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Abstract. The task of identification of randomly scattered “bad” items in a fixed set of objects
is a frequent one, and there are many ways to deal with it. “Group testing” (GT) refers to the
testing strategy aiming to effectively replace the inspection of single objects by the inspection of
groups spanning more than one object. First announced by Dorfman in 1943, the methodology has
underwent vigorous development, and though many related research still take place, the ground
ideas remain the same. In the present paper, we revisit two classical GT algorithms: the Dorfman’s
algorithm and the halving algorithm. Our fresh treatment of the latter and expository comparison of
the two is devoted to dissemination of GT ideas, which are so important in the current COVID-19
induced pandemic situation.

Keywords: group testing, quick sort algorithm, COVID-19.

1 Introduction

The task of identification of bad items in a given set of objects arises quite often. For
example, consider identification of: (i) the infected patients in a fixed cohort or (ii) the
defective items in the production batch. Usually, this identification task is a composite
problem and spans many subtasks. One of such subtasks can be described as “an efficient
utilization of resources devoted to testing of investigated objects”. It turns out that, among
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plenitude of context dependent methods designed for the solution of this subtask, the
appropriately chosen testing plan plays an exceptional role since it alone can reduce the
testing costs substantially. This is the contextual target of the present paper. To be more
precise, we focus on testing strategies widely known under the name of Group (or Pooled
Sample) Testing (in what follows, we make use of an abbreviation GT). The core idea
underlying GT strategy is an observation that, in many cases, the testing of single items
can be replaced by the testing of a group spanning more than one item. Though it is
difficult to trace back the exact date and inventor of this cornerstone idea (for a good
historical account, see [13, Chap. 1]), without doubt, much of the credit goes to the
pioneering work of Dorfman [12]. In that paper, the blood testing problem was described,
and the following scheme was suggested. Given N individual blood samples, pool them
and test for the presence of an infection in the pooled sample; in case of the negative test –
finish; in case of the positive test – retest each single patient. The rationale behind is clear:
if the prevalence of the infection is low, one usually ends up with a single test applied to
the pool instead of N tests applied individually.

Since appearance of Dorfman’s work [12] in 1943, GT ideas were evolving in many
directions and found important applications in molecular biology, quality control, com-
puter science and other fields. Digging into the literature, one can observe that it is indeed
very widespread across different disciplines. Because of this reason, some developments
were overlapping and rediscovered by researchers working in the different fields. Our
personal familiarity with the field also underwent this route: attracted by potential appli-
cations in the context of COVID-19 epidemics, we have rediscovered some well-known
facts. Nonetheless, the attained experience and understanding of the importance of the tool
inspired us to write a promotional paper on the topic. This is the main intent of the paper:
we believe that, in the current pandemic situation, the spread of GT ideas and attraction of
other researchers to the field is an important and meaningful task. We do not propose novel
GT schemes or methodological improvements. Our presentation is primarily devoted to
those unfamiliar with the subject aiming to provide a quick lightweight introduction
“by example” without delving into details yet giving a flavor of the topic as a whole.
Choosing a mathematical journal, we, first of all, were interested in the dissemination
within the mathematically oriented community. Secondly, while getting familiar with
the topic, we have encountered a lot of papers, where the subject was treated without
sufficient mathematical rigorousness. We therefore felt that our rigorous treatment of the
GT scheme H (see Section 2), unseen (or at least unobserved) by us, was a missing item
in the existing literature. Finally, after submission of the initial version of the paper, we
have discovered that our Proposition 2 adds some new information to what is known about
classical Dorfman’s scheme (see the comments in Section 2).

The remaining part of the paper is organized as follows. In Section 2, we provide
some preliminaries, then describe and contrast two classical GT schemes. In Section 3,
we give an accompanying discussion highlighting some relevant issues and skim through
the related literature. Appendices A and B contain some mathematical derivations and
tables.

Because of COVID and the exemplary nature, we attach the whole presentation to the
biomedical context.
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2 Two classical GT schemes

Consider the following setup. Assume that the prevalence of some disease (the fraction of
the infected individuals) is equal to p ∈ (0, 1) in an infinite (or large enough) population.
A cohort spanning N independent individuals has to be tested, and infected patients have
to be identified. To achieve the goal, samples are collected from each individual. The
applied test performs equally well for individual and for pooled samples: a situation might
occur, e.g., when the test indicates the presence of the infection in the blood sample
and there is no difference whether the latter is obtained from a single individual or from
a pooled cohort of samples. For the situation described, physicians can choose different
testing strategies. Let us assume that the following are three possible choices2.

Scheme A: Test each patient’s sample.
Scheme D: Conduct testing of the pooled sample. Test each member of the cohort sepa-

rately only in case of detected infection in the pooled sample.
Scheme H:

Step 1. Test pooled sample of the whole cohort. Proceed to Step 2.
Step 2. If the test is positive, proceed to Step 3, otherwise, finish testing cohort.
Step 3. Divide the cohort into two parts consisting of the first and second halves,

respectively. Apply the whole algorithm to the two obtained parts recursively.

Although it is not obvious at the first glance, Schemes D and H can be much more ef-
ficient as compared to Scheme A, provided prevalence p is low enough. To give a rigorous
justification (along with the concept of efficiency), let us formally define the underlying
model.

Consider the sample of N individuals. Put Xi = 1, provided the test of ith individual
is positive, and Xi = 0 otherwise. Let S = SN = X1 + · · ·+XN be the total number of
infected individuals in the sample, and let T = TN be the total number of tests applied to
the cohort.

We start with Scheme D. The test is applied once if the result is negative, and it is
further applied to each of N individuals otherwise, i.e.,

T = 1 +N · 1{S > 0}.

The above implies that X1, . . . , XN are independent identically distributed (i.i.d.) ran-
dom variables each having Bernoulli distribution Be(p). Therefore, S has the binomial
distribution Bin(N, p). Consequently, an average number of tests per cohort is

ET = 1 +NP(S > 0) = 1 +N
(
1− qN

)
,

where q := 1− p. An average number of tests per individual, say t = t(N), is

t(N) =
ET

N
=

1

N
+ 1− qN . (1)

2The notations for a short reference of GT schemes come from Dorfman (D); Halving (H). Scheme A reflects
the most naive and straightforward option.
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Consider a function t : (0,∞) 7→ (0,∞) given in (1). By equating its derivative to 0 we
see that the stationary points solve equation

1

N2
= −qN ln q or, equivalently, N = q−N/2

(
ln

1

q

)−1/2
, (2)

which is a fixed point equation for g(N) = q−N/2(ln(1/q))−1/2,N ∈ (0,∞), and hence,
can be easily solved iteratively. It is further not difficult to prove that, for p in the region
enclosing (0, 0.2), there exists a unique solution Np > 0 of (2), which is a minimizer of
t(N) (see Proposition 2 below). Then, turning back to economic/biomedical interpreta-
tion, we conclude that, having a cohort of bNpc (here and in the sequel, byc stands for an
integer part of y ∈ R) individuals, Scheme D results in a lowest average number of tests
per person, which is possible when applying scheme of this type for a population having
prevalence p. Scheme A, in contrast, always has a constant number of tests 1 per person.
Therefore, an average (absolute) gain attained applying Scheme D instead of Scheme A
is given by the difference

Gp = 1− t(Np) = qNp − 1

Np
.

Right panel in Fig. 1 shows the graph of p 7→ 100Gp, p ∈ (0, 0.2), which is an average
gain measured by the number of tests saved per 100 individuals. The corresponding values
are provided in Table B1 (see Appendix B). An accompanying graph of p 7→ Np (see the
left panel of Fig. 1) demonstrates dependence of an optimal sample size on p. To obtain
a fast numerical evidence, assume that N is bounded away from zero and pN → 0. Then
from (2) it follows that the optimal sample size satisfies

N ∼ 1
√
p

and t(N) =
1

N
+ 1− (1− p)N ∼ 1

N
+ pN ∼ 2

√
p.

Hence, assuming that p is small enough for pN ≈ 0 to hold, the above implies that

Gp ≈ 1− 2
√
p.

For example, if p = 0.01, then we have Gp ≈ 0.8, i.e., an approximate average gain is
80% or so.

Now let us switch to the Scheme H. Its main features are summarized in the following
proposition (for the proof, see Appendix A).

Proposition 1. Assume the Scheme H. Then

(i) an average number of tests per person is given by

t(N) =
1

N
+ 2

log2 N∑
k=1

1− q2k

2k

=
1

N
+ 2 log2N

1∫
0

( 1∫
q

x2
1+bv log2 Nc−1 dx

)
dv; (3)
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(ii) an average number of tests per person in the case of an infinitely large cohort is

t(∞) = lim
N→∞

t(N) = 2

∞∑
k=1

1− q2k

2k
;

(iii) for a fixed p ∈ (0, 1), function t : N 7→ (0,∞) admits at most two mini-
mizers Np: the value N = Np corresponding to optimal sample size is either
b1/(2 log2(1/q))c or b1/(2 log2(1/q))c+ 1.

Inspection of the results in the statement of the proposition leads to a quick compari-
son of Scheme H with A and D. Indeed, consider first the limit in (ii). Obviously,

t(∞) 6 2

(
1− q2

2
− q4

4

)
.

Hence, for q ≈ 1 (or alternatively p ≈ 0), t(∞) < 1. The latter means that, when the
prevalence is low, this scheme always outperforms common sequential Scheme A. Again,
to gain a quick quantitative insight, assume that p is small enough for pN ≈ 0 to hold.
Then turning to (iii) and taking a “continuous” (undiscretized) version of Np equal to
ln 2/(2 ln(1/q)) yields relationships (see Remark A1, Eq. (A.3))

Np ≈
ln 2

2p
and t(Np) ≈

2p

ln 2
+ 2p log2

ln 2

2p
≈ −2p log2 p. (4)

Therefore, an approximation to an average gain Gp = 1 − t(Np) is 1 + 2p log2 p.
Taking, e.g., p = 0.01 results in G0.01 ≈ 0.867. Considering analogous example given
for Scheme D, we see that the gain has an increase close to 7%. In fact, this is not
surprising (for a visual comparison of Schemes D and H on the linear and the log–log
scales, see Fig. 1, and, for the numerical one, see Tables B1 and B2 in Appendix B) since,
for Scheme D, we had Gp ≈ 1 − 2

√
p and p log2 p/

√
p → 0 as p → 0. Equality (4),

however, exhibits some magic flavor. To see this, note that, for p ≈ 0, entropy Ip of
X ∼ Be(p) is asymptotically equivalent to p log2 p since

Ip = p log2 p+ (1− p) log2(1− p)
= p log2 p− p(1− p) + o(p)

= p log2 p
(
1 + o(1)

)
.

Consequently, (4) means that the optimal average number of tests per one individual scales
like entropy of the prevalence of the infection. Keeping in a view the above relationship,
it is not surprising that the significant number of works [1, 8, 19] have approached the
testing problem from the information theory perspective. In the next section, we provide
additional comments regarding connections with the information theory. Here we end up
with the previously mentioned Proposition 2, which is proved in Appendix A.

Proposition 2. Let p ∈ A := (0, 1 − e−4/e
2

) be fixed. Consider function gp(N) =
g(N) = q−N/2(ln(1/q))−1/2,N > 0. It admits a unique fixed pointNp, which minimizes
t(N) given by (1).
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Figure 1. Scheme H (red) vs. Scheme D (black) on the linear and the log–log scale.

The above proposition can be viewed as a counterpart of Proposition 1. Note that it
does not contain analytical expression of an optimal sample size. The latter was given
by Samuels [35] and is either 1 + bp−1/2c or 2 + bp−1/2c. Of most importance is that
Samuels [35] not only provided the analytical expression of the optimal sample size but
has also shown that, for the case of Scheme D, the optimal sample size equals to 1 for
p > 1− (1/3)1/3 ≈ 0.31. This, in turn, is in agreement with the fundamental fact of the
GT theory discovered by Ungar [42]: if p > (3−

√
5)/2 ≈ 0.38, then there does not exist

an algorithm that is better than individual one-by-one testing.

An interesting detail here is that our proof given in Appendix A differs from that of
Samuels and leads to an exact analytical expression for the range of p (the set A above),
where gp(N) has a unique minimizer.
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3 Discussion

Since its appearance, the Dorfman’s scheme D was rigorously investigated by many
authors (we refer to [23,35,39,40] to name a few). Talking about Scheme H, the situation
is a bit different. To our best knowledge, the reference [46] is the only work close to
ours both in nature of investigations and results. However, in that paper, the authors focus
on the treatment of an asymptotic regime of Scheme H when p → 0. Majority of other
references encountered by us provide instructions suitable for the practical application
of Scheme H with a brief and nonrigorous theoretical background. For example, in the
present context, it was currently afresh discussed by Gollier and Gossner [18], Mentus
et al. [29] and Shani-Narkiss et al. [37]. For an older reference discussing the case of
nonhomogeneous population (i.e., the one in which the probability of being infected p
may vary across individuals) and containing quite a large body of applied literature on
halving algorithm (i.e., Scheme H), we refer to [4].

One should have noticed that halving, constituting the core of the Scheme H, yields
another link to the information and algorithm theory in addition to the one already men-
tioned3 in Section 2. Namely, in its essence, Scheme H is nothing more than the quick
sort (QS) algorithm designed to sort a set containing keys of two types (bad and good
ones). It is well known that QS yields the best (up to the constant multiple) possible
average performance among comparison-based algorithms: to sort an array having N
nonconstant (i.e., random) items, the smallest average number of comparisons is of the
order N lnN [10], and all randomized “divide-and-conquer” type algorithms (with QS
being one among the rest) have expected time asymptotically equivalent to QS, which
randomly splits sorted set into two equal subsets [11]. Our formula (3) is just a confir-
mation of the well-known fact. To see this, note that, in the context of sorting task, (3)
presents an average number of comparisons per item. Though the order is correct, we
are inclined to think that the multiplier

∫ 1

0
(
∫ 1

q
x2

1+bv log2 Nc−1 dx) dv can be improved
by making use of QS modification (or another comparison-based algorithm) designed
to sort items with a small number of possible values (in our case, there are just two
values: “sick” and “healthy”). On the other hand, as already mentioned above, the order
is optimal since though there are algorithms, which can beat QS when sorting integers,
e.g., [2, 41], they operate under different, i.e., noncomparison-based, mode. In our case,
however, comparison is predefined by the setting of the problem at hand: we assume that
biomedical tests can only be carried out by making use of comparison.

Though biomedical context is very frequent in applications, there are many others
including engineering, environmental sciences, information theory, etc. (see [6, 15, 21,
22, 24–26, 28, 30, 32]). This “real life” contextual diversity brings many constraints to
take into account despite the fact that the standard binomial setting, considered in
Section 2, quite often can be regarded as a good starting approximation. To get a full

3The discussed appearance of entropy in formula (4), in fact, is a simple conclusion following from
Shannon’s coding theory; a bit more on the connections with that theory can be found in Appendix H of the
Supplementary Material of the reference [27].
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understanding of the matter touched, below is a short list of key issues with a brief
description of each.

• Heterogeneity of population. The prevalence of disease may depend on other fac-
tors (e.g., age and gender).
• Imperfectness of the test. The test can have sensitivity and/or specificity below 1.
• Dilution effect. Pooling can reduce testing accuracy substantially. If this is the case,

it is necessary to impose upper bound on the number of pooled samples.
• Implementation costs. In Section 2, we silently assumed that implementation of

the considered schemes only involves retesting related costs. However, it may
involve others as well.
• Dependence. It can happen that tested individuals are somehow related.

All these underpinnings have to be addressed carefully. Take, for example, the last
one. From results presented in Section 2 one can infer that the application of the GT
procedures is most effective when the prevalence is low (p ≈ 0). In such case, under
classical assumption pN → λ > 0, the number of infected individuals SN can be well
approximated by the Poisson distribution Pois(pN), and the approximation remains quite
accurate irrespectively of the nature of the dependence exhibited by summands (see [3,
7, 43] and references therein for results of this kind with possible extensions beyond the
classical setting). It is therefore reasonable to assume that, after switching to Poisson
approximation, at least some of the existing schemes can be carried over to the dependent
case. Clearly, additional restrictions call for new theoretical investigations.

The set of directions of such investigations can be significantly appended by including
other methods and GT related tasks. More concretely, the schemes considered in Section 2
broadly fall into the class of probabilistic GT schemes. Another widely adopted paradigm
is called combinatorial approach. Within its framework, one does not assume any random
mechanism and tries to make use of combinatorial methods in order to identify d bad
items in the given group of N > d objects (see monographs [13, 14]). Speaking about
tasks, up to now, we have focused only on the identification of bad items (or infected
patients) under assumption that the prevalence p is known. In addition to the literature
devoted to this task, there is a huge body of literature dealing with an estimation (both
point and interval) of p from pooled samples observations as well as testing issues (see,
e.g., [16, 20, 34] and references therein).

We hope that our discussion complies well with our initial goal stated in the intro-
duction. To emphasize the relevance of similar promotional discussions in the present
context, we point out a huge burst of papers devoted to similar problems (see, e.g.,
[5, 17, 31, 33, 36, 38, 44, 45]). Besides that, we also note that some countries have already
successfully applied pooling methodology for testing of the SARS-CoV-2 virus.4

4According to Wikipedia [9], “In Israel, researchers at Technion and Rambam Hospital developed a method
for testing samples from 64 patients simultaneously, by pooling the samples and only testing further if the
combined was positive. Pool testing was then adopted in Israel, Germany, Ghana, South Korea, Nebraska,
China and the Indian states Uttar Pradesh, West Bengal, Punjab, Chhattisgarh, and Maharashtra.” Also see “List
of countries implementing pool testing strategy against COVID-19” therein.
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Appendix A: Technical details

Proof of Proposition 1. (i) For 1 6 i 6 j 6 N = 2n, let Mij = {Xi, Xi+1, . . . , Xj},
and let S(i, j) =

∑j
k=iXk be the number of infected individuals in the cohort Mij . Let

1i,j denote an indicator function taking value 1 if there is at least one infected individual
in the group Mi,j , i.e.,

1i,j = 1{S(i, j) > 0}.

Also, let T (i, j) be the total number of tests applied to the cohort Mij after the initial
pooled test. By the description of the testing Scheme H, applying recursive equations, we
have

T = 1 + T (1, N)

= 1 + 11,N

(
1 + T

(
1,
N

2

))
+ 11,N

(
1 + T

(
N

2
+1, N

))
= 1 + 2 · 11,N + 11,N

(
T

(
1,
N

2

)
+ T

(
N

2
+1, N

))
= 1 + 2 · 11,N + 11,N

(
2 · 11,N/2 + 11,N/2

(
T

(
1,
N

4

)
+ T

(
N

4
+1,

N

2

))
+ 2 · 1N/2+1, N + 1N/2+1, N

(
T

(
N

2
+1,

N

2
+
N

4

)
+ T

(
N

2
+
N

4
+1, N

)))
= 1 + 2 · 11,N + 2(11,N/2 + 1N/2+1, N )

+ 11,N/2

(
T

(
1,
N

4

)
+ T

(
N

4
+1,

N

2

))
+ 1N/2+1, N

(
T

(
N

2
+1,

N

2
+
N

4

)
+ T

(
N

2
+
N

4
+1, N

))
= · · ·

= 1 + 2 · 11,N + 2(11,N/2 + 1N/2+1, N )

+ 2(11,N/4 + 1N/4+1,N/2 + 1N/2+1, N/2+N/4 + 1N/2+N/4+1, N )

+ · · ·+ 2(11,2 + 13,4 + · · ·+ 1N−1, N ).

Taking expectations yields

ET = 1 + 2

n−1∑
j=0

2jP
{
S
(
1, 2n−j

)
> 0
}
= 1 + 2

n−1∑
j=0

2j
(
1− q2

n−j)
= 1 + 2 · 2n

n∑
k=1

1− q2k

2k
. (A.1)
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Hence, the first equality in (i). For the second one, take the last sum above and continue
as follows:

n∑
k=1

1− q2k

2k
=

n∑
k=1

1∫
q

x2
k−1 dx =

n∑
k=1

k+1∫
k

( 1∫
q

x2
byc−1 dx

)
dy

=

n+1∫
1

( 1∫
q

x2
byc−1 dx

)
dy = n

1∫
0

( 1∫
q

x2
1+bvnc−1 dx

)
dv

= log2N

1∫
0

( 1∫
q

x2
1+bv log2 Nc−1 dx

)
dv.

(ii) By (A.1),

t(N) =
ET

N
=

1

N
+ 2

log2 N∑
k=1

1− q2k

2k
→ 2

∞∑
k=1

1− q2k

2k
as N →∞. (A.2)

(iii) Since N = N(n) = 2n, by the second equality in (A.2),

∆n := t
(
N(n+ 1)

)
− t
(
N(n)

)
=

1

2N
− 1

N
+ 2

1− q2N

2N
=

1− 2q2N

2N
.

Clearly, q2N ↓ 0 as N → ∞. Therefore, there exist no more than two Np ∈ N such that
∆n 6 0 for all N 6 Np and ∆n > 0 for all N > Np, and t(Np) attains its minimal value
at Np. To find Np, we first solve 1− 2q2N = 0 with respect to N , and then choose from
the two nearest integers (i.e., bNc, bNc+ 1) the one which minimizes tN .

Remark A1. Note that if N > 1 and pN → 0, then for t(N) in (3), it holds

t(N) =
1

N
+ 2p log2N

(
1 +O

(
pN

log2N

))
. (A.3)

To see this, it suffices to use the following bounds:

1− pn 6 (1− p)n 6 1− pn+
n(n− 1)

2
p2, n > 1.

Proof of Proposition 2. Step 1 (fixed points). Define

v :=
2

ln(1/
√
q)
, f(N) := N − g(N) = N −

√
v

2
e2N/v.

Then equation f ′(N) = 1− e2N/v/
√
v = 0 is equivalent to N = (v ln

√
v)/2. Note that

f ′(N)→ −∞ as N →∞. Moreover, f ′(0) > 0 since 1− (1/
√
v) > 0⇔ p < 1− e−4,
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which is satisfied for any p ∈ A. Therefore, f attains maximal value at

Nmax :=
v ln
√
v

2
(A.4)

and

fmax = Nmax −
√
v

2
e2Nmax/v =

v

2
(ln
√
v − 1) > 0

since ln
√
v − 1 > 0 ⇔ p < 1 − e−4/e

2

. On the other hand, f(0) = −
√
v/2 < 0 and

f(N) → −∞. Consequently, f has two zeroes: Np ∈ (0, Nmax) and Ñp ∈ (Nmax,∞).
The latter means that g has two fixed points.

Step 2 (minimizer). In this step, we show that Np from Step 1 is the minimizer for
t(N) given in (1). By (2),

t′′(Np) =
2

N3
p

− qNp ln2 q = −qNp ln q

(
2

Np
+ ln q

)
.

Hence,

t′′(Np) > 0 ⇐⇒ 2

Np
+ ln q > 0 ⇐⇒ v

2
> Np. (A.5)

From Step 1 (see (A.4)) it follows that Nmax/(v/2) = ln
√
v > 1, i.e., v/2 ∈ (0, Nmax).

Therefore, (A.5) holds if and only if f(v/2) > 0. The latter reads as (v−e
√
v)/2 > 0 and

is equivalent to p < 1 − e−4/e
2

showing that Np (being the critical point of t) is indeed
the announced minimizer. Finally, note that the above analysis also implies that Ñp from
Step 1 is the maximizer of t(N), which affirms the uniqueness of the minimizer.

Remark A2. One can also show that p 7→ Np is strictly decreasing and continuous on A.
However, the latter properties seem to be of less importance, and we omit the details.

Appendix B: Tables

In the tables below, the following information is provided:

• Column “Np” shows an optimal sample size corresponding to p ranging in an
interval given in the column “Range of p”.
• Column “Range of 100Gp” shows an average gain (as defined in the main body of

the paper) per 100 individuals corresponding to values of p andNp given in the two
leading columns. The highest gain corresponds to the lowest p in the corresponding
interval. For example, in Table B1, the first line should be interpreted as follows:
for p ∈ [0.1865, 0.2000], optimal sample size Np is equal to 2; if p = 0.2000,
then average gain per 100 individuals 100Gp is equal to 16.1782; if p = 0.1865,
then 100Gp = 14.000; for intermediate values of p, the value of 100Gp lies in
[14.0000, 16.1782].
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Table B1. Performance of Scheme D.

Np Range of p Range of 100Gp Np Range of p Range of 100Gp

2 0.1865−0.2000 14.0000−16.1782 22 0.0020−0.0021 90.9350−91.1457
3 0.0855−0.1864 20.5225−43.1472 23 0.0019−0.0019 91.3723−91.3723
4 0.0506−0.0854 44.9721−56.2450 24 0.0017−0.0018 91.6016−91.8321
5 0.0336−0.0505 57.1747−64.2917 25 0.0016−0.0016 92.0759−92.0759
6 0.0239−0.0335 64.8434−69.8233 26 0.0015−0.0015 92.3261−92.3261
7 0.0179−0.0238 70.1977−73.8374 27 0.0014−0.0014 92.5843−92.5843
8 0.0140−0.0178 74.1163−76.8337 28 0.0013−0.0013 92.8517−92.8517
9 0.0112−0.0139 77.0523−79.2489 29 0.0012−0.0012 93.1296−93.1296

10 0.0091−0.0111 79.4383−81.2637 30 0.0011−0.0011 93.4188−93.4188
11 0.0076−0.0090 81.4428−82.8596 32 0.0010−0.0010 93.7241−93.7241
12 0.0065−0.0075 83.0288−84.1396 33 0.0009−0.0009 94.0421−94.0421
13 0.0055−0.0064 84.2998−85.3889 35 0.0008−0.0008 94.3806−94.3806
14 0.0048−0.0054 85.5569−86.3428 38 0.0007−0.0007 94.7426−94.7426
15 0.0042−0.0047 86.5106−87.2152 41 0.0006−0.0006 95.1303−95.1303
16 0.0037−0.0041 87.3879−87.9915 45 0.0005−0.0005 95.5524−95.5524
17 0.0033−0.0036 88.1708−88.6533 50 0.0004−0.0004 96.0195−96.0195
18 0.0030−0.0032 88.8385−89.1800 58 0.0003−0.0003 96.5507−96.5507
19 0.0027−0.0029 89.3683−89.7296 71 0.0002−0.0002 97.1814−97.1814
20 0.0024−0.0026 89.9265−90.3079 100 0.0001−0.0001 98.0049−98.0049
21 0.0022−0.0023 90.5176−90.7183

Table B2. Performance of Scheme H.

Np Range of p Range of 100Gp Np Range of p Range of 100Gp

1 0.1592−0.2000 10.2068−18.1573 59 0.0058−0.0058 91.4813−91.4813
2 0.1092−0.1591 18.1801−32.0493 60 0.0057−0.0057 91.5996−91.5996
3 0.0830−0.1091 32.0828−41.7999 61 0.0056−0.0056 91.7184−91.7184
4 0.0670−0.0829 41.8413−48.8858 62 0.0055−0.0055 91.8377−91.8377
5 0.0562−0.0669 48.9333−54.2777 64 0.0054−0.0054 91.9575−91.9575
6 0.0484−0.0561 54.3303−58.5384 65 0.0053−0.0053 92.0779−92.0779
7 0.0424−0.0483 58.5953−62.0600 66 0.0052−0.0052 92.1987−92.1987
8 0.0378−0.0423 62.1207−64.9241 67 0.0051−0.0051 92.3202−92.3202
9 0.0341−0.0377 64.9881−67.3443 69 0.0050−0.0050 92.4422−92.4422

10 0.0311−0.0340 67.4112−69.3911 70 0.0049−0.0049 92.5648−92.5648
11 0.0285−0.0310 69.4607−71.2322 72 0.0048−0.0048 92.6880−92.6880
12 0.0264−0.0284 71.3044−72.7691 73 0.0047−0.0047 92.8118−92.8118
13 0.0245−0.0263 72.8434−74.2009 75 0.0046−0.0046 92.9362−92.9362
14 0.0229−0.0244 74.2775−75.4396 76 0.0045−0.0045 93.0612−93.0612
15 0.0215−0.0228 75.5181−76.5498 78 0.0044−0.0044 93.1869−93.1869
16 0.0202−0.0214 76.6301−77.6042 80 0.0043−0.0043 93.3132−93.3132
17 0.0191−0.0201 77.6863−78.5153 82 0.0042−0.0042 93.4402−93.4402
18 0.0181−0.0190 78.5990−79.3593 84 0.0041−0.0041 93.5678−93.5678
19 0.0172−0.0180 79.4445−80.1325 86 0.0040−0.0040 93.6962−93.6962
20 0.0164−0.0171 80.2193−80.8312 88 0.0039−0.0039 93.8253−93.8253
21 0.0157−0.0163 80.9193−81.4518 91 0.0038−0.0038 93.9552−93.9552
22 0.0150−0.0156 81.5412−82.0814 93 0.0037−0.0037 94.0858−94.0858
23 0.0144−0.0149 82.1721−82.6285 96 0.0036−0.0036 94.2172−94.2172
24 0.0138−0.0143 82.7204−83.1829 98 0.0035−0.0035 94.3493−94.3493
25 0.0133−0.0137 83.2760−83.6506 101 0.0034−0.0034 94.4824−94.4824
26 0.0128−0.0132 83.7448−84.1237 104 0.0033−0.0033 94.6162−94.6162

Continued on next page
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Table B2 (Continued from previous page)
Np Range of p Range of 100Gp Np Range of p Range of 100Gp

27 0.0124−0.0127 84.2190−84.5063 108 0.0032−0.0032 94.7509−94.7509
28 0.0119−0.0123 84.6025−84.9897 111 0.0031−0.0031 94.8866−94.8866
29 0.0115−0.0118 85.0871−85.3808 115 0.0030−0.0030 95.0231−95.0231
30 0.0112−0.0114 85.4792−85.6767 119 0.0029−0.0029 95.1607−95.1607
31 0.0108−0.0111 85.7759−86.0750 123 0.0028−0.0028 95.2992−95.2992
32 0.0105−0.0107 86.1752−86.3764 128 0.0027−0.0027 95.4388−95.4388
33 0.0102−0.0104 86.4775−86.6804 133 0.0026−0.0026 95.5794−95.5794
34 0.0099−0.0101 86.7822−86.9868 138 0.0025−0.0025 95.7211−95.7211
35 0.0096−0.0098 87.0896−87.2959 144 0.0024−0.0024 95.8640−95.8640
36 0.0094−0.0095 87.3996−87.5035 150 0.0023−0.0023 96.0081−96.0081
37 0.0091−0.0093 87.6078−87.8172 157 0.0022−0.0022 96.1534−96.1534
38 0.0089−0.0090 87.9224−88.0279 164 0.0021−0.0021 96.3001−96.3001
39 0.0087−0.0088 88.1337−88.2398 173 0.0020−0.0020 96.4481−96.4481
40 0.0085−0.0086 88.3463−88.4532 182 0.0019−0.0019 96.5976−96.5976
41 0.0083−0.0084 88.5603−88.6678 192 0.0018−0.0018 96.7486−96.7486
42 0.0081−0.0082 88.7757−88.8839 203 0.0017−0.0017 96.9012−96.9012
43 0.0079−0.0080 88.9924−89.1014 216 0.0016−0.0016 97.0555−97.0555
44 0.0077−0.0078 89.2107−89.3203 230 0.0015−0.0015 97.2116−97.2116
45 0.0076−0.0076 89.4303−89.4303 247 0.0014−0.0014 97.3696−97.3696
46 0.0074−0.0075 89.5408−89.6515 266 0.0013−0.0013 97.5297−97.5297
47 0.0072−0.0073 89.7627−89.8743 288 0.0012−0.0012 97.6920−97.6920
48 0.0071−0.0071 89.9863−89.9863 314 0.0011−0.0011 97.8567−97.8567
49 0.0070−0.0070 90.0987−90.0987 346 0.0010−0.0010 98.0241−98.0241
50 0.0068−0.0069 90.2115−90.3247 384 0.0009−0.0009 98.1943−98.1943
51 0.0067−0.0067 90.4383−90.4383 433 0.0008−0.0008 98.3677−98.3677
52 0.0066−0.0066 90.5524−90.5524 494 0.0007−0.0007 98.5448−98.5448
53 0.0064−0.0065 90.6669−90.7819 577 0.0006−0.0006 98.7260−98.7260
54 0.0063−0.0063 90.8973−90.8973 692 0.0005−0.0005 98.9120−98.9120
55 0.0062−0.0062 91.0132−91.0132 866 0.0004−0.0004 99.1039−99.1039
56 0.0061−0.0061 91.1295−91.1295 1155 0.0003−0.0003 99.3030−99.3030
57 0.0060−0.0060 91.2463−91.2463 1732 0.0002−0.0002 99.5119−99.5119
58 0.0059−0.0059 91.3636−91.3636 3465 0.0001−0.0001 99.7360−99.7360
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