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INTRODUCTION 

Solvency II was a major driver for European insurers to upgrade their 

quantitative risk assessment models both for the assessment of the regulatory 

solvency position and internal risk management needs. Major European 

insurance groups have developed and implemented full or partial internal 

models, which value risks from the perspective of a company-specific risk 

profile. 

As demonstrated in Table 1, the majority of the European insurers, 

predominantly small and medium-sized firms, calculate the regulatory 

solvency capital requirement using the standard methods and stress scenarios 

prescribed by the legislation (Standard Formula). Standard Formula prescribes 

that, firstly, an insurer’s regulatory Solvency Capital Requirement (SCR) is 

estimated on an individual risk module/sub-module level. Secondly, the 

individual risk assessments at the risk module and sub-module level are 

aggregated to the total SCR by taking into account the diversification between 

the risks. 

Table 1. The number of Solvency II submissions (solo undertakings) in 2017 by the 

method used for calculation of the Solvency Capital Requirement (SCR). Data source: 

European Insurance and Occupational Pensions Authority (EIOPA). 

Type of insurer Internal 

Model 

Partial 

Internal 

Model 

Standard 

Formula 

Total 

Life insurance  21 29 545 595 

Non-life insurance 37 42 1,519 1,598 

Reinsurance 15 4 253 272 

Composite insurance 8 30 368 406 

Total 81 105 2,685 2,871 

 

In this dissertation, we deal with SCR for the mortality risk sub-module, 

which, according to the Standard Formula, is assessed by calculating the 

amount of loss of insurer’s available Solvency II regulatory capital (Basic 

Own Funds) resulting from an immediate and permanent 15% increase in 

mortality probabilities used for the calculation of the Solvency II technical 

provisions. SCR for mortality risk is aggregated with SCR’s for other life 

underwriting risks, such as lapse risk, longevity risk, expense risk, and life 



 

9 

catastrophic risk, to derive the SCR for life underwriting risk module, which 

is used as an input for calculations of the overall SCR. 

Solvency II Directive requires that SCR is calibrated to the Value-at-Risk 

(VaR) of the basic own funds subject to a confidence level of 99.5% over a 

one-year period. However, as argued by Richards et al. [69]: 

. . . some risks do not fit naturally into a one-year VaR framework and it 

would be excessively dogmatic to insist that the longevity trend risk can only 

be measured over a one-year horizon. 

It seems that this approach is shared by the European Insurance and 

Occupational Pensions Authority (EIOPA), who used a run-off approach for 

the calibration of the uniform mortality shocks for mortality and longevity 

risks during the review of the Standard Formula [23]. The run-off VaR 

methodology is well-established, but to perform solvency calculations strictly 

with the requirements of Solvency II Directive, in this dissertation, we develop 

an alternative one-year VaR methodology and provide a comparison of the 

results derived using both VaR approaches.  

In its essence, the Standard Formula is designed to suit the risk profile of 

the “average” European insurer. However, insurers in the European Union 

(EU) are highly heterogeneous, and the “average” insurer is difficult to define. 

For example, life insurers may be exposed to different levels of mortality risk 

due to the differences in products offered, distribution channels used, term to 

maturity of insurance portfolios, prevailing policy terms and conditions, the 

volatility of mortality in a country where the insurer operates, and several 

other factors. Thus, the Standard Formula mortality risk assessment may not 

reflect the actual risk stemming from a particular insurer’s portfolio.   

The calculation of mortality VaR requires simulations from a stochastic 

mortality model as an input. A model proposed by Lee and Carter [53] started 

a new generation of the extrapolative mortality projection methods, and in its 

original or modified form is widely used both in academic research and in 

practice. Several improvements of the Lee-Carter model have been proposed, 

both from the point of view of model specification and the statistical 

estimation of parameters. In this dissertation, we shall explore three different 

modifications of the Lee-Carter model: the classical model, Poisson 

regression version, firstly developed by Brouhns et al. [10], and state space 

Lee-Carter model and show that different fitting methods can result in 

different confidence intervals of mortality projections and, consequently, in 

different VaRs. 

In particular, the classical stochastic Lee-Carter model, which was used for 

calibrating the Standard Formula, assumes a constant mortality trend and 

constant variance over the fitting and forecasting periods. In the real world, 
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this is not always the case. For example, significant one-off fluctuations in 

mortality can occur due to pandemics, wars, and other events.  Many Central 

and Eastern European countries, after the transformation to free market 

economies, experienced a major one-time change in socio-economic 

development, which had a major impact on mortality development. In 

addition, the classical Lee-Carter model does not allow for the uncertainty of 

parameters, which is an important source of uncertainty in the projections. The 

alternatives of the classical Lee-Carter model can be used to provide the 

required flexibility to overcome these shortcomings.  

State space models (SSM) offer a natural opportunity to extend the Lee-

Carter model both in terms of alternative fitting procedure and additional 

model flexibility. We use two types of SSM: dynamic linear models (DLM), 

which have already been applied in mortality modeling, and SSM with regime 

switching (SSM with switching), which so far were mainly used for modeling 

economic processes. Such models are often referred to as multi-process 

models and are DLMs conditionally on a sequence of indicator variables, 

which represent varying regimes. In the context of mortality modeling, 

switching between stable and volatile socio-economic development 

conditions can positively or negatively affect mortality development. In this 

dissertation, we use the Gibbs sampler Markov Chain Monte Carlo (MCMC) 

method to estimate parameters of SSMs.  

The above sets the background for the key objectives of this dissertation: 

 Develop a mathematical stochastic mortality projection model which 

allows for changes in mortality trend, parameter uncertainty, and 

varying levels of volatility.   

 Develop detailed calculation methods of one-year VaR for mortality 

risk, using one-year and run-off approaches, for application by 

insurance companies for solvency assessment and risk management. 

 Perform a mortality analysis of Lithuania and Sweden and check the 

calibration of the Standard Formula in the area of mortality risk. 

Highlight the key areas where the Standard Formula mortality stress 

parameter deviates from the assessed VaR. 

The theses of this dissertation can be summarized as follows: 

 State space models, such as dynamic linear models and state space 

models with regime switching, and the Gibbs sampler fitting method 

provide a good alternative to modeling changes of mortality trends 

and switching of variance regimes. 
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 Goodness of fit of alternative Lee-Carter model modifications, such 

as classical, Poisson bilinear regression, and state space, varies 

depending on the model’s flexibility and the source data used. 

 Confidence intervals of mortality projections, derived using various 

Lee-Carter model modifications, significantly vary due to different 

goodness of fit, allowance for the uncertainty of parameters, and 

distribution applied for modelling of errors.  

 One-year VaR approach can be used for the assessment of mortality 

risk as an alternative to run-off VaR. Depending on the 

parametrization, the results of VaR calculations using the two 

approaches are significantly different.  

 VaR that was calculated by taking into account specific features of 

the country’s mortality, insurance product, and policy terms is 

significantly different from the VaR calibrated using “average” 

European experience.   

This dissertation follows the following structure. Section 1 discusses the 

research performed so far in the area of mortality VaR and stochastic mortality 

modeling, including the application of state space models. Section 2 discusses 

in detail the three modifications of the Lee-Carter model and their fitting 

methods. We provide the details of the singular value decomposition method 

used in the classical Lee-Carter model, discussed the estimation of 

overdispersed Poisson regression with quasi-likelihood functions, and 

introduce the Gibbs sampler, which is the Bayesian Markov Chain Monte 

Carlo method used for fitting SSMs. The output from the Gibbs sampler also 

allows us to take into account parameter uncertainty in performing the 

simulations.  At the end of the section, a brief overview of few other 

alternative stochastic mortality models is provided. In this section, we develop 

and describe several algorithms used for model fitting and simulation of 

projections. A summary of the algorithms is provided in Table 2. Algorithms 

No. 7-10 were specifically developed for the models proposed in this 

dissertation. Section 3 provides an overview of the data and the model fitting 

results. We provide and discuss the parameter estimates, their uncertainty, as 

well as provide model diagnostics statistics. For the comparison of alternative 

state space models, we calculate the marginal likelihood using sequential 

Monte Carlo methods (particle filter). Section 4 discusses the results of 

mortality projections and provides detailed VaR calculation methodology and 

calculation results. In this section, we develop two alternative VaR 

methodologies: run-off VaR, which considers the possible losses over the who 
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policy term, and one-year VaR, which considers the losses at the end of the 

first projection year. The section  

Table 2. Summary of algorithms used/ developed in the dissertation. 

No. Name Brief description 

1. Simulation using 

classical Lee-

Carter model 

The algorithm is used to simulate random 

mortality projections when the fitting is 

performed using classical Lee-Carter model. 

2. Quasi-likelihood 

IRLS 

The iteratively weighted least squares (IRLS) 

algorithm is used to estimate parameters of 

quasi-likelihood GLM model.  

3. Quasi-Poisson 

Lee-Carter criss-

cross ILRS 

algorithm 

The algorithm allows us to estimate parameters 

of quasi-Poisson GLM model with the bilinear 

term.  In particular, it is used to fit Poisson 

Lee-Carter model. 

4. Simulation using 

Poisson Lee-

Carter model 

The algorithm is used to simulate random 

mortality projections when the fitting is 

performed using Poisson Lee-Carter model. 

5. Kalman filter 

recursion 

The classical recursive algorithm is used to 

estimate unobservable state parameter vector.  

6. Forward Filtering 

Backward 

Sampling 

The algorithm used to sample unobservable 

state parameter vectors conditionally on 

estimated state space model parameters. 

7. Gibbs sampler for 

DLM Lee-Carter 

model 

The algorithm implements the Gibbs sampler 

method for estimation of parameters of linear 

state space Lee-Carter model. 

8. Gibbs sampler for 

SSM Lee-Carter  

with switching 

The algorithm implements the Gibbs sampler 

method for estimation of parameters of SSM 

Lee-Carter with switching. 

9. Simulation using 

state space Lee-

Carter model 

The algorithm is used to simulate random 

mortality projections when the fitting is 

performed using state space Lee-Carter model. 

10. Simulation of 

SSM Lee-Carter 

The algorithm implements auxiliary particle 

filter to simulate state space Lee-Carter with 
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No. Name Brief description 

with switching 

log likelihood 

switching model log likelihood conditional on 

the estimated collection of parameters.   

11. Simulation of log 

density of para- 

meter posterior  

The algorithm performs a simulation of log 

density of posterior of parameters fitted with 

Gibbs sampler. 

 

is concluded with the results of VaR calculations using three Lee-Carter model 

modifications as fitted in Section 3, and comparisons with the Standard 

Formula calculation results. The dissertation is concluded with a discussion of 

the results and their implications for the modeling of insurers’ solvency 

capital. 

A significant part of work in preparing this dissertation was devoted to the 

development of the R software code, used for model fitting, simulation of 

mortality projections, and calculation of VaR. As the building blocks to this 

this code, in some cases we used packages gnm and dlm, which enabled us to 

fit a generalized linear model with the bi-linear term and to run the basic 

Kalman filter recursions, respectively. The rest of the code was developed 

originally for the models proposed and used in this dissertation. Specifically, 

we developed the code for the following:  

 The classical Lee-Carter model fitting using SVD method.  

 Simulation of mortality projections using the classical Lee-Carter 

model (Algorithm 1). 

 The Poisson Lee-Carter model fitting using quasi Poisson method 

(Algorithm 3). Package gnm was used as a building block.  

 Simulation of mortality projections using the Poisson Lee-Carter 

model (Algorithm 4). 

 The state space Lee-Carter model fitting using Gibbs sampler 

(Algorithm 7). Package dlm was used as a building block for basic 

Kalman filter and Forward Filtering Backward Sampling (FFBS) 

recursions.   

 The state space Lee-Carter with switching model fitting using Gibbs 

sampler (Algorithm 8). Package dlm was used as a building block for 

basic Kalman filter and FFBS recursions.   

Continued table. 
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 Simulation of mortality projections using the state space Lee-Carter 

model, with or without switching (Algorithm 9).  

 Simulation of log-likelihood, conditional on estimated parameters, of 

the state space Lee-Carter model, with or without switching 

(Algorithm 10).  

 Simulation of log-density of posterior of parameters fitted with Gibbs 

sampler of the state space Lee-Carter model, with or without 

switching (Algorithm 11). The code uses codes of Algorithm 7 and 

Algorithm 8 as an input and consequently uses package dlm as a 

building block for basic Kalman filter and FFBS recursions.    

 Taking simulated mortality rates as an input, calculation of run-off 

VaR for the single premium term life assurance policy, with level or 

decreasing benefits.  

 Taking simulated mortality rates as an input, calculation of one-year 

VaR for the single premium term assurance life policy, with level or 

decreasing benefits.  

In this dissertation, we use the following notation. Capital letters in bold 

are used to denote matrices, e.g. 𝑨. Lowercase letters in bold are used to 

denote vectors, e.g. 𝒂.  By default, vectors are assumed to be column vectors. 

If row vectors are used, they are denoted as a transpose of a column vector, 

e.g. 𝒂′.  
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1. OVERVIEW OF RESEARCH 

In this section we provide an overview of the research so far in the areas of 

VaR for mortality risk, stochastic generation of mortality probabilities, and use 

of state space models in the mortality modeling.  

 

1.1. Mortality VaR and calibration of the Standard Formula  

We start the overview with the description of the analysis performed by 

EIOPA, which sets the basis for the stress parameters used in the Standard 

Formula.  

EIOPA calibrates VaR using temporary life expectancies: 

𝑒𝑥:𝑛,𝑡 =
1

2
+ ∑ 𝑝𝑥,𝑡𝑘

 

𝑁−1

𝑘=1

+ 𝑝𝑥,𝑡𝑁
 ,  

where 𝑝𝑥,𝑡𝑘
  is 𝑘 year survival probability of life aged 𝑥 ∈ {1,… ,𝑁} at time 𝑡. 

By setting stressed temporary life expectancy to the life expectancy derived 

from a stochastic mortality model, appropriate mortality shock level is 

determined [23].  

By using this approach, EIOPA implicitly assumes that benefits payable 

under life assurance policy decrease with time. Decreasing benefits are 

common in life assurance products linked to mortgages or other credit 

instruments. In addition, mortality sum at risk is decreasing with policy 

duration for some risk and savings products (e.g., traditional endowment 

insurance) where the total benefit payable on death or survival is fixed, and 

the insurer is able to recoup part of the losses by reversing the accumulated 

savings amount. However, a significant part of life assurance products has 

fixed sums assured payable on death. In this dissertation we examine the effect 

on VaR of both benefit formulas: level (fixed) sum assured and sum assured 

which is decreasing linearly with time. 

EIOPA calibrated both mortality and longevity modules at the same time; 

therefore, the data for ages 40-120 years was used [23]. For model fitting 

EIOPA used data of the major European countries, covering the relatively 

recent time period, which excluded major socio-economic development 

disturbances such as wars, epidemics, etc. Historically, human mortality 

behavior was much less steady, and the impact of the inclusion of less steady 

periods of mortality development is also investigated in this dissertation.   

There are two main approaches to mortality VaR calculation: run-off VaR 

and one-year VaR. Run-off VaR, the approach also used by EIOPA, takes into 
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account the volatility of cash flows until policy expirity. Run-off VaR is based 

on the basic principles, following from the definition of VaR, see [58], and the 

key modeling task is the derivation of realistic mortality projections. 

One-year mortality VaR, in contrast, poses more methodological 

challenges and was subject to academic research. One-year VaR aims to 

replicate the behavior of the solvency balance sheet during the valuation year 

and its changes due to mortality fluctuations. Several models have been 

proposed to model mortality/longevity risk using the one-year VaR approach, 

where the key difficulty is to model the risk of variation of technical 

provisions in one year’s time after the valuation date. Börger et al. [8] and Plat 

[64] developed models which explicitly model the mortality trend risk which 

is used as the proxy to capture the risk of variation of technical provisions. For 

example, Plat stochastically models mortality trend parameter 𝜆𝑥,𝑡 of life aged 

𝑥 at time 𝑡, represented by the formula: 

𝜆𝑥,𝑡 = 𝜅𝑡
1 + 𝜅𝑡

2(�̅� − 𝑥) + 𝜅𝑡
2(�̅� − 𝑥)+,  

where (�̅� − 𝑥)+ = max (�̅� − 𝑥, 0) and 𝜅𝑡
1, 𝜅𝑡

2, 𝜅𝑡
3 are estimated parameters. 

Stochastic volatility of mortality trend parameter 𝜆𝑥,𝑡 drives the uncertainty of 

projected mortality rates, which can be used to approximate the basis of 

calculation of technical provision in one-year VaR calculations. 

Richards et al. [69] took into account the risk of changes in technical 

provisions by simulating one year’s portfolio mortality and subsequently 

refitting the stochastic mortality model, for each simulation scenario, based 

on the results of the first-year simulations. The model operates as follows: 

 Simulate first projection year mortality rates. 

 The projected rates are treated as observations and are used to 

augment the data set. The model is refitted using the augmented data 

set. 

 Project the mortality rates for the second and further years using the 

refitted model output.  

Such model avoids assumptions about the specific parametric form of 

mortality trend and, therefore, is more simple than the models by Börger et al. 

[8] and Plat [64]. However, it’s results very much depends on the size of the 

data set: the longer history is available, the lower sensitivity of the estimated 

parameters to the additional observation set.  

A similar approach to Richards et al. [69] was used by Jarner and Møller 

[45] who proposed a model designed specifically for the Danish system of 
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reserving for longevity risks. Olivieri and Pitacco [60] developed a model, 

which included a Bayesian procedure for updating the parameters of projected 

distributions of deaths, and formulated conditions for few alternative 

definitions of solvency capital rules, however, their model did not necessarily 

strictly follow a one-year VaR approach. Munroe et al. [59] developed a one-

year VaR model for non-life insurance risks.  

 

1.2. Simulation of mortality rates 

Calculation of mortality VaR requires the simulations from a stochastic 

mortality model as an input. We note that there are many alternative stochastic 

mortality models, see [7], [27] for an overview. In this summary, we focus on 

the evolution of the extrapolatory stochastic mortality models used in this 

dissertation.  

We also note that with the purpose to avoid repetition we keep this 

overview brief as full details of the models are provided in Section 2. 

A model proposed by Lee and Carter [53], see Subsection 2.1. for details, 

started a new generation of the extrapolative mortality projection methods, 

and in its original or modified form is widely used both in academic research 

and in practice. Several improvements of the Lee-Carter model have been 

proposed, both from the point of view of model specification and the statistical 

estimation of parameters. Lee and Miller [54] proposed an alternative method 

of the second stage re-estimation of time varying index parameters. Booth et 

al. [6], Renshaw and Haberman [66] analyzed the effect of including higher 

order terms of the singular value decomposition with the purpose of obtaining 

a better fit. Kleinov and Richards [50] experimented with different 

specifications of time series models for fitting time varying index, which in 

the classical Lee-Carter model is assumed to follow a simple Random Walk 

with Drift (RWD). Girosi and King [36] developed a Bayesian framework for 

fitting Lee-Carter model parameters.  Ignatavičiūtė et al. [44] applied the 

classical Lee-Carter model with the modification for higher order terms to the 

Lithuanian data. 

A significant development in stochastic mortality models was the 

application of the generalized linear model framework for more realistic 

variance modeling, especially in high ages. Poisson regression version of the 

Lee-Carter model was firstly developed by Brouhns et al. [10], see Subsection 

2.2. for details. In comparison with the classical Lee-Carter, where it is 

assumed that errors are additive on the logarithm of mortality rates, the 

Poisson Lee-Carter model assumes that a number of deaths is distributed 
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according to the Poisson law. Thus, for example, we can model a higher 

variance of mortality rates in high ages, where the expected mortality rates are 

higher. 

The matter of parameter uncertainty in simulated projections was initially 

addressed by Lee and Carter [53] who identified time varying index as the key 

source of uncertainty and suggested simple analytical and bootstrap 

procedures to estimate the uncertainty of other parameters. Lee and Miller [54] 

suggested a simple method how to take into account the uncertainty of the 

drift parameter of time varying index. 

Brouhns et al. [11] developed a bootstrap method to assess the effect of 

uncertainty of parameter estimates of the Poisson Lee-Carter model. The 

bootstrap samples were obtained by applying Poisson noise to the observed 

number of deaths. For each bootstrap sample model is refitted and parameters 

are re-estimated.  

The alternative bootstrap method was developed by Koissi et al. [52] who 

sampled with replacements deviance residuals derived from the initial fitting 

of the Lee-Carter model. Deviance residuals are then converted to the numbers 

of death, which can be used to refit the model and to re-estimate the 

parameters.  

Renshaw and Haberman [68] and Li [55] performed detailed comparative 

studies of various bootstrap approaches in simulations.  

Czado et al. [19] developed an alternative Bayesian approach for 

forecasting mortality rates, where the MCMC fitting method allowed to 

estimate parameter uncertainty. In contrast to the state space models discussed 

below, Czado et al. [19] did not use Kalman filter and used the Metropolis-

Hastings sampling algorithm instead.              

 

1.3. State space models  

State space models (SSM) can be traced back to a highly influential paper 

by Kalman [46]. Although initially these methods were applied predominantly 

in engineering and signal processing, over time it became a recognized 

statistical modeling technique. 

The general form of state space model can be defined by the following 

equations: 

�̅�𝑡~𝑝(�̅�𝑡| �̅�𝑡),  

�̅�𝑡~𝑝(�̅�𝑡| �̅�𝑡−1),  
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where vector �̅�𝑡 at time 𝑡 = 1,2, …  is observed, vector �̅�𝑡 is unobserved state 

parameter vector, and 𝑝 is arbitrary distribution, and �̅�0 is constant.  

The advantage of state space models is their high flexibility and relative 

simplicity of calculations. Many examples of the application of the SSMs are 

presented by West and Harrison [77], Durbin and Koopman [22], Särkkä [70], 

Shumway and Stoffer [71] among others.  Forward Filtering Backward 

Sampling Algorithm, which is a prerequisite for the efficient application of 

SSMs for mortality studies, was developed by Carter and Kohn [14], 

Frühwirth-Schnatter [24], and de Jong and Shephard [21].   

A linear state space model, often called Dynamic Linear Model (DLM), 

can be represented by the following two equations: 

𝒚𝑡 = 𝒁𝑡𝒙𝑡 + 𝜺𝑡 , (1) 

𝒙𝑡 = 𝑼𝑡𝒙𝑡−1 + 𝜼𝑡 , (2) 

where vector 𝒚𝑡 at time 𝑡 = 1,2, …  is observed, vector 𝒙𝑡 is unobserved state 

parameter vector, 𝒙0 is constant, 𝜺𝑡~𝑁(𝟎,𝑯𝑡) and 𝜼𝑡~𝑁(𝟎,𝑸𝑡) are the 

Gaussian errors and 𝒁𝑡, 𝑯𝑡, 𝑼𝑡, 𝑸𝑡 are the parameter matrices. Thus, we can 

use state space representation to represent Lee-Carter model by modeling time 

varying index, including the processes driving its drift, with the state equation. 

There were several examples of the application of SSM to fit the Lee-

Carter model. For example, Pedroza [61] used DLM to model US mortality 

data. Her model was defined as follows:  

𝒚𝑡 = 𝜶 + 𝜷𝜅𝑡 + 𝜺𝑡 ,  

𝜅𝑡 = 𝜅𝑡−1 + 𝜇 + 𝜂𝑡 ,  

where vector 𝒚𝑡 at time 𝑡 = 1, 2, …  is observed vector by age group of log 

mortality rates, 𝜶 and 𝜷 are parameter vectors with the same interpretation as 

in the classical Lee-Carter model, 𝜅𝑡 is unobserved time series process with 

the drift 𝜇, 𝜅0 is constant, and 𝜺𝑡 and 𝜂𝑡 are error terms.   

A similar model was applied by Kogure and Kurachi [51] to model 

Japanese mortality and used the estimation results to develop a model for 

pricing longevity risk. Fung et al. [27] developed a practical methodology to 

estimate linear state space Lee-Cater model parameters using maximum 

likelihood and Bayesian approaches and illustrated the results using the 

Danish mortality data. In addition, Fung et al. [27] developed a non-linear 

stochastic volatility state space Lee-Carter model, which could be considered 

as an alternative to SSM with regime switching model used in this dissertation. 

The model is specified using the following equations:  
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𝒚𝑡 = 𝜶 + 𝜷𝜅𝑡 + 𝜺𝑡 ,  

𝜅𝑡 = 𝜅𝑡−1 + 𝜇 + 𝜂𝑡 , 𝜂𝑡|𝛾𝑡~𝑁(0, 𝑒𝑥𝑝{𝛾𝑡}),  

𝛾𝑡 = 𝜃𝛾𝑡−1 + 𝜆 + 𝜔𝑡,  

where 𝛾𝑡 , 𝜃 and 𝜆 are additional parameters in comparison with the state space 

Lee-Carter model of Pedroza [61].  

An advantage of stochastic volatility in the time varying index model is the 

ability to model changes in variance in time. A disadvantage is its large 

number of additional parameters, which creates a risk of overfitting, especially 

in cases when the available data set is relatively short. Therefore, in this 

dissertation, we apply more restrictive SSM with regime switching as 

described below.  

Another possible extension of the state space Lee-Carter is to improve 

mortality forecasts by incorporating exogenously measured covariates, for 

example, data of a country’s economic development, which could be 

considered as a driver or a predictor of the modeled country’s mortality. Girosi 

and King [36, Ch. 3] suggested including the exogenously measured 

covariates into the Poisson Lee-Carter model. Similarly, Toczydlowska et al. 

[72] used a similar approach to extend the state space Lee-Carter model. 

Toczydlowska’s et al. [72] model additionally allows for the cohort effect of 

mortality; therefore, the unobserved state parameter vector includes both 

parameters driving the time varying index and cohort parameters. The model 

is as follows: 

𝒚𝑡 = 𝜶 + 𝑩𝝋𝑡 + 𝜺𝑡 ,  

𝝋𝑡 = 𝜦𝝋𝑡 + 𝜣 + 𝜂𝑡 ,  

where, 𝝋𝑡, 𝑡 = 1,2,… , is unobserved state parameter vector, and 𝑩, 𝜦, 𝜣 are 

parameter vectors supplemented with exogenously measured data input.  

The incorporation of exogenously measured data can enable to improve the 

credibility of mortality projections, provide means of dealing with missing 

data, and improve model fit. On the other hand, it introduces significant 

subjectivity in deciding which external data to incorporate, as the selection of 

possible external covariates is vast. Therefore, in this dissertation, we remain 

with the extrapolatory mortality projection models and leave models with 

exogenously measured covariates as an area for future research.  

SSM with regime switching, often referred to multi-process models, are 

DLMs conditionally on a sequence of indicator variables, which represent 
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varying regimes. West and Harrison [77] and Kim and Nelson [49] provide an 

introduction to such models. In the context of the mortality modeling, switches 

between regimes represent changes between stable and volatile socio-

economic development conditions, which positively or negatively affect 

mortality development. Such models were applied for the modeling of 

business cycles; see for instance Hamilton [37], Kaufmann [46], and Kim and 

Nelson [49] among others. We have not identified the application of SSM with 

regime switching in modeling of mortality.  

Bayesian SSM parameter estimation method called Gibbs sampler was 

proposed by Geman and Geman [32].  Gelfand and Smith [30] showed the 

relationship of Gibbs sampler to other Bayesian sampling algorithms and 

discussed the implications to the estimation of posterior densities. A 

significant amount of research was devoted to analysis of the label switching 

phenomenon applicable when Gibbs sampler is used with the SSM with 

switching, see [15], [25], [26], [32], which identified several issues with the 

application of Gibbs sampler and indicated different methods of dealing with 

label switching. 

The method of estimation of the marginal likelihood for state space models 

was suggested by Chib [16].  Pitt and Shephard [63] proposed a sequential 

Monte Carlo method, called the Auxiliary Participle Filter, which provides a 

convenient method of estimation of conditional likelihood to be used in 

combination with Chib’s method.  Further details on the method can be found 

in [4] and [22]. Kaufmann [47] applied the model for estimation of the 

marginal likelihood of SSM with switching.  
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2. STOCHASTIC MORTALITY MODELS 

In this section, we describe in detail the stochastic mortality models, their 

fitting, and projection methods used in this dissertation. Three different 

mathematical specifications (classical, Poisson bilinear regression, and state 

space model) of the Lee-Carter model are analyzed in this section. We also 

provide a brief overview of several alternative stochastic mortality models is 

provided. The section is concluded with a summary.  

 

2.1. Classical Lee-Carter model 

The classical Lee-Carter model is based on the approach presented in the 

paper by Lee and Carter [53]. The model parameters are estimated using two 

stage procedure using singular value decomposition and time series analysis 

methods.  

 

2.1.1.  Classical Lee-Carter model definition  

According to Lee and Carter [53] mortality rates can be modeled with the 

following formula:  

log(𝑚𝑥,𝑡) = 𝛼𝑥 + 𝜅𝑡𝛽𝑥 + 𝑒𝑥,𝑡 , (3) 

where: 𝑚𝑥,𝑡 is the central mortality rate for age group 𝑥 ∈ {1,… ,𝑁} in year 

𝑡 ∈ {1,… , 𝑇}, 𝛼𝑥 is a parameter, which represents the general shape of 

changes in log mortality rates with age, 𝜅𝑡 is a time varying index, which 

represents the general trend of changes in mortality rates with time, 𝛽𝑥 is a 

parameter, which determines the impact of the time varying index on age 

specific log mortality rates, and 𝑒𝑥,𝑡 are errors. It is assumed that random 

variables 𝑒𝑥,𝑡 are independent and have zero mean and fixed and equal 

variances. 

Age specific parameter 𝛼𝑥 is estimated for each age group as follows: 

𝛼𝑥 = ∑
log(𝑚𝑥,𝑡)

𝑇

𝑇

𝑡=1

.  

The remaining parameters are estimated in two stages. Firstly, 𝜅𝑡 and 𝛽𝑥 

are estimated using singular value decomposition (SVD) of a matrix of 

centered log mortality rates (log mortality rates minus 𝛼𝑥). Secondly, time 



 

23 

series analysis methods are used to model and forecast the dynamics of 

parameter 𝜅𝑡. 

As it can be easily seen, the model is over-parametrized. In order to ensure 

that the model is determined, the following constraints are introduced:  

∑ 𝜅𝑡
𝑡

= 0,  (4) 

∑ 𝛽𝑥
𝑥

= 1. (5) 

In the original paper, Lee and Carter [53] have used the second step 

reestimation of parameter 𝜅𝑡. After fixing 𝛼𝑥 and 𝛽𝑥, 𝜅𝑡 was re-estimated to 

ensure that the actual historic total number of deaths in a fitting year equals to 

the fitted number of death. In subsequent applications, second step 

reestimation was often debated. Lee and Miller [54] suggested setting the 

reestimated 𝜅𝑡 in such a way that the periodic life expectancy is matched for 

the year in question. Booth et al. [5] suggested setting the adjusted 𝜅𝑡 by fitting 

a Poisson regression model to the annual number of deaths at each age. 

However, as noted by Girosi and King [36, Ch. 2] the second stage 

reestimation of the classical model does not always result in a unique solution 

and is skipped by some researchers. Due to possible bias consideration as 

discussed in the next subsection and considering that the second stage 

reestimation of parameter 𝜅𝑡 makes the classical model results less 

comparable with alternative specifications of the Lee-Carter model, in this 

dissertation the reestimated parameters are provided for comparison, but for 

forecasting, the initial SVD estimates of parameter 𝜅𝑡 are used. 

 

2.1.2. Singular value decomposition 

The SVD method is based on the idea of principal component analysis 

developed by Hotelling [41]. The method relies on the fact that the data matrix 

may be decomposed into the sum of 𝑘 matrices of the same dimensions, where 

𝑘 is the rank of the original data matrix. Thus, we can model the data matrix 

with one or a few of the component matrices, which reproduce the largest part 

of the variation in the data matrix and discharge the remaining component 

matrices as a model simplification.  

The method relies on the following two key results from the matrix algebra, 

see [2]: 
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Theorem 1. (the Spectral Decomposition of a symmetric matrix) Given any 

symmetric matrix 𝑩, there exists an orthogonal matrix 𝑪 such that 

𝑪′𝑩𝑪 = 𝑫 = [

𝑑1 0 ⋯ 0
0 𝑑2 ⋯ 0
⋮ ⋮  ⋮
0 0 ⋯ 𝑑𝑝

] .  

If 𝑩 is positive semidefinite, then 𝑑𝑖 ≥ 0 for 𝑖 = 1,… , 𝑝; if 𝐁 is positive 

definite1 than 𝑑𝑖 > 0 for 𝑖 = 1,… , 𝑝.  

 

Proof: see [2, Ch. 11]. 

 

Theorem 2. (the singular value decomposition) Given an 𝑛 × 𝑚 matrix 𝑿, 𝑛 ≥

𝑚, there exists an 𝑛 × 𝑛 orthogonal matrix 𝑷, an 𝑚 × 𝑚 orthogonal matrix Q, 

and 𝑛 × 𝑝 matrix 𝑫 consisting of 𝑚 × 𝑚 diagonal positive semidefinite 

matrix and a (𝑛 − 𝑚) × 𝑚 zero matrix such that 

𝑿 = 𝑷𝑫𝑸.  

 

Proof, see [2, p. 634].  

 

Householder and Young [42] proved that if matrix 𝑿 is of rank 𝑟, the sum 

of the first j<r terms of the SVD, corresponding to the largest diagonal 

elements  𝑑𝑖 provides the best approximation of matrix 𝑿 when the error is 

measured as the sum of squares of the residuals. In addition, they showed that 

the approximation is unique unless 𝑑𝑗 = 𝑑𝑗+1.  As stated by Good [34]:  

 

Proposition 3. The sum of the first j terms 𝑗 = 1,2, … , 𝑘 of the SVD of a 𝑛 ×

𝑚 matrix 𝑿 of rank k gives the matrix 𝒁 of rank j that best approximates 𝑿 in 

the sense of least squares, i.e. for which we minimize 

𝑑2 = ∑ ∑ (𝑥𝑖𝑗 − 𝑧𝑖𝑗)
2𝑚

𝑗=1

𝑛

𝑖=1
= trace[(𝑿 − 𝒁)(𝑿′ − 𝒁′)]. (6) 

 

                                                      

 
1 Symmetric matrix A and its quadratic form 𝒙′𝑨𝒙 = ∑ 𝑎𝑖𝑗𝑥𝑖𝑥𝑗

𝑝
𝑖,𝑗=1  is positive 

semidefinite if 𝒙′𝑨𝒙 ≥ 0 for all x. If is 𝒙′𝑨𝒙 > 0 for all 𝒙 ≠ 𝟎, than 𝑨 and the 

quadratc form are called positive definite.  
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Proof: The matrix 𝒁 is constructed by selecting first the largest 𝑗 diagonal 

elements of martix 𝑫 and replacing the remaining elements with zeros, thus 

obtaining matrix 𝑫∗. Inserting 𝒁 =  𝑷𝑫∗𝑸 into Equation (6) and by 

considering that 𝑷 and 𝑸 are orthogonal, we obtain: 

 

𝑑2 = trace[(𝑿 − 𝑷𝑫∗𝑸)(𝑿′ − (𝑷𝑫∗𝑸)′)] = trace[𝑷𝑫+𝑸(𝑷𝑫+𝑸)′]

= ∑ 𝑑𝑖
2

𝒌

𝑖=𝑗+1

, 
(7) 

where 𝑫+ = 𝑫 − 𝑫∗.  

Thus 𝑑2 is minimized when the 𝑑𝑖 excluded from matrix 𝑫∗ are the smallest.  

 

Using Equation (7) it is possible to derive the measure of the proportion of 

variance of matrix 𝑿 explained by matrix 𝒁. We denote this measure as 𝑉% 

and define as:  

𝑉% =
∑ 𝑑𝑖

2𝑗
𝑖=1

∑ 𝑑𝑖
2𝑘

𝑖=1

, (8) 

where 𝑗 is the number of SVD terms used to construct matrix 𝒁, 𝑘 is the rank 

of matrix 𝑿 and 𝑑𝑖 are defined as in Equation (7).  

 

Gabriel (1978) showed that SVD in combination with ordinary least 

squares fit can be used to provide a solution to the mixed additive and 

multiplicative models: 

𝑥𝑖,𝑗 = 𝑎𝑖 + 𝑏𝑗 + 𝑑𝑖
(1)

𝑐𝑗
(1)

+ ⋯+ 𝑑𝑖
(𝑚)

𝑐𝑗
(𝑚)

, (9) 

where  𝑎𝑖 and 𝑏𝑗 are additive terms and the remaining terms model the 

multiplicative effects.  

Theorem 4. For any real matrix 𝑛 × 𝑚 matrix 𝑿  and 𝑛 × 𝑘 matrix 𝑷 and any 

integer r: 

min
𝑫(𝑛×ℎ)

min
𝑪(ℎ×𝑚)

min
𝑩(𝑘×𝑚)

‖𝑿 − 𝑷𝑩 − 𝑫𝑪‖2

 
=

min
𝑫(𝑛×ℎ)

min
𝑪(ℎ×𝑚)

‖�̃� − 𝑫𝑪‖
2

 
,  

where:  

�̃� = (𝑰 − 𝑷𝟎)𝑿,  
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𝑷𝟎 = 𝑷(𝑷′𝑷)−1𝑷′. 

Proof, see [28, 1978]. 

 

Theorem 4 enables us to solve the models as formulated in Equation (9), 

by firstly using least squares to estimate the fixed effects and as the second 

stage to estimate the multiplicative terms with SVD. The fitting process of the 

original Lee-Carter model follows this approach by making the additional 

assumption that fixed time effects are zero. 

An important consideration when using the SVD method is how many 

components to use in constructing the approximating matrix 𝒁 from 

Proposition 3. Lee and Carter [53], when applying their model for the US data, 

used the first component corresponding to the largest eigenvalue. Tuljapurkar 

et al. [74], applied SVD to the mortality rates (starting from 1950) of G7 

countries and showed that for all analyzed countries the first singular value 

component explains over 94% variation. As we shall see further in this 

dissertation, the percentage may not be so high if the analyzed mortality rates 

include periods of less steady development. Some authors, e.g., Booth et al. 

[6] and Renshaw and Haberman [66], analyzed the effect of inclusion of 

second order SVD terms to model age-time interactions and even higher order 

terms. The inclusion, as expected, resulted in a better fit of the model. 

However, the model with higher order terms proved to be less suitable for 

forecasting or did not result in significantly different forecasts. Therefore, for 

the purpose of the models of this dissertation, we shall use only the first 

singular value. 

In the light of the theoretical background of the SVD we can also give the 

interpretation of the second step reestimation of parameter 𝜅𝑡 described in the 

previous subsection. The second stage reestimation procedure effectively is 

the upload on the eigenvector of matrix 𝑸, related to the largest singular value, 

with the residual net effect of the variation contained in higher order terms. 

Such modification reduces the residuals in the observation Equation (3) at the 

expense of higher volatility of parameter 𝜅𝑡. Thus, it could be argued, that by 

such procedure we are introducing a bias in the first principal component 

which is supposed to capture the overall trend in mortality improvements.  
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2.1.3.  Time series analysis of time varying index 

After carrying the standard time series model identification procedures, 

Lee and Carter [53] proposed to suppose 𝜅𝑡 to be a random walk with drift 

(RWD): 

𝜅𝑡 = 𝜅𝑡−1 + 𝜇 + 휀𝑡 , 𝑡 = 1, 2, … , (10) 

where 𝜇 is drift parameter, independent identically distributed 휀𝑡~𝑁(0, 𝜎2), 

and 𝜅0 is a constant. 

𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞) models with 𝑑 = 1, predominantly RWD, were the main 

model for 𝜅𝑡 in subsequent applications of the Lee-Carter model using the data 

of various countries. Therefore, our primary hypothesis is that 𝜅𝑡 derived from 

SVD can be modeled as a differenced time series with 𝑑 = 1. In order to 

accept or reject this hypothesis statistical testing of unit roots, using Phillips-

Perron and Augmented Dickey-Fuller tests as described by Hamilton [39, Ch. 

17], can be performed.  

Phillips-Perron test is based on the following regression, which in our case 

is fitted using the estimated historic 𝜅𝑡 values by the ordinary least squares 

(OLS): 

𝜅𝑡 = 𝜌𝜅𝑡−1 + 𝜇 + 𝛿𝑡 + 𝑣𝑡 .  

In the equation above, 𝑣𝑡 for 𝑡 = 1, 2, …  are zero mean random variables, 

which may be heterogeneously distributed or serially correlated, and 𝜌, 𝜇, 𝛿 

are estimated parameters. To test the hypothesis about the presence of unit 

root, the following two statistics are calculated:  

𝑍𝜌 = 𝑇(�̂� − 1) −
𝑇2�̂��̂�

2

2�̂�2
(̂

2
− 𝛾0),  

𝑍𝜏 = √
𝛾0

̂
2

�̂� − 1

𝜎�̂�
−

𝑇�̂��̂�

2�̂�̂
(̂

2
− 𝛾0) ,  

where in the sequel 𝛾𝑚, 𝑚 ∈ {0,1,… , 𝑞} are estimated sample autocovariances 

with mth lag, q is maximum lag considered in the test, �̂�2 is sample variance, 

�̂��̂�  is estimated OLS standard error of �̂�, and estimated long run variance ̂
2
 

is calculated using the following formula: 
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̂
2

= 𝛾0 + 2∑(1 −
𝑗

𝑞 + 1
)𝛾𝑗

𝑞

𝑗=1

.  

The Augmented Dickey-Fuller test is based on the following regression 

using OLS: 

𝜅𝑡 = 𝜌𝜅𝑡−1 + 𝜇 + 𝛿𝑡 + ∑ 
𝑖
(𝜅𝑡−𝑖 − 𝜅𝑡−𝑖+1)

𝑝−1

𝑖=1

+ 𝑤𝑡 .  

where 𝑝 is the number of lags considered in the test, 𝑤𝑡, 𝑡 = 1, 2, … , are i.i.d. 

zero mean random variables, fixed variance and finite fourth moments, and 

𝜇, 𝜌, 𝛿, 
𝑖
, … , 

𝑝−1
 are the model parameters. To test the hypothesis about the 

presence of unit root the following two statistics are used:  

𝑍𝐷𝐹(𝜌) =
𝑇(�̂� − 1)

1 − ̂
1
− ̂

2
− ⋯− ̂

𝑝−1

,  

𝑍𝐷𝐹 =
(�̂� − 1)

�̂��̂�
2 ,  

where �̂��̂� is estimated OLS standard error of �̂�, and �̂�, ̂
1
, … , ̂

𝑝−1
 denote 

estimates of corresponding parameters.  

 

2.1.4. Forecasting and simulation 

The Lee-Carter model projections are derived using the basic model 

structure defined by formula (3). In the original paper, Lee and Carter [53] 

assumed that model parameters are fixed and changes in the mortality rates 

are driven by innovations of time varying index 𝜅𝑡. Although such an 

approach is simple to implement, it might be argued that it produces too 

narrow confidence intervals. Lee and Miller [54] proposed a simple 

adjustment to take into account the uncertainty in the trend parameter 𝜇, when 

𝜅𝑡 is modelled as RWD.  Various bootstrap based approaches have been tried 

primarily with Poisson bi-linear specification of Lee-Carter model (see [55] 

and [68] for an overview), and their results are often applicable to SVD model 

specification. However, in the majority of applications of Lee-Carter model 

𝜅𝑡 has remained the key source of uncertainty. Thus, also aiming to maintain 

consistency with the forecasting approach applied to state space models, we 
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shall simulate mortality rates for periods 𝑇 + 1,… , 𝑇 + 𝐾, where 𝑇 is the 

length of time period used for model fitting and 𝐾 is the term of forecast, using 

the allowing algorithm: 

 

Algorithm 1. Simulation using classical Lee-Carter model 

For iteration s = 1,… , 𝑆: 

i. Draw 𝜇 from 𝑁 (�̂�,
�̂�2

𝑇
), where �̂� and �̂�2 are parameter estimates of 

RWD model specified by Equation (10). 

ii. For each 𝑡 = 𝑇 + 1,… , 𝑇 + 𝐾: 

a. Draw 𝜅𝑡 from 𝜅𝑡~𝑁(𝜅𝑡−1 + 𝜇, �̂�2) where the notation of 

parameters is as in Equation (10). 

b. For each 𝑥 = 1,… ,𝑁 draw 𝑦𝑥,𝑡 from 𝑦𝑥,𝑡~𝑁(𝛼𝑥 +

𝛽𝑥𝜅𝑡, 𝜎𝑒
2 ), where  𝜎𝑒

2  is the variance of the residual 𝑒𝑥,𝑡 and 

the notation of parameters is as in Equation (3). 

iii. Calculate 𝑚𝑥,𝑡 = 𝑒𝑦𝑥,𝑡.  

 

2.2. Poisson Lee-Carter model 

It can be argued, that estimates provided by the classical Lee-Carter model 

are not optimum, because the model’s assumption that the errors are 

distributed homoskedastically is not realistic. The motivation for fitting the 

model with Poisson regression is to apply a different and more realistic 

variance structure of the errors, as it can be expected that the variance of 

mortality rates increase with age due to the growing count of deaths. Thus we 

can use the generalized linear model (GLM) framework for such alternative 

specification of the Lee-Carter model which initially was proposed by Alho 

[1]. 

 

2.2.1.  Definition of the Poisson Lee-Carter model  

Brouhns et al. [10] developed a method of fitting the Lee-Carter model as 

Poisson regression: 

𝐷𝑥,𝑡~𝑃𝑜𝑖𝑠𝑠(𝐸𝑥,𝑡𝑥,𝑡)  with  𝑥,𝑡 = 𝑒𝛼𝑥+𝜅𝑡𝛽𝑥 , (11) 

 

where 𝐷𝑥,𝑡 and 𝐸𝑥,𝑡 are a number of deaths and exposed to risk at age group 

𝑥 ∈ {1,… ,𝑁} and time 𝑡 ∈ {1,… , 𝑇} respectivelly. As the original Lee-Carter 

model, this model is overparametrized and the identifiability Constraints (4) 
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and (5) are required. Such model specification has the following likelihood 

function: 

ℓ = ∑ ∑[𝐷𝑥,𝑡(𝛼𝑥 + 𝜅𝑡𝛽𝑥) − 𝐸𝑥,𝑡𝑒
𝛼𝑥+𝜅𝑡𝛽𝑥]

𝑁

𝑥=1

𝑇

𝑡=1

+ 𝐶, (12) 

where C is constant which does not depend on estimated parameters 𝛼𝑥, 𝛽𝑥 

and 𝜅𝑡.  

It is noted by McCullagh and Nelder [57] that in practice, when modeling 

data with Poisson regression, it is not uncommon for the actual variance of the 

response variable to exceed the variance implied by the Poisson model, i.e., in 

our case Var(𝐷𝑥,𝑡) > E(𝐷𝑥,𝑡). This phenomenon is called overdispersion and 

may occur due to a number of reasons, one of which is the heterogeneity of 

the modeled population due to features other than factors explicitly taken into 

account by the model. For example, the mortality of the same age population 

may further vary with income level, urban/rural living location, etc. Li et al. 

[56] allowed for overdispersion in mortality data by expressing the Lee-Carter 

model as negative binomial regression. Such an approach allows estimating 

different overdispersion parameters for each age group. However, the negative 

binomial version of the Lee-Carter model suffers from overparameterization, 

as we need to estimate 𝑁 instead of one overdispersion parameter. As shown 

in [56] overdispersion is very high in young ages and starts to increase for a 

population starting from 80 years old, however, for the mid-aged population 

(which is the target group for our research) the overdispersion is relatively 

stable. Therefore, we choose a simpler approach and fit the overdispersed 

quasi-Poisson regression. 

The quasi-Poisson regression, given the independent observations  

𝑦𝑖 , 𝑖 ∈ {1,… ,𝑀}, 

can be defined as GLM with the following properties:              

E(𝑦𝑖) = 𝜇𝑖 = 𝑒𝜂𝑖 , Var(𝑦𝑖) = 𝜑Var(𝜇𝑖) = 𝜑𝜇𝑖 ,  

where 𝜂𝑖 = 𝑥𝑇𝛽 is linear predictor with parameter vector 𝛽, and 𝜑 is the 

overdispersion parameter. Such model does not have closed form solution for 

density or log-likelihood, but may be fitted by maximizing quasi-likelihood 

function, which is defined by McCullagh and Nelder [57, p. 325] as follows:  

 
𝜕𝑄(𝑦𝑖 , 𝜇𝑖)

𝜕𝜇𝑖
=

𝑦𝑖 − 𝜇𝑖

 𝜑Var(𝜇𝑖)
, 𝑄(𝑦𝑖 , 𝜇𝑖) = ∫

𝑦𝑖 − 𝑡

 𝜑Var(𝑡)

𝜇𝑖

𝑦𝑖

𝑑𝑡 + 𝐶.  
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As proved by Wedderburn [76] the properties of quasi-likelihood function 

𝑄 are similar to those of log likelihood ℓ, in particular:              

E (
𝜕𝑄

𝜕𝜇
) = 0, Var (

𝜕𝑄

𝜕𝜇
) =

1

𝜑Var(𝜇)
= −E(

𝜕2𝑄

𝜕𝜇2),  (13) 

which justifies the practice to use quasi-likelihoods instead of likelihoods in 

fitting GLMs where likelihood is not available in a closed form. Thus, in the 

case of the overdispersed Poisson Lee-Carter model we shall work with the 

following quasi-likelihood function: 

𝜕𝑄(𝐷𝑥,𝑡 , 𝐸𝑥,𝑡𝑥,𝑡)

𝜕(𝐸𝑥,𝑡𝑥,𝑡)
=

𝐷𝑥,𝑡 − 𝐸𝑥,𝑡𝑥,𝑡

 𝜑𝐸𝑥,𝑡𝑥,𝑡

.  

 

 

2.2.2.  Maximum likelihood fitting of Poisson bilinear regression 

The basic estimation algorithm used for fitting of GLMs is called 

iteratively weighted least squares (IRLS), which can be applied both for cases 

when the estimation is based on the likelihood function and quasi-likelihood 

function. For the Poisson Lee-Carter model, we have another technical 

complication arising from the presence of bilinear term, which models the age 

and time interaction. In this subsection, we show how to fit the bilinear term 

using so-called “criss-cross” algorithm. 

 

Algorithm 2. Quasi-likelihood IRLS 

The following discussion is based on McCullagh and Nelder [57, Ch. 9]. 

Using Expression (12) and noting the independence of the observations, we 

aim to maximize quasi-likelihood function 𝑄 = ∑ 𝑄(𝑦𝑖 , 𝜇𝑖)
𝑀
𝑖=1  with respect to  

𝜷 = {𝛽1, … , 𝛽𝑃} using the following score function:  

𝜕𝑄

𝜕𝛽
=

𝜕𝑄

𝜕𝜇

𝜕𝜇

𝜕𝛽
= 𝑫′𝑽−1(𝒚 − 𝝁)𝜑−1,  

where 𝑫 is 𝑀 × 𝑃 matrix with elements 𝐷𝑖𝑗 =
𝜕𝜇𝑖

𝜕𝛽𝑗
, 𝑖 ∈ {1,… ,𝑀} and 𝑗 ∈

{1,… , 𝑃}, 𝑽 is 𝑀 × 𝑀 diagonal matrix with elements 𝑉𝑖𝑖 = Var(𝜇𝑖), 𝑖 ∈

{1,… ,𝑀}, 𝒚 is the vector of observations and 𝝁 is vector of estimates of the 
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means. Using the properties of the quasi-likelihood, see Equation (13) we 

obtain approximate covariance matrix {−E(
𝝏𝟐𝑸

𝝏𝜷𝟐)}
−1

, see Wedderburn [76]: 

−E(
𝝏𝟐𝑸

𝝏𝜷𝟐) = 𝑫′𝑽−1𝑫𝜑−1,  

cov(𝜷) ≈ 𝜑(𝑫′𝑽−1𝑫)−1.  

By applying Newton-Raphson algorithm with Fisher scoring, the 

following recursion is derived: 

𝜷(𝑠) = 𝜷(𝑠−1) + (𝑫′𝑽−1𝑫)−1𝑫′𝑽−1(𝒚 − 𝝁), (14) 

which leads us to the following algorithm: 

For iteration s = 1,2, … : 

i. Initiate the algorithm at arbitrary parameter vector 𝜷(0).  

ii. As described above calculate matrices 𝑫, 𝑽 and vector 𝝁.  

iii. Using Equation (14) calculate the updated parameter vector 𝜷(𝑠). 

iv. Go to the next step (ii).  

Stop the algorithm when the pre-defined convergence criteria is satisfied, e.g. 

further iterations do not result in an increase in quasi-likelihood above a 

certain threshold.  

 

It should be noted that the estimates of 𝛽𝑛 do not depend on the 

overdispersion parameter 𝜑, which can be estimated separately, see Davison 

[20, Ch. 10]: 

𝜑 =
1

𝑁 − 𝑃
∑

(𝑦𝑖 − �̂�𝑖)
2

𝑉𝑖(�̂�𝑖)

𝑁

𝑖=1

.  

 

When fitting Poisson Lee-Carter model, we are dealing with GLM matrix: 

E(𝒀) = log(𝞛) = 𝑿𝑩′. (15) 

where 𝒀 and 𝞛 are 𝑁 × 𝑇 matrices. As noted by Gabriel [29], GLM matrix 

can be converted to the usual GLM vector using the relationship 〈𝑪𝑫𝑬〉 =

(𝑬′⨂𝑪)〈𝑫〉, where 〈 〉 is a concatenation of columns operator and ⨂ is the 

Kroenecker product. After the conversion the model of Equation (15) 

becomes: 

E(〈𝒀〉) = log(〈𝞛〉) = (𝑰𝑚⨂𝑿)〈𝑩′〉,   Var(〈𝒀〉) = 𝜑diag[log (〈𝞛〉)], (16) 
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where diag[〈𝞛〉] denotes diagonal matrix with diagonal elements are equal to 

the elements of vector 〈𝞛〉, 𝑰𝑚 is the identity matrix, and 𝑚 is the number of 

columns of 𝒀.    

 

Finally, we need to deal with the estimation of the bilinear term in the linear 

predictor of GLM. In the original paper, Brouhns et al. [10] used the iterative 

procedure of Goodman [35], which is based on the univariate Newton’s 

method. We use a slightly different algorithm based on the multivariate 

Newton-Raphson method, which should result in faster convergence. The idea 

of the algorithm is that the IRLS algorithm is initially run over the rows by 

fixing the bilinear term representing the column effects and treating it as a 

known covariate. Secondly, the bilinear term representing the row effects is 

fixed and IRLS is run over the columns. The algorithm (also called “criss-

cross algorithm”) is repeated until convergence is achieved.  See van Eeuwijk 

[75] and Gabriel [29] for details.     

The following algorithm implements these ideas for the fitting of quasi-

Poisson Lee-Carter. 

 

Algorithm 3. Quasi-Poisson Lee-Carter criss-cross ILRS algorithm  

The algorithm uses the following notation: 

𝑁 × 𝑇 matrices of observations (number of deaths) 𝒀 and exposed to risk 𝑬 

have elements 𝑦𝑖𝑗 = 𝐷𝑖,𝑗 and 𝑒𝑖𝑗 = 𝐸𝑖,𝑗 respectively, where 𝑖 ∈ {1,… ,𝑁} is 

the age group and 𝑗 ∈ {1,… , 𝑇} is the observation year.     

𝑁 × 𝑇 matrix of expectations 𝞛 has elements  

𝜇𝑖𝑗 = 𝐸𝑖,𝑗𝑖,𝑗, 𝑖 ∈ {1,… ,𝑁} , 𝑗 ∈ {1,… , 𝑇}, 

where  

log(𝑖,𝑗) = 𝛼𝑖 + 𝜅𝑗𝛽𝑖. 

We denote the 𝑁 × 𝑇 matrix of 𝑖,𝑗 by 𝜦. 

Estimated parameter collections, at iteration 𝑠:  

𝛼(𝑠) ∈ {𝛼1
(𝑠)

, . . , 𝛼𝑁
(𝑠)

}, 𝛽(𝑠) ∈ {𝛽1
(𝑠)

, . . , 𝛽𝑁
(𝑠)

}, 𝜅(𝑠) ∈ {𝜅1
(𝑠)

, . . , 𝜅𝑇
(𝑠)

}. 

By converting to vector GLM as in Equation (16) and using the Equation 

(14), we can update the estimate of age (row) effects 𝑨 = [𝜶 𝜷] by running 

IRLS Algorithm 2 and treating 𝑩 = [𝟏 𝜿] as fixed covariates: 
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〈𝑨′〉(𝑠) = 〈𝑨′〉(𝑠−1) + (𝑫′𝑽−1𝑫)−1𝑫′𝑽−1(〈𝒀′〉 − 〈𝞛′〉).  

Here: 

〈𝞛′〉 = E(〈𝒀′〉) = log(〈𝑬′〉) + log(〈𝜦〉) = log(〈𝑬〉) + (𝑰𝑁⨂𝑩)〈𝑨′〉,  

𝑽 = Var(〈𝒀′〉) = diag[〈𝞛′〉],  

and 𝑫 is 𝑁𝑇 × 2𝑁 matrix with elements 𝑑𝑖𝑗 =
𝜕〈𝞛〉𝑖

𝜕〈𝑨′〉
, where index j represents 

a derivative with respect to the j element of 〈𝑨′〉. 

Inserting the values of parameters and after performing matrix 

multiplication we obtain the following expression: 

[
 
 
 
 
𝛼1

𝛽1

⋮

𝛼𝑁

𝛽𝑁]
 
 
 
 
(𝑠)

=

[
 
 
 
 
𝛼1

𝛽1

⋮

𝛼𝑁

𝛽𝑁]
 
 
 
 
(𝑠−1)

+ 

[
 
 
 
 
 

Σ𝜇1,𝑗 Σ𝜇1,𝑗𝜅𝑗 … 0 0

Σ𝜇1,𝑗𝜅𝑗 Σ𝜇1,𝑗𝜅𝑗
2 … 0 0

⋮ ⋮  ⋮ ⋮

0 0 … Σ𝜇𝑁,𝑗 Σ𝜇𝑁,𝑗𝜅𝑗

0 0 … Σ𝜇𝑁,𝑗𝜅𝑗 Σ𝜇𝑁,𝑗𝜅𝑗
2
]
 
 
 
 
 
−1

[
 
 
 
 
 

Σ(𝑦1,𝑗 − 𝑚1,𝑗)

Σ(𝑦1,𝑗 − 𝑚1,𝑗)𝜅𝑗

⋮

Σ(𝑦𝑁,𝑗 − 𝑚𝑁,𝑗)

Σ(𝑦𝑁,𝑗 − 𝑚𝑁,𝑗)𝜅𝑗]
 
 
 
 
 

. 

(17) 

where summations are performed by 𝑗 ∈ {1, … , 𝑇}. 

By converting to vector GLM as in Equation (16) and using Equation (14), 

we can estimate column (time) effects 𝜿 by running IRLS Algorithm 2 with 

𝜷 as fixed covariates and 𝜶 as fixed offsets: 

𝜿 (𝑠) = 𝜿 (𝑠−1) + (𝑫′𝑽−1𝑫)−1𝑫′𝑽−1(〈𝒀〉 − 〈𝞛〉).  

Here: 

〈𝞛〉 = E(〈𝒀〉) = log(〈𝑬〉) + log(〈𝜦〉)

= log(〈𝑬〉) + (𝑰𝑻⨂𝜶)1𝑇 + (𝑰𝑻⨂𝜷)�̅�,  

𝑽 = Var(〈𝒀〉) = diag[〈𝞛〉],  

and 𝑫 is 𝑁𝑇 × 𝑁 matrix with elements 𝑑𝑖𝑗 =
𝜕〈𝞛〉𝑗

𝜕𝜅𝑖
. 1𝑇 is column vector of 

length T, with all elements equal to 1. 

Inserting the values of parameters and performing matrix multiplication we 

obtain the following expression: 
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[

𝜅1

⋮

𝜅𝑇

]

(𝑠)

= [

𝜅1

⋮

𝜅𝑇

]

(𝑠−1)

+ [

Σ𝜇𝑖,1𝛽
𝑖
2 … 0

⋮  ⋮

0 … Σ𝜇𝑖,𝑇𝛽
𝑖
2
]

−1

[

Σ(𝑦𝑖,1 − 𝑚𝑖,1)𝛽
𝑖

⋮

Σ(𝑦𝑖,𝑁 − 𝑚𝑖,𝑁)𝛽
𝑖

] , (18) 

where summations are performed with respect to 𝑖 ∈ {1,… ,𝑁}. 

The algorithm may be summarized as follows: 

For iteration 𝑠 = 1,2, … 

i. Initiate the algorithm at arbitrary parameter vector 𝜶(0), 𝜷(0) and 𝜿(0). 

ii. Run IRLS Algorithm 2 for row effects using Equation (17), until 

convergence is achieved.  

iii. Fix parameter values 𝜶(𝑠) and  𝜷(s) and run IRLS Algorithm 2 for 

column effects using Equation (18), until convergence is achieved.  

iv. Fix parameter values 𝜿(𝑠) and go to step (ii).  

Stop the algorithm when the pre-defined convergence criteria is satisfied, e.g. 

further iterations do not result in an increase in quasi-likelihood above the 

certain threshold.  

 

2.2.3.  Forecasting and simulation 

In the Poisson Lee-Carter model 𝜅𝑡 is modeled in the same way as in the 

classical Lee-Carter model, see Subsection 2.1.3. The simulation of 

projections takes into account different variance structure and uses Normal 

approximation of Poisson distribution. Simulations are performed according 

to the following algorithm: 

 

Algorithm 4. Simulation using Poisson bilinear Lee-Carter model    

For each simulation 𝑠 = 1,… , 𝑆: 

i. Draw 𝜇 from 𝑁 (�̂�,
�̂�2

𝑇
), where �̂� and �̂�2 are parameter estimates of 

RWD model specified by Equation (10), 

ii. For each 𝑡 = 𝑇 + 1,… , 𝑇 + 𝐾, where 𝑇 is the length of time period 

used for model fitting and 𝐾 is the term of forecast: 

a. Draw 𝜅𝑡 from 𝜅𝑡~𝑁(𝜅𝑡−1 + 𝜇, �̂�2) where the notation of 

parameters is as in Equation (10). 

b. For each 𝑥 = 1,… ,𝑁 draw 𝐷𝑥,𝑡 from 

𝐷𝑥,𝑡~𝑁(𝐸𝑥,𝑡𝑥,𝑡 , 𝜑𝐸𝑥,𝑡𝑥,𝑡 ), where 𝑥,𝑡 = 𝑒𝛼𝑥+𝜅𝑡𝛽𝑥  and 𝜑 is 
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the estimated overdispersion parameter and the notation of 

parameters is as in Equation (11). 

iii. Calculate 𝑚𝑥,𝑡 =
𝐷𝑥,𝑡

𝐸𝑥,𝑡
.  

 

2.3. State space Lee-Carter model 

State space time series models (SSM) (see [22], [40], [77]) offer a natural 

extension of the Lee-Carter model both in terms of the alternative coherent 

fitting procedure and the possibility to flex the model by introducing 

additional parameters to ensure a better fit. In Subsection 2.3.1. we start with 

the basic linear Dynamic Linear Model (DLM) as defined by Equations (1) 

and (2). Using the flexibility of SSMs and allow, if necessary, for one time 

change in mortality trend. Thus, instead of one trend parameter 𝜇 of time 

varying index 𝜅𝑡 we use  

𝝁 = [
𝜇(𝐼)

𝜇(𝐼𝐼)
], 

where we denote 𝜇(𝐼) the drift over the whole fitting period and 𝜇(𝐼𝐼) the 

additional drift from the year of change in drift. 

In Subsection 2.3.2. we proceed with another modification where we apply 

non-linear SSM with regime switching to model changes in the volatility of 

the time varying index. 

 

2.3.1.  State space Lee-Carter model definition  

We use two forms of the state space Lee-Carter model: DLM and state 

space model with regime switching (SSM with switching). In this subsection, 

we describe the DLM version of Lee-Carter model.  

By using the general Expressions (1) and (2) of DLM, we can formulate 

the DLM Lee-Carter model by the following two equations: 

𝒚𝑡 = [𝜶 𝟎 𝟎 𝜷]𝒙𝑡 + 𝜺𝑡 ,    𝜺𝑡~𝑁(𝟎,𝑯𝑡), (19) 

𝒙𝑡 =

[
 
 
 
 

1

𝜇𝑡
(𝐼)

𝜇𝑡
(𝐼𝐼)

𝜅𝑡 ]
 
 
 
 

= [

1 0 0 0
0 1 0 0
0 0 1 0
0 1 𝕝{𝑡>𝑇0} 1

] 𝒙𝑡−1 + 𝜼𝑡 , 𝜼𝑡~𝑁(𝟎,𝑸𝑡). (20) 
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In the observation Equation (19), symbol 𝒚𝑡, 𝑡 ∈ {1,2,… , 𝑇} denotes a vector 

with N coordinates, where N is the total number of age groups. Each 

coordinate of this vector 𝑥 ∈ {1,2,… ,𝑁} is the specific log-mortality rate 

𝑦𝑥,𝑡 = log (𝑚𝑥,𝑡). Parameters 𝜶 and 𝜷 are vectors of N age specific parameters 

𝛼𝑥 and 𝛽𝑥 which have the same interpretation as in the classical Lee-Carter 

model. Matrix 𝑯𝑡 is a diagonal 𝑁 × 𝑁 matrix with all diagonal elements equal 

to 𝜎𝐻
2. 

In the state Equation (20), element 𝜅𝑡 is the time varying index, which 

represents the general trend of changes in mortality rates with time, which has 

the same interpretation as in the classical Lee-Carter model. Parameter 

𝜇(𝐼) represents the drift of 𝜅𝑡 applicable to the whole fitting period and 𝜇(𝐼𝐼) 

represents the additional drift element in the periods 𝑡 > 𝑇0 and symbol 𝕝 

denotes the standard indicator function. Thus, during the periods 𝑡 > 𝑇0 the 

model assumes that the total drift is 𝜇(𝐼) + 𝜇(𝐼𝐼). As in the classical Lee-Carter 

model, we assume that both drift parameters stay constant during the fitting 

period and we apply the following covariance matrix of errors of the state 

vector 𝒙𝑡: 

𝑸𝑡 = [

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 𝜎𝑄

2

] .  

The above model maintains many of the features of the classical Lee-Carter 

model. The time varying index 𝜅𝑡 follows the RWD. Contrary to the classical 

Lee-Carter model, if needed we can allow the one-time change in the drift at 

some time moment 𝑇0, but otherwise, drifts are not allowed to vary in time. 

Such structure ensures that the model is sufficiently rigid, which is important 

for making long-term forecasts. As in the classical Lee-Carter model, the 

general trend of mortality modeled with parameter 𝜅𝑡 is translated to age-

specific log mortality rates via the parameters 𝛽𝑥, and the random errors 휀𝑥,𝑡 

are assumed to be i.i.d. The model is unidentified, and we impose the same 

identifiably Constrains (4) and (5) as in the classical Lee-Carter model.     

SSMs enable us to estimate the distribution of each of the unobservable 

parameters 𝒙𝑡, by using the observed data 𝒚1, … , 𝒚𝑡. The recursive algorithm, 

called Kalman filter, which is based on the method of orthogonal projections 

and uses the features of the conditional Normal distribution, updates the 

estimate of the mean and variance of 𝒙𝑡−1 with the new data contained in 𝒚𝑡 

to derive the mean and variance of 𝒙𝑡. 
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Algorithm 5. Kalman filter recursion 

Consider the system defined for 𝑘 ≥ 0 by Equations (1) and (2). Suppose 

that 𝒙0 has the mean 𝒂0 and the covariance matrix 𝑷0 and is uncorrelated with 

{𝜺1, . . , 𝜺𝑡} and {𝜼1, … , 𝜼𝑡}.  

Using the properties of Normal conditional distribution, we can recursively 

calculate the distribution of unobserved state vector 𝒙𝑡, conditionally on 𝒚𝑡  

𝒙𝑡|𝑡~𝑁(𝒂𝑡|𝑡 , 𝑷𝑡|𝑡) and it’s one step ahead prediction 𝒙𝑡+1~𝑁(𝒂𝑡+1, 𝑷𝑡+1) as 

follows:  

𝒂𝑡|𝑡 = 𝒂𝑡 + 𝑷𝑡𝒁𝑡
′𝑭𝑡

−1𝒗𝑡,               𝑷𝑡|𝑡 = 𝑷𝑡 − 𝑷𝑡𝒁𝑡
′𝑭𝑡

−1𝒁𝑡𝑷𝑡,  

𝒂𝑡+1 = 𝑼𝑡𝒂𝑡 + 𝑲𝑡𝒗𝑡,                 𝑷𝑡+1 = 𝑼𝑡𝑷𝑡(𝑼𝑡 − 𝑲𝑡𝒁𝑡)
′ + 𝑸𝑡 ,  

𝒗𝑡 = 𝒚𝑡 − 𝒁𝑡𝒂𝑡,                     𝑭𝑡 = 𝒁𝑡𝑷𝑡𝒁𝑡
′ + 𝑯𝑡,  

𝑲𝑡 = 𝑼𝑡𝑷𝑡𝒁𝑡
′𝑭𝑡

−1.  

See [22, Ch. 4] for proof.  

 

As shown by Anderson and Moore [3, Ch. 3], assuming that errors are 

uncorrelated and zero mean, the Kalman filter estimator is the minimum 

variance estimator within a certain restricted class of filters, whether or not 

the Normality assumption is made.  Therefore, we can justify the application 

of the recursions in practical situations where the distribution of errors is not 

Normal. 

Therefore, in fitting the DLM Lee-Carter model, the Kalman filter provides 

us an easy way to estimate the time varying index {𝜅1, . . , 𝜅𝑇}. Estimation of 

the collection of the remaining model parameters 𝝍 = {𝜶,𝜷, 𝜎𝑄, 𝜎𝐻 , 𝝁} is 

described in Subsection 2.3.3.                           

 

2.3.2.  State space Lee-Carter model with regime switching 

The basic equations of the state space Lee-Carter model with regime 

switching remain (19) and (20). The key difference from the previous model 

is that we assume that the error terms 𝜼𝑡 , 𝑡 ∈ {1,… , 𝑇} follow a mixture of 

two zero mean Normal distributions with the following covariance matrices: 
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𝑸𝑡
(0)

=

[
 
 
 
 
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 (𝜎𝑄
(0)

)
2

]
 
 
 
 

, 𝑸𝑡
(1)

=

[
 
 
 
 
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 (𝜎𝑄
(1)

)
2

]
 
 
 
 

,  

each of them corresponding to one of the two regimes. We restrict (𝜎𝑄
(0)

)
2

≤

(𝜎𝑄
(1)

)
2
 and use a binary index 𝑠𝑡: low variance regime 𝑠𝑡 = 0 and high 

variance regime 𝑠𝑡 = 1. 

Switching between the two regimes is assumed to follow the homogeneous 

Markov process with constant transition probabilities as introduced by 

Hamilton [38]. We define two probabilities 

𝜋(0) = ℙ(𝑠𝑡 = 0|𝑠𝑡−1 = 0),   𝜋(1) = ℙ(𝑠𝑡 = 1|𝑠𝑡−1 = 1)  

 

which imply that: 

ℙ(𝑠𝑡 = 1|𝑠𝑡−1 = 0) = 1 − 𝜋(0),   ℙ(𝑠𝑡 = 0|𝑠𝑡−1 = 1) = 1 − 𝜋(1).  

Consequently, the parameter collection of the model with regime switching is 

𝝍(𝑠) = {𝜶, 𝜷, 𝝈𝑄 , 𝜎𝐻 , 𝝁, 𝝅  }, where 𝝅 = [𝜋
(0)

𝜋(1)
] and 𝝈𝑄 = [

𝜎𝑄
(0)

𝜎𝑄
(1)

]. 

 

The key implication of the modeling of errors as a mixture is that the 

resulting distribution of errors 

∑ℙ(𝑠𝑡 = 𝑖)𝑁 (0, (𝜎𝑄
(𝑖)

)
2
) ,

1

𝑖=0

  

depending on its parametrization may have significantly heavier tails than the 

tails of a Normal distribution.  

Conditionally on values of 𝜅𝑡 , 𝑡 ∈ {1,… , 𝑇}, we can recursively estimate 

probabilities of 𝑠𝑡 = 0 and  𝑠𝑡 = 1, by taking into account the corresponding 

probabilities at time moment 𝑡 − 1, as well as the likelihood of being in a 

particular state, which is driven by the deviation of the change 𝜅𝑡 − 𝜅𝑡−1 from 

its expected value 𝜇(𝐼) + 𝕝{𝑡>𝑇0}𝜇
(𝐼𝐼): the higher the deviation is, the more 

likely is that the process has moved to high variance regime. For details see 

step (ii) of Algorithm 8. 

Conditionally on values of 𝑠𝑡, 𝑡 ∈ {1,… , 𝑇}, we can apply the basic 

Kalman filter with matrix 𝑸𝑡 varying depending on the regime. 
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The key benefit from using the SSM with regime switching is that it 

enables us to segregate the total variance of 𝜅𝑡, which is generally recognized 

to be the key source of variability of mortality rates, into the variance during 

the periods of the “normal” socio-economic development and the variance 

during the periods such as epidemics, wars, changes economic and political 

systems, etc. As we shall see in Section 3, the development of the general 

mortality trend may be far from constant, therefore, the classical Lee-Carter 

approach, which averages the estimated variance of 𝜅𝑡 over the fitting periods 

can miss important features of the real life development, especially when the 

purpose of the analysis is the estimation of the confidence intervals of the 

mortality forecasts rather than just the central forecast. 

In this disseration, we limit our analysis to a two-regime model. It would 

be possible to develop a model where switching occurs between three or a 

higher number of regimes. However, in such a case we would need to estimate 

more parameters which could have a major impact on their credibility and 

robustness. In addition, we would depart from the initial assumption that there 

are two socio-economic development modes. Therefore, we leave this as a 

possible model extension for further research. 

 

2.3.3.  Gibbs sampler 

There are two main approaches to the fitting SSMs: maximum likelihood 

(MLE) and Bayesian Markov Chain Monte Carlo (MCMC). For estimation of 

the parameter collection 𝝍 of DLM Lee-Carter model we can easily apply 

MLE, see e.g. [27]. However, as noted by Frühwirth-Schnatter [26], in the 

case of SSM with regime switching the marginal likelihood where both latent 

processes x and s are integrated out, is not available in the closed form. In 

addition, MLE does not explicitly allow for uncertainty in model parameters, 

which is an important element in satisfying our aim to estimate realistic 

confidence intervals of the forecasts.  

Due to these reasons, for model fitting, we apply the MCMC method, 

called the Gibbs sampler, which was also used in some earlier applications of 

the state space Lee Carter model without regime switching by Fung et al. [27], 

Kogure and Kurachi [51], Pedroza [61]. The Gibbs sampler draws samples of 

parameter values from sequentially updated conditional distributions. Thus, if 

we have a parameter vector 𝜽 = {𝜃1, 𝜃2, … , 𝜃𝑀}, the Gibbs sampler at each 

iteration 𝑗 =  1,2,…  would sequentially draw samples of 𝜃𝑖
𝑗
 for 𝑖 ∈

{1,2,… ,𝑀} from (𝜃𝑖
𝑗
|𝜃1

𝑗
, … , 𝜃𝑖−1

𝑗
, 𝜃𝑖+1

𝑗−1
, … , 𝜃𝑀

𝑗−1
), where 𝜃𝑖

𝑗
 represents draw 

of parameter 𝜃𝑖 at j iteration. As shown by Geman and Geman [32] under 
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certain mild conditions the distribution of draws 𝜽𝑗 converge to the true 

distribution of 𝜽 if 𝑗 → ∞, independently of the starting values of 𝜽1 =

(𝜃1
1, 𝜃2

1, … , 𝜃𝑀
1 ). 

The key complication in constructing and using the Gibbs sampler is the 

requirement at each simulation step to have conditional distributions of the 

sampled parameters. In our case, the complication arises in implementing a 

proper sampler of the unobserved state parameter 𝒙𝑡 and in the case of model 

with regime switching the collection vector of regimes 𝒔 = {𝑠1, 𝑠2, … , 𝑠𝑇}. 

This issue was successfully resolved by the Forward Filtering Backward 

Sampling (FFBS) algorithm, see [14].  

Algorithm 6. Forward Filtering Backward Sampling (FFBS)  

In FFBS we firstly run the Kalman filter and sample �̃�𝑇 by supposing that 

𝒙𝑇~𝑁(𝒂𝑇|𝑇 , 𝑷𝑇|𝑇). Sampled value is treated as an observation which allows 

us to perform one step backward sampling of 𝒙𝑇−1, 𝒙𝑇−2, … , 𝒙1 using the 

following recursions:     

𝒂𝑡|𝑡,�̃�𝑡+1
= 𝒂𝑡|𝑡 + 𝑷𝑡|𝑡𝑼𝑡

′𝑷𝑡+1
−1 (�̃�𝑡+1 − 𝒂𝑡+1), (21) 

𝑷𝑡|𝑡,�̃�𝑡+1
= 𝑷𝑡|𝑡 − 𝑷𝑡|𝑡𝑼𝑡

′𝑷𝑡+1
−1 𝑼𝑡𝑷𝑡|𝑡 . (22) 

See [62, Ch. 4] for details. 

Thus, FFBS algorithm can be formulated as follows:  

i. For each 𝑡 = 1,2,… , 𝑇: 

a. Run Algorithm 5 (Kalman filter) to derive the distribution of 

𝒙𝑇. 

b. Sample �̃�𝑇. 

ii. For each 𝑡 = 𝑇 − 1, 𝑇 − 2,… ,1: 

a. Calculate 𝒂𝑡|𝑡,�̃�𝑡+1
 and 𝑷𝑡|𝑡,�̃�𝑡+1

 using Equations (21) and 

(22). 

b. Sample �̃�𝑡 by supposing that 𝒙𝑡~𝑁(𝒂𝑡|𝑡,�̃�𝑡+1
, 𝑷𝑡|𝑡,�̃�𝑡+1

).  

 

2.3.4.  Gibbs sampler algorithm for estimation of parameters of 

state space Lee-Carter model 

In this section detailed algorithms used for estimation of state space Lee-

Carter model parameters are provided. 
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Algorithm 7. Gibbs sampler for DLM Lee-Carter model 

i. Initiate the sampler using an arbitrary starting parameter collection 

𝝍 = {𝜶,𝜷, 𝜎𝑄 , 𝜎𝐻 , 𝝁} and collection of priors  =

{𝒎0,𝑴0, 𝑔0, 𝐺0, 𝒃0, 𝑩0}. 

ii. Sample 

�̃�𝒕 = [1 𝜇(𝐼) 𝜇(𝐼) 𝜅𝑡]
′,  

conditionally on ψ and store vector 𝜿, by applying FFBS Algorithm 

6, with the initial distribution 

𝒙𝟏~𝑁 ([

1
𝜇(𝐼)

𝜇(𝐼𝐼)

𝜅0

] , [

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 𝜎0

2

]) .  

Simulation results are usually insensitive to selection of 𝜅0, provided 

𝜎0
2 is sufficiently large (we use 𝜎0

2 = 10).  

iii. Sample 𝝁 = [𝜇(𝐼) 𝜇(𝐼𝐼)]′, conditionally on 𝜿 and 𝜎𝑄
2, from the 

bivariate Normal distribution: 

𝑁 ((𝑴0
−1 +

1

𝜎𝑄
2 𝑿′𝑿)

−1

(𝑴0
−1𝒎0 +

1

𝜎𝑄
2 𝑿′∆𝜿) , (𝑴0

−1 +
1

𝜎𝑄
2 𝑿′𝑿)

−1

) ,  

where ∆𝜿 is a vector of changes in 𝜅𝑡, and 𝑿 is a matrix of dimensions 

T×2 having the form: 

𝑿 =

[
 
 
 
 
 
1 0
⋮ ⋮
1 0
1 1
⋮ ⋮
1 1]

 
 
 
 
 

,  

where number of first lines 𝑇0 ≤ 𝑇 is the number of periods before 

change in drift of 𝜅𝑡 occurred.  

iv. Sample 𝜎𝑄
2, conditionally on 𝜿 and 𝝁, from the inverse Gamma 

distribution:  

𝐼𝐺 (𝐺0 +
𝑇

2
, 𝑔0 +

1

2
∑(𝜅𝑡 − 𝜅𝑡−1 − 𝜇(𝐼) − 𝕝{𝑡>𝑇0}𝜇

(𝐼𝐼))
2

𝑇

𝑡=1

) ,  

where 𝕝{𝑡>𝑇0} is the standard indicator function.  
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v. Sample 𝜶 and 𝜷, conditionally on 𝜿 and 𝜎𝐻
2, from the bivariate 

Normal distribution. We assume that the matrix of measurement 

errors 𝑯𝑡 is diagonal, therefore, we can sample 𝛼𝑥 and 𝛽𝑥 for each 

age group 𝑥 ∈ {1,2,… ,𝑁} separately:  

[
𝛼𝑥

𝛽𝑥
]~𝑁 ((𝑩0

−1 +
1

𝜎𝐻
2
[𝟏 𝜿]′[𝟏 𝜿])

−1

(𝑩0
−1𝒃0

+
1

𝜎𝐻
2
[𝟏 𝜿]′𝒚𝑥) , (𝑩0

−1 +
1

𝜎𝐻
2
[𝟏 𝜿]′[𝟏 𝜿])

−1

) , 

 

where 𝒚𝑥 is a vector of centered observations for age group x, and 

[𝟏 𝜿] is a matrix of dimensions T×2 where all elements of the first 

column are equal to 1.   

vi. Sample 𝜎𝐻
2, conditionally on 𝜿, 𝜶 and 𝜷, from the inverse Gamma 

distribution:  

𝐼𝐺 (𝐺0 +
𝑇𝑁

2
, 𝑔0 +

1

2
∑ ∑(𝑦𝑥,𝑡 − 𝛼𝑥 − 𝛽𝑥𝜅𝑡)

2
𝑇

𝑡=1

𝑁

𝑥=1

) .  

vii. Reweight 𝜶 and 𝜷 and related parameters by implementing Lee-

Carter identifiability Constraints (4) and (5). We proceed as follows: 

𝜷𝑎𝑑𝑗 =
𝜷

∑ 𝛽𝑥
𝑁
𝑥=1

,   𝜶𝑎𝑑𝑗 = 𝜶 + �̅�𝜷,  

𝝁𝑎𝑑𝑗 = ∑ 𝛽𝑥

𝑁

𝑥=1
(𝝁 − [

�̅�
�̅�
]),    𝜎𝑄

2𝑎𝑑𝑗
= 𝜎𝑄

2 ∙ (∑ 𝛽𝑥

𝑁

𝑥=1
)
2

,  

where, �̅� is a mean 𝜅𝑡. 

viii. Collect the updated parameters to collection 𝝍 and proceed to step 

(ii). Repeat the algorithm for the predetermined number of runs.  

 

Algorithm 8. Gibbs sampler for state space Lee-Carter model with switching 

i. Initiate the sampler using an arbitrary starting parameter collection 

𝝍(𝑠) = {𝜶, 𝜷, 𝝈𝑄 , 𝜎𝐻 , 𝝁, 𝝅} and collection of priors (𝑠) =

{𝒎0,𝑴0, 𝑔0, 𝐺0, 𝒃0, 𝑩0, 𝑝0
(1)

, 𝑝0
(2)

} and an arbitrary vector 𝒔 =

[𝑠0, 𝑠1, … , 𝑠𝑇]′ of indexes 0 and 1. 

ii. Sample 

�̃�𝑡 = [1 𝜇(𝐼) 𝜇(𝐼) 𝜅𝑡]
′,  
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conditionally on 𝝍(𝒔) and regime vector 𝒔, and stored vector 𝜿 of 

values 𝜅𝑡, by applying FFBS Algorithm 6, with the initial distribution 

𝒙1~𝑁([

1
𝜇(𝐼)

𝜇(𝐼𝐼)

𝜅0

] , [

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 𝜎0

2

]) .  

Simulation results are usually insensitive to selection of 𝜅0, provided 

𝜎0
2 is sufficiently large (we use 𝜎0

2 = 10).  

iii. Sample vector 𝒔, conditionally on 𝜿, 𝝈𝑄, 𝝁 and 𝝅, in the following 

way:  

a. Calculate the initial probabilities of the two regimes by 

assuming that the filter is initialized with the stationary 

Markov chain probabilities: 

ℙ(𝑠0 = 0) =
1 − 𝜋(1)

2 − 𝜋(0) − 𝜋(1)
, 

 ℙ(𝑠0 = 1) =
1 − 𝜋(0)

2 − 𝜋(0) − 𝜋(1)
 . 

 

b. For 𝑡 ∈ {1,2,… , 𝑇} use the recursive procedure described in 

[14]: 

 calculate priors 

ℙ(𝑠𝑡 = 0|𝒙𝑡−1) = ℙ(𝑠𝑡−1 = 0|𝒙𝑡−1)𝜋
(0) + 

ℙ(𝑠𝑡−1 = 1|𝒙𝑡−1)(1 − 𝜋(1)), 
 

ℙ(𝑠𝑡 = 1|𝒙𝑡−1) = ℙ(𝑠𝑡−1 = 1|𝒙𝑡−1)𝜋
(1) + 

ℙ(𝑠𝑡−1 = 0|𝒙𝑡−1)(1 − 𝜋(0)). 
 

 calculate posteriors 

ℙ∗(𝑠𝑡 = 0|𝒙𝑡) = 

ℙ(𝑠𝑡 = 0|𝒙𝑡−1)ℙ(𝒙𝑡 = 𝑿𝑡|𝑠𝑡 = 0), 
 

ℙ∗(𝑠𝑡 = 1|𝒙𝑡) = 

ℙ(𝑠𝑡 = 1|𝒙𝑡−1)ℙ(𝒙𝑡 = 𝑿𝑡|𝑠𝑡 = 1). 
 

In our case for 𝑖 ∈ {0,1} probability ℙ(𝒙𝑡 = 𝑿𝑡|𝑠𝑡 =

𝑖) should be calculated by a Normal distribution with 
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mean 𝜅𝑡 − 𝜅𝑡−1 − 𝜇(𝐼) − 𝕝{𝑡>𝑇0}𝜇
(𝐼𝐼) and variance of 

(𝜎𝑄
(𝑖)

)
2
. 

 Standardize the posteriors 

ℙ(𝑠𝑡 = 0|𝒙𝑡) = 

ℙ∗(𝑠𝑡 = 0|𝒙𝑡−1)

ℙ∗(𝑠𝑡 = 0|𝒙𝑡−1) + ℙ∗(𝑠𝑡 = 1|𝒙𝑡−1)
, 

 

ℙ(𝑠𝑡 = 1|𝒙𝑡) = 

ℙ∗(𝑠𝑡 = 1|𝒙𝑡−1)

ℙ∗(𝑠𝑡 = 0|𝒙𝑡−1) + ℙ∗(𝑠𝑡 = 1|𝒙𝑡−1)
. 

 

c. Sample 𝑠𝑇 from the Bernoulli distribution with success 

probability 𝑃(𝑠𝑇 = 1|𝒙𝑇).  

d. For 𝑡 = 𝑇 − 1, 𝑇 − 2,… ,1 sample 𝑠𝑡 recursively from the 

Bernoulli distribution with the one of the following success 

probabilities depending on the value of 𝑠𝑡+1 

ℙ(𝑠𝑡 = 1|𝒙𝑡 , 𝑠𝑡+1 = 0) = 

(1 − 𝜋(1))ℙ(𝑠𝑡 = 1|𝒙𝑡)

(1 − 𝜋(1))ℙ(𝑠𝑡 = 1|𝒙𝑡) + 𝜋(0)ℙ(𝑠𝑡 = 0|𝒙𝑡)
, 

 

ℙ(𝑠𝑡 = 1|𝒙𝑡 , 𝑠𝑡+1 = 1) = 

𝜋(1)ℙ(𝑠𝑡 = 1|𝒙𝑡)

𝜋(1)ℙ(𝑠𝑡 = 1|𝒙𝑡) + (1 − 𝜋(0))ℙ(𝑠𝑡 = 0|𝒙𝑡)
. 

 

e. Collect the sampled regime indicators to vector s. 

 

We remark here that steps (iv)–(vi) of the presented algorithm are 

constructed following results in [49]. 

iv. Sample 𝝅 = [𝜋(0) 𝜋(1)]′, conditionally on 𝒔, from the beta 

distributions 

𝜋(0)~𝐵𝑒𝑡𝑎 (𝑝0
(1)

+ 𝑛00, 𝑝0
(2)

+ 𝑛01) ,  

𝜋(1)~𝐵𝑒𝑡𝑎 (𝑝0
(1)

+ 𝑛11, 𝑝0
(2)

+ 𝑛10),  
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where 𝑝0
(1)

 and 𝑝0
(2)

 are prior parameters and symbol 𝑛𝑖𝑗 denotes the 

number of transitions from the regime i to the regime j in the regime 

vector s. 

v. Sample 𝝁 = [𝜇(𝐼) 𝜇(𝐼𝐼)]′, conditionally on s, 𝜿 and 𝝈𝑄
𝟐 , from the 

bivariate Normal distribution: 

𝑁((𝑴0
−1 + 𝑿∗′𝑿∗)−1(𝑴0

−1𝒎0 + 𝑿∗′∆𝜿∗), (𝑴0
−1 + 𝑿∗′𝑿∗)−1),  

where ∆𝜿∗ is a vector of changes in 𝜅𝑡, divided by 𝜎𝑄
(𝑖)

 where the 

index i corresponds to regimes in vector s, and 𝑿∗ is a T×2 matrix of 

the form: 

𝑿∗ =

[
 
 
 
 
 
 
 1/𝜎𝑄

(𝑖)
0

⋮ ⋮

1/𝜎𝑄
(𝑖)

0

1/𝜎𝑄
(𝑖)

1/𝜎𝑄
(𝑖)

⋮ ⋮

1/𝜎𝑄
(𝑖)

1/𝜎𝑄
(𝑖)

]
 
 
 
 
 
 
 

,  

where number of first lines 𝑇0 ≤ 𝑇 is the number of periods before 

change in drift of 𝜅𝑡 occurred.  

vi. Sample 𝝈𝑄
𝟐 = [(𝜎𝑄

(0)
)
2

(𝜎𝑄
(1)

)
2
]
′

, conditionally on 𝒔, 𝜿 and 𝝁, from 

the inverse Gamma distribution. 

a. Sample (𝜎𝑄
(0)

)
2
 from the inverse Gamma distribution 

𝐼𝐺 (𝐺0 +
𝑇

2
, 𝑔0 +

1

2
∑(

𝜅𝑡 − 𝜅𝑡−1 − 𝜇(𝐼) − 𝕝{𝑡>𝑇0}𝜇
(𝐼𝐼)

√1 + ℎ𝑠𝑡

)

2𝑇

𝑡=1

) ,  

and suppose that ℎ =
(𝜎𝑄

(1)
)
2

(𝜎𝑄
(0)

)
2 − 1. 

b. Sample 1 + ℎ from the inverse Gamma distribution 

𝐼𝐺

(

 
 

𝐺0 +
1

2
max{𝑡 ≤ 𝑇: 𝑠𝑡 = 1},

  𝑔0 +
1

2
∑ (

𝜅𝑡 − 𝜅𝑡−1 − 𝜇(𝐼) − 𝕝{𝑡>𝑇0}𝜇
(𝐼𝐼)

𝜎𝑄
(0)

)

2

𝑡:𝑠𝑡=1 )

 
 

,  

where summation is performed over the moments 𝑡 ∈

{1,2,… , 𝑇} for which 𝑠𝑡 = 1. 
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c. If the sampled ℎ > 0, define (𝜎𝑄
(1)

)
2

= (1 + ℎ) (𝜎𝑄
(0)

)
2
. 

Otherwise leave h from the previous run.   

vii. Sample 𝜶 and 𝜷, conditionally on 𝜿 and 𝜎𝐻
2, from the bivariate 

Normal distribution. We assume that the matrix of measurement 

errors 𝑯𝑡 is diagonal, therefore, we can sample 𝛼𝑥 and 𝛽𝑥 for each 

age group 𝑥 ∈ {1,2,… ,𝑁} separately:  

[
𝛼𝑥

𝛽𝑥
]~𝑁 ((𝑩0

−1 +
1

𝜎𝐻
2
[𝟏 𝜿]′[𝟏 𝜿])

−1

(𝑩0
−1𝒃0 +

1

𝜎𝐻
2
[𝟏 𝜿]′𝒚𝑥) ,

(𝑩0
−1 +

1

𝜎𝐻
2
[𝟏 𝜿]′[𝟏 𝜿])

−1

) , 

 

where 𝒚𝑥 is a vector of centered observations for age group x, and 

[𝟏 𝜿] is a matrix of dimensions T×2 where all elements of the first 

column are equal to 1.   

viii. Sample 𝜎𝐻
2, conditionally on 𝜿, 𝜶 and 𝜷, from the inverse Gamma 

distribution:  

𝐼𝐺 (𝐺0 +
𝑇𝑁

2
, 𝑔0 +

1

2
∑ ∑(𝑦𝑥,𝑡 − 𝛼𝑥 − 𝛽𝑥𝜅𝑡)

2
𝑇

𝑡=1

𝑁

𝑥=1

) .  

ix. Reweight 𝜶 and 𝜷 and related parameters by implementing Lee-

Carter identifiability Constraints (4) and (5). We proceed as follows: 

𝜷𝑎𝑑𝑗 =
𝜷

∑ 𝛽𝑥
𝑁
𝑥=1

,   𝜶𝑎𝑑𝑗 = 𝜶 + �̅�𝜷,  

𝝁𝑎𝑑𝑗 = ∑ 𝛽𝑥

𝑁

𝑥=1
(𝝁 − [

�̅�
�̅�
]),    𝜎𝑄

2𝑎𝑑𝑗
= 𝜎𝑄

2 ∙ (∑ 𝛽𝑥

𝑁

𝑥=1
)
2

,  

where, �̅� is a mean 𝜅𝑡. 

x. Collect the updated parameters to collection 𝝍(𝑠) and proceed to step 

(ii).  Repeat the algorithm for the predetermined number of runs.  

 

2.3.5.  Forecasting and simulation 

As noted in the previous subsection, the Gibbs sampler, after its 

convergence, produces draws from the posterior joint distribution of 

parameters. Thus, after discharging a certain number of initial draws (called 

burn or warm-up phase), we can use the draws as an input for the forecasting 
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simulations of the state space models. For both the linear model and the state 

space model with regime switching we simulate the projected mortality rates 

for periods 𝑇 + 1, 𝑇 + 2,… , 𝑇 + 𝐾, where 𝑇 is the length of time period used 

for model fitting and 𝐾 is the term of the forecast,  in the following way. 

 

Algorithm 9. Simulation using the state space Lee-Carter model   

For each iteration 𝑗 = 1,… , 𝐽: 

i. Depending on the model, DLM or SSM with regime switching, 

sample parameter collection 𝝍 or 𝝍(𝑠) from the matrix of Gibbs 

sampler draws obtained during the model fitting phase after the warm-

up. In this step, we are sampling the parameter values from their joint 

posterior distributions. 

ii. For SSM with regime switching, draw a sample of regime indicators 

s for the forecasted period using step (iii) of Algorithm 8. As 𝜅𝑡 are 

not available for time moments 𝑡 = 𝑇 + 1, 𝑇 + 2,… , 𝑇 + 𝐾 

multiplication by the probability ℙ(𝒙𝑡|𝑠𝑡) in position (iii.b) of 

Algorithm 8 may be disregarded. 

iii. For SSM with regime switching, using sampled parameters 𝝁 and 𝝈𝑄
𝟐  

and regime vector 𝒔 from step (ii) simulate 𝜅𝑡 for time moments 𝑡 =

𝑇 + 1, 𝑇 + 2,… , 𝑇 + 𝐾 by supposing that 

𝜅𝑡~𝑁 (𝜅𝑡−1 + 𝜇(𝐼) + 𝜇(𝐼𝐼), (𝜎𝑄
(𝑖)

)
2
) ,  

where (𝜎𝑄
(𝑖)

)
2
 is switching between (𝜎𝑄

(0)
)
2
 and (𝜎𝑄

(1)
)
2
 depending 

on simulated 𝒔. In case of DLM, a fixed variance 𝜎𝑄
2 is used. 

iv. Using sampled parameters 𝜶, 𝜷, 𝜎𝐻
2 and sampled vector 𝜿 from step 

(iii), as well as allowing that errors are i.i.d., simulate 𝑦𝑥,𝑡 for time 

moments 𝑡 = 𝑇 + 1, 𝑇 + 2,… , 𝑇 + 𝐾 and age groups 𝑥 = 1,… ,𝑁 by 

supposing that  

𝑦𝑥,𝑡~𝑁(𝛼𝑥 + 𝛽𝑥𝜅𝑡, 𝜎𝐻
2). 

v. Calculate mortality rates, having in mind that 𝑚𝑥,𝑡 = 𝑒𝑦𝑥,𝑡 for all 

possible x and t.  

 

2.3.6.  Likelihood evaluation 

For a comparison of state space models, the marginal log likelihood 

approach can be used. The comparison aims to decide which of the state space 
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Lee-Carter models should be used: with regime switching or more simple 

linear model. For this purpose the following formula of Chib [16] is applied:  

𝑚(𝒀1:𝑇) =  𝑚(𝒀1:𝑇|�̂�) + 𝑚(�̂�) − 𝑚(�̂�|𝒀1:𝑇),  

where 𝒀1:𝑇 = (𝒚1, 𝒚2, … , 𝒚𝑇), 𝑚(𝒀1:𝑇) is the marginal log likelihood, 

𝑚(𝒀1:𝑇|�̂�) is log likelihood conditional on the estimated collection of 

parameters, 𝑚(�̂�) is log density of prior at �̂� and 𝑚(�̂�|𝒀1:𝑇) is the log 

density of posterior at �̂�. 

The term 𝑚(𝒀1:𝑇|�̂�) can be calculated in the closed form for linear state 

space models, but for SSM with regime switching, the likelihood function 

would be a mixture of 2𝑇 Normal distributions, the direct assessment of which 

is not practical. Therefore, we use the sequential Monte Carlo method based 

on the auxiliary particle filter of Pitt and Shephard [63], which was adapted to 

SSM with regime switching by Kaufmann [47]. The idea of the method is for 

𝑟 = 1,2,… , 𝑅 separate chains (“particles”) to sample sequentially 

{𝑆𝑡
(𝑟)

|𝒙𝑡−1
(𝑟)

, 𝑆𝑡−1
(𝑟)

, 𝒚𝑡} and {𝒙𝑡|𝑆𝑡
(𝑟)

, 𝒙𝑡−1
(𝑟)

, 𝒚𝑡}, and given the sampled values for 

each particle to calculate the likelihood. The 𝑚(𝒀1:𝑇|�̂�) is estimated as the 

average of log likelihoods over the 𝑅 particles. The details are provided in the 

following algorithm. 

 

Algorithm 10. Simulation of the state space Lee-Carter with switching model 

log likelihood conditional on the estimated collection of parameters   

i. With the parameter collection �̂�(𝑠) = {�̂�, �̂�, �̂�𝑄, �̂�𝐻 , �̂�, �̂�}, initiate 

the filter by drawing R times with replacement 𝜅0 from the output of 

the Gibbs sampler and generating R draws of 𝑠0 from the Bernoulli 

distribution with probability 

𝑃(𝑠0 = 0) =
1 − 𝜋(1)

2 − 𝜋(0) − 𝜋(1)
.  

ii. For each 𝑟 ∈ {1,… , 𝑅} and 𝑡 ∈ {1,… , 𝑇} , conditionally on 

{𝑠𝑡−1
(𝑟)

, 𝜅𝑡−1
(𝑟)

} sequentially sample {𝑠𝑡
(𝑟)

, 𝜅𝑡
(𝑟)

} in the following way: 

a. Using the basic Kalman filter, for 𝑖 ∈ {0,1} derive one step 

ahead prediction 

ℙ(𝜅𝑡|𝑡−1
(𝑟)

|𝑠𝑡 = 𝑖, 𝜅𝑡−1
(𝑟)

)~𝑁 (�̅�𝑡|𝑡−1
(𝑟)

, 𝑃𝑡|𝑡−1
(𝑟) (𝑠𝑡 = 𝑖)),  
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where �̅�𝑡|𝑡−1
(𝑟)

= 𝜅𝑡−1
(𝑟)

+ 𝜇(𝐼) + 𝜇(𝐼𝐼) and 𝑃𝑡|𝑡−1
(𝑟) (𝑠𝑡 = 𝑖) =

𝑃𝑡−1|𝑡−1
(𝑟)

+ (𝜎𝑄
(𝑖)

)
2
. Obviously, this filter only considers the 

last state line of Equation (20) as the drifts are fixed. 

b. For 𝑖 ∈ {0,1} find then matrix 𝑭𝑡
(𝑟)

(𝑠𝑡 = 𝑖) = 𝜷𝑃𝑡|𝑡−1
(𝑟) (𝑠𝑡 =

𝑖)𝜷′ + 𝑯𝑡 and 𝒗𝑡
(𝑟)

= 𝒚𝑡 − 𝜶 − 𝜷�̅�𝑡|𝑡−1
(𝑟)

. 

c. For 𝑖 ∈ {0,1} calculate and standardize probabilities 

ℙ(𝑠𝑡
(𝑟)

= 𝑖|𝒙𝑡−1
(𝑟)

, 𝑠𝑡−1
(𝑟)

, 𝒚𝑡) ∝ 

|𝑭𝑡
(𝑟)(𝑠𝑡 = 𝑖)|

−1/2
𝑒

−
1

2
𝒗𝒕

(𝒓)′
(𝑭𝒕

(𝒓)
(𝑠𝑡=𝑖))

−1

𝒗𝒕
(𝒓)

ℙ(𝑆𝑡 = 𝑖|𝑠𝑡−1
(𝑟)

). 

 

d. Sample 𝑠𝑡
(𝑟)

 using the probabilities derived in step (ii.c). 

e. Given the sampled 𝑠𝑡
(𝑟)

with the basic Kalman filter, calculate 

the distribution of the prediction given the observation 𝒚𝑡: 

ℙ(𝜅𝑡|𝑡
(𝑟)

|𝑠𝑡
(𝑟)

= 𝑖, 𝜅𝑡|𝑡−1
(𝑟)

, 𝒚𝒕)~ 

𝑁 (
�̅�𝑡|𝑡−1

(𝑟)
+ 𝑃𝑡|𝑡−1

(𝑟)
(𝑠𝑡 = 𝑖)𝜷′ (𝑭𝒕

(𝒓)
(𝑠𝑡 = 𝑖))

−1

𝒗𝒕
(𝒓)

,

 𝑃𝑡|𝑡−1
(𝑟) (𝑠𝑡 = 𝑖) − 𝑃𝑡|𝑡−1

(𝑟) (𝑠𝑡 = 𝑖)𝜷′ (𝑭𝒕
(𝒓)(𝑠𝑡 = 𝑖))

−1

𝜷𝑃𝑡|𝑡−1
(𝑟) (𝑠𝑡 = 𝑖)

). 

 

 

f. Sample 𝜅𝑡
(𝑟)

 and proceed to step (ii.a). 

iii. From the draws {𝑠𝑡
(𝑟)

, 𝜅𝑡
(𝑟)

} , 𝑡 ∈ {1,2,… , 𝑇} calculate the one step 

likelihood by formula  

𝑓(𝒚𝑡|𝒚𝑡−1, �̂�
(𝑠)) =

1

𝑅
∑ 𝑓 (𝒚𝑡|𝑠𝑡−1

(𝑟)
, 𝜅𝑡−1

(𝑟)
, �̂�(𝑠))

𝑅

𝑟=1

,  

where 

𝑓 (𝒚𝑡|𝑠𝑡−1
(𝑟)

, 𝜅𝑡−1
(𝑟)

, �̂�(𝑠)) = ∑ 𝑁 (𝜷𝜅𝑡|𝑡−1
(𝑟)

, 𝑭𝑡
(𝑟)

(𝑠𝑡 = 𝑖))ℙ (𝑠𝑡 = 𝑖|𝑠𝑡−1
(𝑟)

)

𝑖=0,1

 , 

follows from the model assumption that errors 𝜎𝐻
2  do not depend on 

𝒚𝒕−𝟏. 

iv. Using the Markov property of the model, find the log likelihood 

conditional on �̂�(𝑠)  
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𝑚(𝒀1:𝑇|�̂�(𝑠)) = ∑log

𝑇

𝑡=1

𝑓(𝒚𝑡|𝒚𝑡−1, �̂�
(𝑠)).   

The term 𝑚(�̂�|𝒀1:𝑇) we estimate similarly as by Chib [16] by running 

sequentially Gibbs sampler for each of the parameters in the collection 𝝍 =

{𝜓1, … , 𝜓𝐿} and estimating their posterior likelihood at the mean points �̂� 

from MCMC runs using the following algorithm. 

 

Algorithm 11. Simulation of log density of posterior of parameters fitted with 

the Gibbs sampler    

i. For each of the parameters in the collection 𝝍 = {𝜓1, … , 𝜓𝐿} perform 

the following: 

a. Estimate 𝑚(𝜓1|𝒀1:𝑇) as a mean of the appropriate likelihood 

function of the parameter 𝜓1 evaluated over the parameters 

of MCMC runs of the Gibbs sampler sampled as described in 

Algorithms 7 and 8.  

b. Estimate 𝑚(𝜓2|𝒀1:𝑇 , �̂�1) by fixing the parameter 𝜓1  at the 

value �̂�1  and by performing additional run of Gibbs sampler 

as in step (i.a).  

… 

z. Estimate 𝑚(𝜓𝐿|𝒀1:𝑇 , �̂�1, �̂�2, … , �̂�𝐿−1) by fixing the 

parameters 𝜓1, 𝜓2, … , 𝜓𝐿−1 at the values �̂�1, �̂�2, … , �̂�𝐿−1  

and by performing an additional run of Gibbs sampler as in 

step (i.a). 

ii. Calculate the total posterior log likelihood  

𝑚(�̂�|𝒀1:𝑇) = 𝒎(𝜓1|𝒀1:𝑇) + 𝒎(𝜓2|𝒀1:𝑇 , �̂�1) + ⋯

+  𝒎(𝜓𝐹|𝒀1:𝑇 , �̂�1, … , �̂�𝐹−1).  
 

 

2.4. Other specifications of stochastic mortality models 

In this section, we provide a brief overview of other alternative stochastic 

mortality models and explain their applicability to the analysis performed in 

this dissertation.  
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2.4.1.  Age-Period-Cohort model 

The Age-Period-Cohort (APC) model (see [13], [17]) models log mortality 

rates for ages 𝑥 ∈ {1,2,… ,𝑁} and time periods 𝑡 ∈ {1,2,… , 𝑇} according to 

the following formula  

log(𝑚𝑥,𝑡) = 𝛼𝑥 +
1

𝑁
𝜅𝑡 +

1

𝑁
𝛾𝑡−𝑥 + 𝑒𝑥,𝑡,  

where 𝛼𝑥 is the parameter of age effects, 𝜅𝑡 is the parameter of time effect and 

𝛾𝑡−𝑥 is the parameter of a cohort effect. Independent errors 𝑒𝑥,𝑡 may have a 

Normal distribution, however, the APC model can be easily modeled using 

the Poisson regression specification. As in the case of the Lee-Carter model, 

the model is unidentified and it needs three location identifiability constraints. 

The motivation of the model is that in addition to age and time effects, 

cohort effect on mortality rates is taken into account. Cohort (generation) 

effects, i.e., the dependence of mortality rates on a particular year of birth, 

were observed in England and Wales and the USA, in particular in studies 

covering higher ages. As discussed by Tuljapurkar and Boe [73], cohort 

effects may be attributable to a particular lifestyle or habits of different 

generations of a population as well as health conditions in childhood. 

However, cohort effects may be difficult to separate where data availability is 

limited (as in the Lithuanian case) and as noted by Hunt and Blake [43] 

inappropriate model specification may result in period effects be wrongly 

attributed to the cohort effects. Therefore, in this dissertation, we do not fit the 

cohort effects.    

In comparison with the Lee-Carter model, the APC model does not allow 

for interaction between age and period effects, and it can be fitted using the 

standard GLM techniques. Thus, in this respect, it is a more simple model than 

the Lee-Carter model. As we shall see in the next section, the Lee-Carter 

model parameter 𝛽𝑥 varies substantially between the age groups; therefore, 

the implicit assumption of the APC model that the Lee-Carter parameter 𝛽𝑥  

is the same for all age groups may result in undue simplification of the model. 

 

2.4.2.  Renshaw-Haberman model 

A model proposed by Renshaw and Haberman [67] used the following 

overdispersed Poisson regression expressions for modeling of a number of 

deaths 𝐷𝑥,𝑡 at ages 𝑥 ∈ {1,2,… , 𝑁} and time periods 𝑡 ∈ {1,2, … , 𝑇}  
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E(𝐷𝑥,𝑡) = 𝐸𝑥,𝑡𝜇𝑥,𝑡 , Var(𝐷𝑥,𝑡) = 𝜑 E(𝐷𝑥,𝑡),  

with the log link and linear predictor 

 𝜂𝑥,𝑡 = log(𝐸𝑥,𝑡𝜇𝑥,𝑡)

= log(𝐸𝑥,𝑡) + log( 𝜇𝑥,𝑡𝑐
)  + 𝛾𝑡(𝑡 − 𝑡𝑐) + 𝛽𝑥(𝑡 − 𝑡𝑐),   

 

where 𝐸𝑥,𝑡 is exposed to risk, 𝑡𝑐 is time period at which the fitting internal is 

centered, 𝛾𝑡 is the parameter of time effects and 𝛽𝑥 is the parameter of age 

effects. The other modification of the model includes an additional parameter 

to model one time change in age effects and in such a way to achieve a better 

fit.  

In comparison with the Poisson Lee-Carter model, the Renshaw-Haberman 

model avoids the bilinear term and can be fitted using the standard IRLS 

Algorithm 2. The model replaces one bilinear term of the Lee-Carter model 

with two separate parameters, one of which, 𝛽𝑥, models age specific changes 

in mortality with time, and another, 𝛾𝑡, the overall mortality trend with time. 

The term log( 𝜇𝑥,𝑡𝑐
) plays a similar role as the parameter 𝛼𝑥 in the Lee-Carter 

model.  Thus, the key difference of the model is an approach to modeling of 

time: Renshaw and Haberman model time as a known covariate, not as a factor 

as in the Lee-Carter model. 

Despite a more simple fitting procedure, the model has its shortcomings, 

such as the implicit simplification of modeling of age and time interaction as 

well as lower flexibility to forecasting. Therefore, for our analysis the Lee-

Carter model is a preferred model. 

 

2.4.3.  Cairns-Blake-Dowd model 

The basic Cairns-Blake-Dowd (CBD) model proposed by Cairns et al. [12] 

assesses log mortality initial mortality probabilities 𝑞𝑥,𝑡 for ages 𝑥 ∈

{1,2,… ,𝑁} and time periods 𝑡 ∈ {1,2,… , 𝑇} as  

logit(𝑞𝑥,𝑡) = log(
𝑞𝑥,𝑡

1 − 𝑞𝑥,𝑡
) = 𝜅𝑡

(1)
+ 𝜅𝑡

(2)(𝑥 − �̅�) + 𝑒𝑥,𝑡,  

where 𝜅𝑡
(1)

 is a random process which models the overall dynamics of 

mortality at all ages, factor 𝜅𝑡
(2)

 is a random process that mostly affects 

mortality dynamic at higher ages. The processes 𝜅𝑡
(1)

 and 𝜅𝑡
(2)

 were assumed 

to have the multivariate Normal distribution. Alternatively, the equation can 
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be easily modeled in the Poisson or Binomial GLM settings, see [17]. Later 

generalizations of the model, see [13], include cohort effect modeling as well 

as a quadratic term of the age effect.  

The key shortcoming of the CBD model is that it does not allow modeling 

of age specific dynamics of the mortality rates. Therefore, the model is more 

suitable for application on data sets covering relatively short age spans. The 

age span analyzed in this dissertation is relatively wide and as demonstrated 

in Section 2, the sensitivity of mortality rates to time does not change linearly 

with age, therefore, the CBD model would give a poor fit for our data set.     

 

2.4.4.  Currie two dimensional spline model 

The final model in this overview was proposed by Currie et al. [18] and is 

based on the Poisson GLM regression as in Equation (11), with the linear 

predictor modeled using two dimensional B-splines  

 𝜂𝑥,𝑡 = log(𝐸𝑥,𝑡𝜇𝑥,𝑡) = log(𝐸𝑥,𝑡) + ∑𝜃𝑖𝑗𝐵𝑖𝑗(𝑥, 𝑡)

𝑖,𝑗

,    

where 𝜃𝑖𝑗 are weights and 𝐵𝑖𝑗(𝑥, 𝑡) are cubic B-spline basis functions. 

Additional smoothness in the model is introduced with the help of the penalty 

function which is applied as a modification to log likelihood.  

The advantage of the model is its flexibility, as there is no need to assume 

a certain functional form of linear age and time effects, as well as their 

interactions. The disadvantage is reduced robustness for long term forecasts, 

in particular due to sensitivity of the forecasts to the choice of the penalty 

function, as well as the technical complexity of parameter estimation.  

 

2.5. Summary of the section 

Stochastic mortality models provide the basic input for the calculation of 

VaR for mortality risk. In this section, we provide a detailed overview of three 

alternative Lee-Carter stochastic mortality models: classical, Poisson, and 

state space. We provide the model specifications, model fitting methods, and 

algorithms as well as algorithms for simulation of mortality projections. For 

comparison, a brief overview of four stochastic mortality models alternative 

to the Lee-Carter model is also provided.       

The classical Lee-Carter model is fitted using the singular value 

decomposition of the data matrix. We state the key results related to the SVD 
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model fitting method and discuss our key selections regarding the model 

specification. In the next sections, the classical Lee-Carter model will be 

mainly used as a benchmark for comparison with the other Lee-Carter model 

specifications. 

The Poisson Lee-Carter model utilizes the generalized linear model 

framework with the aim of more realistic modeling of the variance of errors. 

In this section, we develop a model fitting algorithm adapted to the 

overdispersed Poisson version of the Lee-Carter model. The algorithm is 

based on the multivariate Newton-Raphson method and fits the bilinear term 

of the Lee-Carter model by subsequently running over columns and rows of 

the model matrix. In each run, the iteratively weighted least squares algorithm 

is executed.    

Our key contribution is in the area of the state space Lee-Carter model. To 

overcome some common limitations of the classical Lee-Carter model, we 

proposed two new modifications of the state space Lee-Carter model: the state 

space Lee-Carter model with one-time change in drift and the state space Lee-

Carter model with regime switching. We develop Gibbs sampler algorithms 

used to estimate model parameters, as well as algorithms used for the 

estimation of marginal likelihood, which can be used for model comparison. 

Mortality projection algorithms, which use parameter simulation results from 

MCMC runs, are developed as well.  
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3.  MODEL FITTING RESULTS 

This section provides an overview of the data used in this dissertation, the 

results of the estimation of model parameters, as well as model fitting 

diagnostics.  

 

3.1. Overview of the data 

The study covers ages from 25 to 74 and is primary aimed at the assessment 

of mortality risk at insurance companies. However, the methods used can be 

extended to an analysis of mortality of older ages and can be used for 

assessment of longevity risk, which is particularly important for pension 

products providers. For the analysis we use the general population data from 

Human Mortality Database for ages 25-74 grouped in 5 year age groups for 

the following periods: Lithuania 1959-2017, Sweden 1900-2017. The Human 

Mortality Database (https://www.mortality.org) is maintained by the 

University of California, Berkeley (USA), and the Max Planck Institute for 

Demographic Research (Germany). Data for our research was downloaded in 

February 2020. 

The initial overview of the data in Figure 1 shows that the development of 

periodic life expectancy on birth in Lithuania was very different from Sweden. 

Periodic life expectancy is the estimated life expectancy on birth based on the 

period’s mortality tables, i.e., it does not take into account the projected 

changes in future mortality. Sweden experienced a consistent and almost 

linear decline in log mortality rates and the corresponding increase in life 

expectancy on birth, which correspond to the experience in G7 countries, see 

[74]. The major deviation from the trend was during the Spanish flu 

pandemics in 1918-1920, which led to a dramatic increase in the mortality 

rates, especially for younger age groups, see Figure 2. 

The development of mortality rates in Lithuania was different: slight 

improvement of life expectancy in the 1960s was followed by stagnation in 

1970s and 1980s. At the beginning of the 1990s Lithuania, like many other 

countries of the former Soviet Union, experienced a sharp increase in 

mortality rates. As illustrated in Figure 2, the increase coincided with the 

collapse of the Soviet Union and the start of the transition to a market economy 

and was especially high for younger age groups. 
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(a) (b) 

Figure 1. Development of periodic life expectancy at birth in Lithuania (a), Sweden 

(b) according to data from the Human Mortality Database. 

 

  

(a) (b) 

Figure 2. Development of log mortality rates in Lithuania (a) during 1959-2017 and 

Sweden (b) during 1900-2017 according to data from the Human Mortality Database. 

 

Several studies investigated this phenomenon in different countries of the 

former Soviet Union. For example, Brainerd and Cutler [9] investigated six 

factors that possibly had led to the increase in Russian mortality and concluded 

that the increase in alcohol consumption and stress caused by the transition 

are likely to be the key causes of this phenomenon.  
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In analyzing Lithuanian mortality statistics we should be careful about the 

possible data quality issues. Statistical systems and processes experienced a 

major development during the analyzed period. Therefore, we note the 

possible limitations related to the quality of data for further analysis and 

interpretation of the results.     

 

3.2. Estimation of the parameters  and model diagnostics 

In this subsection, we provide estimates of models’ parameters and 

describe model diagnostics. We start with the estimates of the classical and 

Poisson Lee-Carter models and later proceed to the state space Lee-Carter 

models.  

For model diagnostics, we use the analysis of residuals, statistical unit root 

tests, analysis of parameter estimates, and model specific diagnostic tests, 

such as MCMC convergence tests. 

 

3.2.1.  Estimation of classical and Poisson Lee-Carter 

models parameters 

We performed parameter estimation of classical Lee-Carter and Poisson 

Lee-Carter models using two data sets: full dataset and dataset trimmed to the 

latest experience, which is assumed to reflect the latest trends. In such a way 

we can compare the estimates and understand the impact on parameters 

introduced by the additional data. In the Lithuanian case, the trimmed data set 

comprises data of years 1995-2017, and in the Swedish case, years 1960-2017. 

Trimmed data sets are mainly used to develop alternative estimates for 

comparison and illustration. In selecting the periods for trimmed datasets we 

have performed visual analysis, used period selections in other studies [74], 

and performed an assessment of the sensitivity of selection of the initial years.   

Table 3 provides a summary of statistics on the fit of the models. 
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Table 3. The proportion of variance explained by the first principal component of 

SVD fit and estimated overdispersion parameter of the Poisson regression fit. The 

results are provided for estimates performed using full and trimmed data sets. The 

overdispersion parameter was estimated using Equation (8). 

 Lithuania Sweden 

 1959-2017 1995-2017 1901-2017 1960-2017 

SVD: proportion of 

variance 1st principal 

component 

0.73 0.91 0.97 0.97 

Poisson: estimated 

over-dispersion  
9.18 3.51 31.91 3.34 

 

The Lithuanian model fitted to the full data set has the lowest percentage 

of variance explained by the first principal component. This may be explained 

by the impact of high volatility during the early 1990s and the change in the 

trend of mortality development. For Sweden and Lithuanian models fitted to 

a trimmed data set, the proportion explained by the first principal component 

is adequately high. Similarly, overdispersion parameters, when estimated 

from full data sets (especially in the Swedish case) indicate significant 

additional variability, unexplained by the Poisson model. The overdispersion 

is much lower when derived using trimmed datasets. 

To check the goodness of fit the analysis of residuals was performed, which 

comprised an analysis of Normality and autocorrelation of residuals.  

A normality check was done by visual analysis quantile/ quantile (Q/Q) 

plots which are provided in Figures 3 and 4. The plots for Lithuania did not 

reveal any major deviations. For Sweden, the plots for the model fitted using 

full data set indicate the Spanish flu pandemic years as a clear outlier in both 

state and observation equations.  
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(a) (b) 

  
(c) (d) 

Figure 3. Q/Q plots of residuals for observation and state equations to check the 

Normality assumption for models fit using the full Lithuanian data set (panels (a) 

and (b)) and trimmed dataset (panels (c) and (d)) 
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(a) (b) 

  
(c) (d) 

Figure 4. Q/Q plots of residuals for observation and state equations to check the 

Normality assumption for models fit using the full Swedish data set (panels (a) and 

(b)) and trimmed dataset (panels (c) and (d)). 

 

The analysis of autocorrelations of the residuals did not reveal any 

significant autocorrelations. 

For Poisson bilinear regression, the analysis of Pearson residuals, as 

illustrated in Figure 5, revealed major outliers when the model was fitted using 

the full Swedish dataset. We also performed the analysis of residuals of state 

equation of parameter 𝜅𝑡, derived using Poisson bilinear regression. Its results 

are comparable to the results of an analysis of state equation residuals  from 

the SVD model as illustrated in Figures 3 and 4, therefore, they are not 

provided.  Overall, the Poisson bilinear regression provides a reasonable fit 

for both Lithuanian datasets and Swedish trimmed dataset.    
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(a) (b) 

  

(c) (d) 

Figure 5. Plots of Pearson residuals by age for observation equations for Poisson 

bilinear regression models fit using the Lithuanian full and trimmed data sets (panels 

(a) and (b)) and the Swedish full and trimmed data sets (panels (c) and (d)). 

 

To assess the reasonableness of the RWD model assumption for the time 

varying index 𝜅𝑡 we performed tests as described in Subsection 2.1.3. A 

summary of the test results is provided in Table 4. The Phillips-Perron test 

statistics were calculated using the pp.test function of R package tseries. The 

2-lag model was used for the Lithuanian (1995-2017) model and the 3-lag 

model was used for the remaining models. Critical values at 95% confidence 

level are provided in the brackets are from [39], (see Tables B5 and B6). 

Overall, the results of the tests support the hypotheses that 𝜅𝑡 can be 

modeled as time series with unit root.   
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Table 4. Statistical testing for unit-roots for the time series parameter of 𝜅𝑡. Brackets 

[ ] provide the 95% confidence level critical values from [39, tables B5 and B6]. 

 Lithuania Sweden 

 1959-2017 1995-2017 1901-2017 1960-2017 

SVD model:     

Phillips-Perron 

test 
    

𝑍𝜌 -4.64 [-19.8] -6.70 [-17.9] -19.2 [-20.7] -3.8 [-19.8] 

𝑍𝜏 -1.07 [-3.5] -1.69 [-3.6] -3.22 [-3.45] -2.0 [-3.5] 

Augmented 

Dickey-Fuller test 
    

𝑍𝐷𝐹(𝜌) -7.20 [-19.8] -8.36 [-17.9] -9.8 [-20.7] -6.4 [-19.8] 

𝑍𝐷𝐹 -1.05 [-3.5] -1.34 [-3.6] -2.1 [-3.45] -3.1 [-3.5] 

Poisson model:     

Phillips-Perron 

test 
    

𝑍𝜌 -4.15 [-19.8] -6.77 [-17.9] -16.5 [-20.7] -2.5 [-17.9] 

𝑍𝜏 -0.95 [-3.5] -1.72 [-3.6] -2.9 [-3.45] -1.5 [-3.5] 

Augmented 

Dickey-Fuller test 
    

𝑍𝐷𝐹(𝜌) -8.76 [-19.8] -5.80 [-17.9] -7.4 [-20.7] -3.7 [-17.9] 

𝑍𝐷𝐹 -1.11 [-3.5] -1.08 [-3.6] -1.8 [-3.45] -2.8 [-3.5] 

 

 

3.2.2.  Estimation of the state space Lee-Carter model parameters 

To obtain the state space model estimates, we run Algorithms 7 and 8 5000 

times for each of five different starting values, and we discharge the first 1000 

draws as a warm-up. For the basic Kalman filter and FFBS calculations, we 

use the functions from R package dlm, see [62]. After recording the results of 

the runs we split each chain into two equal parts and perform MCMC 
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diagnostics by assessing convergence and the efficiency of MCMC sampling 

according to Gelman et al. [31]. 

Convergence is assessed by calculating for each sampled parameter: 

�̂� = √
Var̂(𝛬|𝒀)

𝑊
, 

where: 

Var̂(Λ|𝒀) =
𝑛 − 1

𝑛
𝑊 +

1

𝑛
𝐵, (21) 

is an estimate of the parameter’s 𝛬 marginal posterior variance, conditional on 

the data 𝒀, 𝑊 is the average of sample variances of a parameter within each 

of m half-chains of length n, and 𝐵 is the sample variance of a parameter 

between the half-chains. If �̂� is close to 1 than 𝐵 is small relatively to 𝑊, it 

implies that there are no major consistent deviations due to different starting 

values or between early/late samples in a chain and supports the assumption 

of adequate convergence. 

Sampling efficiency is assessed by calculating effective sample size: 

𝑛𝑒𝑓𝑓 =
𝑚𝑛

1 + 2∑ 𝜌𝑡
𝑇
𝑡=1

, 

where 𝜌𝑡 are autocorrelations of parameter samples in the chains. To limit the 

effect of noise of sample correlations we used T to be the first positive integer 

for which 𝜌𝑇+1 + 𝜌𝑇+2 is negative. 

In the Lithuanian case, we allow for the additional drift element since 1995 

when the country finalized the major reforms and started independent 

European development. We consider the country’s independence a major 

change in socio-economic development, which significantly altered the trend 

of mortality development. In the Swedish case, no such changes occurred 

during the fitting period, thus variation in the drift is not modeled. In summary, 

the fitted drift parameters are summarized in Table 5. 

 

Table 5. Time periods modeled by drifts of time varying index when fitting with the 

Lithuanian and Swedish data. 

 Lithuania Sweden 

𝜇(𝐼) 1959-2017 1900-2017 

𝜇(𝐼𝐼) 1995-2017 Not used 
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For the DLM and SSM with switching we use the following collections of 

priors: 

𝚯 = {
𝒎0 = (

0
0
) ,𝑴0 = (

5 0
0 5

) , 𝑔0 = 0.1, 𝐺0 = 2.1, 𝒃0 = (
−4
0.1

) ,

𝑩0 = (
5 0
0 5

)
}, 

𝚯(𝑠) = {
𝒎0 = (

0
0
) ,𝑴0 = (

5 0
0 5

) , 𝑔0 = 0.1, 𝐺0 = 2.1, 𝒃0 = (
−4
0.1

) ,

𝑩0 = (
5 0
0 5

),   𝑝0
(1)

= 𝑝0
(2)

= 1
}. 

 

We set priors with the aim, as suggested in [31 p. 55], that the information 

they provide is intentionally weaker than the actual knowledge that is 

available. For example, for Normally distributed parameters, we set priors 

with sufficiently large variances, not to introduce an undue bias towards the 

selected prior mean. 

The calculated convergence and sampling efficiency statistics for models 

fitted using Gibbs sampler are provided in Table 6. 

The statistics �̂� shows adequate convergence for both models and both 

countries. Effective sample size indicates the high efficiency of the Gibbs 

sampler for most of the parameters, with lower efficiency for SSM with 

switching variances and transition probabilities, especially in the Lithuanian 

case. Overall, the performance of the Gibbs sampler is considered appropriate 

in our case.  

In some cases, for validating goodness of fit, back-testing methods are 

used. Such methods involve model fitting using the dataset with the latest 

observations excluded and a comparison of the resulting projections with the 

actual experience. In our case, the possibility to apply such methods for the 

newly developed state space Lee-Carter models was limited due to allowance 

in the change of trend. With respect to the SSM with regime switching, back-

testing is also problematic, as it is very difficult to assign the actual outcome 

to the specific chain of modeled regimes. Nevertheless, we have compared the 

actual mortality experience in 2019 with the corresponding confidence 

intervals derived using the models. Overall, the actual rates lie within the 

confidence intervals, just the lowest and the highest age groups in Lithuania 

were marginally below the lower threshold, which can be explained by 

relativelly higher volatility at lower ages and different dynamics of mortality 

development of higher age population.     
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Table 6. Estimates of convergence statistics �̂� and effective sample size statistics 𝑛𝑒𝑓𝑓 

(presented in thousands) for DLM and SSM with switching model parameters, 

calculated for five MCMC chains of 4000 iterations after burn-in (total of 20 thousand 

iterations).  

Para-

meter 

Lithuania Sweden 

DLM 
SSM with 

switching 
DLM 

SSM with 

switching 

�̂� �̂�𝒆𝒇𝒇 �̂� �̂�𝒆𝒇𝒇 �̂� �̂�𝒆𝒇𝒇 �̂� �̂�𝒆𝒇𝒇 

𝛼25−29 1.0 20.1 1.0 20.0 1.0 20.0 1.0 18.3 

𝛼30−34 1.0 20.4 1.0 19.5 1.0 20.0 1.0 20.1 

𝛼35−39 1.0 18.6 1.0 20.0 1.0 19.6 1.0 19.7 

𝛼40−44 1.0 20.0 1.0 19.7 1.0 20.1 1.0 20.0 

𝛼45−49 1.0 20.1 1.0 20.1 1.0 19.7 1.0 19.9 

𝛼50−54 1.0 20.0 1.0 20.3 1.0 20.4 1.0 19.0 

𝛼55−59 1.0 19.8 1.0 19.6 1.0 19.9 1.0 20.0 

𝛼60−64 1.0 19.8 1.0 20.0 1.0 19.4 1.0 19.2 

𝛼65−69 1.0 19.3 1.0 20.0 1.0 18.9 1.0 20.2 

𝛼70−74 1.0 20.4 1.0 20.3 1.0 20.4 1.0 19.1 

𝛽25−29 1.0 12.8 1.0 11.8 1.0 18.7 1.0 19.8 

𝛽30−34 1.0 16.8 1.0 17.8 1.0 19.6 1.0 20.3 

𝛽35−39 1.0 19.9 1.0 19.5 1.0 18.0 1.0 19.4 

𝛽40−44 1.0 17.2 1.0 18.6 1.0 20.2 1.0 19.9 

𝛽45−49 1.0 16.0 1.0 17.6 1.0 20.2 1.0 19.5 

𝛽50−54 1.0 18.5 1.0 16.2 1.0 20.2 1.0 19.9 

𝛽55−59 1.0 17.9 1.0 17.4 1.0 20.0 1.0 20.2 

𝛽60−64 1.0 18.0 1.0 19.5 1.0 20.1 1.0 20.0 

𝛽65−69 1.0 19.9 1.0 19.5 1.0 19.6 1.0 20.2 

𝛽70−74 1.0 16.8 1.0 17.6 1.0 16.9 1.0 19.9 

(𝜎𝑄
(0)

)
2
 1.0 8.5 1.0 1.0 1.0 3.4 1.0 1.8 

(𝜎𝑄
(1)

)
2
 n/a n/a 1.0 2.6 n/a n/a 1.0 7.2 

𝜎𝐻
2 1.0 15.7 1.0 15.8 1.0 13.1 1.0 17.7 

𝜇(𝐼) 1.0 18.7 1.0 13.9 1.0 19.4 1.0 13.5 

𝜇(𝐼𝐼) 1.0 18.8 1.0 12.8 n/a n/a n/a n/a 

𝜋(0) n/a n/a 1.0 1.0 n/a n/a 1.0 3.9 

𝜋(1) n/a n/a 1.0 0.7 n/a n/a 1.0 8.4 
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3.2.3.  Summary of parameter estimates 

In this subsection we provide and discuss estimates of the Lee-Carter 

model parameters. The following subsection provides more details on regime 

switching parameters.  

Figures 6 and 7 summarize the results of the estimation of parameters  

𝛼𝑥 and 𝛽𝑥. The estimates of parameters of 𝛼𝑥, derived using different models, 

coincide, therefore, the plots are not provided. When parameters are derived 

using data of different periods, they reflect the average mortality by age group 

of that period. We see that for Lithuania, the average mortality did not change 

significantly, while for Sweden a major decrease in the overall level was 

observed. The estimates of parameter 𝛽𝑥 is slightly more model-dependent. In 

particular, estimates derived using Poisson model provides slightly different 

estimates due to different variance structure assumption.    

Overall, the level and shape of parameter estimates do not depend 

significantly on the model used, although the level of mortality differs from 

country to country and from period to period. 

  
(a) (b) 

Figure 6. Lee-Carter model parameter 𝛼𝑥 estimated for various fitting periods for 

Lithuania (a) and Sweden (b). 
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(a) (b) 

Figure 7. Lee-Carter model parameter 𝛽𝑥 estimated using SVD, Poisson, DLM and 

SSM with switching models for Lithuania (a) and Sweden (b). 

 

Tables 7(a) and 7(b) summarize the estimates of variance and drift 

parameters derived using different models. The estimates of the drift 

parameter 𝜇(𝐼) are similar for different models in the Swedish case but are 

different in the Lithuanian case due to allowance for the change in drift in 

state-space models. Estimates of variance (𝜎𝑄
(0)

)
2
and 𝜎𝐻

2 are generally lower 

for state-space models than for SVD or Poisson models which indicates a 

better fit of the state space models.  

 

Table 7(a). Estimates of variance and drift parameters derived using SVD, Poisson, 

DLM, and SSM with switching models for Lithuania.  

Para-

meter 

SVD 

(1995-) 

SVD 

(1959-) 

Poisson 

(1995-) 

Poisson 

(1959-) 
DLM 

SSM 

with 

switch. 

(𝜎𝑄
(0)

)
2
 0.268 0.227 0.265 0.195 0.176 0.113 

(𝜎𝑄
(1)

)
2
 n/a n/a n/a n/a n/a 0.250 

𝜎𝐻
2 0.013 0.058 n/a n/a 0.007 0.007 

𝜇(𝐼) -0.243 -0.021 -0.247 -0.021 0.094 0.099 

𝜇(𝐼𝐼) n/a n/a n/a n/a -0.267 -0.273 
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Table 7(b). Estimates of variance and drift parameters derived using SVD, Poisson, 

DLM and SSM with switching models for Sweden.  

Para-

meter 

SVD 

(1960-) 

SVD 

(1900-) 

Poisson 

(1960-) 

Poisson 

(1900-) 
DLM 

SSM 

with 

switch. 

(𝜎𝑄
(0)

)
2
 0.040 0.425 0.025 0.474 0.167 0.049 

(𝜎𝑄
(1)

)
2
 n/a n/a n/a n/a n/a 5.442 

𝜎𝐻
2 0.014 0.026 n/a n/a 0.013 0.012 

𝜇(𝐼) -0.145 -0.153 -0.158 -0.184 -0.152 -0.146 

 

Table 8 provides estimates of parameters of the state space models, 

together with the estimated standard deviations. The majority of the marginal 

posterior standard deviations are relatively low. As expected, higher variances 

are recorded for parameters that are estimated from a smaller number of input 

variables, such as the Lithuanian drifts and the regime-specific parameters in 

the SSM with switching model. 

For SSM with switching the variance 𝜎𝑄
2 is split into two parts: (𝜎𝑄

(0)
)
2
 is 

applicable to low variance regimes and (𝜎𝑄
(1)

)
2
 is applicable to high variance 

regime. We observe that for Sweden there is a big difference between  (𝜎𝑄
(0)

)
2
 

and (𝜎𝑄
(1)

)
2
, which indicates that the two regimes are very different in terms 

of the volatility of parameter 𝜅𝑡, but this is not the case of Lithuania. 

Parameters 𝜋(0) and 𝜋(1) are applicable to SSM with switching models only 

and they indicate that for Sweden, regime 0 has high frequency and regime 1 

has low frequency. In the Lithuanian case, both regimes have a similar 

frequency. Thus, we can conclude that in the Swedish case SSM with 

switching has converged to two distinct regimes, while in the Lithuanian case 

the movements in 𝜅𝑡 were not sharp enough to achieve this. For more details 

see Subsection 3.2.4. 
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Table 8. Estimates of parameters using DLM and SSM with switching. Marginal 

posterior standard deviations are estimated using Formula (21).  

Para-

meter 

Lithuania Sweden 

DLM 
SSM with 

switching 
DLM 

SSM with 

switching 

mean s.d. mean s.d. mean s.d. mean s.d. 

𝛼25−29 -6.306 0.011 -6.306 0.011 -6.512 0.010 -6.513 0.010 

𝛼30−34 -6.046 0.011 -6.046 0.011 -6.403 0.010 -6.403 0.010 

𝛼35−39 -5.742 0.011 -5.742 0.011 -6.186 0.010 -6.186 0.010 

𝛼40−44 -5.412 0.011 -5.412 0.011 -5.882 0.010 -5.882 0.010 

𝛼45−49 -5.066 0.011 -5.066 0.011 -5.510 0.010 -5.510 0.010 

𝛼50−54 -4.729 0.011 -4.728 0.011 -5.109 0.010 -5.109 0.010 

𝛼55−59 -4.401 0.011 -4.401 0.011 -4.695 0.010 -4.695 0.010 

𝛼60−64 -4.033 0.011 -4.033 0.011 -4.245 0.010 -4.245 0.010 

𝛼65−69 -3.683 0.011 -3.683 0.011 -3.766 0.010 -3.767 0.010 

𝛼70−74 -3.276 0.011 -3.276 0.011 -3.263 0.010 -3.263 0.010 

𝛽25−29 0.075 0.010 0.075 0.010 0.165 0.002 0.165 0.002 

𝛽30−34 0.096 0.010 0.096 0.010 0.155 0.002 0.155 0.002 

𝛽35−39 0.123 0.010 0.123 0.010 0.139 0.002 0.139 0.002 

𝛽40−44 0.158 0.010 0.158 0.010 0.119 0.002 0.119 0.002 

𝛽45−49 0.170 0.010 0.170 0.010 0.098 0.002 0.098 0.002 

𝛽50−54 0.152 0.010 0.152 0.010 0.082 0.002 0.082 0.002 

𝛽55−59 0.121 0.010 0.121 0.010 0.069 0.002 0.069 0.002 

𝛽60−64 0.066 0.010 0.066 0.010 0.061 0.002 0.061 0.002 

𝛽65−69 0.030 0.010 0.030 0.010 0.057 0.002 0.057 0.002 

𝛽70−74 0.008 0.010 0.008 0.010 0.056 0.002 0.056 0.002 

(𝜎𝑄
(0)

)
2
 0.176 0.043 0.113 0.053 0.167 0.040 0.049 0.014 

(𝜎𝑄
(1)

)
2
 n/a n/a 0.250 0.117 n/a n/a 5.442 4.112 

𝜎𝐻
2 0.007 0.001 0.007 0.001 0.013 0.001 0.012 0.001 

𝜇(𝐼) 0.094 0.093 0.099 0.094 -0.152 0.074 -0.146 0.068 

𝜇(𝐼𝐼) -0.267 0.129 -0.273 0.130 n/a n/a n/a n/a 

𝜋(0) n/a n/a 0.507 0.275 n/a n/a 0.973 0.020 

𝜋(1) n/a n/a 0.562 0.283 n/a n/a 0.574 0.200 

 

Figure 8 provides the comparison of parameters 𝜅𝑡 derived using different 

models applied to the full dataset. Overall, the estimates are similar, except 
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for the classical Lee-Carter model with the second stage re-estimation of the 

parameter. The results support the assumption that the second stage re-

estimation may introduce a bias, therefore, is not applied in our analysis.   

  
(a) (b) 

Figure 8. Estimation of the parameter 𝜅𝑡 for Lithuania (a) and Sweden (b) using 

different models.  

 

Figure 9 provides the comparison of estimates of time varying index 𝜅𝑡 

obtained from SVD and from SSM with switching MCMC runs. We observe 

that in both cases the shape of the basic 𝜅𝑡 curve is similar, but in the MCMC 

runs we allow for uncertainty of 𝜅𝑡 under various samples of the parameter 

collection 𝜓(𝑠), thus the values of 𝜅𝑡 fluctuate. 

  

(a) (b) 

Figure 9. Estimation of the parameter 𝜅𝑡 for Lithuania (a) and Sweden (b). The black 

line represents the classical Lee-Carter model SVD estimate and the red lines are 

FFBS samples of 500 MCMC iterations of the SSM with switching. 
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3.2.4. Regime switching estimates 

Figures 10 and 11 provide a comparison of changes in the sampled 𝜅𝑡 

versus the average frequencies of regime 1 in MCMC runs of the SSM with 

switching. The figures show that, as expected, the large fluctuations in 𝜅𝑡 

increase the probability of high variance regime 1. 

 
(a) 

 
(b) 

Figure 10. Th average change in 𝜅𝑡 time varying index over the recorded MCMC runs 

(a) and the average frequency regime 1 (b) for Lithuania. Index “1” denotes the 

periods where the label of regime 1 is assigned in more than 50% of the recorded 

MCMC runs. 
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(a) 

 
(b) 

Figure 11. The average change in 𝜅𝑡 time varying index over the recorded MCMC 

runs (a) and the average frequency regime 1 (b) for Sweden. Index “1” denotes the 

periods where the label of regime 1 is assigned in more than 50% of the recorded 

MCMC runs. 

 

In the Lithuanian case, the model has managed to label with "1" the key 

disturbances in mortality, such as a large increase in mortality during the 

country’s transformation to the market economies at the beginning of 1990s, 

large spike in mortality during the economic crisis of 2008-2009 and the 

subsequent recovery. However, the average frequency of MCMC runs when 

a high variance regime label is assigned in those periods and barely exceeds 

0.5. The poor ability of the model to identify high variance scenarios even 

after the identifying restriction (𝜎𝑄
(0)

)
2

≤ (𝜎𝑄
(1)

)
2
 was imposed indicates that 

this condition is not sufficient to ensure the unique labeling of regimes. In the 
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MCMC runs there is a lot of label switching which indicates that the constraint 

is poor, see [26]. Thus, in the Lithuanian case, our specification of SSM with 

switching does not provide adequate performance. 

In the Swedish case, the model in most cases stays in regime 0. Regime 1 

is visited just during the years of Spanish flu pandemic of 1918-1920 and with 

much lower frequency in the mid-1940s, when an improvement in mortality 

was observed after WWII. Contrary to Lithuania, the regimes are labeled 

consistently in the MCMC runs and the label switching is almost not observed. 

This indicates that the identifying restriction (𝜎𝑄
(0)

)
2

≤ (𝜎𝑄
(1)

)
2
 is suitable for 

this model and that the estimated variances of the state parameter are 

acceptable. 

 

3.3. Marginal likelihood comparison of  the state space models 

We compare the models used by performing the assessment of the marginal 

log-likelihood 𝑚(𝒀1:𝑇) as described in Subsection 2.3.6. The results of the 

calculations are summarized in Table 9. 

 

Table 9. Estimates of the marginal log-likelihood for DLM and SSM with switching 

(SSM w.s.).  

Model 

Lithuania Sweden 

𝑚(𝒀1:𝑇|�̂�) 
𝑚(�̂�) − 

𝑚(�̂�|𝒀1:𝑇) 
𝑚(𝒀1:𝑇) 𝑚(𝒀1:𝑇|�̂�) 

𝑚(�̂�) − 

𝑚(�̂�|𝒀1:𝑇) 
𝑚(𝒀1:𝑇) 

DLM 585 -125 460 846 -137 709 

SSM w.s. 585 -126 459 893 -155 738 

 

The results show that SSM with switching has the highest marginal 

likelihood in the Swedish case. For Lithuania, both DLM and SSM with 

switching models have similar marginal likelihoods, thus a simpler DLM is 

preferred. 

  



 

75 

3.4. Summary of the section 

In this section, we have reviewed the data used to fit the models of the 

previous section, estimated and analyzed the parameters, and performed 

model fitting diagnostics and the state space model comparison.  

For the analysis, we used the data of Lithuania and Sweden. The Swedish 

data shows a significantly different mortality development from Lithuania. 

Lithuanian mortality development was volatile, in particular during the 

transitional period, at the end of which a major change in mortality trend was 

observed. In Sweden, contrarily, the only major exception from steady 

mortality improvement were the Spanish flu pandemics.  

Model diagnostics did not reveal any major unexpected model 

deficiencies. As expected, both classical Lee-Carter and Possion Lee-Carter 

models were not able to handle increased volatility caused by the Spanish flu 

pandemics in Sweden. A high increase in Lithuanian mortality in the early 

1990s and subsequent change in trend also was reflected in the results of 

model diagnostics. In the case of the state space models, no significant 

deficiencies were identified during the tests of goodness of fit. 

Parameter estimates, overall, are comparable and differences are 

explainable across the models. Major differences relate to additional 

parameters introduced and different levels of model flexibility.  

Comparison of marginal likelihoods indicated that in the Lithuanian case 

more simple DLM model is preferable. Meanwhile, for Sweden SSM with 

regime switching has a higher marginal log-likelihood and is preferred.   
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4. ESTIMATION OF SOLVENCY CAPITAL 

In this section, the results of mortality forecasts are provided for three 

versions of the Lee-Carter model discussed in Section 2. In the second part of 

the section, we develop the methodology for the calculation of VaR and provide 

the results of VaR calculations for Lithuania and Sweden using different 

insurance benefit formulas, terms to maturity, and ages at policy inception. 

 

4.1. Simulation of mortality rates 

By taking exponentials on both sides of Equation (3), we can represent the 

modeled mortality rates as follows: 

𝑚𝑥,𝑡 = 𝑒𝛼𝑥𝑒𝜅𝑡𝛽𝑥𝑒𝑒𝑥,𝑡 ,  

which shows that the variability in projected mortality rates can be considered 

to arise multiplicatively from three sources: variation in constant, which 

represents the increase in mortality with age (which we ignore due to its 

insignificance as a simplification), variation in trend, mainly driven by the 

parameter 𝜅𝑡, and the remaining random variation. In the remainder of this sub-

section, we first discuss the modeled uncertainty of 𝜅𝑡, and later we consider 

how this uncertainty translates to the variation of the overall mortality rate. 

 

4.1.1.  Simulation of time varying index 

As can be seen from Equation (10), the uncertainty of the parameter 𝜅𝑡 is 

driven by variation in the drift parameter 𝜇 and the residual error. The results 

of the simulations of 𝜅𝑡 are provided in Figure 12 for a confidence level of 

95%, and in Figure 13 for a confidence level 99.5%. 

In the Lithuanian case, due to unsettled historic experience, the confidence 

intervals are wide for both SVD and state-space models. Allowance for a one-

time change in trend results in a more reasonable central forecast; however, it 

adds additional uncertainty due to the second drift parameter  

𝜇(𝐼𝐼). Therefore, although the estimated error variance  

𝜎𝑄
2 is lower in the SSM case, the overall confidence interval of 𝜅𝑡 is even 

slightly wider than the one derived by using the classical Lee-Carter model. 

The SSM with switching does not converge to two clearly expressed low 

and high variance regimes for Lithuania. Therefore, the distribution of error 

terms modeled as a mixture can be well approximated with a Normal 
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distribution. For this reason, the simulated confidence intervals for both 

models are very similar. 

 

  
(a) (b) 

Figure 12. Results of estimation of the Lee-Carter model parameter 𝜅𝑡 for Lithuania 

(a) and Sweden (b). The shaded region provides 95% simulated confidence intervals 

of the 𝜅𝑡 parameter fitted using SVD, Poisson, DLM, and SSM with switching models. 

In the Lithuanian case, DLM and SSM with switching allow for a one-time change in 

trend in 1995; therefore, the direction of the trend differs from the SVD estimate. The 

red line is used to denote the Lithuanian central forecast estimated with the SVD and 

the blue line is used to denote the SSM central forecast. 

 

In the Swedish case, DLM gives a narrower estimate of confidence interval 

with respect to SVD generally due to the better fit and the lower error variance. 

The Poisson model confidence interval is shifter down due to lower estimate 

of 𝜅𝑡 in the latest years using Poisson regression in comparison with SVD, 

DLM, and SSM with switching methods, see Figure 8.  For Sweden SSM with 

switching converges into two different regimes: low probability and high 

variance pandemic regime and high probability low variance usual 

development regime. Thus, the distribution of the error terms when modeled 

as a mixture has much heavier tails than when it is approximated with a single 

Normal distribution. This results in significantly wider confidence intervals 

for SSM with switching, especially at a 99.5% confidence level. We note that 

the width on the difference in confidence intervals is driven by model 

differences, not the poor fit. As shown in model comparison Subsection 3.3, 

despite having the widest confidence intervals SSM with switching has a 

higher log-likelihood than DLM and is a preferred model for Sweden. 
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(a) (b) 

Figure 13. Results of estimation of the Lee-Carter model parameter 𝜅𝑡 for Lithuania 

(a) and Sweden (b). The shaded region provides 99.5% simulated confidence intervals 

of the 𝜅𝑡 parameter fitted using SVD, Poisson, DLM, and SSM with switching models. 

In the Lithuanian case, DLM and SSM with switching allow for a one-time change in 

trend in 1995; therefore, the direction of the trend differs from the SVD estimate. The 

red line is used to denote the Lithuanian central forecast estimated with the SVD and 

the blue line is used to denote the SSM central forecast. 

 

4.1.2.  Derivation of simulated mortality rates 

The results of the simulations of 𝑚𝑥,𝑡 mortality rates are provided in Figure 

14 for a confidence level of 95%, and Figure 15 for confidence level 99.5%. 

Considering that in practical applications we usually need a set of mortality 

rates for each of the future years in the forecasting period, in our illustration 

we provide the results for the 15 year projection, which is in the middle of the 

total forecasting period. 
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(a) (b) 

Figure 14. Results of simulation of the 15 year projection of mortality rates for ages 

from 25 to 74 for Lithuania (a) and Sweden (b). The shaded region provides 95% 

simulated confidence intervals of the projected mortality rates fitted using SVD, 

Poisson, DLM, and SSM with switching models. The red line is used to denote the 

central SVD forecast. 

 

  
(a) (b) 

Figure 15. Results of simulation of the 15 year projection of mortality rates for ages 

from 25 to 74 for Lithuania (a) and Sweden (b). The shaded region provides 99.5% 

simulated confidence intervals of the projected mortality rates fitted using SVD, 

Poisson, DLM, and SSM with switching models. The red line is used to denote the 

central SVD forecast. 

 

As we can see from Equation (3), the variation in 𝜅𝑡 is translated to changes 

in the mortality rates via the parameter 𝛽𝑥. The higher 𝛽𝑥 for a certain age 
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group is, the more sensitive are the projected mortality rates of that age group 

to changes in 𝜅𝑡, and vice versa. As shown in Figure 7, for Lithuania the 

highest 𝛽𝑥 are for mid-ages, and therefore in the Poisson and the state space 

models mid-agers get the widest confidence intervals. The Lithuanian SVD 

calculations, due to relatively poor fit, have a large residual variance, which 

dominates in the classical Lee-Carter model simulations and results in very 

wide simulated mortality rate confidence intervals. Thus, although we did not 

manage to achieve with Poisson and SSMs a significant improvement in the 

confidence intervals of the parameter 𝜅𝑡, the width of the simulated 

confidence intervals of mortality rates are reasonable and comparable to the 

Swedish result. 

In the Swedish case, the results are consistent with the results of the 

simulation of the parameter 𝜅𝑡. Due to better fit, at 95% confidence level the 

confidence intervals of Poisson model and SSMs are narrower than in case of 

SVD. At 99.5% confidence level, as expected, the heavy tails of SSMs with 

switching prevail, resulting in the widest confidence intervals. 

 

4.2. Calculation of VaR 

In this subsection, we show how to translate the simulated mortality rates to 

Value-at-Risk (VaR). According to [58] given a certain confidence level 𝛼 ∈

(0, 1) VaR can be defined as: 

VaRα(𝑁𝑃) = inf{𝑙 ∈ ℝ: ℙ(𝑁𝑃 > 𝑙) ≤ 𝛼}, (22) 

where NP is a random variable of a net profit. Throughout the dissertation, we 

applied the convention that L is negative when the company makes a loss, and 

positive when the company is profitable.  Consistently with the Solvency II 

legislation, we calculated VaR using 99.5% confidence level, that is, set 𝛼 =

0.995.  

In the context of mortality risk in the Solvency II framework, NP is a 

loss/gain of the Solvency II capital (Basic Own Funds) due to variation of 

mortality rates. Thus, VaR0.995(𝑁𝑃) defines extra capital needed to cover the 

unreserved mortality losses arising from the increase in the future mortality 

rates. 

As noted in the Introduction, we consider two alternative approaches to 

VaR calculation: run-off VaR and one-year VaR. Taking the run-off approach, 

we consider the fluctuations in mortality rates until the maturity of a policy. 

In contrast, if we take a one-year view, the key drivers of risk become 

fluctuation of mortality rates in the first projection year and the risk of changes 
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in reserving (Best Estimate) assumptions at the end of the first projection year. 

A graphical illustration of the contrast between run-off and one-year 

simulations of mortality rates is provided in Figure 16. 

  
(a) (b) 

Figure 16. Example of simulations of central mortality rates (for a fixed age) used for 

the purpose of calculation of run-off VaR (see (a)) and one-year VaR (see (b)). The 

calculations are based on the Lithuanian data for a life aged 40 years. In calculations 

of one-year VaR reserve the credibillity factor 𝛿 = 10% was used. 

 

As illustrated in the charts, in the calculation of run-off VaR, we apply 

simulated mortality rates that vary stochastically for the whole period of 

insurance coverage. In contrast, in the calculation of one-year VaR, we use 

stochastically simulated mortality rates for modeling of death benefits in the 

first projection year, and for the remaining years, we apply the curves of 

projected Best Estimate mortality rates, the level and trend of which depend 

on the outcome of the first year simulations. For example, if a certain 

simulation scenario stochastically results in a sharp increase of mortality rates 

in the first projection year, we assume that a curve of the projected Best 

Estimate mortality rates for that simulation scenario is shifted upwards as well. 

In addition, the results of the first year simulations affect the trend of the Best 

Estimate mortality rates and the projected curves are not parallel. The bigger 

is the variation in the level and trend, the higher risk is associated with the 

changes in the Best Estimate technical provisions at the end of the first year, 

which results in the higher one-year VaR. 
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4.2.1.  Run-off VaR methodology 

We used the following formula for the calculation of run-off VaR: 

VaR0.995 (∑𝐶𝐹𝑇+𝑖

𝐾

𝑖=1

) = inf {𝑙 ∈ ℝ: ℙ (𝐵𝐸𝑇 − ∑𝐶𝐹𝑇+𝑖

𝐾

𝑖=1

> 𝑙) ≤ 0.995}. (23) 

The formula implies that run-off VaR is simply the quantile of the 

distribution of the deviation of the sum of total estimated losses in year t, 

denoted by 𝐶𝐹𝑡, till maturity in K years minus the Best Estimate at the end of 

year T which is calculated as the expected value of future mortality cash flows 

derived using the central projection of the mortality probabilities 

𝐵𝐸𝑇 = E(∑𝐶𝐹𝑇+𝑖

𝐾

𝑖=1

).  

In this dissertation, we assess VaR for two different insurance benefit 

formulas: level benefits and decreasing benefits. Decreasing benefits are 

common in life assurance products linked to mortgages or other credit 

instruments. In addition, mortality sum at risk is decreasing with policy 

duration for some risk and savings products (e.g., traditional endowment 

insurance), where the total benefit payable on death is fixed and the insurer is 

able to recoup part of the losses by reversing the accumulated savings amount. 

However, a significant part of life assurance products has fixed sums assured. 

In this paper we examine the effect on VaR of both benefit formulas: level 

(fixed) sum assured and sum assured which is decreasing linearly with time. 

 

Level benefits 

Since we assume that there is no discounting, lapses, future premiums and the 

death benefit does not change during the policy term, we can ignore the timing 

of death benefits during the period covered by an insurance policy. Therefore, 

for a policy with a sum assured of 1 monetary unit we can calculate the sum 

of expected cash outflows (death benefits) as the estimated mortality 

probability over the remaining policy term K: 

∑𝐶𝐹𝑇+𝑖

𝐾

𝑖=1

= 𝑞𝑥(𝑇)𝐾
 ,  

where 𝑞𝑥(𝑇)𝐾  is a probability that a life aged x, which is alive at the end of 

year T, will die during the K year period. 𝑞𝑥(𝑇)𝐾  can be calculated using the 

following formulas: 
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𝑞𝑥(𝑇)𝐾
 = 1 − 𝑝𝑥(𝑇)𝐾

 ,  

𝑝𝑥(𝑇)𝐾
 = ∏ 𝑝𝑥+𝑠(𝑇 + 𝑠)

𝐾−1

𝑠=0

= ∏(1 − 𝑞𝑥+𝑠(𝑇 + 𝑠))

𝐾−1

𝑠=0

.  

where 𝑝𝑥(𝑇)𝐾  is a probability that a life aged x, which is alive at the end of 

year T, will survive the K year period, 𝑝𝑥(𝑇) is one year survival probability 

of a life aged x, which is alive at the end of year T, and 𝑞𝑥(𝑇) is one year death 

probability of a life aged x, which is alive at the end of year T.  

Inserting this expression into Formula (23) and denoting the Best Estimate of 

term assurance policy with level benefits as 𝐵𝐸𝑇
(𝐿)

, we obtain 

VaR0.995
(𝐿)

(∑ 𝐶𝐹𝑇+𝑖

𝐾

𝑖=1

) = inf{𝑙 ∈ ℝ: ℙ(𝐵𝐸𝑇
(𝐿)

− 𝑞𝑥(𝑇)𝐾
 > 𝑙) ≤ 0.995}.  

 

Decreasing benefits 

Consider n year term life assurance policy with initial sum assured of 1 which, 

at the end of each policy year, decreases linearly by 
1

𝐾
. Thus, the insurance 

company is expected to pay 1 if the policyholder has not survived the first 

policy year, 
𝐾−1

𝐾
 if the policyholders died in the second year, and so on. In 

such a case, we have 

∑𝐶𝐹𝑇+𝑖

𝐾

𝑖=1

= ∑
𝐾 − 𝑗

𝐾
𝑞𝑥+𝑗(𝑇 + 𝑗) 𝑝𝑥(𝑇)𝑗

 

𝐾−1

𝑗=0

. (24) 

Proposition 5. The sum of cash flows resulting from a term assurance policy 

with linearly decreasing benefits can be calculated using the following 

equation: 

∑𝐶𝐹𝑇+𝑖

𝐾

𝑖=1

=
1

𝐾
∑ 𝑞𝑥(𝑇)𝑗+1

 

𝐾−1

𝑗=0

. (25) 

 

 

Proof 

The Result (25) is obtained from Formula (24) by changing the order of 

summation and noting that 
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𝑞𝑥(𝑇) + 𝑞𝑥+1(𝑇 + 1)𝑝𝑥(𝑇) + 𝑞𝑥+2(𝑇 + 2) 𝑝2
 

𝑥(𝑇) + ⋯+ 𝑞𝑥+𝑗(𝑇 + 𝑗) 𝑝𝑗
 

𝑥(𝑇)

= 𝑞𝑗+1
 

𝑥(𝑇). 
 

Inserting Expression (25) into Formula (23), and denoting the Best 

Estimate of a term assurance policy with decreasing benefits by 𝐵𝐸𝑇
(𝐷)

, we get 

that the run-off VaR for a term assurance policy with decreasing benefits can 

be calculated as follows: 

VaR0.995
(𝐷)

(∑𝐶𝐹𝑇+𝑖

𝐾

𝑖=1

)

= inf {𝑙 ∈ ℝ: ℙ (𝐵𝐸𝑇
(𝐷)

−
1

𝐾
∑ 𝑞𝑥(𝑇)𝑗+1

 

𝐾−1

𝑗=0

> 𝑙) ≤ 0.995}. 

 

 

4.2.2.  One-year VaR methodology 

In deriving one-year VaR we use the basic Solvency II principle, which 

requires the calibration of Solvency Capital Requirement (SCR) to VaR of the 

(loss of) Basic Own Funds subject to a confidence level of 99.5% over a one-

year period. Basic Own Funds at the end of year t, 𝐵𝑂𝐹𝑇, is defined as the 

difference between insurer’s assets 𝐴𝑇 and liabilities 𝐿𝑇, valued according to 

the Solvency II requirements, plus subordinated liabilities, which we will 

ignore in our analysis as a simplification. Liabilities 𝐿𝑇 may be disaggregated 

into technical provisions, consisting of Best Estimate 𝐵𝐸𝑇 and Risk Margin 

𝑅𝑀𝑇, and other liabilities 𝑂𝐿𝑇. Therefore we suppose that 

𝐵𝑂𝐹𝑇 = 𝐴𝑇 − 𝐵𝐸𝑇 − 𝑅𝑀𝑇 − 𝑂𝐿𝑇 .  

In practice, there are many factors which could contribute to the change in 

the Basic Own Funds over the year. Considering that our focus is on the 

mortality risk, the analysis was performed for a simplified portfolio of a single 

premium (payable in advance) fixed term life assurance policies. We assumed 

that there are no lapses, no expenses, no new business, no changes in other 

liabilities, and that claims are paid immediately after they occur. We also 

assumed that there are no cash flows to or from a shareholder, such as 

dividends, capital injections, and that the investment return on assets and the 

discount rate used for calculation of technical provisions both are zero. 

Depending on the size of a discount rate, discounting would have a similar 

effect as a reduction of benefits with time, that is, based on the results 

presented later, would generally reduce VaR. Finally, we assumed that the 
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Risk Margin is also fixed. In practice, changes in the Best Estimate and the 

Risk Margin are likely to be positively dependent and the Risk Margin is likely 

to affect VaR. However, we have accepted this simplification, considering that 

due to its relative size, the Risk Margin is likely to have a significantly smaller 

effect on VaR than the Best Estimate. 

Under the above assumptions a change in assets during year 𝑇 + 1 is 

caused only by a cash outflow 𝐶𝐹𝑇+1 due to payment of death claims. 

Therefore, the random variable of a change in Basic Own Funds during the 

year 𝑇 + 1 can be expressed as follows: 

∆𝐵𝑂𝐹𝑇+1 = 𝐴𝑇+1 − 𝐴𝑇 − (𝐵𝐸𝑇+1 − 𝐵𝐸𝑇) = 𝐵𝐸𝑇 − 𝐶𝐹𝑇+1 − 𝐵𝐸𝑇+1. (26) 

Under our model, the expectation of Best Estimate for valuation date at the 

end of the year 𝑇 + 1, assessed using the information ℱ𝑇 available at the end 

of year 𝑇, can be calculated as  

E(𝐵𝐸𝑇+1|ℱ𝑇) = ∑E(𝐶𝐹𝑇+𝑖|ℱ𝑇)

𝐾

𝑖=2

.  

Inserting this equality into Equation (26), and assuming that we assess 

∆𝐵𝑂𝐹𝑇+1 using information available at the end of year 𝑇 we obtain the 

following expression 

∆𝐵𝑂𝐹𝑇+1 = 𝐵𝐸𝑇 − (𝐶𝐹𝑇+1 + 𝐸(𝐵𝐸𝑇+1|ℱ𝑇)),  

i.e. random variable of the change in the Basic Own Funds during the next 

valuation year is equal to the difference between the initial Best Estimate and 

the sum random variables of the claims cash flow during the year 𝑇 + 1 and 

the Best Estimate at the end of year 𝑇 + 1. 

Substituting the expression of the change in the Basic Own Funds into 

Formula (22), we get the VaR formula for the loss of the Basic Own Funds 

over one year (one-year VaR), with the confidence level of 99.5%, as assessed 

using the information available at time t: 

VaR0.995(∆𝐵𝑂𝐹𝑇+1)

= inf{𝑙 ∈ ℝ: ℙ{𝐵𝐸𝑇 − (𝐶𝐹𝑇+1 + 𝐸(𝐵𝐸𝑇+1|ℱ𝑇)) > 𝑙}

≤ 0.995}. 
(27) 

Thus, SCR is the capital required to cover the excess of the total of claims 

payments during the first projection year and the Best Estimate at the end of 

the first projection year over the initial Best Estimate with 99.5% probability. 

We note that random variables 𝐶𝐹𝑇+1 and 𝐸(𝐵𝐸𝑇+1|ℱ𝑇) are not independent. 
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Actuaries usually reconsider the assumptions used to calculate Best Estimate 

based on the recent actual mortality experience. For example, significantly 

higher than expected incurred mortality losses are likely to lead to upwards 

revision of the Best Estimate mortality assumptions. Therefore, we can 

presume positive dependence between 𝐶𝐹𝑇+1 and 𝐸(𝐵𝐸𝑇+1|ℱ𝑇)  and our 

modeling challenge is to estimate the conditional expectation 

E(∑ 𝐶𝐹𝑇+𝑖|𝐶𝐹𝑇+1

𝐾

𝑖=2

).  

There are several ideas on how to model this relationship. For example, 

Richards et al. [69] for each simulation run added the simulated mortality 

experience in year 𝑇 + 1 to the already available historic data and used the 

total data set to refit the stochastic mortality model, which enabled to quantify 

variation in the mortality trend parameter. Similarly, Börger et al. [8] and Plat 

[64] used simulated mortality experience for each stochastic run to re-estimate 

the mortality trend parameter at 𝑇 + 1. We applied a similar approach, and for 

each run used simulated time varying index 𝜅𝑇+1 to adjust the RWD drift 

parameter: 

𝜇𝑇+1 = 𝜇 + 𝛿(𝜅𝑇+1 − 𝜅𝑇 − 𝜇),  

where 𝛿 is chosen credibility factor and 𝜇, 𝜅𝑇 are parameters estimated during 

the initial Lee-Carter model fitting. 

Our approach requires setting explicit credibility factor 𝛿, which is avoided 

in the methods mentioned above. However, the above methods also rely on 

certain additional model parameters which control the level of trend risk 

produced by the simulation. Börger et al. [8], for the purpose of introducing 

variability in the slope of the linear trend, reestimates with weighted least 

squares the trend using a new stochastic realization of mortality trend 

parameter. In this model, trend sensitivity is dependent on the choice of the 

length of the fitting period and the weights used. Plat [64] assumed a specific 

functional form of the trend parameter and the selected fitting period has a 

significant effect on its volatility. Similarly, using the approach of Richards et 

al. [69], if applied together with the Lee-Carter model, trend sensitivity would 

depend on the selected length of the fitting period. For the purpose of our 

analysis, considering that fitting periods for Lithuania and Sweden differ, we 

found it more convenient to set an explicit parameter controlling the level of 

trend risk. 

Let us consider what kind of practical reserving behavior would be 

consistent with the one-year VaR model described above. Firstly, the model 
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implies that actuaries in the reserving assumptions allow for future mortality 

improvements (mortality reduction factors), which are projected with the Lee-

Carter model. In practice, actuaries often reserve life assurance products 

without allowing for future mortality improvements, that is, some prudence is 

left in the Best Estimate, although strictly speaking this is not in line with the 

legislation. The overstatement of the Best Estimate means that the risk of its 

insufficiency due to fluctuation in mortality rates and consequently VaR is 

lower. Thus, if the Best Estimate for life assurance products is calculated 

without allowance for future mortality improvements, the company specific 

one-year VaR would be lower than the one-year VaR assessed by us. 

Secondly, consistently with the RWD model applied for modeling of the 

Lee-Carter model time varying index, we assume that the variation of the 

latest year mortality rates is fully translated to shifts in projected Best Estimate 

mortality curves. This implies that actuaries base the Best Estimate mortality 

assumptions on the mortality level implied by the last year’s experience. In 

practice, actuaries often use various smoothing, averaging and similar 

methods, as a result of which the variation driven by the mortality level of the 

last observed year may be taken into account only partially. The application 

of such techniques may result in a lower risk of changes in Best Estimate and 

lower VaR. 

Finally, even if the reserving methodology allows for mortality 

improvements, the sensitivity of the mortality reduction factors (trend risk) to 

the last year’s mortality experience may vary from insurer to insurer. In our 

calculations, we use two levels of credibility factor 𝛿 (5% and 10%), which 

represents variation in reserve risk due to differences in actuarial 

methodologies applied. The credibility parameter may be interpreted as the 

proportion of evidence related to last year’s experience accounted for in 

setting the assumed mortality reduction factors. Thus, in the case of 𝛿 = 10% 

mortality reduction factors are more sensitive to the last year’s experience than 

in the case of 𝛿 = 5%, and the modeled trend risk increases with the growth 

of 𝛿.  

Overall, the above considerations imply that our approach results in a 

rather conservative estimate of one-year VaR for two levels of selected trend 

risk parameters. 

Below, the detailed VaR formulas are derived for the two benefit formulas 

considered in this dissertation. 
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Level benefits 

In the case of one-year VaR, in addition to the first year’s death benefits, 

we calculate the projected benefits starting from year 𝑇 + 2, multiplied by the 

probability of survival in the first year. Inserting to Formula (27), one-year 

VaR for term life assurance with level benefits can be calculated as follows: 

VaR0.995
(𝐿) (∆𝐵𝑂𝐹𝑇+1) =

= inf {𝑙 ∈ ℝ: ℙ{𝐵𝐸𝑇
(𝐿)

− 𝑞𝑥(𝑇) − 𝐵�̃�𝑇+1
(𝐿)

> 𝑙} ≤ 0.995}, 
 

where: 

𝐵�̃�𝑇+1
(𝐿)

= 𝑝𝑥(𝑇)E( 𝑞𝐾−1
 

𝑥+1(𝑇 + 1)|ℱ𝑇).  

 

Decreasing benefits 

For the decreasing benefits in order to derive the simulated mortality 

probabilities, we use Result (25) to calculate the expected benefits starting 

from year 𝑇 + 1 

𝑝𝑥(𝑇) ∑𝐶𝐹𝑇+𝑖

𝐾

𝑖=1

= 𝑝𝑥(𝑇)
1

𝐾
∑ 𝑞𝑥+1(𝑇 + 1)𝑗

 

𝐾−1

𝑗=1

. (28) 

Substituting Result (28) into Formula (27) for the one-year VaR for term 

life assurance with decreasing benefits, we get that 

VaR0.995
(𝐷) (∆𝐵𝑂𝐹𝑇+1) =

= inf {𝑙 ∈ ℝ: ℙ{𝐵𝐸𝑇
(𝐷)

− 𝑞𝑥(𝑇) − 𝐵�̃�𝑇+1
(𝐷)

> 𝑙} ≤ 0.995}, 
 

where: 

𝐵�̃�𝑇+1
(𝐷)

= 𝑝𝑥(𝑇)
1

𝐾
𝐸 (∑ 𝑞𝑥+1(𝑇 + 1)𝑗

 

𝐾−1

𝑗=1

|ℱ𝑇).  

 

4.2.3.  Results of VaR calculations 

In this section we provide results VaR assessments, derived from the 

simulated mortality rates, described in Subsection 3.1. For comparability of 

our results with the Standard Formula mortality stress parameter, we have 

converted the calculated VaRs to equivalent VaR rates. We define VaR rate 

as 𝑔 which satisfies the following condition: 
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𝐵𝐸𝑇 + VaR0.995(𝐿) = ∑𝐶𝐹𝑇+𝑖
(𝑔)

𝐾

𝑖=1

,  

where 𝐶𝐹𝑇+𝑖
(𝑔)

 are projected mortality benefits calculated according to the 

applicable benefit formula by applying the following k year stressed mortality 

probabilities 

𝑞𝑘
 

𝑥
(𝑔)(𝑡) = 1 − ∏(1 − (1 + 𝑔)�̂�𝑥+𝑠(𝑡 + 𝑠))

𝑘−1

𝑠=0

.  

In the formula above, �̂�𝑥(𝑡) denotes the Best Estimates of one year 

mortality probabilities and 𝑘 ∈ {1,2,… , 𝐾}. In such a way, we search for rate 

g, which makes the stressed Best Estimate equal to the initial Best Estimate 

plus VaR.  

We calculate VaRs using two models for each of the two countries. We 

note that the results of calculations depend on the analyzed country’s mortality 

experience. Overall, Lithuania and Sweden provide a good proxy of different 

mortality development in the EU: very stable development typical to Western 

European countries, see [74], and volatile development with the change in 

trend applicable to Central and Eastern European countries.    

We do not use the SVD model due to high residual variance. We use the 

Poisson model for both of the countries, but note that the goodness of fit tests 

identified outliers in the Swedish case. From the SSMs for each country, we 

choose a model that fits better: DLM in the Lithuanian case and SSM with 

switching in the Swedish case. 

The results of the calculation of run-off VaR rates are presented in Figures 

17 and 18. The results indicate that run-off VaR rates tend to increase with the 

policy term. Uncertainty about the future mortality rates grows with time, 

which leads to wider confidence intervals of mortality rates for long term 

projections. Similarly, for the policies with decreasing sum assured, higher 

sums assured are paid in early policy years when the mortality uncertainty is 

lower than in later policy years, which implies that run-off VaR rates are 

generally lower for policies with decreasing sum assured than for equivalent 

policies with a fixed sum assured.  
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(a) (b) 

Figure 17. Calculated run-off VaR rates at policy inception for Lithuania for 

different ages at policy inception, three different terms to maturity (10 years, 20 years, 

and 30 years), and two benefit formulas (level sum assured and sum assured 

decreasing with time) where mortality rates are simulated using Poisson (a) and DLM 

(b) models. 

 

  

(a) (b) 

Figure 18. Calculated run-off VaR rates at policy inception for Sweden for different 

ages at policy inception, three different terms to maturity (10 years, 20 years, and 30 

years), and two benefit formulas (level sum assured and sum assured decreasing with 

time), where mortality rates are simulated using Poisson (a) and DLM with switching 

(b) models. 
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The shape of the VaR rate by age curves is related to the shape of the Lee-

Carter parameter 𝛽𝑥 which determines the sensitivity of projected age specific 

mortality rates to the changes in the time varying parameter and drives the 

relative level of age-specific projected volatility of mortality rates. As 

demonstrated in Figure 7, Sweden has a declining parameter 𝛽𝑥 over the 

modeled ages. Consequently, for Sweden run-off VaR rate curves also 

declined with age. For Lithuania, higher volatility of mortality rates at mid 

ages increases the run-off VaR rates for policies issued to younger and mid-

age policyholders.  

Comparing the results with the standard Solvency II Standard Formula 

stress level of 15%, the calculated VaR rates are significantly higher. Figure 

19 provides VaR rates calculated using the Poisson model fitted with Swedish 

data for the years 1960-2017. As it can be seen, the calculated VaR rates are 

comparable with the Standard Formula stress level. This is the expected result 

considering the mortality stress level calibration method applied by EIOPA, 

see Section 1. Thus, the differences in VaR rates can be explained by the fact 

that in our analysis we allow for the effect of disturbances in mortality 

development as well as take into account parameter uncertainty, which is not 

the case in the analysis performed by EIOPA. 

 

 

Figure 19. Calculated run-off VaR rates at policy inception for Sweden for different 

ages at policy inception, three different terms to maturity (10 years, 20 years, and 30 

years), and two benefit formulas (level sum assured and sum assured decreasing with 

time), where mortality rates are simulated using Poisson models fitted using trimmed 

data set (1960-2017). 
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The results of calculation of one-year VaR for two levels of the credibility 

parameter 𝛿 are presented in Figures 20-23. 

  
(a) (b) 

Figure 20. Calculated one-year VaR rates (𝜹 = 𝟓%) at policy inception for Lithuania 

for different ages at policy inception, three different terms to maturity (10 years, 20 

years, and 30 years), and two benefit formulas (level sum assured and sum assured 

decreasing with time), where mortality rates are simulated using Poisson (a) and DLM 

(b) models. 

 

  
(a) (b) 

Figure 21. Calculated one-year VaR rates (𝜹 = 𝟏𝟎%) at policy inception for 

Lithuania for different ages at policy inception, three different terms to maturity (10 

years, 20 years, and 30 years), and two benefit formulas (level sum assured and sum 

assured decreasing with time), where mortality rates are simulated using Poisson (a) 

and DLM (b) models. 
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The shape of the one-year VaR rate by age curves is similar to the shapes of 

the run-off VaR rate curves of the corresponding countries. The overall level of 

the curves to a large extend depends on the value of the credibility parameter 𝛿, 

especially for longer term policies. Larger parameter 𝛿 implies larger best 

estimate sensitivity at the end of the year and higher risk.  

  
(a) (b) 

Figure 22. Calculated one-year VaR rates (𝜹 = 𝟓%) at policy inception for Sweden 

for different ages at policy inception, three different terms to maturity (10 years, 20 

years, and 30 years), and two benefit formulas (level sum assured and sum assured 

decreasing with time), where mortality rates are simulated using Poisson (a) and DLM 

(b) models. 

  
(a) (b) 

Figure 23. Calculated one-year VaR rates (𝜹 = 𝟏𝟎%) at policy inception for Sweden 

for different ages at policy inception, three different terms to maturity (10 years, 20 

years, and 30 years), and two benefit formulas (level sum assured and sum assured 

decreasing with time), where mortality rates are simulated using Poisson (a) and DLM 

(b) models. 
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Comparing the impact on VaR results to the model used, we observe that 

for Lithuania, VaRs derived using the Poisson model and DLM are similar. 

For Sweden, VaRs derived with the Poisson model are significantly lower than 

VaRs derived using SSM with switching. The key reason for the difference is 

the ability to capture heavier tails of the mixture distrubution with SSM with 

switching model, therefore, we consider SSM with switching to be a preferred 

model for the calculation of VaR for Sweden. 

 

4.3. Summary of the section 

In this section, we have compared confidence intervals of mortality 

projections derived using different stochastic mortality models and used the 

selected projections as an input to VaR calculations.  

Application of various models results in different widths of confidence 

intervals of forecasted mortality rates. The classical Lee-Carter model 

projections have wide confidence intervals due to relatively poor fit, 

especially in Lithuania. For the Swedish SSM with regime switching model, 

confidence intervals are wide as expected due to heavy tails of the mixture 

distribution. We also observe a much more reasonable modeled mortality 

trend in Lithuania due to allowance for change in drift in the 1990s.       

For VaR calculations, two models were developed: run-off VaR and one-

year VaR. Run-off VaR model definition comes from the basic principles of 

cash flow projections. One-year VaR is more complex and requires the 

projection of an insurer’s solvency capital over a one-year period. We 

proposed and developed a model which uses a credibility factor reflecting to 

what extend actuaries take into account the latest mortality experience in 

setting the mortality assumptions for calculation of Solvency II technical 

provisions. Both VaR models were developed for two term life assurance 

benefit formulas: level benefits and decreasing benefits. 

We performed VaR calculations for both VaR calculation models and both 

benefit formulas using several different terms to maturity and different ages 

at policy inception. The results of the calculation show varying levels of VaR 

depending on the model, country, and insurance cover details. In most of the 

cases, VaR was above the regulatory solvency stress level.      
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CONCLUSIONS 

In this section, we provide an overview of the results and conclusions 

derived from this dissertation.  

 We developed two new state space Lee-Carter model modifications 

which provided us with the higher flexibility to deal with changes in 

the mortality trend and temporary increase in volatility. For model 

fitting, we developed algorithms based on the Gibbs sampler, and for 

model comparison we developed algorithms based on the auxiliary 

particle filter.  

 We fitted the new state space models and classical Lee-Carter and 

Poisson Lee-Carter models using the Lithuanian and Swedish data. 

State space models enabled us to achieve a better fit and to derive 

more reasonable projected mortality rates in comparison with the 

classical Lee-Carter and Poisson Lee-Carter models. Under model 

diagnostics, we determined that in the Swedish case, the pandemic 

effect was well captured by SSM with switching, and in the 

Lithuanian case a simpler DLM was the preferred model.  

 When performing an analysis of confidence intervals of projected 

mortality rates, we noted significant differences between the models. 

In particular, due to its relatively poor fit, the classical Lee-Carter 

model resulted in a very wide confidence intervals for Lithuania, but 

the DLM enabled us to achieve much more reasonable results. In the 

Swedish case, the SSM with the switching method allowed us to 

model the effect of pandemics, which was not possible to achieve with 

the classical Lee-Carter model.  

 We developed a detailed calculation method of VaR for mortality risk 

using the following two approaches: run-off VaR and one-year VaR. 

Our one-year VaR model included explicit allowance for reserve 

sensitivity, driven by internal insurer’s reserving practices. Our 

methodologies suit two different insurance benefit formulas: level 

benefits and decreasing benefits.   

 We performed VaR calculations using both approaches and showed, 

that VaR levels can be significantly affected by policy term to 

maturity, benefit formula, and policyholder age. In case of one-year 

VaR, the reserve sensitivity factor has a significant impact as well. 

Based on the results of this dissertation, insurance companies can 
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perform a more realistic assessment of mortality risk VaR by taking 

into account the specific exposures in their insurance portfolios and 

use it for solvency calculations and risk management.   

 When comparing the estimated Lithuanian and Swedish VaR rates to 

the Solvency II Standard Formula mortality stress, on average, our 

derived VaR rates are higher. The key reasons for the difference are 

the inclusion of higher volatility periods during the model fitting and 

allowance for parameter uncertainty.  
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