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����������
�������

Citation: Janušaitė, R.; Jukna, L.;
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Abstract: Satellite remote sensing is a valuable tool for coastal management, enabling the possibility
to repeatedly observe nearshore sandbars. However, a lack of methodological approaches for sandbar
detection prevents the wider use of satellite data in sandbar studies. In this paper, a novel fully
automated approach to extract nearshore sandbars in high–medium-resolution satellite imagery using
a GIS-based algorithm is proposed. The method is composed of a multi-step workflow providing a
wide range of data with morphological nearshore characteristics, which include nearshore local relief,
extracted sandbars, their crests and shoreline. The proposed processing chain involves a combination
of spectral indices, ISODATA unsupervised classification, multi-scale Relative Bathymetric Position
Index (RBPI), criteria-based selection operations, spatial statistics and filtering. The algorithm
has been tested with 145 dates of PlanetScope and RapidEye imagery using a case study of the
complex multiple sandbar system on the Curonian Spit coast, Baltic Sea. The comparison of results
against 4 years of in situ bathymetric surveys shows a strong agreement between measured and
derived sandbar crest positions (R2 = 0.999 and 0.997) with an average RMSE of 5.8 and 7 m for
PlanetScope and RapidEye sensors, respectively. The accuracy of the proposed approach implies
its feasibility to study inter-annual and seasonal sandbar behaviour and short-term changes related
to high-impact events. Algorithm-provided outputs enable the possibility to evaluate a range of
sandbar characteristics such as distance from shoreline, length, width, count or shape at a relevant
spatiotemporal scale. The design of the method determines its compatibility with most sandbar
morphologies and suitability to other sandy nearshores. Tests of the described technique with
Sentinel-2 MSI and Landsat-8 OLI data show that it can be applied to publicly available medium
resolution satellite imagery of other sensors.

Keywords: sandbar crest; nearshore morphology; automated workflow; relative bathymetric position
index; planetscope; rapideye; remote sensing; geographic information system

1. Introduction

Nearshore sandbars are elongated sandy ridges acting as natural barriers that safe-
guard subaerial beaches in many coastal environments [1,2]. These morphological fea-
tures are deposited by waves and nearshore currents; they form in shallow waters up to
10 m depth along a wide range of environmental settings, from non-tidal to macrotidal
regimes [1,3–5]. Sandbars vary in size, from tens of centimetres to six meters in height [6–8]
and extend from tens of meters to tens of kilometres [7,9,10]. They exhibit diverse mor-
phologies from longshore parallel to crescentic or transverse [5,11] and move in cross-shore
and longshore directions, demonstrating daily, seasonal and inter-annual migration pat-
terns [10,12]. Sedimentary and morphological connections exist between the evolution of
subaerial coast and nearshore sandbars [13,14]. Because of such links and the complexity
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of these structures, continuous observation of these dynamic subaqueous features is an
important element of coastal monitoring.

To address the need for study and monitoring of sandbar morphodynamics, data of
sandbar observations should enable the possibility to derive sandbar crest and identify
sandbar shape. It should be possible to study those features over a range of longshore
distances and time scales, from short-term to monthly and interannual, and data should be
collected over a range of hydrodynamic conditions [15].

Traditionally acoustic and optical remote sensing techniques have been employed
in the research of nearshore sandbars. Echo-sounding surveys of nearshore bottom have
been performed to study sandbar dynamics and utilized in significant findings of sandbar
behaviour [8,16–21]. However, besides being expensive and limited to sampling under
calm weather, this technique often provides spatiotemporally sparse datasets and may
be inaccurate in the shallowest nearshore areas. Optical remote sensing instruments—
aerial photography, video monitoring, bathymetric, topo-bathymetric or topographic
LiDAR (light detection and ranging)—are another group of methods utilized to study
sandbar behaviour. The use of passively sensed aerial photography for sandbar research
enabled studies in larger spatial extents and hardly accessible regions [9,22] but a sparse
temporal frequency. Recently, active airborne LiDAR sensors have been employed in
sandbar morphology and dynamics studies [23–26], but resource-intensive data collection
and processing limit the applicability of this technique either in temporal frequency or
spatial extent.

Since the 1980s, when a fixed video monitoring system hourly sampling nearshore
region was established [27], it has become the state-of-the-art method to study sandbar
morphodynamic behaviour [12,28–40]. During the last three decades, the pioneering
Argus video monitoring system has made many advancements, and its network was
expanded to many sites worldwide [15,41–43], including the development of other video
monitoring systems [44–47]. Recently, the utilization of surf cameras was suggested as
a cost-effective source for coastal monitoring [48,49]. Despite many advancements and
the high temporal frequency, video monitoring systems are limited to short longshore
distances and require maintenance.

The increasing availability of optical Earth observation satellite data opens new pos-
sibilities to study nearshore region in large spatial extents and has been successfully ex-
ploited in a wide range of coastal studies, including the derivation of shoreline [50–54] and
nearshore bathymetry [55–58], but the potential of optical satellite remote sensing in the re-
search of nearshore sandbars remains unemployed with only a few existing studies [59–63].
While such delay could be explained by poor spatiotemporal and spectral resolution of
predecessors of current Earth observation satellites, present-day sensors produce higher
spatial and spectral resolution imagery with a temporal frequency of days. It is a low-
cost/free alternative to state-of-art methods for the evaluation of sandbar morphology,
cross-shore and longshore movement with no need for data acquisition and instruments.
However, the capabilities of optical satellite remote sensing to detect nearshore sandbars
are limited to imagery with relatively clear water, clear sky and low wave energy periods
with no breaking waves.

Previously, attempts were made to detect single and multiple nearshore sandbar
systems in medium and high-resolution satellite imagery. In most cases, sandbar mor-
phology was extracted manually to assess morphodynamic evolution of rhythmic sandbar
system [59] and evaluate migration rates of multiple [60] and single [61] sandbar systems in
interannual and decadal time scales. Manual sandbar crest extraction might be satisfactory
for the local level case studies, but it is a too time-intensive task for larger coastal regions.
Recently, Tătui and Constantin [62] suggested an automated algorithm for sandbar crest
extraction in multispectral images based on finding peaks in cross-shore profiles extracted
from multiplicated bands of the visible light spectrum. Román-Rivera, Ellis and Wang [63]
proposed a semi-automated procedure to extract sandbars in very high-resolution satellite
imagery using object-based classification. However, to this day, no approach based on Geo-
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graphic Information System (GIS) and dealing with nearshore sandbars in multispectral
satellite imagery has been suggested.

In this study, we present a fully automated GIS-based algorithm for the extraction
of sandbar morphological characteristics in the imagery of PlanetScope and RapidEye
sensors. To demonstrate the capabilities of the proposed methodology, a case study of
sandy nearshore with a multiple sandbar system in the Curonian Spit, Baltic Sea is used.

The main contributions of the paper are: (1) a multi-step GIS workflow for multi-
spectral satellite data processing dedicated to deriving nearshore morphology, including
sandbars and their crestlines; (2) visual and quantitative assessment of satellite-derived
sandbar data accuracy using in situ bathymetric dataset; (3) a discussion on strengths,
limitations and applicability of the proposed algorithm and satellite-derived sandbar data
with the addition of the promising performance of the proposed algorithm in application
to Sentinel-2 MSI and Landsat-8 OLI imagery.

2. Materials and Methods
2.1. Study Area

The proposed algorithm has been tested in a sandy barrier—the Curonian Spit—
separating Curonian Lagoon from the south-eastern Baltic Sea (Figure 1). The Curonian
Spit politically is divided between Lithuania (51 km) and Russia (47 km); the Lithuanian
part, stretching in the northeast from Nida settlement to Klaipėda port jetty, has been
considered in this study. The coast of the Curonian Spit is a non-tidal (tidal range < 0.05 m)
wave-dominated environment with predominant lower than 2.0 m waves approaching
from western directions (NW, SW, W). The annual mean wave height at the Lithuanian
Baltic Sea coast is 0.5–1 m [64]. Wave climate has a seasonal character with the occurrence
of higher waves in autumn and winter (0.76 and 0.85 m) and lower waves in spring and
summer (0.56 and 0.62 m) [65]. During storms, wave height may reach 4–6 m. Wave energy
flux in a year of median wave intensity is equal to 1.21 kWh/m on average and depends
on seasonality, reaching its maximum in winter (2.38 kWh/m) and minimum in summer
(0.68 kWh/m) [65]. The net annual longshore sediment supply is directed northward.
Subaerial coast is defined by 30-80 m wide beaches, composed of fine to medium sand and
bordered by up to 16 m high foredune [66].

The nearshore is characterized by a gentle slope (tanβ = 0.009–0.015, up to 8 m water
depth) with a multiple sandbar system consisting of 2–5 bars. The increasing number of
sandbars and decreasing sandbar volume describe the variability of nearshore morphology
from the southern to the northern end of the Curonian Spit. The sandbar zone with
10–400 m wide sandbars stretch from 250 to 750 m offshore. Sandbar crests rise 0.15–4.9 m
above the trough in up to 5.6 m water depth over them. The sandbar system exhibits
various morphologies from longshore straight to crescentic and shore-attached. According
to Wright and Short [67], the morphology of inner bars are from the transverse bar and rip
(TBR) to rhythmic bar and beach (RBB) and longshore bar and trough (LBT) states; outer
bar morphology usually corresponds to longshore bar and trough (LBT) or dissipative (D)
states. Complex sandbar morphologies complicate automated sandbar crest extraction
in remote sensing images but also make the study area a suitable polygon to design and
examine such an algorithm.
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Figure 1. Study area: (a) a configuration of the study area and locations of nearshore cross-shore profiling used for algorithm
validation; (b) the situation of the study area; (c) examples of nearshore cross-shore profiles at three different locations in
the Curonian Spit; (d,e) examples of PlanetScope and RapidEye (f) imagery at the same locations as examples of cross-shore
profiles (profile 1 corresponds to (d); 2–(e), 3–(f)).
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2.2. Satellite Data

Multispectral imagery of PlanetScope and RapidEye sensors, provided by Planet Labs
Inc. under the Education and Research program [68], were used in this study.

RapidEye satellite system is a constellation of five identical five-band multispectral
sensors (Table 1), operated in 2009–2020. PlanetScope satellite system is a constellation, also
known as the Dove satellite constellation, launched in 2017. It comprises multiple launches
of groups of individual CubeSat satellites (total approx.130 satellites) with multispectral
four-band sensors daily acquiring data of the entire Earth land surface. The wavelength
of PlanetScope bands varies depending on satellite generation (Table 1). In this study,
RapidEye Level 3A and PlanetScope Level 3B data products (Table 1), both radiometrically
corrected and orthorectified with Ground Control Points (GCPs) and elevation model
(DEM) to <10 m RMSE positional accuracy, were analysed. RapidEye Level 3A products
are distributed as constant 25 × 25 km2 grid tiles. PlanetScope satellites collect imagery as
overlapping framed scenes of size equal to 25 × 11.5 km2 or 25 × 23 km2, and scenes are
not organized into a constant tiling grid system [69].

Table 1. Specifications of the RapidEye and PlanetScope sensors and products used in this study.

Constellation Sensor Type Revisit
Time

Spatial
Resolution

Wavelength Range
(nm)

Utilized
Product Pixel Value

PlanetScope four-band
frame imager daily 3 m

Blue: 455–515 1

(464–517) 2

Green: 500–590 1

(547–585) 2

Red: 590–670 1

(650–682) 2

NIR: 780–860 1

(846–888) 2

PlanetScope
Analytic Ortho
Scene Product

(Level 3B)

Surface
reflectance

RapidEye push-broom 5.5 days 5 m

Blue: 440–510
Green: 520–590
Red: 630–685

Red Edge: 690–730
NIR: 760–850

RapidEye
Analytic Ortho

Tile Product
(Level 3A)

Surface
reflectance

1 first-generation satellites; 2 second-generation satellites, launched starting in November 2018.

Both PlanetScope and RapidEye images were visually inspected, and only dates
satisfying three criteria were selected. Criteria include cloud cover up to 20%, relatively
clear water (sandbars are visible), no visible wave breaking over sandbars. Mean significant
wave height on dates when selected images were acquired was 0–0.65 m (0.27 m on average),
on dates used for algorithm validation between 0.07 and 0.4 m.

2.3. In Situ Data

Data of bathymetric surveys conducted with DualBeam Humminbird Helix 9 SI GPS
echo-sounder, mounted on a shallow draft motor vessel, were used to validate sandbar
crest position derived from satellite images. During surveys, dual beams of 200 kHz/
20◦ and 83 kHz/ 60◦ were used. The echo-sounder blends returns from both frequency
beams by starting with 83 kHz wide beam return (secondary source), dimming it, and
then overlaying it with the 200 kHz narrow beam return (primary source). Echosounder
has an integrated GPS/WAAS receiver, providing fast position fixes accurate within 2.5 m.
Measurements were vertically corrected for water level fluctuation using data acquired
with GNSS Topcon HiPer SR.
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Bathymetric surveys are a result of cross-shore profiling along the Curonian Spit
nearshore at 17 different locations with a spacing of 1–5 km (Figure 1). Surveys were
performed in spring and autumn under low wave energy. Sandbar crests at six dates with
1–6 days difference between a bathymetric survey and image acquisition were compared
with PlanetScope-derived crests and at four dates with 1–4 days difference with RapidEye-
derived crests (Table 2).

Table 2. The dates of PlanetScope and RapidEye images used for sandbar crest extraction compared
with the dates of bathymetric surveys used for accuracy evaluation of satellite-derived crest positions.

Constellation Date of Image Acquisition Date of Bathymetric Survey

PlanetScope 29 September 2017 29–30 September 2017
PlanetScope 16 May 2018 16 May 2018
PlanetScope 11 October 2018 12 October 2018
PlanetScope 22 May 2019 18–19 May 2019
PlanetScope 26 September 2019 26–27 September 2019
PlanetScope 26 June 2020 20 June 2020

RapidEye 1 October 2017 29–30 September 2017
RapidEye 20 May 2018 16 May 2018
RapidEye 15 October 2018 12 October 2018
RapidEye 22 May 2019 18–19 May 2019

2.4. Data Pre-Processing

Multiple scenes of analysed sensors cover the study area (RapidEye—4 scenes;
PlanetScope—variable number of scenes). Scenes were composed into mosaics cover-
ing all of the study area prior to further processing and analysis. PlanetScope multi-band
mosaics were resampled to 5 m/pixel spatial resolution using bilinear interpolation to elim-
inate the difference between PlanetScope and RapidEye sensors. Enhanced Lee filter with
the kernel of 3x3 pixels (Section 2.5) was applied to RapidEye mosaics prior to processing
to reduce noise-induced distortions.

2.5. Spatial Filtering

The quality of PlanetScope and RapidEye images used in this study suffers from
low signal-to-noise ratios compared to other optical sensors [70–74]. By distorting the
original signal, noise complicates the process of sandbar extraction and causes sandbar
fragmentation during the procedure. To solve this problem, spatial filtering techniques—
adaptive median, enhanced Lee, Kuan and Gaussian filters—applied at different stages of
the sandbar extraction procedure are presented.

In this study, a modified version of the adaptive median filter suggested by Li and
Fan [75] was applied (Figure 2). Filter reduces the variance of intensities in the image by
replacing pixel value with a median value within the defined window surrounding the
processing pixel. The window surrounding each pixel is variable, and it is determined
whether the pixel is noisy in a current window prior to changing its value.
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Figure 2. An adaptive median filter by Li and Fan [75]. Smin

x,y , Smed
x,y and Smax

x,y denote, minimum,
median and maximum values of the pixel in the filter window Sw

x,y cantered at (x, y) with a window
of size w; wmax—maximum filter window; Ix,y—primary value of pixel; Rx,y—value of filtered pixel;
Smedmax

x, y —median value within wmax. Primary filter window w is set to 3 × 3 pixels and wmax to
15 × 15. If it is determined that the pixel is not contaminated with noise within the 3 × 3 window,
the primary pixel value is preserved. If the pixel is contaminated with noise, the filtering window is
increased by 2 pixels. The procedure is repeated until the maximum window is reached.

The Enhanced Lee filter—introduced by [76] as an improvement of Lee filter [77]
categorizes pixels into three classes: homogenous, heterogeneous and point target [76]. The
distinction of classes relies on the image variation Ci, noise variation Cu and maximum noise
variation Cmax coefficients. In image Ix,y, the signal Rx,y is expressed as in Equation (1):

Rx,y =


Ix,y, f or Ci ≤ Cu

Ix,y × Wx,y + Ix,y ×
(
1 − Wx, y

)
,

Ix,y, f or Ci ≥ Cmax

f or Cu < Ci < Cmax (1)

where Wx,y is weighting function.
The Kuan filter is an adaptive filter for speckle noise reduction introduced by

Kuan et al. [78]. In the Kuan filter, a multiplicative model is transformed to a signal-
dependent additive noise model and the pixel value is smoothed using an estimate from
the local mean, variance and standard deviation (Equation (2)):

Rx,y = Ix,y × Wx,y + Ix,y ×
(
1 − Wx,y

)
(2)

where Wx,y is weighting function.
Although the Enhanced Lee and Kuan filtering techniques are typically utilized to

despeckle radar images, optical images used in this study portray a granular appearance
different in nature but visually similar to multiplicative speckle radar noise, and local
statistics filters effectively reduce such graininess and image fragmentation caused by it.
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The Gaussian filter is a low-pass convolution filter, where an image Ix,y is multiplicated
by convolution matrix (kernel) K, which is a discrete approximation of the Gaussian
function. In this study, a kernel of 5 × 5 pixels was used as in Equation (3).

K =
1

256


1 4 6 4 1
4 16 24 16 4
6 24 36 24 6
4 16 24 16 4
1 4 6 4 1

 (3)

2.6. Algorithm for Sandbar and Sandbar Crest Extraction

The proposed algorithm is divided into four stages of data processing and analysis.
First, a shoreline is extracted, and a land-sea mask is created to discriminate the subaqueous
domain with nearshore sandbars from the subaerial domain (the detailed procedure is
discussed in Section 2.6.1). Second, multiple calculations are performed in the subaqueous
domain to generate raster, representing nearshore bottom morphology, where sandbars
and their crestlines might be identified easily (Section 2.6.2). Then, in a generated raster,
boundaries of nearshore sandbars are defined, and sandbars are extracted (Section 2.6.3).
Finally, sandbar crestlines are derived within previously defined boundaries (Section 2.6.4).

The algorithm was implemented in a GIS environment (ArcGIS Desktop 10.7). Maxi-
mum value pixels per transect was extracted via a script written in the R programming
language. The script was made available as a tool in ArcGIS via an R-ArcGIS bridge.

2.6.1. Land-Sea Masking and Shoreline Extraction

The land-sea masking procedure is based on spectral differences between water
and land in infrared bands where water absorbs most of the radiation. Many spectral
indices for water retrieval have been introduced based on this reflective property [51,79–81].
Most of them are combinations of the visible light spectrum and near-infrared (NIR) or
short-wave infrared (SWIR) wavelengths. Because PlanetScope and RapidEye sensors
contain a limited number of bands with only near-infrared outside visible light spectrum,
Normalized Difference Water Index (NDWI) [79] (requiring only green and near-infrared
reflectance) was employed in water and land separation procedure. It was calculated using
Equations (4) and (5) for PlanetScope and RapidEye sensors, respectively.

NDWIPlanetScope =
SR2 − SR4

SR2 + SR4
(4)

where SR2 and SR4 correspond to the surface reflectance of the green and near-infrared
bands of the PlanetScope sensor.

NDWIRapidEye =
SR2 − SR5

SR2 + SR5
(5)

where SR2 and SR5 correspond to the surface reflectance of the green and near-infrared
bands of the RapidEye sensor.

NDWI was designed with a 0 threshold to distinguish water and land, but this value
varies depending on sensor and image properties. Although several methods have been
tested for binarization of NDWI images (0 thresholding, Otsu thresholding), The Iterative
Selforganizing Data Analysis Techniques Algorithm (ISODATA) was chosen to derive land-
sea masks and delineate shoreline. NDWI and near-infrared band images were used as
inputs for ISODATA unsupervised classification. Employing both NDWI and near-infrared
band images gave more stable results in most instances compared to NDWI alone. The
main steps of the land-sea masking and shoreline delineation procedure are shown in
Figure 3.
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2.6.2. Generation of Inputs for Sandbar and Sandbar Crest Extraction

In bands of the visible light spectrum, brighter pixels with larger reflectance values
represent shallower underwater features. Therefore, surface reflectance values might
be considered relatively representative of the bathymetric position. In geomorphology,
a topographic position might be described by topographic indices, which compare the
elevation of central pixel to elevations within the local neighbourhood, defined by window
size [82]. These metrics are typically used for landform classification [83–86], but they
deal with the same issue as this study—distinguishing positive landforms from negative
or sandbars from troughs. The most applied metric of local topographic position is the
Topographic Position Index (TPI), in marine geomorphology referred to as the Bathymetric
Position Index (BPI) [87]. It is a signed unbounded absolute metric comparing the elevation
of the central pixel with a mean elevation in a local neighbourhood. Similarly, the Relative
Topographic Position Index (RTPI), which links central elevation with mean, minimum and
maximum values within the local neighbourhood, was introduced. It is a signed metric
accounting for elevation distribution, bounded by the interval (–1,1). As this paper deals
with subaqueous features, it will be further referred to as the Relative Bathymetric Position
Index (RBPI).

Both the BPI and the RBPI have been examined in this study. As surface reflectance
decreases with increasing water depth and distance offshore, inner sandbars are represented
by higher surface reflectance values than outer sandbars despite their height. Using an
absolute metric as the BPI results in sinking outer sandbars because of a smaller difference
between values in the local neighbourhood. Using a relative metric as the RBPI, which
considers minimum and maximum values in the local neighbourhood, reduces distortions
caused by water depth over sandbar crest and results in a better representation of nearshore
morphology. Hence, the RBPI was chosen for further analysis. It was calculated separately
for blue, green and red bands of PlanetScope and RapidEye imagery, using Equation (6)
(based on Newman, Lindsay and Cockburn [82].

RBPI =

{
SR− SRmean

SRmean− SRmin
i f SR < SRmean

SR−SRmean
SRmax−SRmean

i f SR > SRmean
(6)
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where SR denotes surface reflectance of the processing pixel and SRmean, SRmin and SRmax
denote mean, minimum and maximum surface reflectance values in the local neighbour-
hood, respectively.

The RBPI depends on the size of the local neighbourhood. Choice of the window size
determines the scale at which underwater landforms is distinguished: using small-sized
window results in a detailed picture of smallest-scale underwater features and fragmented
large-scale landforms (Figure 4b); large-sized window results in distinguished large-scale
underwater landforms with small-scale features merged into the whole (Figure 4e). In
multiple nearshore sandbar systems, spacing and scale of submerged sandbars increase
in the offshore direction [5,35,88]. Therefore, the optimal size of the local neighbourhood
for inner and outer sandbars diverges. To save all the information about inner and outer
sandbars multiscale approach for RBPI calculation is implemented. The routine of this
approach is presented below and in Figure 5.
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Procedure for the multiscale RBPI computation:

1. Nearshore zone is divided into fixed cross-shore sectors based on offshore distance
(Figure 4a). The width and number of the cross-shore sectors are defined by prevailing
features of the sandbar system in the study area.

2. RBPI values with 10 circle local neighbourhoods (Figure 5) are calculated for visible
light bands. The motive for the choice of a circle neighbourhood instead of the
traditional square was a continuous and smooth nature of nearshore sandbar shape.

3. The mean of RBPI values in local neighbourhoods of multiple sizes was calculated for
each sector in each band of the visible light spectrum: from the mean of 3 smallest
neighbourhoods for the sector closest to the shoreline to the mean of 3 largest neigh-
bourhoods for the sector furthest offshore (Figure 5). Other measures of descriptive
statistics have been tested, and the maximum value was considered instead of the
mean, but it resulted in random noise generation.

4. Mean RBPI values in local neighbourhoods of multiple sizes for nearshore zone sectors
in blue, green and red bands are summed using weighting coefficients. The selection
of weighting coefficients was mainly governed by the penetrating capabilities of
blue, green and red light and the quality of band images. In coastal waters, green
light penetrates the water column the deepest [89], and the sandbar system is visible
most sharply in its image. In contrast, longer red wavelengths are quickly absorbed
by water, and only inner-middle sandbars are completely visible in their images,
whereas the outer sandbar is often obscure. Blue wavelengths penetrate the water
column deeper than red, but their images contain significant distortions caused by
noise in both PlanetScope and RapidEye mosaics. Therefore, the largest coefficient of
0.6–0.8 was given to the green band; a coefficient of 0.1–0.3 was given to the red band;
0.1–to the blue band. The proportion of coefficients for green and red bands was
differentiated based on nearshore cross-shore sectors: as distance offshore increases,
the coefficient for green band increases. Final RBPI values for nearshore cross-shore
sectors are calculated as in Equation (7):


0.1 × µRBPIBlue + 0.6 × µRBPIGreen + 0.3 × µRBPIRed i f Do f f < 250 m

0.1 × µRBPIBlue + 0.7 × µRBPIGreen + 0.2 × µRBPIRed i f 250 m < Do f f < 350 m
0.1 × µRBPIBlue + 0.8 × µRBPIGreen + 0.1 × µRBPIRed i f Do f f > 350 m

(7)

where µBlue, µGreen and µRed denote mean RBPI values in multiple sizes local neighbour-
hoods for blue, green and red bands of PlanetScope and RapidEye imagery, and Do f f
denotes the distance from the shoreline. The result is saved as a multiscale RBPI Raster
(Figure 6b).

The multiscale RBPI is calculated only for the underwater part of an image. When there
is no shore-attached sandbar, a step or a slight slope is a typical characteristic of foreshore.
The upper slope of the foreshore is characterized by higher surface reflectance values than
the lower one. When RBPI is calculated, it might be misclassified as a positive landform
(sandbar). To solve this issue, the multiscale RBPI Raster is combined with a second-order
derivative raster, which represents surface curvature (convexity and concavity). In the
Curvature raster, the foreshore is a convex surface, and in combination with multiscale
RBPI Raster, the Curvature raster submerges the misleadingly elevated upper slope of the
beach face. The routine of Curvature generation and combination with the multiscale RBPI
is described below and in Figure 5.
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The multiscale RBPI and Curvature combination procedure:

1. The mean surface reflectance value for blue, green and red bands is calculated.
2. Mean surface reflectance raster of blue, green and red bands is used as an input for

the second-order derivative (further curvature) calculation.
3. Curvature raster is clipped to the submerged part only and filtered with an adaptive

median filter (Section 2.5). It reduces random multiplicative noise in curvature images
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without oversmoothing of data. The result is saved as Curvature AMF Sea Raster
(Figure 6c).

4. Values of the Curvature AMF Sea and multiscale RBPI rasters are standardized and
summed as in Equation (8):

RBPIstand + 0.3 × Curvaturestand (8)

where RBPIstand and Curvaturestand denote standardized values of the multiscale RBPI and
Curvature AMF Sea rasters, respectively. Combined multiscale RBPI and Curvature rasters
are saved as the RBPI-Curvature raster.

Noise-induced segmentation and cross-shore differences in scale and distinctiveness
of sandbars define the need to apply smoothing of different intensities to RBPI-Curvature
raster in previously distinguished nearshore cross-shore sectors. To accomplish this, an
Enhanced Lee filter (Section 2.5) with multiple window sizes (3 × 3; 5 × 5; 7 × 7; 11 × 11) is
applied (Figure 5). At first, random multiplicative noise is reduced in the RBPI-Curvature
raster with an adaptive median filter (Section 2.5), then an Enhanced Lee filter with 3 × 3
window is applied to the RBPI-Curvature raster after adaptive median filtering; 5 × 5
Enhanced Lee filter is applied to raster after 3 × 3 filtering, 7 × 7 after 5 × 5 and 11 × 11
after 7 × 7 to obtain rasters with increasing level of smoothing. As the offshore distance
increases, the output of filtered RBPI-Curvature raster with a greater degree of smoothing
is assigned to cross-shore distance-based nearshore sectors and combined into a single
output (Figure 5). Finally, differences at edges of combined outputs are smoothed with
Kuan filter (Section 2.5) with a 3 × 3 window. It was chosen because the Kuan filter does
not categorize pixels as the Enhanced Lee filter (which better preserves edge sharpness)
and gives the result with more naturally smoothed edges. The result after the filtering
procedure is furthered referred to as Final RBPI-Curvature raster (Figure 6d).

To sink non-bar regions and to expose sandbars Final RBPI-Curvature raster is rescaled
to scale from 1 to 1000 with MSLarge transformation function (Figure 7). MSLarge function
brings out large values based on the mean and standard deviation of data. After transfor-
mation, deeper non-sandbar nearshore regions remain only as background with the same
value, and higher regions of the nearshore bottom with sandbars preserve all range of
values (non − sandbar region = 1; 1 < sandbar region ≤ 1000). Rescaled RBPI-Curvature
raster values are converted to an integer, and a Majority filter with an 8-pixel neighbour-
hood is applied to remove the remaining small regions with a few isolated pixels to get a
cleaner result. In this instance, if Rescaled RBPI-Curvature raster has remaining isolated pix-
els, they are replaced with background value because the majority filter replaces pixel value
with mode if 5 out of 8 contiguous pixels have the same value. Rescaled RBPI-Curvature
raster (Figure 6e) is the final output for the extraction of nearshore sandbars.

2.6.3. Extraction of Nearshore Sandbars

A rescaled RBPI-Curvature raster is used as an input for nearshore sandbar extrac-
tion. It is classified into two classes—sandbar and non-sandbar regions—with ISODATA
unsupervised clustering. Classified raster is filtered with majority filter twice to remove
remaining isolated pixels and to get a cleaner boundary of sandbars, and then the class
with non-sandbar regions is set to no-data, and an integer raster with sandbars only is
generated. It has remaining misclassified areas mostly outside the sandbar zone where
surface reflectance values in the primary image were uneven due to noise signal, thin
clouds, haze and heterogeneity of water surface. To remove misclassified regions, the
sandbar raster is converted to a vector polygon layer, which is cleaned using selection
operations with defined criteria based on the typical distance from the shoreline Do f f and
size of sandbars A in the study area. The details of the criteria are described below and in
Figure 7.
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The criteria to eliminate non-sandbar regions misclassified as sandbars:

1. Do f f > 500 m (typically, the inner boundary of outer sandbars is within 500 m from
the shoreline at least at one of its segments in the Curonian Spit)

2. A < 500 m2

3. Do f f > 350 m and A < 20, 000 m2

4. 200 m < Do f f < 350 m and A < 7500 m2.

If a polygon satisfies at least one criterion, it is deleted as a non-sandbar. All remaining
polygons are considered as sandbars and are saved as Bar Mask (Figure 6f). The rescaled
RBPI-Curvature raster is clipped with Bar Mask and saved as Primary Bar Raster.

To smooth the Primary Bar Raster and to ensure the continuity of sandbar crests after
the extraction Gaussian filter with a 5 × 5 kernel (Section 2.5) is applied. The result is
saved as Final Bar Raster (Figure 6g). Additionally, the Slope was calculated for the Final
Bar Raster, then inverted and saved as Bar-Slope Raster. The Slope is calculated as the
maximum change in value over the distance between a pixel and its eight neighbours It
was not employed in further process, but it provides an output of extracted sandbars with
clearly visible crestline (Figure 6h).

2.6.4. Extraction of Nearshore Sandbar Crests

Complex sandbar morphologies (crescentic shapes, rhythmic patterns, etc.) deter-
mines that sandbar crestlines might exhibit variable shapes and orientation relative to the
shoreline: parallel, oblique or transverse. The typical approach to detect longshore sandbar
crest locations with shoreline-perpendicular transects (e.g., [62]) might not identify all the
variability of sandbar crestline shapes leading to undetected or incorrectly delineated crests
that are not parallel to the shoreline. For better detection of sinuous crestlines, they are
located in three directions: perpendicular to the shoreline and oblique to the shoreline (at
45◦–225◦ and 135◦–315◦ angles). Because the main shoreline direction in the study area
is orientated from south to north, these directions correspond to West-East (W–E), North
East–South West (NE–SW) and North West–South East (NW–SE) orientations.

In the crestline delineation procedure, maximum value pixels within local neighbour-
hoods defined by the rowing window in the Final Bar raster are considered as crests. Three
local neighbourhoods, which represent perpendicular and oblique directions, are utilized
(Figure 8):

1. A local neighbourhood with 5 pixels (25 m) orientated in the W–E direction;
2. An irregular local neighbourhood with 7 pixels (35 m) in the NE–SW direction (35 m

in an oblique direction is equivalent to 25 m in a perpendicular direction of the same
25 × 25 m square neighbourhood);
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3. An irregular local neighbourhood with 7 pixels (35 m) in the NW–SE direction.Remote Sens. 2021, 13, x FOR PEER REVIEW 18 of 31 
 

 

 

Figure 8. A flowchart of the sandbar crest extraction procedure: at first, the primary crest as maximum
value pixels within three kernels are identified, then secondary crest with cross-shore/longshore
transects is extracted, and the final bar crest is obtained after cleaning procedure with proximity-
based filter.

If it is indicated that pixel value is equal to maximum within W–E, NE–SW, or NW–SE
neighbourhood, it is considered as crest candidate. Identified maximum pixel values
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within all three neighbourhoods are summed. Here, if the same pixel has maximum value
within multiple neighbourhoods, it will be attributed with a higher value than pixels with
maximum value within one neighbourhood. Raster with summed maximum pixel values
within W–E, NE–SW and NW–SE directed neighbourhoods is considered the Primary Crest
Raster (Figure 6i).

If maximum value pixels do not match within all local neighbourhoods, a crest wider
than one pixel is generated in the Primary Crest Raster. To narrow crestlines to one pixel-
wide maximum value pixels, secondary crests within crests candidate pixels in the Primary
Crest Raster are determined using cross-shore (CST) and longshore (LST) transects. The
procedure of secondary crest extraction is described below and in Figure 8.

The procedure for secondary crest extraction:

1. Primary Crest Raster is binarized and converted to polygon layer (Primary
Crest Polygon).

2. Cross-shore (CST) and longshore (LST) transects with spacing equal to satellite image
resolution (5 m) are created and intersected with Primary Crest Polygon.

3. Intersecting CST and LST within primary crest polygons are joined based on their
spatial relationship.

4. Lengths (d) of pairs of intersecting CST (dCST) and LST (dLST) are compared: if
dCST > dLST, it is considered that the main sandbar crest direction is orientated
parallel to the shoreline, and CST is selected; if dCST < dLST, the main sandbar
crest direction is orientated perpendicular to the shoreline, and LST is selected; if
dCST = dLST, CST is selected. Selected CST and LST are merged into one layer. CST
and LST lengths are equal when crests in Primary Crest Raster are one-pixel wide (in
most instances), and CST/LST selection makes no difference because, in any case, the
same pixel will be the maximum value pixel.

5. Maximum value pixels within selected CST and LST transects are identified as sec-
ondary crest pixels and exported to Secondary Crest Raster (Figure 6j).

The Secondary Crest Raster has remaining non-crest pixels misclassified as crests
(usually sandbar boundary pixels or other redundant pixels/pixel regions). To distinguish
them from actual crests, a crest cleaning algorithm is implemented. It is based on the
understanding that the sandbar extends at least tens of meters, and one or a few isolated
pixels cannot represent the sandbar crestline. It means that the crest pixel must have a
certain number of neighbours also identified as crests. Local neighbourhoods of increasing
size with the defined requirement for the number of neighbours to be crest pixels were
used as a part of the crest cleaning algorithm. The details of the routine are described below
and in Figure 8.

The routine for crest cleaning:

1. Square kernels with excluded centre (processing) pixels are used to quantify the
number of neighbourhood pixels. Minimal kernel size is 3 × 3 pixels (15 × 15 m), and
the maximum is 21 × 21 (105 × 105 m). Every kernel is expanded by 2 pixels until
the maximum is reached. Crest values in the secondary crest raster are set to 1, so
that sum of values in the kernel would be equal to the number of crest neighbours
(Figure 8).

2. It is determined that in a neighbourhood of 3 × 3 pixels, processing crest pixel must
have at least 2 crest neighbours (sum > 1). It means that within 8 neighbour pixels,
at least 2 must be sandbar crests. When the kernel is expanded by 2 pixels, the
requirement of the sum in the neighbourhood is also increased by 2 (Figure 8). The
process is repeated until the maximum kernel is reached.

3. A pixel is identified as crest only if the requirement of the sum is fulfilled in all kernels,
and it was previously identified as a crest pixel (value in secondary crest raster was
equal to 1).

4. A defined filter sometimes is too aggressive and removes actual crest pixels, especially
those at the beginning and at the end of the crestline or when the crest is sinuous.
Thus, part of filtered pixels is restored with three kernels: 5 × 2 pixels square; 5 pixels
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NE–SW and NW–SE directed (Figure 8). If the sum within at least one of three kernels
is greater than 2, the pixel is restored as a crest pixel. If the pixel does not meet the
criteria in all kernels, it is removed as a non-crest pixel.

5. After filtering, small regions with aggregated pixels remain misclassified as crests.
They are removed based on the number of pixels aggregated into one continuous
region (R). Defined criteria are split based on distance from shoreline (Do f f ): if
Do f f < 350 m, R < 6 pixels are removed; if Do f f > 350 m, R < 10 pixels are removed.
Distance criterion is set because near the shoreline sandbar morphologies of smaller-
scale form, while outer sandbar exhibits much greater extents, so aggregated regions
must be larger to be considered as crests.

6. After the removal of small regions, Final Crest Raster (Figure 6k) is created.
7. The Final Crest Raster is converted to a polyline layer. Polylines are smoothed with

20 m smoothing tolerance and exported as Final Crest Polyline (Figure 6l).

3. Results
3.1. Visual Assessment of Extracted Sandbars

The proposed method has been tested with 42 RapidEye and 103 PlanetScope images
acquired in 2009–2020. Extracted sandbars and their crests were visually inspected to assess
the quality of results and possible shortcomings of the designed algorithm. Figure 9 shows
an example of a time series with derived boundaries and crests of nearshore sandbars. Typ-
ical inter-annual characteristics of cyclic behaviour and seasonal patterns of morphological
development in multiple sandbar systems are apparent here.

Remote Sens. 2021, 13, x FOR PEER REVIEW 19 of 31 
 

 

Figure 8. A flowchart of the sandbar crest extraction procedure: at first, the primary crest as maxi-
mum value pixels within three kernels are identified, then secondary crest with cross-shore/long-
shore transects is extracted, and the final bar crest is obtained after cleaning procedure with prox-
imity-based filter. 

3. Results 
3.1. Visual Assessment of Extracted Sandbars 

The proposed method has been tested with 42 RapidEye and 103 PlanetScope images 
acquired in 2009–2020. Extracted sandbars and their crests were visually inspected to as-
sess the quality of results and possible shortcomings of the designed algorithm. Figure 9 
shows an example of a time series with derived boundaries and crests of nearshore sand-
bars. Typical inter-annual characteristics of cyclic behaviour and seasonal patterns of mor-
phological development in multiple sandbar systems are apparent here. 

 
Figure 9. Time series of sandbar boundaries and crestlines delineated using the proposed algorithm in RapidEye (a–c) and 
PlanetScope (d–j) imagery. Typical characteristics of interannual and seasonal dynamics of multiple sandbar systems can 
be observed here: seaward migration (d–g) and decay (h) of the outer sandbar; fast development and seaward migration 
of the middle sandbar after the decay of the outer one (i,j); development of complex morphologies during the period of 
low wave energy (e,f,h,j) and straightening during the period of high wave energy (d,g,i). 

Although the algorithm was designed for images with clear water and calm sea, the 
visual assessment showed that sea surface roughness caused by small waves has no sig-
nificant impact on the result of satellite-derived sandbar crests. Visual observations re-
vealed that capabilities to detect less distinctive sandbars in greater depths decrease if the 
transparency of the water column or atmosphere is decreased by turbulency of sediment, 
haze, thin clouds, or other phenomena. 

  

Figure 9. Time series of sandbar boundaries and crestlines delineated using the proposed algorithm in RapidEye (a–c) and
PlanetScope (d–j) imagery. Typical characteristics of interannual and seasonal dynamics of multiple sandbar systems can be
observed here: seaward migration (d–g) and decay (h) of the outer sandbar; fast development and seaward migration of the
middle sandbar after the decay of the outer one (i,j); development of complex morphologies during the period of low wave
energy (e,f,h,j) and straightening during the period of high wave energy (d,g,i).
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Although the algorithm was designed for images with clear water and calm sea,
the visual assessment showed that sea surface roughness caused by small waves has no
significant impact on the result of satellite-derived sandbar crests. Visual observations
revealed that capabilities to detect less distinctive sandbars in greater depths decrease if the
transparency of the water column or atmosphere is decreased by turbulency of sediment,
haze, thin clouds, or other phenomena.

3.2. Accuracy of Extracted Crestline Position

Six pairs of PlanetScope images and bathymetric surveys with 332 pairs of crest posi-
tions were compared to validate the proposed method (Figure 10a–c). PlanetScope-derived
sandbar crest locations are in good agreement with in situ data: the total coefficient of de-
termination (R2) between measured and PlanetScope-derived sandbar crest distance from
the shoreline was 0.999, ranging from 0.998 to 0.999 for individual dates. The root-mean-
square error (RMSE) for all dates was 5.8 m, ranging from 4 to 9.7 m for individual dates
(Figure 10b). For four out of six dates, RMSE was between 4 and 4.8 m, and only two dates
showed errors larger than 5 m. The largest RMSE was for the image acquired on 26 June
2020, which had the largest time span between in situ and satellite data. Therefore, lower
accuracy might be caused by changes in the sandbar system but not the algorithm itself.
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Figure 10. Correlation between measured and satellite-derived sandbar crest positions: (a–c) PlanetScope; (d,e) RapidEye.
Column 1 (a,d) shows correlation for inner, middle and outer sandbars; column 2 (b,e) shows correlation for dates of image
acquisition, column 3 (c,f) shows total correlation and root-mean-square-error for analysed sensors.

Four pairs of RapidEye images and available bathymetric surveys with 231 pairs
of crest positions were compared to validate the proposed procedure for this sensor
(Figure 10d–f). RapidEye-derived sandbar crest locations are in good agreement with
in situ data with the total coefficient of determination (R2) of 0.997, ranging from 0.995 to
0.999 for individual dates. The root-mean-square error (RMSE) for all dates was 7.01 m
(Figure 10f). RMSE for two dates was between 4.5 and 5.7 m, and for the other two,
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between 11.1 and 12 m (Figure 10e), showing large inconsistencies among accuracy of
individual dates. Visual comparison of the PlanetScope image acquired on the same day as
the bathymetric survey and the RapidEye image acquired on 20 May 2018, with a 4-day
time span from in situ measurements revealed that the shape of sandbars has evolved
during this period. Visual inspection of the PlanetScope image obtained on 11 October
2018 (RMSE = 4.5 m), RapidEye image obtained on October 15 (RMSE = 12 m), and crest
points from a bathymetric survey performed on 15 October has shown that the RapidEye
image was shifted landward from measured crest points and the PlanetScope image. These
observations suggest that deviations of errors are rather caused by morphodynamics of
sandbars and errors in image positional accuracy.

The RMSE for inner, middle and outer sandbars in PlanetScope images was 3.8, 4.6 and
7.4, respectively (Figure 10a). The tendency of accuracy to increase as sandbar distance from
shoreline decreases in RapidEye images remained similar as for PlanetScope sensor with
RMSE of 6.5, 6.6 and 7.7 for inner, middle and outer sandbars, respectively (Figure 10d).
The largest RMSE value for outer sandbar is because of the larger depth over their crests
and the flat, wide shape of the crest itself, especially with the cases when outer sandbars
are decaying.

The mean bias of sandbar distance offshore for PlanetScope and RapidEye sensors
was 3.95 m and −2.71 m, respectively, meaning that sandbar distance from the shoreline in
PlanetScope images was bias seaward and bias landward in RapidEye images. This ten-
dency was evident for all individual dates. It suggests that data extracted from PlanetScope
and RapidEye sensors in combination should be analysed with caution.

3.3. Accuracy of Extracted Shoreline Position

129 measured shoreline points were compared to PlanetScope-derived and 80 points
to RapidEye-derived shoreline position to evaluate the accuracy of the proposed procedure
for the shoreline extraction. The root-mean-square error (RMSE) for PlanetScope was 4.5 m,
ranging from 0.2 to 7.7 m for individual dates. For RapidEye, the average RMSE was 4.4 m,
ranging from 0.8 to 6.5 m for individual dates. In images of both sensors, the shoreline
was placed seaward from the measured position with a mean bias of 3.9 m and 3.4 m
for PlanetScope and RapidEye, respectively. Seaward-directed displacement of satellite-
derived shoreline position is often observed in optical remote sensing [53,90–93]. Here,
the narrow range of the electromagnetic spectrum sampled by PlanetScope and RapidEye
constellations with only near-infrared wavelengths outside the visible light region is one
of the factors determining the accuracy of obtained shorelines. Inherit property of near-
infrared wavelengths to sense concentrations of sediments and other constituents of water
diminish the capability to discriminate water from land and contributes to the seaward
displacement of satellite-derived shorelines.

4. Discussion
4.1. Strengths and Limitations

As research of nearshore sandbars is often limited by the data availability [61], the
present study intends to develop an algorithm suitable to gather this data from satellite
imagery using GIS techniques. The study suggests a new approach based on the Relative
Bathymetric Position Index (RBPI) and a combination of data processing and filtering
operations designed specifically for the purpose. The Bathymetric Position Index has been
widely used with bathymetric datasets for various coastal and marine applications [94–103],
including sandbar extraction in the bathymetric LiDAR dataset [26], but the idea of using
this metric in remote sensing images without derived bathymetry to our knowledge has
never been explored before. This article illustrates that with a newly designed methodology,
RBPI is suitable to discriminate nearshore morphology in non-bathymetric remote sensing
images. It is mainly possible because, similar to bathymetry digital elevation models,
brighter and darker pixels in visible light spectrum bands of satellite imagery represent
shallower and deeper nearshore areas.
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The application of the proposed method in the Curonian Spit, the Baltic Sea demon-
strates that, in combination with medium resolution satellite imagery, it can be used to
study multiple nearshore sandbar systems. It is justified by the method design for a range
of sandbar morphologies (straight and crescentic; longshore parallel and oblique), which
cover most of the commonly observed nearshore sandbar types [5,11]. Therefore, if adjust-
ments to site-specific parameters related to sandbar size and shoreline configuration are
made, the proposed technique can be used to study these underwater features in other
sandy environments.

Currently, only a few studies that analyse satellite-derived data with a focus on
sandbar crest position exist [61,62]. Compared to other automated techniques, the major
advantage of the proposed algorithm is that besides higher accuracy of crest locations, it
provides outputs with an entire set of other information, including sandbar boundaries
(Table 3). This enables the possibility to quantify width, length, area and the overall shape
of sandbars in addition to the distance from the shoreline and the number of sandbars. The
remaining missing sandbar characteristics are sand volume and water depth; therefore,
possible extension of methodology could include derivation of nearshore bathymetry for
evaluation of these parameters. With a set of in situ depth points, bathymetry could be
derived using previously proposed techniques (e.g., [58,104,105]).

Table 3. A comparison of the proposed method to other automated and semi-automated methods of sandbar extraction in
optical satellite imagery.

Reference Main
Methods Outputs

Tested
Satellite
Sensors

Spatial
Resolution of

Tested
Satellite
Sensors

Sandbar Crest
Position
Accuracy

Software Coastal
Environment

Tătui and
Constantin [62]

Peak detection
in

image-derived
cross-shore

profiles

Sandbar
crests Sentinel-2 MSI 10 m MAD = 6.22 m R

Non-tidal,
wave

dominated

Roman-Rivera
et al. [63]

Ruled-based
object-based

image
classification

Sandbar
boundaries

WorldView-2,
3, QuickBird 0.3–0.6 m Not specified ENVI Microtidal

The proposed
method

Multiscale
RBPI, spatial
statistics and

filtering

Sandbar
boundaries,

sandbar crests,
nearshore

morphology,
shoreline

PlanetScope,
RapidEye,

Landsat-8 OLI,
Sentinel-2 MSI

3–30 m

MAD =
3.42–5.05 m

(depending on
sensor)

ArcGIS, R
Non-tidal,

wave-
dominated

Although the algorithm was implemented in the ArcGIS environment and many
coastal researchers, managers and other stakeholders are familiar with it [106], the pro-
posed technique uses general operations and functions which can be executed in other
open-source GIS environments, including QGIS, GRASS GIS, SAGA GIS or using the R
programming language.

Some aspects of the capabilities and limitations of the algorithm can be defined
through its performance in the recognition and omission of sandbars compared to the ones
identified in nearshore cross-shore profiles (Figure 11). Such assessment, based on images
and in situ data, acquired under low wave energy (significant wave height 0–0.4 m) in a
non-tidal coastal environment, exposes both shortcomings and superiorities of the satellite
data over bathymetric surveys. One superiority emerges in very shallow waters where
the algorithm enhances the detectability of inner sandbars when bathymetric measure-
ments fail to locate them because of complicated navigation and echo-sounding errors in
very shallow areas (<1 m) [107]. The algorithm demonstrates fine performance in sensing
nearshore sandbars at least up to 6 m depth over their crest (Figure 11), including decaying
outer sandbars with flat-topped crests. It is expected that the capability of the algorithm to
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locate outer sandbars will diminish if more than one of the following constraints transpire:
(1) water depth over sandbar crest is >6 m; (2) outer sandbar is decaying; (3) environmental
factors limiting water transparency are evident. Limiting environmental factors include
atmospheric conditions (clouds, haze), hydrodynamic conditions (breaking waves, rough
sea surface) and water turbidity. Such conditions are more frequent in winter and autumn
what determines lower temporal frequency and quality of data in those seasons. Limiting
environmental factors act in two ways: decrease the accuracy of derived data and nar-
row down the range of water depth over sandbar crest when sandbars can be detected.
The technique can still be applied if images do not contain breaking waves, wave foam
and a high concentration of suspended material. Another limitation might be related to
geopositional accuracy (< 10 m) of imagery used in this study, which might be the cause of
inaccuracies in sandbar position. Similar constraints were observed by previous studies,
using other optical sensors: Tătui and Constantin [62] and Athanasiou et al. [61] observed
omission of sandbars in Sentinel-2 and Landsat images caused by limited water column
transparency and overlook of outer sandbars situated in the depth of 3 m in Sentinel-2
data [62]. However, the present study suggests that when none of the environmental
constraints is present, the number of satellite-detected sandbars exceeds algorithm-related
errors (Figure 11). It means that in some instances, satellite-derived data portray a better
representation of nearshore bottom morphology.
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Figure 11. The ability of the algorithm to detect sandbars in PlanetScope and RapidEye images compared to measured
data: undetected—sandbars visible in bathymetric cross-shore profile and undetected by the algorithm; detected—sandbars
visible in bathymetric cross-shore profile and detected by the algorithm; falsely detected—non-existing sandbars, extracted
by the algorithm; satellite detected—sandbars not-visible in cross-shore profiles, but identified by the algorithm.

Compared to the preferred optical remote sensing method to study sandbar behaviour
video monitoring, the proposed technique provides data of lower temporal frequency
and is not capable of working in full capacity under high wave energy (Section 2.5) as it
was primarily designed for low wave energy conditions. However, in contrast to video
monitoring, it extends possibilities of sandbar studies from local to regional or larger scale
and in areas where sandbar data are not available.
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4.2. Applicability to Sandbar Monitoring

To be able to use the proposed technique to monitor the behaviour of nearshore
sandbars, the rate of sandbar dynamics must exceed possible errors. Previous studies
have reported sandbar migration rates of 30–200 m/year [16,108–111], which implies the
suitability of Planet’s imagery with an accuracy of the proposed technique (RMSE of
5.8–7 m) for monitoring of seasonal and inter-annual sandbar migration. With observed
migration rates of 20–50 m/day during storms [38,110,112,113] and the current precision
of the designed technique, it may be a low-cost solution to monitor short-term changes
related to high-impact events. However, monitoring of moderate short-term changes is
more complicated because of the possibility of misperceiving inaccuracies as an episodic
sandbar migration or morphological evolution.

If placed into an automated workflow of analysis, the algorithm-derived satellite data
could contribute to new insights into sandbar behaviour at multiple time scales and larger
spatial extents or areas where sandbar data is unavailable. With conventional methods for
acquiring sandbar data being time-consuming, expensive, or spatially limited [15,26], this
study proves the feasibility of automatically derived satellite data as a valuable source of
repetitive sandbar observations, which could provide necessary information for coastal
research and management.

4.3. Applicability to Other Optical Sensors

The present study demonstrates the capability of the proposed method to derive
sandbars and their crestlines in satellite images of 3–5 m spatial resolution. With slight
modifications, this technique can be employed with other optical satellite sensors. To
examine the potential of the method, it was tested with publicly available imagery of other
medium-resolution satellites (Sentinel-2 MSI; Landsat-8 OLI). For Landsat-8, a panchro-
matic band (15 m) was used instead of multispectral bands (30 m). Images were upsampled,
and the degree of spatial filtering was reduced. In Figure 12, it is illustrated that a modi-
fied version of the proposed method was capable of detecting sandbar crests precisely in
Sentinel-2 and Landsat-8 images during low wave energy conditions. After comparison
of 169 in situ crest points against crests derived from Sentinel-2 MSI (Figure 12c) and
Landsat-8 OLI (Figure 12d) imagery, RMSE of nearly half a pixel has been found for both
Sentinel-2 (4.5 m) and Landsat-8 (7.6 m) sensors. The results of Sentinel-2 and Landsat-8
validation suggest that using the proposed method sandbar crests in free satellite imagery
of lower spatial resolution (10–15 m) may be detected with similar accuracy to higher
spatial resolution imagery (3–5 m) of the commercial satellites used in this study.

The potential application of the proposed method has been also tested with Sentinel-2
MSI and Landsat-8 OLI imagery during medium–high wave energy conditions (Figure 13).
After comparison of in situ crest positions with satellite-derived crest locations, RMSE
of 18.9 m and 22.9 m has been found for Sentinel-2 MSI and Landsat-8 OLI, accordingly
(Figure 13c,d). Although greater error might be partly caused due to a larger time-span
between the acquisition of images and measurements, it shows that the accuracy of the
proposed method drops significantly when medium and high energy breaking waves
are present. It also should be noted that the proposed technique is capable of detecting
sandbars if breaking waves are present over the sandbar crest or if the sandbar is visible
through the water column. It was observed that during high wave energy conditions, the
algorithm worked better in the northern part of the study area where the outer sandbar is
found in 3–4 m water depth than in the southern part with an outer sandbar in 5–6 m depth.
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Future research could also focus on method application to aerial photography. If it
contains spectral band in the infrared region which is required to extract underwater image
part with sandbars or if different land-sea segmentation procedure based on panchro-
matic/visible light data is chosen (e.g., [114,115]), sandbars could be extracted from the
data of both panchromatic and colour historical aerial photography, but additional research
is required to evaluate the accuracy of such application.
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5. Conclusions

In this study, a novel methodological approach for the discrimination of nearshore
sandbars in optical satellite imagery is designed. The proposed technique is a step-by-step
workflow implementable in most GIS environments. In every step, an output providing
new information about nearshore morphology is generated. After the implementation of
the entire procedure, outputs with nearshore morphology, extracted sandbars, delineated
sandbar crests and shorelines are acquired, providing a series of data required to study
sandbar dynamics.

The capabilities of the new technique were demonstrated using a case study of the
Curonian Spit, Baltic Sea. The accuracy of the method was assessed by comparing crest
locations derived from PlanetScope and RapidEye images to in situ data of 6 bathymetric
surveys. A strong agreement (R2 = 0.999 and 0.997) between measured and derived sandbar
crests was observed with an average RMSE of 5.8 and 7 m for PlanetScope and RapidEye
sensors, accordingly.

The results suggest Planet’s imagery as a source for monitoring nearshore sandbar
behaviour in seasonal and inter-annual time scales. The versatility of the algorithm de-
termines the high potential of its feasibility to other optical sensors, including Sentinel-2
MSI and Landsat-8 OLI, where sandbar crests were identified with an accuracy of half
a pixel, and many sandy environments worldwide if proper modifications are made.
Further research could fully validate the capabilities of the newly proposed algorithm
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to obtain sandbar morphology in other sandy nearshore regions and imagery of other
satellite sensors.

The increasing availability of Earth observation imagery offers a free/low-cost alterna-
tive to traditional techniques for monitoring nearshore sandbars. This study demonstrates
that in combination with an automated technique for data extraction, satellite images turn
into a valid tool to observe sandbar morphology and dynamics. However, the utiliza-
tion of satellite images is decided by the sensor quality (spatial and spectral resolution,
signal-to-noise ratio), environmental conditions (water transparency, cloud cover, wave
energy) and characteristics of the sandbar system itself (scales, depth, height of sandbars
and distinctiveness of their crests). This study shows that satellite-derived sandbar data
are most accurate during low wave energy conditions, and high wave energy results in sig-
nificantly less accurate data. Future studies should seek to overcome constraints reducing
the feasibility of satellite images to obtain sandbar morphology and to examine their full
capacities to make new insights into sandbar behaviour.
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