 

Figure 3. 

  

(a) (b) 

Figure 3. Photo of developed high voltage driver: (a) top and bottom of one arm; (b) the whole high voltage driver. 

The transistors of H-bridge Q1–Q8 are controlled using reinforced isolation dual-

channel gate drivers, which provide galvanic decoupling between the H-bridge and the 

controller. These gate drivers guarantee a 6 ns pulse transition. To avoid shoot-through of 

Figure 3. Photo of developed high voltage driver: (a) top and bottom of one arm; (b) the whole high voltage driver.

The transistors of H-bridge Q1–Q8 are controlled using reinforced isolation dual-
channel gate drivers, which provide galvanic decoupling between the H-bridge and the
controller. These gate drivers guarantee a 6 ns pulse transition. To avoid shoot-through
of switch transistors in the arm of H-bridge, the delay of the control pulse that opens the
switch of the arm (dead-time) has to be introduced. It was experimentally determined
that the shortest dead-time which guarantees safe operation of switch transistors is 45 ns.
Control inputs of the gate drivers are connected to P1–P4 connectors (SMB type) and 50 Ω
impedance matching circuit. Two isolated dc/dc power supplies are used for the supply of
every gate driver. Resistors R1 and R2 (Figure 2) are used to provide high impedance path
for slow discharge of the Pockels cell if no high voltage is applied. The shortest possible
high voltage pulses which can be generated by one of the high voltage driver arms and by
the whole high voltage driver are presented in Figure 4. Durations of these pulses are 45 ns
and 10 ns, respectively.

Timing diagrams of the high voltage driver used for the formation of short high
voltage pulses and burst of the pulses are presented in Figure 5. Symmetrical positive
and negative high voltage pulses can be formed using the H-bridge configuration of the
high voltage driver. In the Pockels cell low frequency acoustic waves are generated when
transition of voltage occurs. Initial phase of acoustic wave is voltage polarity dependent.
Using developed high voltage driver, burst of pulses can be arranged to minimize induced
low frequency acoustic waves.
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3. Experimental Investigation of Active Piezoelectric Ringing Suppression

A deuterated potassium dihydrogen phosphate (DKDP) Pockels cell crystal with
dimensions of 12 mm aperture and 24 mm length was used for the experiment in a setup
equivalent to the one shown in Figure 1a. Experiment was performed using continuous
wave laser for observation of dynamic processes. Experimentally determined frequency of
acoustic wave caused by the piezoelectric ringing in the analysed DKDP Pockels cell was
100 kHz. A single high voltage pulse with the duration of 5 µs, which is equal to half period
of piezoelectric ringing, was applied to the DKDP Pockels cell in our first experiment. Such
a pulse induces reinforced piezoelectric ringing [34]. Optical response of the DKDP Pockels
cell is presented in Figure 6a. Distorted shape of the pulse that follows after the rising edge
of the pulse shows that the acoustic wave is generated inside the DKDP crystal. After the
falling edge of the pulse, optical intensity does not fall to steady state value, but exhibits
pulsations with the amplitude that reaches up to 30% of the peak intensity.
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Optical response of the DKDP Pockels cell, when the active piezoelectric ringing sup-
pression is provided by using a burst of short duration pulses, is presented in Figure 6b–d.
The value of the intensity during the burst varies along with the burst pulses. The pul-
sations of the intensity after the burst of pulses are cancelled when the duration of burst
pulses is 1 µs. When the duration of burst pulses is 0.5 µs, some pulsations of the intensity
are present; however, their amplitude is about five times lower compared when a single
continuous high voltage pulse is applied to the Pockels cell (Figure 6a).

We observed that asymmetry of optical response appears when a burst of short
duration pulses is applied. This is illustrated in Figure 6d when pulse duration is 250 ns.
Note that odd and even pulses are of the same amplitude but opposite polarity (Figure 5).
Two cases were investigated: when the amplitude of high voltage pulses in the burst was
the same, and when the amplitude of even pulses was lower than the amplitude of odd
pulses. The results show that the deviation of intensity during the burst can be reduced
by decreasing the amplitude of even voltage pulses. The best result was achieved when
the amplitude of even pulses was reduced by 18% compared to amplitude of odd pulses
(Figure 7). The deviation of the intensity during the burst decreases up to three times in
such a case. Different amplitudes of even and odd high voltage pulses were achieved
by using supply sources V1 and V2 of the different arms of H-bridge (Figure 2) with
different voltages.
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DKDP Pockels cell optical responses presented in Figures 6 and 7 show significant
reduction of the piezoelectric ringing impact on the contrast of the Pockels cell when the
proposed active piezoelectric ringing suppression method is applied.

In the next experiment, periodic high voltage high frequency pulses were applied
to the DKDP Pockels cell investigating operation in intracavity and extracavity modes
(Figure 1). Acoustic waves caused by periodic high frequency pulses have no time to
naturally dissipate and increase with each new pulse. Results presented in Figure 8 show
the case when high voltage pulses of 5 µs duration and 25 kHz frequency are applied to the
DKDP Pockels cell. When no active piezoelectric ringing suppression is used, impact of the
piezoelectric ringing on the beam intensity increases over time (Figure 8a). After multiple
pulses, maximal acoustic wave amplitude is reached (resonance occurs). On the other hand,
application of the proposed active piezoelectric ringing suppression method based on the
burst of short duration pulses allows us to achieve stable non-resonant operation of the
Pockels cell. This was proven by the investigation, which was performed for the burst that
contains 13 pulses of 0.384 µs duration (Figure 8b).

Results presented in Figure 9 display the optical response of the DKDP Pockels cell
when 1 µs duration periodic high voltage pulses with 166 kHz frequency are applied.
Implementing a burst of high voltage pulses which contains just three pulses of 0.33 µs
instead of continuous pulses can reduce the amplitude of the piezoelectric ringing in the
active time window up to five times. In this experiment, variations of the intensity during
the burst of pulses have been compensated by adjusting the voltage of supply sources V1
and V2 as shown in Figure 2.

Investigation results show that the proposed active piezoelectric ringing suppression
method for DKDP Pockels cells can be implemented in the intracavity as well as extracavity
applications of lasers.
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4. Discussion

The developed high voltage Pockels cells driver based on silicon carbide MOSFET
transistors is capable of generating short pulses with duration of tens of nanoseconds, with
3 kV amplitude and 7.6 ns rising edge duration. It allows to implement the proposed active
piezoelectric ringing suppression in the Pockels cell crystals using a burst of short high
voltage pulses, instead of one long duration continuous pulse.

The experiment shows that when a Pockels cell based on DKDP crystal is controlled
using a 5 µs continuous high voltage pulse, the optical intensity of the probing laser beam
does not reach the same value as when it is in the steady state. Instead, it exhibits pulsations
with the amplitude that reaches up to 30% of the peak intensity due to piezoelectric ringing.
The application of a burst of five pulses with 1 µs duration allows us to cancel the pulsations
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of the intensity after the burst ends. When the duration of burst pulses is 0.5 µs, some
intensity pulsations are present; however, the amplitude of pulsations is about five times
lower compared to the case when a single continuous high voltage pulse is used.

The difference in transmittance of a laser beam when a burst consists of symmetrical
electric pulses of positive and negative polarity can be decreased by reducing the amplitude
of even high voltage pulses of the burst. The best result was achieved when the amplitude
of even voltage pulses was reduced by 18% as compared to odd pulses. The deviation of the
intensity during the burst decreases up to three times in such a case. Similar results were
obtained at different frequencies and a different number of pulses in the burst. However, the
price for the compensation of the intensity pulsations in the active phase is high-frequency
modulation of the intensity in the idle phase.

New possibilities of high voltage switching using modern components provided by
the semiconductor industry open new perspectives to develop original circuits, and, as a
result, new methods to deal with earlier unsolvable problems. The problem we address in
this paper is piezoelectric ringing of the crystals used in Pockels cells. With drivers capable
of changing voltage and its polarity at much higher frequencies as is necessary for optical
pulse control, we achieved significant reduction of distortions caused by piezoelectric effect
and maintained basic functionality. The method is ready to use for applications outside of
the laser cavity and shows good potential even for applications inside the cavity, where
electric pulse formation and control should be very precise.
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