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Abstract: Cerium and chromium co-doped gadolinium aluminum gallium garnets were prepared
using sol-gel technique. These compounds potentially can be applied for NIR-LED construction,
horticulture and theranostics. Additionally, magnesium and calcium ions were also incorporated
into the structure. X-ray diffraction data analysis confirmed the all-cubic symmetry with an Ia-
3d space group, which is appropriate for garnet-type materials. From the characterization of the
luminescence properties, it was confirmed that both chromium and cerium emissions could be
incorporated. Cerium luminescence was detected under 450 nm excitation, while for chromium
emission, 270 nm excitation was used. The emission of chromium ions was exceptionally intense,
although it was determined that these compounds are doped only by parts per million of Cr3+ ions.
Typically, the emission maxima of chromium ions are located around 650–750 nm in garnet systems.
However, in this case, the emission maximum for chromium is measured to be around 790 nm, caused
by re-absorption of Cr3+ ions. The main observation of this study is that the switchable emission
wavelength in a compound of single phase was obtained, despite the fact that doping with Cr ions
was performed in ppm level, causing an intense emission in NIR region.

Keywords: cerium; chromium; garnets; luminescence; NIR; sol-gel synthesis

1. Introduction

In recent years, more and more scientists have focused on the synthesis and devel-
opment of functional inorganic materials. Two of the main considered groups of such
compounds are the inorganic scintillators and phosphors. Inorganic scintillators are widely
used in medicine and nuclear physics as the x-ray converter material for CT and others
detectors [1–4], while inorganic phosphors are mainly used as material in light-emitting
diodes (LEDs) [5–7].

Scintillator and phosphor materials usually consist of a host matrix and activator
ions, which, in most cases, are lanthanide or transition metal ions [8]. While the host and
activator strategy is the most common, there are other types of materials which possess
intrinsic luminescence as well [9,10]. However, lanthanum, promethium, and lutetium
are not suitable for such applications. One of the most popular groups of host materials
are garnets, which are oxides crystallizing in a cubic structure with space group Ia3d, and
which comprise three differently coordinated cation sites, namely dodecahedral, octahedral,
and tetrahedral positions [11,12]. The host material used in this study was gadolinium
aluminum gallium garnet (GAGG), with the formula Gd3Al2Ga3O12. GAGG:Ce garnets
exhibited the brightest light yields of 46,000 ph/MeV among other oxide crystalline scintil-
lators [13,14]. Despite the fact that there is a wide variety of dopant ions used in scintillator
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production, GAGG is mostly doped just by Ce3+ ions [15–18]. There has been a number of
studies in recent years about various GAGG:Ce modifications and the resulting changes
in luminescence properties. It has been shown that by changing the ratio between Al and
Ga in the garnet structure, Ce emission band can be shifted due to the change of crystal
field splitting. It is worthy to note that such changes in emission maxima are also present
in other garnets doped with cerium ions, such as Lu3Al5O12:Ce (LuAG:Ce) or Y3Al5O12:Ce
(YAG:Ce) [11,19–21]. Another type of modification for GAGG:Ce is co-doping with various
metal cations. Studies have shown that co-doping of GAGG:Ce with mono/di/trivalent
cations usually affects the luminescence, i.e., the absorption strength, quantum efficiency,
quenching temperature, and decay time [17,22–31]. The change of these parameters de-
pends not only on the dopant type, but also on its concentration. These changes are thought
to be caused by the formation of various localized energy levels in the conduction band of
the garnet, due to the crystal defects which are formed when Gd3+ ions are replaced with
cations of different valence c(1+, 2+ or sometimes 4+) [11].

The impact of Cr3+ on Ce3+ decay time was observed in YAG:Ce,Cr. In this case, the
decay time greatly increased with the introduction of high amount (500 ppm) of chromium
ions [32]. It was proposed that Cr3+ co-doping results in the formation of electron trapping
sites with an ideal trap depth for persistent luminescence at room temperature [28,32].
It was also proposed and proven that the same principles can be applied to the GAGG
phosphor luminescence where co-doping of Cr3+ and Ce3+ results in persistent phos-
phor luminescence of excited Ce3+ sites and, in some cases, Cr3+ emission in the visible
range [28–30,32,33]. In this study, a novel system consisting of GAGG matrix and four addi-
tional dopant elements (Ce3+, Cr3+, Mg2+ and Ca2+) was investigated. Since the chromium
concentration is just in the ppm range, it exhibits not typical chromium emission but the
maximum of emission band is shifted towards 790 nm. Such emission in the near infrared
region (NIR) range might be useful for plant growth purposes [34]. Additionally, these
compounds could be used in the fabrication of high power NIR-LED devices for night
vision applications, and biosensors used to measure content of water, fat, sugar, protein of
different products [35,36]. Therefore, in turn, these phosphors could be potentially applied
in horticulture research experiments. Biological tissue transmits radiation in the range from
650 to 1300 nm (the first biological window), which allows deeper penetration, so such
compounds could also be promising candidates in the field of theranostics [37,38].

2. Materials and Methods

Gadolinium aluminum gallium garnet powders were synthesized by the sol-gel
method. Cerium concentration was kept at 0.05 mol% for all samples. All synthesized
powder compounds are listed in Table 1.

Table 1. Chemical composition of synthesized powders determined by ICP-OES.

Name of Sample Formula of Sample

Sample 1 GAGG: Ce 0.05%, Ca 100 ppm, Mg 7 ppm, Cr 15 ppm
Sample 2 GAGG: Ce 0.05%, Ca 94 ppm, Mg 8 ppm, Cr 15 ppm
Sample 3 GAGG: Ce 0.05%, Ca 57 ppm, Mg 9 ppm, Cr 15 ppm

For these compounds, Gd2O3, Ga2O3, Al(NO3)3·9H2O, (NH4)2Ce(NO3)6, Ca(NO3)2·4H2O
and Mg(NO3)2·6H2O were used as precursors. Firstly, Gd2O3 and Ga2O3 were dissolved
in an excess of concentrated nitric acid at 50 °C. Then, the acid was evaporated and the
remaining gel was washed with distilled water 2 or 3 times, followed by further evapo-
ration of added water. An additional 200 mL of water was added after the washing, and
Al(NO3)3·9H2O, (NH4)2Ce(NO3)6, Ca(NO3)2·9H2O and Mg(NO3)2·9H2O were dissolved.
The solution was left under magnetic stirring for 2 h at 50–60 °C. After that, citric acid
was added to the solution with a ratio of 3:1 to metal ions, and was left to stir overnight.
The solution was evaporated at the same temperature, and the obtained gels were dried
at 140 °C for 24 h in the oven. The obtained powders were ground and annealed first at
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1000 °C for 2 h in air, with 5 °C/min heating rate. Secondly, the gained powders were
heated at 1400 °C for 4 h, with 5 °C/min heating rate.

X-ray diffraction (XRD) measurements of the powders were performed using the
Rigaku MiniFlex II X-ray diffractometer (Rigaku Europe SE, Neu-Isenburg, Germany).
Powders used for analysis were evenly dispersed on the glass sample holder using ethanol.
Then diffraction patterns were recorded in the range of 2θ angles from 15◦ to 80◦ for all
compounds. Cu Kα radiation (λ = 1.542 Å (Avarage of Cu Kα1 = 1.540 and Kα2 = 1.544))
was used for the analysis. The measurement parameters were set as follows: current was
15 mA, voltage −30 kV, X-ray detector movement step was 0.010◦ and dwell time was 5.0 s.

Measurements of emission and excitation: Edinburgh Instruments FLS980 spectrome-
ter (Edinburgh Instruments, Livingston, UK) equipped with double excitation and emission
monochromators and 450 W Xe arc lamp (Edinburgh Instruments, Livingston, UK) a cooled
(−20 ◦C) single-photon counting photomultiplier (Hamamatsu R928(Edinburgh Instru-
ments, Livingston, UK)) and mirror optics for powder samples were used for measuring the
excitation and emission of the prepared samples. Obtained photoluminescence emission
spectra were corrected using a correction file obtained from a tungsten incandescent lamp
certified by National Physics Laboratory (NPL), UK. Excitation spectra were corrected by a
reference detector [39]. The reflectance spectra from 250 to 600 nm were measured in an in-
tegrated (solid) sphere coated with barium sulphate. BaSO4 (99% Sigma-Aldrich, St. Louis,
Missouri, United States) was used as a reference material, with excitation and emission gaps
of 4 and 0.15 nm, respectively. Each measurement was performed 10 times. Measurements
in the range of 120 to 400 nm were performed using a FLS920 fluorescence spectrometer
(Edinburgh Instruments, Livingston, UK) with an R-UV excitation monochromator VM504
(Acton Research Corporation, Acton, Massachusetts, USA) and a deuterium lamp (Edin-
burgh Instruments, Livingston, UK) in a BAM:Eu (BaMgAl10O17:Eu2+)-coated integrated
sphere. The measuring chamber containing the sample was continuously flushed with
dry nitrogen gas to remove water and oxygen, since these molecules show vacuum UV
absorption. The photoluminescence decay kinetics were studied for powders and thin
films using the FLS980 spectrometer(Edinburgh Instruments, Livingston, UK). 450 nm
lasers were used for these measurements [39].

Identification of quantification of Ca, Mg, and Cr in the synthesized species was
performed by inductively coupled plasma optical emission spectrometry (ICP-OES) using
Perkin-Elmer Optima 7000 DV spectrometer (Perkin-Elmer, Walthman, MA, USA). Sample
decomposition procedure was carried out in concentrated nitric acid (HNO3, Rotipuran®

Supra 69% (Roth, Karlsruhe, Germany)) using microwave reaction system Anton Paar
Multiwave 3000 (Anton-Paar, Graz, Austria) equipped with XF100 rotor and PTFE liners
(Anton-Paar, Graz, Austria). The following program was used for the dissolution of
powders: during the first step, the microwave power was linearly increased to 800 W in
15 min and held at this point for the next 20 min. Once the vessels had been fully cooled and
depressurized, the obtained clear solutions were quantitatively transferred into volumetric
flasks and diluted up to 50 mL with deionized water. Calibration solutions were prepared
by an appropriate dilution of the stock standard solutions (single-element ICP standards,
1000 mg/L, (Roth, Karlsruhe, Germany)).

3. Results and Discussion
3.1. X-ray Diffraction Analysis

To determine the phase purity of the powder garnet samples, XRD analysis was
performed. Figure 1 shows the diffraction patterns of all synthesized garnets. From the
displayed data, it can be concluded that all compounds, regardless of the concentrations
of doping elements, possess cubic GAGG structure with Ia-3d space group ((PDF) #00-
046-0448). No peaks corresponding to the constituent oxides were observed. However,
we can observe a slight shift of the peaks from the PDF card data to smaller 2θ angles.
This shift was due to additional doping of the compound with Mg2+, Ca2+, Ce3+, and/or
Cr3+ ions, due to the ionic radii difference [40]. In summary, from the measured data,
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it can be concluded that garnets could be doped without the formation of additional
impurity phases.
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Figure 1. XRD patterns of the GAGG:Ce,Cr,Mg,Ca micropowder samples.

3.2. Luminescence Properties

For the practical application of luminescent materials, they have to emit a rather
discreet wavelength light, due to the fact that light interacts differently based on its wave-
length. Photons with NIR wavelengths are especially important, and they have deeper
tissue penetration and can induce faster plant growth. Additionally, should the possibly
arise to switch between NIR and other wavelengths in a single matrix, a new application
area could potentially be available. In this case, the luminescence is induced by exciting
one of the trivalent ions used as dopants (Ce3+, Cr3+). Upon recording the emission and
excitation of the compounds, electronic transitions of both cerium and chromium ions
can be observed. The absorption bands that are ascribed to cerium ions are due to inter-
configurational [Xe]4f1–[Xe]5d1 transitions, while in the case of Cr3+ intraconfigurational
[Ar]3d3–[A]3d3 transitions between the crystal-field components, 4A and 4T are observed.
Due to the allowed nature of these electron transitions, broad emission bands are detected.
During these processes, energy is either reemitted or just absorbed, which defines the
optical properties of such garnets. Given the possibility to switch between cerium and
chromium emission based on the excitation wavelength, as well as the large red shift of
chromium emission toward 790 nm, such compounds could potentially be good candi-
dates as multifunctional materials in horticultural and theranostic applications. However,
further research for practical applications is still needed to evaluate such possibilities more
in-depth.

In order to estimate optical properties of the synthesized materials excitation, emis-
sion and reflectance spectra were recorded. The decay times were measured as well.
Figures 2 and 3 show the excitation and emission spectra of different GAGG compounds
measured at room temperature. In Figure 2, the recorded chromium emission and exci-
tation spectra are displayed. In excitation spectra, the most intense band is attributed to
8S7/2–6IJ transitions of Gd3+ ions with the maxima at 270 nm. At 415 and 575 nm, the
evidence of excitation process of chromium ions resulting from the transitions between 4A1
to 4T1 and 4T2 orbitals was also observed. Meanwhile, the emission signal detected under
270 nm excitation is caused by the transition from 4T2 to 4A1 orbital. From the spectra given
in Figure 2, it can be derived that the compound with the highest content of magnesium
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(Sample 3), i.e., 9 ppm, exhibits the most intense emission and excitation bands. The differ-
ence in the intensity of excitation and emission could be attributed to the different calcium
content in the compounds. Since calcium has a 2+ charge and it is introduced instead of
3+ gadolinium ion, oxygen vacancy defects are most likely created, due to the aliovalent
nature of substitution. It is commonly known that such defects reduce the luminescence
intensity of most compounds [41,42]. In this case, the compound with the lowest Ca2+

amount (Sample 3) has the highest luminescence intensity, whereas Sample 1 and Sample 2
have similar amounts Ca2+ ions and show lower emission intensities. It should be noted
that chromium is present in ppm fractions, nevertheless, its emission remains very intense.
Commonly, chromium emission maximum in garnet matrix is around 650–750 nm, while
in this case it was measured to be 790 nm. Such a shift to the red region was previously
explained by the re-absorption of Cr3+ ions [43]. Studies by other researchers revealed that
a high photoluminescence intensity of chromium ions emission was only recorded with
2000 times higher amounts (for example, 3 mol%) of Cr3+ in other compounds [44].
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Since these garnets were doped with cerium as well, they also have the characteristic
emission attributed to cerium ions. Normalized emission is attributed to cerium emission,
and excitation spectra are shown in Figure 3. To measure cerium emission, the compounds
were excited under 450 nm wavelength ([Xe]4f1 to [Xe]5d1 interconfigurational transitions
of Ce3+), which cannot be attributed to chromium. The compounds appear to exhibit
cerium-specific fluorescence at a wavelength of 540 nm, which arises from the 5d1 to
4f1 electronic transitions. Meanwhile, when investigating the excitation spectra of the
compounds in addition to those cerium bands, the peaks contributing to gadolinium ions
were observed in the 250–320 nm range [19,44].

Figure 4 shows the reflectance spectra of the compounds. In the reflectance spectra of
garnets doped with cerium, two absorption bands can be observed, one at about 350 nm, the
another at 400–500 nm. These bands are assigned to the different crystal-field components
of the interconfigurational Ce3+ [Xe]4f1 → [Xe]5d1 transitions. At approximately 275 nm,
an absorption peak is observed in all spectra, which is assigned to the Gd3+ 8S7/2 → 6IJ
interconfigurational transitions. The set of absorption peaks at about 312 nm is assigned
to the Gd3+ 8S7/2 → 6PJ electron transitions [19,45]. It should be noted that the position
of the Ce3+ absorption bands does not change upon changing the ions with which the
garnet was doped, so it could be stated that doping with magnesium and calcium does
not affect the absorption wavelength. However, it is obvious that garnets also have cerium.
The absorption band at 360 and 440 nm is classified as a Ce3+ electronic transition. In
addition, there is no bright absorption band at 600 nm, which is typically observed in
Cr3+-containing compounds [44,46–48].
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To better investigate the absorption of garnets in the UV region, the reflectance spectra
of the synthesized gadolinium aluminum gallium garnets powders in the 130–400 nm
range were recorded. The reflectance spectra are shown in Figure 5. It can be seen that in
the 130–400 nm region, three clear absorption bands are visible: one in the 140–165 nm
range, the second in the 190–240 nm range, and the last in 270–280 nm zone. The absorption
in the 270–280 nm range can be attributed to Gd3+ 8S→ 6I electron transitions [19]. The
observed absorption in the 140–165 nm range can be interpreted as the electron jump into
the Ce3+ 5d orbital [49,50]. Finally, the region of 200–300 nm can be explained as the band
gap absorption of the garnet matrix [50,51].
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The photoluminescence decay curves of the chromium emission are shown in Figure 6.
All calculated values of the decay times are listed in Table 2. As can be seen from Table 2,
all compounds have almost the same decay times, which are between 6.0 and 5.9 ms. It
can be seen that the samples have emission decay times showing the characteristics of
Cr3+ ions, because characteristic decay times for Ce3+ ions are much shorter and reach
about 50–60 ns [5,52]. Cr3+ ions electron transition are considered forbidden, which usually
results in longer decay times in a rage of milliseconds [42,53]. However, for the Ce3+ ions,
electron transitions are allowed, and the decay time is in the range of nanoseconds [5]. The
obtained values are of chromium, since the 270 nm excitation wavelength was used. While
there have been previous reports on the effect of calcium and magnesium doping in garnet
matrix on decay times [17,54–56], in this case, no effect was observed, potentially due to
the drastically smaller amounts to aforementioned ions.
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Table 2. Synthesized powder samples.

Sample Decay Time (ms)

GAGG: Ce 0.05%, Ca 100 ppm, Mg 7 ppm, Cr 15 ppm (Sample 1) 5.9
GAGG: Ce 0.05%, Ca 94 ppm, Mg 8 ppm, Cr 15 ppm (Sample 2) 6
GAGG: Ce 0.05%, Ca 57 ppm, Mg 9 ppm, Cr 15 ppm (Sample 3) 6

4. Conclusions

Gadolinium aluminum gallium garnets doped with 0.05% cerium, chromium, mag-
nesium, and calcium were synthesized by the sol-gel method whereby obtained garnet
type samples are of single phase. Measurement of the excitation and emission spectra of
these compounds revealed that extremely low levels of Cr3+ ions, i.e., only at a level of
15 ppm, caused intense emission in the NIR region. At the same time, but under different
excitation wavelengths, a typical emission spectrum of Ce3+ was also observed, which
proved that the single compound might emit in very broad range (from 470 to 850 nm). The
most intense emission was located at a wavelength of 790 nm. The obtained compounds
exhibit promising luminescence properties to illuminate plants and promote their growth.
Since luminescence covered the first biological window and chromium ions exhibited a
long specific decay time in the range of 6 ms, the synthesized compounds also demonstrate
characteristics required for bio-imaging purposes.

Author Contributions: R.S. and G.I. conceived and planned the experiments and wrote the manuscript
with support from other co-authors, G.L. and G.I. synthesized powders, R.S. supervised the project,
A.Z. performed ICP measurements of powders, G.L. performed XRD measurements, D.E., G.L. and
T.J. performed luminescence measurements, and T.J. analyzed luminescence properties. All authors
provided critical feedback and helped shape the research, analysis and manuscript. All authors have
read and agreed to the published version of the manuscript.
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