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1 Faculty of Physics, Vilnius University, Saulėtekio Av. 9, 10222 Vilnius, Lithuania; vilius.palenskis@ff.vu.lt
2 Department of Electronic Systems, Vilnius Gediminas Technical University, Naugarduko Str. 41,

03227 Vilnius, Lithuania
* Correspondence: evaras.zitkevicius@vilniustech.lt

Abstract: This paper gives a summary of a new insight into basic electron transport characteristics
in crystalline elemental metals. The general expressions based on the Fermi-Dirac distribution of
the effective density of the randomly moving electrons, their diffusion coefficient, drift mobility, and
other characteristics, including the Einstein relation between diffusion coefficient and drift mobility,
are presented. It is shown that the creation of the randomly moving electrons due to lattice atom
vibrations produces the same number of electronic defects, which cause scattering of the randomly
moving electrons and related transport characteristics.

Keywords: effective density of randomly moving (RM) electrons; diffusion coefficient; drift mobility;
density-of-states (DOS); scattering; electronic defects; conductivity of metals

1. Introduction

The resistivity of crystalline elemental metals above the Debye′s temperature in-
creases linearly with temperature, and this behavior is usually explained by charge carriers
scattering due to lattice atom vibrations: due to an increase of the magnitude of the
electron-phonon scattering cross-section [1–9]. It has also been proposed that all valence
electrons in the conduction band can freely move and can be scattered, but this proposition
is completely wrong and contradicts the Fermi-Dirac statistics.

It is well known that the Pauli exclusion principle and the Fermi-Dirac statistics for
electrons explain the experimental results of the electronic heat capacity of metals: why
metals and isolators have around the same heat capacity. The resolution of this paradox is
one of the greatest success of the Sommerfeld′s model [1,10,11]. The main conclusion from
this model is that only a small part of the conduction band electrons can move randomly,
that their energy is close to the energy of Fermi level, and that electrons which energy
is well below the Fermi level energy cannot change their energy because all neighbor
energy levels are occupied. On the other hand, the main uncertainty of the Sommerfeld′s
model is that it does not strictly define the effective density of the randomly moving (RM)
electrons, which can be scattered and produce the Brownian motion, and which can be
affected by external fields. Moreover, by using this model with the spherical Fermi surface,
it was pointed out that this model follows the Drude conductivity model of metals, but
for metals the latter cannot be applicable in principle. There also are uncertainties in the
determination of both the density-of-states (DOS) at the Fermi level energy and the Fermi
level energy because the Fermi surfaces for many metals are not spherical and they have
very composite forms [12].

There are many questions, for example, how to get the total density of the electrons in
the conduction band having the Hall effect data of metals and considering that only small
part of electrons in the conduction band takes part in the conduction; how to strictly define
the density of the RM electrons and their related kinetic characteristics; and are the valence
electrons in metals really free?
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This critical summary is mainly addressed in the application of the effective density
of the RM electrons for the description of the basic electron transport characteristics in
crystalline elemental metals.

2. Results and Discussion
2.1. The Effective Density of RM Electrons in Crystalline Metals and Related Characteristics

The total density n of the electrons in the conduction band is described by DOS g(E) in
the unit volume as:

n =
∫ ∞

0
g(E) f (E)dE, (1)

where the Fermi distribution function is:

f (E) = 1/[1 + exp(E− η)/kT] ≈1/[1 + exp(E− EF)/kT], (2)

here η is the chemical potential, and η ≈ EF (here EF is the Fermi level energy) because
the difference between these quantities is only about 0.01% at room temperature; k is the
Boltzmann′s constant; and T is the absolute temperature.

The density of the free randomly moving (RM) electrons depends not only on the DOS
g(E) of the electrons in the conduction band and Fermi distribution function f (E), but it also
depends on the probability f1(E) =1 − f (E) that at a given temperature T the electron can
be thermally scattered or change its energy under the influence of the external field.

Therefore, the effective density of the RM electrons neff is defined as [13,14]:

neff =
∫ ∞

0
g(E) f (E)[1− f (E)]dE = kT

∫ ∞

0
g(E)(−∂ f (E)/∂η)dE. (3)

This Equation is valid for homogeneous materials both with degenerate and non-
degenerate electron gas. From this Equation, it also follows that the term:

p(E) = (−∂ f (E)/∂E)= f (E)[1− f (E)]/kT (4)

is the probability density function of energy E of free RM electrons. The function p(E) meets
all requirements of the probability theory and is in agreement with the Pauli exclusion
principle. The probability density function p(E) is presented in Figure 1. The area restricted
by the dashed line is equal to 1, and the effective width of the p(E) in energy is ∆Eeff = 4kT.
Thus, the effective density of RM electrons is stochastic quantity, while the total density of
valence electrons in the conduction band is a constant quantity.
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The average value of any random function x(E), depending on the energy E of the RM
electrons, can be completely determined as:

< x(E) > =
∫ ∞

0
x(E)p(E)g(E)dE. (5)

For materials (semiconductors) with non-degenerate electron gas, the probability
[1− f (E)] ≈1 because f (E) << 1, and all electrons in the conduction band take part in
random motion, and their density is described as (1). It is the case when the classical
statistics are valid. In the case of highly degenerate electron gas, the relation (3) can be
presented in the following form:

neff = g(EF)kT << n, (6)

where g(EF) = g(E) at E = EF. There it can be pointed out that neff at a given temperature
T is only determined by the DOS value at the Fermi surface, and it does not depend on
the DOS distribution form in the conduction band, and on the form of Fermi surface, i.e.,
this relation is also valid for elemental transition metals. The g(EF) values can be obtained
from the experimental data of the electronic heat capacity measurements [15,16]:

Cel =
(

π2/3
)

g(EF)k2T = γT. (7)

The electronic heat capacity parameter γ for all elemental metals is determined and
tabulated [15,16]. If we use the Sommerfeld′s model based on the spherical Fermi surface
we will get the DOS values g(EF) with very large uncertainty for metals with composite
Fermi surfaces [13,14]. The relation between the density of the RM electrons and the total
density of the valence electrons is shown in Figure 2a.
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Figure 2. (a) The DOS at the Fermi level energy g(EF) (right scale) and the effective density of the RM electrons neff (left
scale at T = 295 K, calculated by Equation (3)) distribution on the total density of the valence electrons in the conduction
band for elemental metals. The dash line (right scale) is under Sommerfeld′s model. The data g(EF) are calculated by
Equation (7) by using the electronic heat capacity values [15,16]. (b) Illustration of the DOS g(E) and g(E)f (E) functions (left
scale) on the energy of the electrons in the conduction band with parabolical energy band. The light grey area represents the
total density n of the valence electrons (calculated by Equation (1)), and the dark grey area represents the effective density
neff of the RM electrons (calculated by Equation (3)). There are also presented the Fermi functions f (E) and [1 − f (E)] (right
scale). Figure 2a with permission of the Nova Science Publishers.

In agreement with quantum mechanics, the electrons in the ideal periodicity crystal
are arranged in energy bands according to the Bloch waves. Each primitive cell exactly
contributes only one independent value of the wave vector to each energy band [2,15,17].
In the three-dimensional case, there are 2N independent orbitals in each energy band,
where N is the number of primitive cells in the sample with the volume V. It can be here
pointed out that the obtained result does not depend on both atom or electron masses. If an
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electron energy belongs to the conduction band, it does not automatically (by itself) mean
that it can randomly move or can be scattered by thermal lattice vibrations. A schematic
illustration of Equations (1)–(4) and DOS g(E) functions for the parabolic energy band (for
metals with spherical Fermi surface) is shown in Figure 2b.

The dark gray area represents the effective density of RM electrons neff (estimated
by Equation (3)); these RM electrons can be scattered and produce the Brownian motion
and change their energy, but the other part of the electrons (n−neff) cannot be scattered
and change their energy. The probability density function that these electrons can be
scattered is equal to zero. Moreover, these electrons are not affected by lattice thermal
vibrations, because the variance of the thermal energy for these electrons is < ∆E2 > = 0.
Therefore, that part of the electrons is localized and bonded to their native ions. The
solid line in Figure 2a has been calculated by using well-known Sommerfeld formula
g(EF) =

[
m/
(
}3π2)]√2mEF with m equal to the free electron mass. To get the agreement

of Sommerfeld formula with experimental data, it is used a particular effective mass of the
DOS of elemental metals [1,8,11], but the DOS in the energy band is caused only by the
number of primitive cells in the sample [2,15,17].

The average energy of the valence electron in the metal is smaller than in the isolated
atom. This decrease in the energy of the valence electrons in metals causes the binding
energy of atoms in crystalline elemental metals [1,18]. The valence electron wave functions
overlap substantially with that of the neighbor atoms [2,11,15], but they remain associated
with the native atoms: The valence electron charge cloud density is concentrated near
the parent ions. Only the valence electrons with energies that are close to the Fermi level
energy due to lattice ion vibrations can be released, produce the Brownian motion in the
metal crystal, and can leave the native atoms; they become free and can randomly move in
the crystalline metal. Thus, the free electron term can be used only for free RM electrons,
the other part (n−neff) of the valence electrons is localized near the native ions. Here we
want to point out that part of the electrons (n−neff) is not free yet for alkali metals though
their Fermi surfaces are almost spherical.

2.2. Diffusion Coefficient and Drift Mobility of RM Electrons

The electrical conductivity σ and the free electron diffusion coefficient D are related
by the following general expression [19,20]:

σ = q2D(∂n/∂η)T . (8)

After a simple calculation of the derivative n on the chemical potential η, the following
expression is obtained:

σ =
q2D
kT

∫ ∞

0
g(E) f (E)[1− f (E)]dE =

q2D
kT

neff, (9)

where neff is described by (3). Equation (9) shows that the conductivity in all cases is
determined by the effective density of RM electrons. The same expression is also obtained
from the Boltzmann kinetic Equation [4,21] and from the description of the electric thermal
noise [13].

On the other hand, the conductivity can be described as:

σ = qµdriftneff, (10)

where µdrift is the drift mobility of the RM electrons. From relations (9) and (10) it follows
the Einstein′s relation between the diffusion coefficient and the drift mobility of the free
RM electrons:

D/µdrift = kT/q. (11)

Equations (9)–(11) are valid for all homogeneous materials with a single type of
charge carrier at any degeneracy degree. The relationships between the conductivity,
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diffusion coefficient, and drift mobility of the RM electrons for elemental metals at 295 K
are presented in Figure 3a. From this figure it follows that the drift mobility for most of the
elemental metals is many times larger than the Hall mobility [22,23].
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metals at T = 295 K (the conductivity values are taken from [15,16]). (b) The effective scattering cross-section σeff0 caused by
electronic defects of elemental metals distribution on DOS at Fermi surface at T = 295 K. Figure 3 with permission of the
Nova Science Publishers.

For elemental metals, the conductivity (9) can be described as

σ = q2g(EF)D = (1/3)q2g(EF)v2
FτF, (12)

where vF and τF are, respectively, the velocity and relaxation time of the RM electrons at
the Fermi surface.

2.3. The Scattering of the RM Electrons and Their Mean Free Path

From Equation (12) it follows that the diffusion coefficient is related to at least five
transport parameters of the RM electrons:

D =
σ

q2g(EF)
=

1
3

v2
FτF =

1
3

lFτF, (13)

where lF is the mean free path of the RM electrons.
The most important parameter characterizing the scattering mechanism of the RM

electrons is their mean free path. According to the quantum mechanics, the free electrons
can freely move in the ideal periodic lattice of the metal crystal without any scattering by
ions [1,5,15,17,21]. Therefore, the scattering of free electrons can be only in spots where there
are distortions of the periodicity of the potential energy of the ideal lattice structure. The
resistivity of metals is caused due to the scattering of free electrons by impurities, vacancies,
interstitial atoms, dislocations, boundaries of grains, and the surface. The electron mean
free path due to the named defects almost does not depend on temperature, and their
dominance appears at low temperatures. In the temperature range above the Debye′s
temperature, the mean free path changes as 1/T, while below the Debye′s temperature
it usually changes as T−5. Considering that the effective density of the free RM electrons
increases with temperature [ neff = g(EF)kT ], another explanation mechanism is needed
to explain the electron scattering cross-section by lattice vibrations.

Now, let us return to the Fermi distribution function. The average effective density of
the RM electrons in elemental metals is neff = g(EF)kT, which are produced by thermal
vibrations of some of the atoms, i.e., by atoms which have valence electrons with energy
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near to Fermi level energy. It means that on average there is an effective density of atoms
Neff, which can generate free RM electrons, and it may be expressed as

Neff = neff = g(EF)kT. (14)

These Neff atoms generate free RM electrons, which lose the parent atoms to large
distances of order of the electron mean free path and also produce both not completely
screened positive ions and local distortions in the periodical distribution of the charge
density. Considering that these defects do not produce any distortion in the lattice structure,
such defects are named as electronic defects [22,23].

The other part (Nat − Neff) of atoms that have valence electrons with energy well
below the Fermi level energy does not have sufficient thermal vibration energy to excite
RM electrons near to Fermi level energy (here Nat is the density of metal atoms). In other
words, the part (n−neff) of the valence electrons which energy is lower than EF by at
least several units of kT, due to Pauli exclusion principle and Fermi-Dirac statistics, is not
affected by lattice vibrations, because all neighbor energy levels are occupied. It is the most
important property of such electrons. Moreover, this part of electrons has no influence
on the motion of the free RM electrons. Thus, the Pauli exclusion principle drastically
reduces the number of processes by which valence electrons can interact and be scattered
by ions and other electrons. The vibrations of the (Nat − Neff) atoms can be interpreted as
neutral atom vibrations: the part (n−neff) of valence electrons is sufficiently tightly bonded
to their parent ions, and they move together with ions because they cannot change their
energy. Usually, the movement of electrons without the energy changing corresponds to
their stationary motion.

Therefore, with a temperature increase, the thermal vibrations of the lattice ions
stimulate the increase of the RM electron density neff, and at the same time produce the
same density Neff of the local distortion spots (electronic defects) of the potential (or charge
density) periodicity.

Then the electron mean free path lF of the RM electrons in metals can be described as:

lF = vFτF = 1/(σeffNeff) = 1/[σeffg(EF)kT], (15)

where vF and τF are, respectively, the electron velocity and their relaxation time at the Fermi
surface; and σeff is the effective scattering cross-section of the RM electrons by electronic
defects. On the other hand, the average relaxation time can be described as:

τF = 1/(σeffNeffvF) = 1/[σeffg(EF)vFkT]. (16)

From Equations (15) and (16) it follows that the effective scattering cross-section of the
RM electrons at temperatures over Debye′s temperature does not depend on temperature.

As it is shown in [23], the effective scattering cross-section of electrons σeff by electronic
defects depends on the ratio of the exchange of the thermal energies between the electronic
defect and RM electron:

σeff = σeff0ηph(T/Θ), (17)

where σeff0 can be evaluated from (15) at room temperature; Θ is the Debye′s temperature;
and ηph(T/Θ) is the phonon mediation factor accounting for the RM electrons scattering
by electronic defects [23]:

ηph(T/Θ) = (T/Θ)4
Θ/T∫
0

4x5dx
(ex − 1)(1− e−x)

. (18)

The effective scattering cross-section of electrons σeff = σeff0 distribution on the DOS
at the Fermi surface at T0 = 295 K evaluated by (15), and by using the electron mean free
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path data from [23] for elemental metals, is shown in Figure 3b. It is seen that the obtained
cross-section values σeff0 on average correspond to atom cross-section values.

The resultant average relaxation time τres in a wide temperature range can be
described as:

1/τres = (1/τeff) +
(
1/τimp

)
, (19)

where τeff = 1/
[
σeff0ηph(T/Θ) g(EF)vFkT

]
, and τimp = 1/

(
σimpNimpvF

)
is the electron

relaxation time due to their scattering at low temperature by various impurities and
structure defects of the lattice; σimp is the electron scattering cross-section by impurities;
and Nimp is the impurity density.

Then the resistivity of the elemental metal in the overall temperature range can be
described as:

ρ(T) = ρ0 + ρ(T0)·(T/T0)·ηph(T/Θ), (20)

where ρ0 is the residual resistivity due to electron scattering by imperfections of the lattice
defects, and ρ(T0) is the resistivity at T = 295 K.

An illustration of the applicability of the relation (20) for the estimation of the resistivity
is presented in Figure 4a for Sr, Au, Cu, Mo, and Al, and in Figure 4b for Pd, V, Ag, Zn, and
W in temperature range from 1 to 1000 K.
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Figure 4. Electrical resistivity of Sr, Au, Cu, Mo, and Al (a); and Pd, V, Ag, Zn, and W (b) dependence on temperature (dots
are experimental data [16], the solid lines are calculation results by Equation (20); in brackets near the metal chemical sign
there is the Debye′s temperature Θ in K used for calculation).

3. Conclusions

It is shown that the electron transport characteristics in elemental metals are caused by
randomly moving electrons at the Fermi surface, but not by the total density of the electrons
in the conduction band. The creation of the RM electrons by the lattice vibrations produces
the same number of electronic defects, which causes the scattering of the RM electrons. It
allows to estimate the real characteristics of RM electrons of crystalline elemental metals,
such as their diffusion coefficient, drift mobility, average relaxation time, and average
scattering cross-section caused by electronic defects. It is shown that the Einstein relation
between the diffusion coefficient and drift mobility of the free RM electrons is valid at
any degree of degeneracy of electron gas. It is also shown that at temperatures over the
Debye′s temperature, the scattering cross-section of the RM electrons does not depend
on temperature. The valence electrons, which energy is lower by at least several units of
kT than the Fermi level energy, can only move around the native ions because the energy
of ion thermal vibration is not sufficient to excite them into the range of the Fermi level
energy with free energy states.
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23. Palenskis, V.; Žitkevičius, E. Analysis of transport properties of randomly moving electrons in metals. Mater. Sci. 2020, 26,

147–153. [CrossRef]

http://doi.org/10.1080/00018738400101671
http://doi.org/10.1017/CBO9780511618600289.005
http://doi.org/10.4236/wjcmp.2013.31013
http://doi.org/10.1063/1.4871757
http://www.knowledgedoor.com/
http://doi.org/10.1039/b719943k
http://www.ncbi.nlm.nih.gov/pubmed/18500394
http://doi.org/10.1017/CBO9780511629020
http://doi.org/10.5755/j01.ms.26.2.21730

	Introduction 
	Results and Discussion 
	The Effective Density of RM Electrons in Crystalline Metals and Related Characteristics 
	Diffusion Coefficient and Drift Mobility of RM Electrons 
	The Scattering of the RM Electrons and Their Mean Free Path 

	Conclusions 
	References

