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λ a tuneable parameter that represents the relative importance of proposed

classical and region loss functions.
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Introduction

The maritime logistics industry is a crucial component of the global trade
economy with expanding volume, traffic intensity, and requirements. In
Q1-Q3, 2019, 2,660 million tons gross weight of seaborne goods were
handled in EU-27 main ports [1]. That is 7% more in comparison with
the same quarters in 2016. Totally, more than 90% of cargo is trans-
ported by sea [2] in Europe. The industry is a critical and hazardous
area of human activity and its growth raises control and security chal-
lenges. Increasing intensity in maritime traffic creates an increasing re-
quirement for better prevention-oriented incident management systems.
One of the control techniques of this complex management system is
the detection of abnormal vessel movement. Detection is based on pre-
dicting vessel trajectories by analysing navigational data sequences and
searching for irregular, illegal, and other anomalous appearances in tra-
jectory/navigational data [3]. A maritime trajectory/navigational data
in the form of a sequence of navigational vectors can include vessel ge-
ographical position, traffic parameters (e.g., speed and rotation), vessel
entity identification numbers, and auxiliary data (e.g., meteorological
data). Such a data set presents a large scale, complex data structure
that has all necessary information for automated vessel traffic predic-
tion and automated prediction evaluation to decide whether the traffic
is normal or abnormal in the monitored sea area. For marine traffic
monitoring, automated data gathering systems (e.g., Automatic Identi-
fication System, AIS) provide huge trajectory/navigational data sets for
vessels. The sets are challenging for human-based analysis and anomaly
detection [4]. In regard to the vessel movement prediction, the task be-
comes unsolvable without the application of algorithms. To solve the
issue, agent-based, hybrid modeling, machine learning-based data analy-
sis and data mining techniques is a promising techniques for this type of
task. Observed patterns in data could help to forecast vessel movement
based on previous trajectory data of vessels and make movement pre-
dictions under specific traffic and weather conditions. However, the fact
that the vessels behave differently in different geographical sea regions,
sea ports and their behaviour depends on the vessel type as well, which
aggravates the task. These assumptions have to be incorporated in the
investigation of anomaly detection approach.

Marine traffic is a dynamic system, where the traffic properties of
a vessel change in space and time. The traffic data sets determine a
structure that represents trajectories of multiple vessels. A trajectory
of a single vessel consists of its position in space and other properties
such as heading, course over the ground, etc. Typically, marine traffic
data is collected and structured by AIS and can be viewed as a set of
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particular vessels data vectors representing vessel properties, geograph-
ical location, etc. at certain time moments, i. e. they can be viewed as
spatio-temporal time series. Spatio-temporal data analysis is a challeng-
ing task for classical machine learning methods because behavioural pat-
terns should capture vessel’s position in relation to both space and time.
Recently published works take advantage of extended LSTM (Long Short
Term Memory) neural networks to learn spatio-temporal dependencies
(see [5, 6, 7]) and offer promising techniques for further investigation.

Statement of the Problem

Maritime Situational Awareness (MSA) concept was presented by North
Atlantic Treaty Organization (NATO) in their summit in Riga in 2006
as an extension of Maritime Domain Awareness (MDA). Couple years
later NATO presented MSA Concept Development Plan. Its main pur-
pose is to implement a MSA with a Doctrine, Organization, Train-
ing, Logistic, Leadership, Personnel, Infrastructures and Interoperability
(DOTMLPII) approach [8].

The main goal of Maritime Situational Awareness (MSA) is to ob-
tain a complete picture in Marine Domain by receiving information from
multiple monitoring, surveillance, and reconnaissance systems, including
knowledge extraction subsystems. Martineau and Roy state that "all
aspects of a situation of interest in a timely manner, one can then say
that complete and continuous situational awareness has been achieved"
[9]. On the other hand, the final state of such goal is unreachable due to
complexity and variability of the maritime domain. That understand-
ing is supported by the same authors Martineau and Roy by stating it
"would be akin to omniscience and achieving it would be a utopia" [9].
Continuous and timely data from multiple sources must be collected to
obtain a clear picture of a situation. Additionally, pattern identifica-
tion and extraction from the same data must be performed. Knowledge
extraction is an essential system part of enriching MSA.

Safety and security have an essential role in marine domain. The
MSA enables marine and coastal authorities to evaluate potential secu-
rity and safety risks and take timely actions to mitigate these risks [8].
The high intensity of marine traffic and data generated by it makes it
impossible for human cognitive abilities to be aware of situation. The
data collection automation and knowledge extraction methods and their
practical application in MSA might help authorities to pursue those goals
[10]. Extraction of marine vessel behavioural patterns and evaluation
hazardous situation of safety or security infraction are among the most
important goals in MSA. Collection of large quantities of diverse data
and knowledge extraction help coastal authorities to make well-founded
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decisions. [11, 12, 13]. One of the ways to enhance MSA is the identifica-
tion of anomalous behaviour in marine traffic data (anomaly detection)
[14, 15], that is strongly supported by multiple civilian, military, and law
enforcement authorities around the world [14].

Definition of Anomaly

"Anomaly", "abnormal" and "anomaly detection" concepts can be found
in various research fields such as fault diagnosis, video surveillance, net-
work security, human activity monitoring, maintenance, etc. [14]. Ek-
man and Holst argue: "anomaly detection says nothing about the detec-
tion approach and it actually says nothing about what to detect" [16].
In multiple papers "anomaly detection" is presented from a human or
computational perspective. There is both richness and vagueness in its
meanings [14, 17].

In most of data-driven research, an anomaly is defined as a represen-
tation of deviation from normality. It follows Portnoy et al. definition:
"anomaly detection approaches build models of normal data and then
attempt to detect deviations from the normal model in observed data"
[18]. While analyzing marine traffic, multiple papers describe the ab-
normal vessel movement slightly differently but mostly define it as an
unreasoned movement deviation from the sea lanes, navigational routes,
trajectory, speed, or other traffic parameters [11, 19, 4].

In this dissertation, anomaly detection is studied as a means of en-
hancement of Maritime Situational Awareness (MSA) as an active re-
search area. In computer science and sea security, the term "anomaly"
is used interchangeably with the same meaning and definition as "abnor-
mal", "abnormal traffic", "anomalous traffic", etc.

The dissertation effort is devoted to research and development in
the area of anomaly detection. The primary purpose is the security of
the population. However, algorithms and methods of anomaly detection
already exist, and the research in this dissertation focuses mostly on im-
proving existing technologies. The anomaly detection gives a capability
that enables authorities to prevent harmful events, and in case that is
impossible, to prepare for them. These detections must be made as early
as possible to give time for VTS to coordinate appropriate actions. The
anomaly detection algorithms must be enriched for the detection of new
types of anomalies.

Research Object

Detection of marine traffic anomalies in AIS data.
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Research Aim And Objectives

The aim of the research is to investigate existing approaches and
solutions and to propose a complex systemic (or integrated) approach
including improvement of ML algorithms for detection of marine vessel
traffic anomaly in AIS data.

For this aim, the following objectives should be achieved:

1. To perform literature analysis in the research field to elaborate a
research workflow, covering all necessary problem-solving stages.

2. To inspect the AIS data and apply data preprocessing techniques
to propose an appropriate scheme for data preparation according
to the different nature of AIS data. The schema includes data
structuring, cleaning, down-sampling, missing values imputation,
feature engineering, the missing vessel type classifier, and splitting
to sequences of vessel navigational vectors, with the view to prepare
the data for upcoming anomaly detection analysis.

3. To introduce a method that can solve the imputation problem of
missing vessel type values in data. To develop and test vessel type
classifier to cope with the issue in the real-world AIS data set.

4. To inspect semi-supervised (point-based) methods for anomaly de-
tection, propose enhancement and explore the possibility to use
historical vessel movement data to speed up the semi-supervised
algorithm while analyzing streaming AIS data.

5. To inspect unsupervised (trajectory-based) methods for anomaly
detection, define extraction technique for abnormal vessel move-
ment region, and compare the obtained results using methods based
on statistical techniques.

6. To perform a comparative analysis of abnormal trajectories ob-
tained by applying semi-supervised and unsupervised methods on
AIS data by investigating a region at two sea areas.

Research Methods

Research that was performed in this thesis is based on these scientific
methods:

1. Literature review is performed on the latest scientific papers in
the research field to identify, select and evaluate state-of-the-art
algorithms for solving the stated problem.

2. Quantitative and qualitative information gathering was performed
to create data sets, which were used for experiments and experi-
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mental data describing the performance of the proposed solution
or its components.

3. Methods including but not limited to statistical ones were used to
perform confirmatory data analysis, ensuring the reliability of data
and experimental setup.

4. Exploratory Data Analysis (EDA): Box plot, Histogram, Scatter
plots, Pair plots, Negative likelihood contour plots.

5. Descriptive Statistics: Univariate Analysis, Multivariate Analysis,
Pearson’s correlation, Cramer’s V correlation; Data mean variance
scaling; Synthetic Minority Oversampling Technique (SMOTE).

6. Model evaluation: classification confusion matrix, classification
metric comparison, evaluation and comparison of regression errors,
Prediction Region Coverage Probability (PICP) and Prediction
Region Normalized Average Width (PINAW), Wild bootstrapping
techniques.

7. Multivariate clustering techniques: Self-Organizing Map, Soft-DTW
k-means.

8. Dimensionality reduction techniques: Multi Dimensional Scaling.
9. Artificial neural network techniques: LSTM; Multi Layer Percep-

tron (MLP); Auto-encoders; Neural network layers stacking.
10. Constructive research was used to propose improvements to the

solution of the real-world problem and propose new methods to
improve Maritime Situational Awareness (MSA).

11. Software development and parallel computation methods with GPUs
and TPUs were used in the experimental part of this thesis, includ-
ing the implementation of marine vessel anomaly detection and
trajectory clustering.

Scientific Contributions and Practical Value of the Re-
search

This thesis contributes to the development of marine vessel traffic anomaly
detection as an extension to Maritime Situational Awareness (MSA). The
main contributions of this thesis can be outlined as follows:

1. The point-based modified Self-Organizing Map (SOM) algorithm
for marine vessel movement data classification into normal and
abnormal classes is proposed and investigated on two indepen-
dent data sets. The modification is done by incorporating virtual
pheromone intensity calculations at the last stage of model train-
ing. This method has shown better classification results on less
intense (less than 140,000 navigational vectors) marine vessel traf-
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fic data sets. The procedure for selecting the best neighbourhood
function and SOM grid size is introduced.
From the practical point of view, it can improve Maritime Situa-
tional Awareness for Vessel Traffic Service of relatively small ports
with moderate traffic.

2. The retraining strategies for SOM point-based methods are pro-
posed. Applying different SOM model retraining strategies while
keeping the same data batch sizes substantially decreased the time
for retraining the maritime traffic abnormal movement detection
model sustains precision and sensitivity at very high values. The
results obtained show that the SOM network could be retrained in
half the time while keeping precision and sensitivity at almost the
same high values.
In practice, it can increase speed and shorten the time for model
retraining by keeping the model updated with the most up-to-date
data or significantly reduce the cost of hardware required for model
training.

3. Vessel type prediction method is proposed for missing vessel type
imputation by vessel trajectories using multi-stacked multivariate
Long Short Term Memory (LSTM) method. Such classification
experiment has shown that classification precision and sensitivity
are satisfactory and can be used for this purpose.
In practice, it enriches the training data set with additional training
samples.

4. Two LSTM based methods were proposed for unsupervised detec-
tion of abnormal marine vessel trajectories. Both methods detect
anomalies by checking trajectories in the prediction region. First,
the LSTM prediction learning method was created by modification
of univariate LSTM interval learning to learn multivariate predic-
tion region. Second, the LSTM wild bootstrapping method based
on the integration of statistical wild bootstrapping technique was
adapted to LSTM multi-stacked multivariate auto-encoder to cre-
ate prediction region ellipses for normal movement model. Both
methods show the ability to detect a broader range of anomalous
trajectory line shapes compared to SOM based methods.
In practice, it could simplify the anomaly detection models’ train-
ing by avoiding vessel trajectory labelling for anomalous traffic
cases, which is usually required for tuning semi-supervised models
based on semi-supervised SOM methods. LSTM method could be
used for larger areas or sea areas with substantial traffic, where
labelling of abnormal trajectories is unfeasible. The wider range
of detected anomalous trajectories improve Maritime Situational
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Awareness for Vessel Traffic Service.

Defensive Claims

The following claims are defended in this thesis:

1. Proposed SOM neural network with integrated virtual pheromone
for detection of vessel traffic anomaly performs better on smaller
data sets than Self-Organizing Map (SOM) with integrated Gaus-
sian Mixture Model (GMM) (SOM_GMM). However, the SOM_GMM
should be used for the larger sets.

2. SOM neural networks can be retrained for anomaly detection tasks
in a shorter time with a minor change in precision compared to
classical training workflow.

3. The proposed Long Short Term Memory (LSTM) prediction region
learning and LSTM wild bootstrapping methods can detect vessel
trajectory anomalies. The LSTM prediction region learning out-
performs LSTM wild bootstrapping method on quite small data
sets.

4. LSTM architecture with good generalization properties can be ap-
plied for the detection of vessel type to perform an imputation of
missing values.

5. Point-based anomaly methods Self-Organizing Map (SOM) neu-
ral network with integrated virtual pheromone and Self-Organizing
Map (SOM) with integrated Gaussian Mixture Model (GMM) do
not detect anomalies in trajectories with sharp manoeuvres and
stopping line shapes but LSTM methods do.

Approbation of the Results

Results obtained in this thesis were published in 4 papers:
3 papers in periodic scientific journals indexed by Web Of Science and
1 paper in reviewed scientific conference proceedings. The results were
presented at 8 international scientific conferences. The following list
presents the publications and presentations in conferences:

Papers in periodic scientific journals indexed in The Web of
Science:

• J. Venskus, P. Treigys, and J. Markevičiūtė. “Unsupervised Ma-
rine Vessel Trajectory Prediction using LSTM Network and Wild
Bootstrapping Techniques”. Nonlinear Analysis: Modelling and
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Control. (2021). Vilnius University. ISSN 1392-5113 | eISSN 2335-
8963. (IN PRINT)
• Venskus, Julius; Treigys, Povilas; Bernatavičienė, Jolita; Tamule-

vičius, Gintautas; Medvedev, Viktor. Real-time maritime traffic
anomaly detection based on sensors and history data embedding
// Sensors. Basel : MDPI. ISSN 1424-8220. 2019, vol. 19, no. 17,
art. no. 3782, p. 1-10. DOI: 10.3390/s19173782.
• Venskus, Julius; Treigys, Povilas; Bernatavičienė, Jolita; Medvedev,

Viktor; Voznak, Miroslav; Kurmis, Mindaugas; Bulbenkienė, Vio-
leta. Integration of a self-organizing map and a virtual pheromone
for real-time abnormal movement detection in marine traffic //
Informatica. Vilnius : Vilniaus universiteto Matematikos ir infor-
matikos institutas. ISSN 0868-4952. 2017, Vol. 28, No. 2, p.
359-374.

Papers in peer-reviewed scientific conference proceedings:

• Venskus, Julius; Treigys, Povilas. Meteorological data influence on
missing Vessel type detection using deep Multi-Stacked LSTM neu-
ral network // Computer data analysis and modeling: stochastics
and data science : proceedings of the XII international conference,
Minsk, September 18-22, 2019. Minsk : Belarusian State Univer-
sity, 2019. ISBN 9789855668115. p. 307-310.

Presentations in scientific conferences:

• Venskus, Julius; Treigys, Povilas. Meteorological data influence on
missing Vessel type detection using deep Multi-Stacked LSTM neu-
ral network // Computer data analysis and modeling: stochastics
and data science : proceedings of the XII international conference,
Minsk, September 18-22, 2019. Minsk : Belarusian State Univer-
sity, 2019. ISBN 9789855668115. p. 307-310.
• Venskus, Julius; Treigys, Povilas. Preparation of training data

by imputation missing vessel type data using deep multi-stacked
LSTM neural network for abnormal marine transport evaluation //
ITISE 2019 : International Conference on Time Series and Fore-
casting : proceedings of abstracts. Granada, Spain, September,
25-27, 2019. Granada : Universidad de Granada, 2019. ISBN
9788417970796. p. 38.
• Venskus, Julius; Treigys, Povilas; Bernatavičienė, Jolita; Retrain-

ing strategies of modified SOM for abnormal marine traffic detec-
tion; Materials, Methods & Technologies 2018 : 20th International
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conference. Elenite, Bulgaria, June 26-30, 2018. International Sci-
entific Events.
• Venskus, Julius. Saviorganizuojančių žemėlapių ir virtualių feromo-

nų integravimas jūrinio transporto avarinių realaus laiko judėjimų
nustatymui. XVIII mokslinė kompiuterininkų konferencija. Kau-
nas, 2017 m. rugsėjo 21–22 d.
• Venskus, Julius; Treigys, Povilas; Bernatavičienė, Jolita; Marke-

vičiūtė, Jurgita. Detecting Maritime traffic anomalies with long-
short term memory recurrent neural network // 11th international
workshop on data analysis methods for software systems (DAMSS
2019), Druskinin-kai, Lithuania, November 28-30, 2019 / Lithua-
nian Computer Society, Vilnius University Institute of Data Sci-
ence and Digital Technologies, Lithuanian Academy of Sciences.
Vilnius : Vilnius University Press, 2019. ISBN 9786090703243.
eISBN 9786090703250. p. 89. DOI: 10.15388/Proceedings.2019.8.
• Venskus, Julius; Treigys, Povilas; Bernatavičienė, Jolita; Andziulis,

Arūnas. Aspects of data collection for abnormal marine transport
evaluation // DAMSS 2018 : 10th international workshop on "Data
analysis methods for software systems", Druskininkai, Lithuania,
November 29 - December 1, 2018 : [abstract book]. Vilnius : Vil-
niaus universitetas, 2018. ISBN 9786090700433. p. 88.
• Venskus, Julius; Treigys, Povilas; Bernatavičienė, Jolita; Medvedev,

Viktor. Retraining strategies of modified SOM for abnormal ma-
rine traffic detection // 9th International workshop on Data Analy-
sis Methods for Software Systems (DAMSS), Druskininkai, Lithua-
nia, November 30 - December 2, 2017. Vilnius : Vilniaus univer-
sitetas, 2017. ISBN 9789986680642. p. 54.
• Venskus, Julius; Kurmis, Mindaugas; Treigys, Povilas. Modified

SOM for abnormal marine traffic detection // Data analysis meth-
ods for software systems : 8th international workshop on data
analysis methods for software systems, Druskininkai, December
1-3, 2016. Vilnius : Vilniaus universiteto leidykla, 2016. ISBN
9789986680611. p. 66-67.

Presentations in national scientific institutions:

• Venskus, Julius. Unsupervised Marine Vessel Trajectory Predic-
tion using LSTM Network and Wild Bootstrapping Techniques.
Klaipeda University. Department of statistics and computer sci-
ence. 2020m. September.
• Venskus, Julius. Investigation of Unsupervised Machine Learning

Methods for Detection of Sea Traffic Anomaly. Lithuanian Mar-
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itime Academy. 2021.
• Venskus, Julius. Meteorologinių duomenų įtaka nustatyti trūkstamai

informacijai apie jūrų laivo tipą, naudojant daugiasluoksnius LSTM
neuroninius tinklus. System analysis seminar. Vilnius University.
Institute of Data Science and Digital Technologies. 2019 October
7.
• Venskus, Julius. Jūrų laivo tipo atpažinimas pagal eismo duomenų

seką naudojant daugiasluoksnį LSTM tinklą. System analysis sem-
inar. Vilnius University. Institute of Data Science and Digital
Technologies., 2019m. February. Vilnius
• Venskus, Julius. Savi-organizuojančio neuroninio tinklo (SOM)

ir virtualaus feromono tyrimas neįprastam laivų eismo aptikimui.
System analysis seminar. Vilnius University. Institute of Data
Science and Digital Technologies. 2018 February. Vilnius
• Venskus Julius, Savi-organizuojančio neuroninio tinklo (SOM) ir

virtualaus feromono integravimas neįprastam laivų eismo aptikimui
koncepcijos pristatymas. System analysis seminar. Vilnius Univer-
sity. Institute of Data Science and Digital Technologies. 2017m.
June 4th. Vilnius

Outline of the Thesis

The research schema depicted in Figure 1 and numbered steps are noted
below in the outline of the thesis, which is organized as follows:

• Introduction section provides an introduction to the research and
overview of the dissertation.
• Section 1 reviews related work in the same research area including

detection of abnormal marine vessel movements and prediction of
spatio-temporal sequence (step 1).
• Section 2 introduces description of data sources (steps 2, 3, 4, 5),

structure of data, restructuring of data, cleaning of raw data, down-
sampling, imputation of general case missing values, feature engi-
neering, splitting to sequences, and imputation of missing vessel
type data (steps 6, 7, 8). This section presents a method of vessel
type classification by historical trajectory and results of trained
model testing (step 6).
• Section 3 presents a design of point-based semisupervised marine

vessel traffic anomaly detection (step 9) based on SOM and virtual
pheromone integration (step 11), and SOM with Gaussian Mixture
Model (GMM) (step 12). This section describes details about these
methods, parameter selection, and retraining strategies (step 9).
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Figure 1: Research schema

• Section 4 describes the design of the proposed algorithms and meth-
ods for unsupervised detection (step 10) of marine vessel abnormal
trajectories. The design of the two methods is described. These
methods are based on LSTM prediction region learning (step 13)
and LSTM wild bootstrapping (step 14).
• Section 5 contains the description of experiments and the results

related to both point-based semisupervised methods (steps 15, 16)
and trajectory-based unsupervised methods (step 17). The LSTM
methods are investigated (step 17) using both data sources (from
steps 8, 7) and the results collected (step 19). The SOM_GMM
and SOM_pheromone methods are investigated using labelled data
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sets from the first source (step 8) and data sets labelled using
LSTM methods from the second source (step 18). The point-based
method’s retraining strategies were investigated (step 16), and the
results were stored (step 19). The classification metrics of all meth-
ods were compared (step 21) and trajectories of anomalous traffic
were compared (step 20).

General conclusions are presented after Section 5; 93 bibliographic ref-
erences are included at the end of the thesis.
The dissertation consists of 105 pages, 28 figures, 34 tables, and 7 ap-
pendixes.
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1 Related Work

1.1 Detection of Abnormal Marine Vessel Movement

International Maritime Organization Regulation 19 of SOLAS [20] Chap-
ter V created in 2000 and later in 2015, they revised a requirement
for all vessels to carry automatic identification systems (AISs) capable
of providing information about the marine vessel to other vessels and
coastal authorities automatically [21]. Thus AIS is able to gather dy-
namic and static vessel traffic data. The vessel traffic anomaly detec-
tion can be defined as a task in AIS data analysis and outlier detection,
where vessel traffic data are analyzed as multiple standalone vessels posi-
tions/navigational vectors (point-based) or in a trajectory-based manner
where vessel’s vectors are structured to time series sequences [11].

Loi et al. [22] propose that historical vessel vector data can be mined
by cell-based method. The authors divide the region of interest to sub-
areas (cells) of predefined size. In each cell, the probability density for
the speed data is estimated based on a normal kernel function. Then the
DBSCAN algorithm is used to create speed clusters of normal moving
speeds. Speed that is out of clusters is defined as abnormal. Ristic [23]
presents an unsupervised method that subdivides geographical area into
individual cells and AIS data with the same coordinates are assigned to
these cells. The vessel navigational data in the grid are analyzed using
signature, rule and Poisson point process based techniques in order to
detect various association rules in movement changes. Zhu [24] applied
data mining technologies to analyze AIS data in data warehouses. Ar-
guedas [12] proposed to automatically produce synthetic maritime traf-
fic representations from historical self-reporting self-positioning systems
or meteorological and oceanographic positioning data. S.K.Singh and
F.Heymann [25] presented a multi-class artificial neural network (ANN).
The multi-class anomaly framework captures AIS message dropouts,
channel effects or intentional messages potentially related to illegal ac-
tivities. The author uses three layer ANN and data structured to time
series sequences per vessel. The model was trained in a supervised man-
ner. Venskus et al. [26] used a Self-Organizing Map (SOM) combined
with virtual pheromone for anomaly detection. Later retrain techniques
were proposed [27]. Pallota et al. [28] propose incremental and un-
supervised point-based analysis of traffic anomaly. Despite of authors’
declaration that method is point-based, they updated their model based
on historical traffic knowledge. The sliding time window technique was
used to find the relations between successive vessel’s navigational vec-
tors. The discovered way points were clustered using DBSCAN method
and it was used for abnormal traffic detection [29, 30]. The authors in
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paper [27] state that the main weakness of point-based techniques is that
the analysis of movement is based on short-term history or it even disre-
gards the history. On the other hand, a limited number of analyzed data
points intend real-time calculation and decision making. This quality
makes point-based anomaly detection techniques attractive for real-time
tasks. Nevertheless, at the moment, the prevalence of these techniques
is quite limited. The majority of vessel traffic techniques are based on
trajectory analysis where vessels vector data are analysed as sequences
in time. In the literature, several research directions can be found such
as risk assessment of vessel collision [31], vessel traffic anomaly detection
[32, 33, 34] vessel type identification [35, 34], and fault detection [36].
Trajectory-based models of marine normal traffic/movement are created
based on vectors on an entire trajectory. The abnormal motion is de-
tected when an analyzed vessel trajectory has a deviation from a model.
These techniques demand a vast amount of AIS data for analysis. How-
ever, it helps to create models that take into account traffic history and
detect more complex trajectory-based anomalies. The rise of parallel
computational power enables faster processing of a considerable amount
of data. Graphical processing units (GPU) and Tensor processing units
(TPU) play a big part.

Data preparation techniques give a significant boost in performance
for these types of models. Tang et al. [37] propose a detection of ab-
normal vessel behaviour by applying directed graph model. The model
has three modules: data processing, model construction, and abnormal
behaviour detection module. The data pre-processing greatly affects the
efficiency. The author converted each trajectory to a mesh grid represen-
tation. Based on grid representation, a directed graph is created. The
statistical characteristics are obtained by analysing the course and speed
distribution of the vessels in each node in the directed graph. When
the monitored vessel’s trajectory is outside of confidence level 99.7%,
the vessel trajectory is considered anomalous. Lu et al. [17] briefly re-
viewed shape-based vessel trajectory similarity and clustering. Authors
review shape-based similarity computing methods: Hausdorff distance,
Frechet distance, and SSPD distance. In the same paper, unsupervised
algorithms for trajectory clustering were experimentally evaluated using
spectral clustering, hierarchical cluster analysis with distances average
linkage, complete linkage, and ward linkage.

However, when vessel traffic data is analysed as trajectories (each
vessel’s navigation location sequences), the model takes advantage of
historical vessel behaviour information. Historical vessel behaviour is
crucial for its anomaly detection and such type of analysis requires that
more complicated methods are used. Recent advances in deep learning
techniques provide a possibility to train model complicated nonlinear
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patterns using a large amount of data.
To detect marine traffic anomalies, the authors use two main ap-

proaches. In the first approach, the analyzed vessel trajectory similarity
is compared against model trajectories or clusters of trajectories [17]
[32]. The compared similarity distance is tested against a linear thresh-
old or normal distribution of trajectories in a cluster. In the second
approach, the trained model uses the vessel trajectory to predict the fol-
lowing trajectory points. Then the predicted trajectory is compared with
the actual vessel trajectory [37], and if the actual trajectory is outside
of the predefined confidence/prediction level, it is classified as abnormal.
The first approach should capture complex non-linear patterns and be
mostly used in arbitrary non-intensive marine traffic. With the second
approach, the authors could reach better results by capturing intricate
patterns in intensive marine traffic regions. Despite that, the second ap-
proach can be used with deep learning regression techniques for vessel
trajectory prediction with prediction level evaluation.

From the other perspective, as the vessel sends the data to the AIS
system with time dynamics and shows a change in the vessel location
in space, other authors interpret vessel trajectories as a task of spatio-
temporal data analysis. Classical machine learning methods hardly cap-
ture complex spatio-temporal patterns in heavy marine traffic and a
large amount of data. The deep learning approach must be investigated
to predict and evaluate prediction intervals to detect complex trajectory
anomalies in maritime traffic.

1.2 Spatio-temporal Sequence Prediction

The transport traffic flow or trajectory prediction can be analysed as
spatio-temporal system, where the data represents the space and the
time relation. In this subsection, we will briefly review machine learning
methods used for spatio-temporal sequence forecasting. Shi et al. [38]
classify the spatio-temporal sequence forecasting problems into three cat-
egories based on characteristics of the coordinate sequence and measure-
ment sequence, where coordinates stand for vessel geographical location,
and measurements stand for navigational variables of a vessel such as
speed, heading, type, etc.:

• The first category is Spatio-Temporal Forecasting on Regular Grid
(STSF-RG). It has fixed coordinates on a regular grid and predic-
tion is performed for measurements. This category covers prob-
lems like video feed [39], crowd density [40], precipitation forecast-
ing/predictions [41].
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• The second category has fixed coordinates as well, but the coor-
dinates are on an irregular grid and the category is called Spatio-
Temporal Forecasting on Irregular Grid (STSF-IG) [38]. Algo-
rithms of the category are applicable for ground traffic speed pre-
diction [42], where speed measurement stations are sparsely dis-
tributed across a city. It can be used for influenza prediction [43],
air quality forecasting [44], taxi demand prognosis. [45].

• The third category is The Trajectory Forecasting of Moving Point
Cloud (TF-MPC). This category can be characterized by chang-
ing coordinates and fixed/changing measurements. The category
applies to problems such as human movement trajectory and dy-
namics prediction [46, 47, 48, 49].

Trajectory Forecasting of Moving Point Cloud (TF-MPC) category can
cover not only moving people as entities in moving point cloud. It can be
any general moving objects and especially moving marine vessels because
they have changing coordinates and measures (speed, heading, etc.) that
change in time. A few techniques are used to predict location as well as
other measurement values from the data in this category. Most of the
techniques are observed based on classical machine learning [45, 50, 43,
47]. As it was discussed in the previous paragraph, the classical methods
hardly cope with complex non-linear patterns in big data and therefore
the deep learning approach must be investigated. The latest research
publications mainly focus on deep learning to harvest the full potential
of big data and the possibility to learn complex patterns [51, 40, 48, 5].
Long short term memory (LSTM) neural network, an improved version
of recurrent network (RNN), takes advantage of historical data to train
deep neural networks. One of them is the Vanilla LSTM [7], which has
difficulty in capturing spatial features. To overcome this issue, the convo-
lution layer was introduced to the architecture of LSTM network [41, 51].
He et al. [5] proposed Spatio-Temporal Neural Network (STNN) and Li
et al. [6] introduced LSTM auto-encoder (LSTM-AE) with similar prop-
erties, which improved region-based prediction of spatio-temporal data
by a smoothing regularization term that was added into the combined
model, leading to a more stable estimation.

Despite advances in the prediction of spatio-temporal data with deep
neural networks, the authors do not propose an evaluation of prediction
or confidence interval, which is crucial for marine traffic anomaly de-
tection with this method. Cruz et al. [52] has proposed a univariate
solution for estimation of LSTM prediction interval by joint supervision,
but this approach is not sufficient because marine traffic has multivariate
time series and therefore the approach must be improved.
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1.3 Conclusions of the Section

Background information related to research in Detection of Abnormal
Marine Vessel Movement and Spatio-temporal Sequence Prediction was
provided in this section.

In researches, the vessel traffic data are analyzed as multiple stan-
dalone vessel positions/navigational vectors (point-based) or in a trajectory-
based manner where vessel vectors are structured to time series se-
quences. Data preparation techniques give a significant boost in per-
formance for these types of models. Historical vessel behaviour is crucial
for its anomaly detection, and such type of analysis requires that more
complicated methods are used.

Related research shows that a vessel sends the data to the AIS system
with time dynamics and shows a change in the vessel location in space,
and vessel trajectories can be interpreted as a task of spatio-temporal
data analysis. Classical machine learning methods hardly capture com-
plex Spatio-temporal patterns in heavy marine traffic and diverse data.
The deep learning approach must be investigated to predict and evaluate
prediction intervals to detect complex trajectory anomalies in maritime
traffic.

Semi-supervised methods require anomaly-labeled training data sets.
In practice, it is not feasible to perform labelling of enormous size data
sets. Unsupervised techniques must be used. The unsupervised LSTM
artificial neural networks with prediction regions can be a promising
technique to perform marine traffic trajectory anomaly detection.
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2 Data Preparation

This section contains a description of data sources, data structure, re-
structuring of data, raw data cleaning, down-sampling, imputation of
general case missing values, feature engineering, splitting to sequences,
and missing vessel type imputation. These steps are needed to ensure
equal conditions for the investigative needs. Final data sets of marine
vessel traffic are described and prepared at the end of this section.

2.1 Description of the Data Sources

Three data sources were used in experiments. The first source contains
data of marine traffic, which was obtained from Automatic Identification
System (AIS) and collected/stored by the Danish maritime authority
[53]. The second data set represents meteorological data set that was
obtained from European Centre for Medium-Range Weather Forecasts
(ECMWF) through World Weather Online service API [54]. And the
third data source contains data about Klaipeda seaport region (AIS)
and was taken from Klaipeda Sea Port authority [26, 27].

For the final study of the anomaly detection algorithms under con-
ditions of high intensity marine traffic, the choice of sea area "Fehmarn-
belt" in the Baltic Sea was based on the data collected by Danish mar-
itime authority. This area is well known for its very high intensity region
in Danish and German waters. There is a main intersection area of ma-
rine routes from/to countries such as Russia, Poland, Sweden, Finland,
Germany, Lithuania, Estonia, Latvia, and Denmark. This area has sev-
eral large ports such as Kiel, Lubeck, Wismar, and Rostock. In order to
keep high control of maritime awareness and minimise security risk, the
Vessel Traffic Service (VTS) in this region requires automated solutions
to help operators to make timely decisions.

AIS data set. The AIS historical database for this research contains
data on historical AIS maritime vessel traffic in Danish waters. The
whole database has data from 2006 to 2020. Multiple records of this
data set contain AIS navigational vectors of multiple vessels. A single
vector contains navigational parameters/properties, which are listed in
the Tables 1, 2, 3. The AIS data records consist of three field categories.
The first category (see Table 1) has fields of static data. This category
represents logical and physical properties of a single vessel and it does
not change within the same vessel data. The fields in the second category
are shown in Table 2. Dynamic category contains data from vessels’ on-
board sensors and they change dynamically during the whole voyage.
Table 3 contains data fields of voyage categories. Those fields contain
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Table 1: Description of static AIS record fields

Field Name Data type Description
Type of mobile String Describes what type of target this message is

received from
MMSI Long Maritime Mobile Service Identity (MMSI)

number of vessel
IMO Long Vessel identifier provided by International Mar-

itime Organization (IMO)
Callsign String Call sign of the vessel
Name String Name of the vessel
Ship type String Describes the AIS vessel type of this vessel.

The field has limited number of string varia-
tions

Width Integer Width of the vessel
Length Integer Length of the vessel
Type of position
fixing device

String Type of position fixing device from the AIS
message

Draught Integer Draught field from AIS message
Data source type String Type of data source, e.g. AIS

information about a single voyage of a particular vessel.
From the whole Danish AIS historical database, a single geograph-

ical region "Fehmarnbelt" was filtered out as described above in this
subsection and details are summarized in Table 5.

Table 2: Description of dynamic AIS record fields

Field Name Data type Description
Timestamp Date &

Time
Timestamp from the AIS base station

Latitude Decimal Latitude of message report (e.g. 57.8794)
Longitude Decimal Longitude of message report (e.g. 17.9125)
Navigational sta-
tus

String Navigational status from AIS message if avail-
able, e.g.: ’Engaged in fishing’, ’Under way us-
ing engine’, etc.

ROT Decimal Rot of turn from AIS message if available
SOG Integer Speed over ground from AIS message if avail-

able
COG Integer Course over ground from AIS message if avail-

able
Heading Integer Heading from AIS message if available

Meteorological data set. Meteorological data set was obtained us-
ing World Weather Online service API [54] in the European Centre for
Medium-Range Weather Forecasts (ECMWF) grid. This data contains
information about wind direction, wind strength, swell direction, swell
height, swell period, day/night, and tide level. Meteorological data are
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Table 3: AIS record fields of voyage category

Field Name Data type Description
Cargo type String Type of cargo from AIS message
Destination String Destination from AIS message
ETA String Estimated Time of Arrival, if available

provided periodically in 3 hour periods. The data were collected from
November 1, 2019 to June 31, 2020. A detailed description is presented
in Table 4.

Table 4: Record fields of meteorological data

Field Name Data type Description
datetime Datetime Date and time of meteorological record
latitude Decimal The latitude of location (e.g. 57.8794)
longitude Decimal The longitude of location (e.g. 57.8794)
winddirDegree Integer Wind direction in degrees
windspeedMeterSec Decimal Wind speed in meters per second
swellheight Decimal Swell height at location
swelldirection Integer Swell direction at location
swellperiod Decimal Swell period at location
day/nigh String String indicates day or night is requested

information for specific location

2.2 Data Structuring

"Fehmarnbelt" geographical sea region was chosen in order to study per-
formance and properties of marine anomaly detection methods in the
complicated marine region with intense traffic. The Table 5 contains
general description of data sets about the geographical region.

The source of the vessel traffic data is AIS. An automated vessel mon-
itoring system is used to monitor and track vessel traffic. Each marine
vessel is equipped with an AIS system transponder that sends naviga-
tional information from vessels at predefined time intervals. Navigational
information includes data shown in Tables 1, 2, 3. The obtained data
from AIS is stored in databases and is used by Vessel Traffic Service
(VTS) to monitor and control vessel traffic. AIS plays important role in
a Maritime Situational Awareness (MSA).

The raw data is stored in a flat structure, where each record consists
of vessel’s navigational data at a certain time. The data structure can
be represented by:
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Table 5: General information of data set

Geographical region name Fehmarnbelt
Time period from 2019-01-01 00:00:00

to 2019-03-31 23:59:59
Latitude interval, degrees 53.832833 to 54.998114
Longitude interval, degrees 9.97929 to 12.53451
Memory usage in mega bytes of AIS data 73579.26
N ′ - total number of AIS records (1) 98245370
f - initial∗ number of AIS fields/features (1) 11
V - total number of unique vessels by MMSI (2) 3913
Meteorological grid size 4× 7× 0.5◦

Meteorological data gathering locations 28
Total number of meteorological vectors 20608
Memory usage in mega bytes of meteorological
data

822.05

∗ - the initial fields/features list contains features from the original AIS data sets before
preprocessing of data set. After preprocessing the AIS data set may contain a different
number of features.

X = {x1, x2, . . . , xg, . . . , xN ′−1, xN ′} ,

xg =
[
x

(1)
g , x

(2)
g , . . . , x

(j)
g , . . . , x

(f−1)
g , x

(f)
g

]
,

g ∈ {1, 2, . . . , N ′} , j ∈ {1, 2, . . . , f} ,

(1)

where xg is a single vessel navigational data record consisting of x(j)
g

fields, that are unique vessel identifier MMSI, ’Latitude’, ’Longitude’,
SOG, COG, Ship type, Timestamp of the data being received. The
whole data set contains N ′ number of records, where each record con-
sists of f fields/features of vessel navigational vector. Accordingly, the
indexes g and j denote a particular vector ordered location in the data
set and feature list. The data set X contains multiple vessel navigational
unordered vectors.

Vessels send navigational data periodically thus received data in-
stance is stored in the order the data was received (ordered by the times-
tamp). The raw data that is structured in this way is difficult to work
with multiple navigational data of different vessels, which forms vessel’s
sea path over time. In order to investigate models that are discussed
more thoroughly in section 5, one needs to train models to predict a sin-
gle vessel path. To achieve that, we restructure data structure presented
by equation (1) per unique vessel, vessel’s navigational data is grouped
by unique vessel identifier MMSI and ordered by the timestamp. The
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restructured data set can be presented as:

S =



s1

s2
...
sv
...
sV


=



{
x(1,1), x(1,2), . . . , x(1,p1), . . . , x(1,P1)

}{
x(2,1), x(2,2), . . . , x(1,p2), . . . , x(2,P2)

}
...{

x(v,1), x(v,2), . . . , x(v,pv), . . . , x(v,Pv)

}
...{

x(V,1), x(V,2), . . . , x(V,PV −1), . . . , x(V,PV )

}


,

v ∈ {1, 2, . . . , V } , pv ∈ {1, 2, . . . , Pv} , Pv ∈ {P1, P2, . . . , PV }
x(v,pv) ∈ sv ⊂ S ⊆ X, ∀x(x ∈ S → x ∈ X)

(2)

where S is the restructured vessel navigational vector data set, obtained
by transforming the X (see eq. (1)). Each row of the matrix consists of a
set of navigational data vectors sv of an individual vessel’s navigational
vectors, where v denotes the index of a distinct vessel’s navigational
vectors set and V denotes the number of different vessels. pv denotes
the index of an individual vector from single vessel vectors set Sv. These
navigational data sets for each vessel are made of the navigational vectors
xg reindexed to x(v,pv) by following rules:

• All vectors from X data set are grouped into subsets
{s1, s2 . . . , sv, . . . , sV }. The grouping is done by vessel identifier
field MMSI that is part of features and can be noted x(MMSI).
After this operation, each sv contains vectors of individual vessel
navigational. The quantity of each sv vector is different and noted
Pv. The number V of unique vessels can be found in Table 5.

• The vector subsets sv of each vessel are sorted sorted by the data
acquisition time field/feature. This feature is denoted by x(timestamp).
The sorting is performed to match inequality x(timestamp)

(v,pv−1) < x
(timestamp)
(v,pv) .

The vectors that were received earlier in time have lower index
number.

Each row in S matrix has a different number Pv of vectors xv,pv per vessel
and the distribution of these vectors per vessel is depicted in Figure 2c.
The distribution shows that most of the vessels have Pv number less
than 20,000 vectors. It shows that these vessels are passing, arriving, or
leaving the investigated sea region. Figures 2a and 2b will be described
in more detail later.

2.3 Data Set Cleaning

AIS systems interconnect many parts such as vessels, Vessel Traffic Ser-
vice (VTS), Receiving base stations, and collection databases. The Dan-
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(a) SOG distribution (b) ROT (c) Vectors per vessel

Figure 2: SOG, ROT and vectors per vessel type distributions

ish maritime agency has collected more than 1TB and 109 vessel naviga-
tional vectors in territorial waters during 2019 [53]. The problem is that
enormous quantity of vessels, for example, can have transponders man-
ufacturer by different vendors communicating with AIS through VHF
radio band that is sensitive to external noise and is prone to interference
with data transmissions from other vessels. These imperfections affect
the quality of data that is sent/received. The main discrepancies are
of several types. Due to the nature of radio transmission, the data is
received from non-uniformly distributed areas. AIS signals can be dis-
torted by the atmosphere and not received properly. Such distortion
can result in very short frequent sequences of the same vessel’s vector
with missing features to be received, and signal duplication. In some
cases observed, a vessel sends an incorrect vessel’s MMSI identification
number and malfunctioning vessel devices or faulty installation of equip-
ment causes wrong data being sent to the AIS station. While vessel is
anchored it still sends data that cannot be treated as abnormal traffic,
or after vessels leave of the region of interest, radio coverage can be dis-
turbed, which may result in loss of navigational data. Such forms of
information losses cause vessel path gaps in analysed vessel trajectories.

To overcome these problems the gathered vessel data from the AIS
needs to be cleaned. All vectors that are outside of analyzed marine area
must be dropped, all duplicated data, and anchored vessel navigational
vectors should be removed. Short sequences of vessel vectors (paths)
shorter than predefined training sequence length n′ are removed as well.

AIS data cleaning. In order to perform data cleaning the descrip-
tive statistics are calculated. Descriptive statistics of vessels traffic AIS
numerical data are shown in the Table 6. Here one can see values for
each field, including illegal values. Other statistical properties such as
mean, standard deviation, min, max, and percentiles. One can see that
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Table 6: Descriptive statistics of vessels traffic AIS numerical data

Field count, mean std min max
Name 106

Latitude 98.2 54.61627 0.23228 53.86743 54.99811
Longitude 98.2 11.22920 0.72786 9.979292 12.53451
ROT 74.8 -0.019 7.782 -0.071 7.080
SOG 96.8 7.19 6.70 0.00 140.00
COG 93.2 176.2 106.6 0.0 359.9
Heading 84.7 174.9 100.4 0.0 510.0
Width 92.8 15.18 9.67 2.00 124.00
Length 92.8 88.63 69.56 3.00 812.00
Draught 87.2 4.725 2.837 0.100 25.50

...
Field Percentiles
Name 25% 50% 75%
Latitude 54.44638 54.57917 54.83344
Longitude 10.67159 11.22875 11.91921
ROT 0.000 0.000 0.000
SOG 0.00 7.90 12.30
COG 79.3 196.0 268.0
Heading 86.0 190.0 262.02
Width 6.00 13.00 23.0
Length 24.00 80.00 142.0
Draught 2.200 4.20 6.200

all numerical features are in different ranges in the table . That implies
the requirement of scaling and normalization prior to model training. In
the dissertation, the Min/Max scaling is used to prepare for both types
of SOM and LSTM neural networks. This type of scaling is mandatory
for LSTM networks because TANH activation function is used.

More statistics are calculated in order to analyse numerical data. A
pair plot of numerical AIS data is depicted in the Appendix A. The
correlation matrices of vessels traffic AIS numerical and categorical data
are shown in Tables 7, 9, and 6. Based on those three tables and domain
knowledge, feature selection and data reprocessing decisions are made.
The analyzed features are:

Latitude and Longitude - the pair of features represents spatial infor-
mation about vessel location in World Geodetic System 1984 (WGS84).
Despite the fact that deep neural networks are good in adopting to non-
linear space, a decision was made to convert spatial data to Euclidean
space. By performing WGS84 projection to Universal Transverse Mer-
cator (UTM) coordinate system the vessels spatial data is converted to
Euclidean space. Longitude and latitude have no strong correlations (see
Table 7) with other features. The geographical distribution of vessel vec-
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Table 7: Pearson’s correlation matrix of vessels traffic AIS numerical
data

Latitude Longitude ROT SOG COG
Latitude 1.000000 -0.192795 0.001785 -0.248329 0.012123
Longitude -0.192795 1.000000 0.001541 0.234240 0.002224
ROT 0.001785 0.001541 1.000000 0.000528 0.000218
SOG -0.248329 0.234240 0.000528 1.000000 -0.094312
COG 0.012123 0.002224 0.000218 -0.094312 1.000000
Heading 0.005202 -0.003220 0.002442 -0.085273 0.957538
Width -0.256241 0.225848 0.000449 0.561804 -0.056304
Length -0.301994 0.246817 0.000146 0.615442 -0.060491
Draught -0.232486 0.159610 0.001344 0.479451 0.008306

...

Heading Width Length Draught
Latitude 0.005202 -0.256241 -0.301994 -0.232486
Longitude -0.003220 0.225848 0.246817 0.159610
ROT 0.002442 0.000449 0.000146 0.001344
SOG -0.085273 0.561804 0.615442 0.479451
COG 0.957538 -0.056304 -0.060491 0.008306
Heading 1.000000 -0.041382 -0.043415 0.022329
Width -0.041382 1.000000 0.962852 0.818584
Length -0.043415 0.962852 1.000000 0.827966
Draught 0.022329 0.818584 0.827966 1.000000

tors is clearly seen in pair-plot figure (Appendix A).
ROT - it is shown in Table 6. We may note that total count of

SOG has 74.8× 106 values of total 98.2× 106 values count. In the same
table we observe that 75% percentile has value of 0. We see that the
majority of ROT has 0 value (Figure 2b). Total count of non zero values
is 11.968 × 106. That is 12% of total vectors. Also, ROT is missing in
25% of records and 986 of 3774 vessels lack this feature (see Table 10).
Because of that, the decision was made to drop it from the final feature
list, which was further investigated.

SOG - by observing statistical parameters of this feature it was no-
ticed it contained a large number of zeros, that is 25% of all vectors. That
is clearly visible in figures in Appendix A, 2a and Table 6. Correlation
table 7 reveals that SOG shows strong correlation to vessel length, width
and moderate correlation to a degree of draught. Note that anomalous
behaviour is investigated in moving vessels only, and all anchored vessel
records with SOG = 0 have been removed.

COG and Heading - COG feature has 0.4% of total missing values
(see Table 10) and shows very high correlation with Heading, (see figures
of the Appendix A) and see Pearson’s correlation of 0.957538 (depicted
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in Table 7). Because of very high degree correlation with Heading a
decision was made to keep only one feature that has less missing values.
2.5% of values are missing in the Heading. The decision was made in
favor of COG.

Table 8: Descriptive statistics of vessels traffic AIS categorical data

Field name Count, Unique top category
106 values Value Freq, 106

Type of mobile 98.2 7 Class A 95.1
Navigational status 98.2 16 Under way us-

ing engine
78.1

IMO 98.2 2963 Unknown 29.3
Callsign 96.1 3756 OX3110 1.3
Name 96.3 4020 Danpilot Echo 1.3
Vessel type 98.2 26 Cargo 26.5
Cargo type 24.6 6 No additional

information
14.3

Type of position fix-
ing device

98.2 8 GPS 84.1

Destination 84.1 3484 Rostock 2.8
Data source type 98.2 1 AIS 98.2
MMSI 98.2 3913 219023834 1.3

Width, Length, Draught - These features are physical properties of
vessels, that do not change over time. In Figure in Appendix A and Ta-
ble 7, a strong correlation is seen among all those three features (Width,
Length, Draught). Because of high importance of Draught in the mar-
itime domain, it was decided to keep this feature despite the fact it does
not change in a single vessel voyage. Because these three parameters are
strongly correlated (see Table 7), the Multi Dimensional Scaling (MDS)
[55] algorithm was applied in order to keep vessel size influence to the
model. The new feature is called "Vessel size". This new feature is used
for further model training.

The Table 8 contains description of vessels traffic AIS categorical
data. The following properties are analysed: count of values, unique
values, top category, frequency of this category. The Table 9 is Cramer’s
V correlation matrix of vessels traffic AIS categorical data. This analysis
is used to overview categorical properties and based on that, a decision
was made whether to include or not into a final list of features, which
is used to train anomaly detection models. The overview of categorical
features is provided below:

MMSI, Name, Callsign, IMO - These features have a strong correla-
tion (see Table 9) with Callsign and Name. The MMSI represents vessel
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Table 9: Cramer’s V correlation matrix of vessels traffic AIS categorical
data

Naviga- Callsign Name Vessel Cargo Type of Desti- MMSI
tional type type position nation
status fixing

device
Navigational 1.000 0.623 0.623 0.261 0.088 0.488 0.596 0.687
status
Callsign 0.623 1.000 0.998 1.000 0.950 0.994 0.751 0.999
Name 0.623 0.998 1.000 1.000 0.950 0.994 0.754 0.999
Vessel type 0.261 1.000 1.000 1.000 0.266 0.153 0.909 1.000
Cargo type 0.088 0.950 0.950 0.266 1.000 0.143 0.837 0.951
Type of po-
sition fixing
device

0.488 0.994 0.994 0.153 0.143 1.000 0.778 0.999

Destination 0.596 0.751 0.754 0.909 0.837 0.778 1.000 0.755
MMSI 0.687 0.999 0.999 1.000 0.951 0.999 0.755 1.00

AIS identification number that belongs to single vessel entity. A similar
situation is observed with Callsign and Name. These features represent
the same vessel. Because of that, it was decided to keep only MMSI
and drop Name and Callsign. Moreover, the MMSI is used to structure
vectors by vessel (see Equation (2)) in order to form trajectories and
spatio-temporal data.

Type of mobile - The majority (97%) of feature values contain string
"Class A" (see Table 8 and Figure 3f). Because of that the feature has
not been included in further investigation.

Navigational status - The majority of values for this category feature
belong to "Under way using engine" category, which contains 79.5% of
all values of this feature (see Figure 3b and Table 8). Also, 6% of values
for this feature are missing (see Table 10). Because of these reasons and
high dissemblance of categories, it was decided to exclude this feature
from further creation of models.

Vessel type - The distribution of the feature values is shown in Figure
3a. The feature plays an important role in marine traffic as each vessel
type has different behaviour patterns at sea, that are clearly observable
in visualisations of vessel traffic by type (see Appendix B) and it has
been mentioned in multiple research papers in the same field [56, 14, 26,
28]. Figure 6 shows that each vessel type has different spatio-temporal
patterns. Thus, it was decided to split marine traffic data based on ves-
sel type because different vessel types have different behaviour patterns
(described in further sub-chapters).

It is important to note that data lack a significant number of missing
values regarding vessel type (see Table 10). The vessel type classifier was

40



(a) Vessel type (b) Navigational status

(c) Data source
type (d) Cargo type (e) Fixing device (f) Type of mobile

Figure 3: Distributions of categorical features

built in order to perform imputation. A more detailed description of the
classifier is presented in section 2.8.

Cargo type - The feature value is absent in almost of 85% of AIS
vectors and 92% of them do not have this feature at all (see Table 10),
therefore the feature was removed from further processing.

Type of position fixing device - The histogram of the feature values is
presented in Figure 3e. The value "GPS" is found in 85.6% of the whole
dataset (see Table 8) and 5.3% of the feature values are missing (see
Table 10), which means that only 9.1% of the data set have non "GPS"
values and therefore the feature was discarded from further processing.

Destination - 14.4% of the total number of feature values are missing.
These missing values will be imputed with separate unique value and the
whole feature is included in the final list for further processing.

Data source type - Typically, the value is "AIS" (see Figure 3c and
Table 8). The value has no impact on the dissertation topics and the
feature was removed from further processing.
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Table 10: Missing value spread across the data set

Feature Missing Missing Vessels Vessels
values values missing missing

ratio values ratios
MMSI 3774 0.000038
Navigational status 5960962 0.060674 461 0.11781
ROT 23411553 0.252161 986 0.25198
SOG 17983 0.000183 12 0.00307
COG 462048 0.004703 118 0.03016
Heading 2440388 0.024840 657 0.16790
IMO 29327299 0.298511 976 0.24942
Callsign 2184153 0.022232 311 0.07948
Name 1948884 0.019837 301 0.07692
Cargo type 87900086 0.894700 3625 0.92640
Width 50477 0.000514 363 0.09277
Length 48609 0.000495 359 0.09175
Draught 1047433 0.010661 689 0.17608
Destination 14183899 0.144372 718 0.18349
Vessel type 4234160 0.042769 293 0.07487
Type of position fixing device 5244781 0.053409 210 0.05676
Note. AIS data collected values treated as missed are: NaN, Unknown, Unknown value,
Not under command, Not used, Undefined, No additional information, "========",
"-", ".", ">", ":"

2.4 Data Down-Sampling

A vessel’s AIS transceiver sends data every 2 to 10 seconds and that
depends on a vessel speed while underway, or each 3 minutes when a
vessel is anchored. In practice, databases typically store data at various
time intervals between subsequent registration of vessel position in the
AIS system. Registration interval may vary from 2 seconds to 10 minutes
and that depends on data provider. With the view to setting up the
experiment, it is necessary to set the same time interval for all positions
of all vessels in the same training data set. The proposed method down-
samples a vessel subsequent navigational vectors to predefined interval
∆Tinterval. To achieve that, the nearest neighbour algorithm is applied
to select the nearest navigational vector (Euclidean distance) according
to the vessel data vector sent to AIS timestamp.

The predefined calibrated parameter ∆Tinterval of 2 minutes was cho-
sen. This parameter can be calibrated based on Maritime Situational
Awareness (MSA) requirements of VTS. In this research it is assumed
that anomaly detection will be performed in the middle range of vessel
trajectory, that is on average of 20% of activity in the region of interest.
On average vessels pass the investigated "Fehmarnbelt" region in 8 to 12
hours. Thus the minimum time to detect trajectory anomaly is between
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1.6 and 2.4 hours. So, if n′ = 50, then 2 minutes window falls within
the sensitivity range. The nearest neighbour algorithm was applied to
down-sample and obtain the feature values.

2.5 Imputation of Missing Values

There are missing feature values in the collected vessel traffic data. De-
pending on the type of missing feature, a different scheme for imputation
has to be chosen.

• Static features. Features that are static and belong to the same
vessel (data with the same MMSI). Such physical properties cannot
change in time. For example, it can be a vessel type, length or
other physical property that is sometimes distorted by the radio
transmission.

• Dynamic features. Feature values that change in time for naviga-
tional vectors of the same vessel. It can be vessel location, heading
or other data from on board vessel sensors.

• Partially missing values of static features. Wrong static feature
values x(j) are available at least in few of sv vessel navigational vec-
tors. Examples of such features are the type of vessel, the length
of the vessel or other physical parameters of the vessel. The afore-
mentioned discrepancies happen because of the inconsistent input
of data into the AIS transmission equipment.

• Completely missing values of static features. Feature values of the
x(j) that are absent in the entire set of vectors sv of a particular
vessel.

• Weakly correlated missing values of dynamic feature. These fea-
tures have a weak or very weak correlation with other features.
For example, vessel rate of turn, estimated time of arrival at the
port of destination, etc.

For each group of missing value types, a different value correction
strategy is applied. The applied correction strategies are:

• Partially missing static feature values. The missing values are im-
puted by searching for an actual value in navigational data of the
same vessel. After it is found, the rest of the vectors are imputed
with that value, otherwise they are treated as completely missing
static features.
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• Completely missing static features values. The strategy depends
on type and property of features and therefore there are two tech-
niques: imputation of missing values using a predictive model, that
is based on vessel trajectory and can predict missing feature in sig-
nificant accuracy, that is higher than the critical threshold value
Tacc. In this paper, the threshold of 0.95 was used. Such an ap-
proach was proposed in previous work [35]; this technique either
discards the entire attribute from all data for all vessels, or, if the
number of missing values is low and mostly relates to small amount
of vessels, then the technique drops particular vessels from the data
set.

• Strongly correlated missing dynamic feature values. Missing fea-
tures that are strongly correlated with other features may be dis-
carded for all vessels if they are missing in significant number of
vessels. Otherwise, if only 1% of vessels lack such feature, then all
navigational data of particular vessels that lack values are dropped
from the data set.

• Weakly correlated missing dynamic feature values. If less than 1%
of vessels lack particular feature, data of these vessels are excluded
from further analysis. If the percentage is higher than 1% then
only that specific feature is excluded from the feature list.

However, based on previous research [35], the minimum set of features
must be as follows: longitude, latitude, speed over ground, course over
ground, wind direction, wind speed, wave direction and height.

Imputation of missing values. Table 10 shows missing values. The
imputation of missing values is performed as described in sub-chapters
earlier. As mentioned in the same sub-chapter, here are two main cate-
gories of data: static and dynamic. Based on these category properties,
the imputation is performed in accordance with category rules.

Static category
MMSI. These are checked vectors with high correlated features such

as Name and Callsign (see Table 9). The missing MMSI values are taken
from vectors with the same Name or Callsign and missing values are
inserted. This way, 2571 values were imputed, other 1203 vectors were
dropped as no associated Name or Callsign was found or these values
were missing as well.

Width and Length. Each vessel was checked if it has at least one
imputed value. This value is taken for a particular vessel and is imputed
in place of missing values for the same vessel. 31457 Width and 31212
Length values were imputed in accordance with such approach. For
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cases where Width was available and Length was missing or otherwise,
the linear regression was used to forecast the paired value. 5101 Width
values and 3478 Length values were imputed using this approach. 13919
vectors had no values for either feature. These vectors were imputed
with mean values of Length and Width for the same vessel type.

Draught - The missing values of Draught were imputed with help of
multivariate linear regression, created with strongly correlated features
Width and Length. All 1047433 missing values were imputed using this
approach.

Vessel type. Vessel type feature is a special case and is described
separately in sub-section 2.8

Dynamic category
SOG. This feature does not have a high degree correlation in dynamic

category features, and the missing 17983 values were imputed with the
mean value within the same vessel type.

COG. This feature has high degree of correlation with Heading. The
missing values were imputed from Heading feature.

Voyage category
Destination. There were 14183899 missing values for the feature.

Missing values were imputed with a single new category "Unknown".
Meteorological data category
All meteorological data are available without any missing values.

2.6 Data Feature Engineering

As the navigational vectors are received at different time intervals it
introduces another problem. The lack of constant data intervals results
in variation of sailed distance at same speed while analysing subsequent
vectors of a vessel. In order to solve the issue, new differential features
were introduced. The first new feature introduced is a time difference
between sequential vectors’ timestamps, expressed by:

x
(∆t)
(v,pv) = x

(timestamp)
(v,pv) − x(timestamp)

(v,pv−1) , (3)

where x(∆t)
(v,pv) is new feature, x(timestamp)

(v,pv) is particular navigational data

vector’s time of same vessel and x(timestamp)
(v,pv−1) is reception time of previous

data vector. v is data set number of a particular vessel, pv is vessel
position vector number in sequence as in formula (2). Two more features
introduced were created to express vessel movement differential in time
for latitude and longitude, and are expressed by:

x
(δLat)
(v,pv) =

x
(Lat)
(v,pv) − x

(Lat)
(v,pv−1)

x
(∆t)
(v,pv)

(4)
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x
(δLon)
(v,pv) =

x
(Lon)
(v,pv) − x

(Lon)
(v,pv−1)

x
(∆t)
(v,pv)

, (5)

where x(δLat)
(v,pv) and x(δLon)

(v,pv) are newly constructed features based on lati-

tude and longitude differences in subsequent vectors x(Lon)
(v,pv), x

(Lon)
(v,pv−1) of

the same vessel.
In addition to that, earlier works have shown that meteorological data
has significant influence on marine traffic models [35]. The data include
information about wind direction, wind strength, swell direction, swell
height, swell period, day/night, and tide level. These aforementioned
features are also artificially added to each vessel data vector that was reg-
istered by AIS system. Meteorological data were taken periodically from
the European Centre for Medium-Range Weather Forecasts (ECMWF)
grid. ECMWF provides data in certain geographical interpolated res-
olution. Figure 4 represents available meteorological data locations in
red dots. Vessel position accuracy is much higher than meteorological
data grid, thus the assignment of a particular grid point to vessel nav-
igational vector is accomplished. Meteorological data is assigned to a

Figure 4: Meteorological data grid [57]

navigational vectors by using the algorithm of the nearest neighbour by
location and time. At first, distance to all meteorological locations is
calculated by haversine formula [58] using WGS84 geodetic system coor-
dinates of vessel and meteorological locations. The closest meteorological
location is assigned based on calculated distances and then the closest
in time forecast is picked from all forecasts for this location (Figure 4).
This meteorological data is assigned to vessel position vector. This way
it becomes possible to assign meteorological conditions at each vessel
track point in whole vessel trajectory.
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Final list of features The final list of features can be found in Table
11. The total number of features are f = 15. The features MMSI and

Table 11: Final list of features

Feature category Features
Static category Vessel size (With, Length, Draught pro-

cessed with MDS)
Dynamic category Latitude, longitude, SOG, COG
Voyage category Destination
Meteorological category winddirDegree, windspeedMeterSec,

swellheight, swelldirection, swellperiod,
day/night

Engineered category x(∆t), x(δLat), x(δLon)

Timestamp are used only in restructuring data set and then splitting to
sequences. Feature "Ship Type" is used to split data sets to separate
data sets by vessel type in order to train separate models.

2.7 Splitting Vessels Navigational Vectors to Sequences

In the following chapter for vessel position prediction, the algorithm of
artificial deep neural network (DNN) is described. In order to obtain the
predictions the data must be in certain three dimensional format, thus
a sliding window approach for data slicing is applied. Slicing algorithm

Figure 5: Sliding window visualization

takes data set restructured matrix S function (2). Each vessel data set
sv in a window is processed separately and {x(v,1), x(v,2), . . . , x(v,pv)} set is
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sliced into sequences by length of ñ+n′ (fig. 5), where ñ is length of DNN
output sequence (prediction) and n′ is length of input (for prediction)
sequence. The window slides according to a predefined step of η each
time producing a new sequence. Each sequence is divided into two parts.
The first part in length of n′ is assigned to input matrix, and the second
part in length of ñ is written into output matrix. The obtained matrices
can be defined by expressions:

(χ, Y ) =





x(1,1) x(1,2)

x(2,1) x(2,2)
· · · x(1,i) · · · x(1,n′)

x(2,i) · · · x(2,n′)

...
. . .

...
x(g,1) x(g,2) · · · x(g,i) · · · x(g,n′)

...
. . .

...
x(N,1) x(N,2) · · · x(N,i) · · · x(N,n′)


,



x(1,n′+1) x(1,n′+2)

x(2,n′+1) x(1,n′+2)
· · · x(1,n′+r) · · · x(1,n′+ñ)

x(2,n′+r) · · · x(2,n′+ñ)

...
. . .

...
x(g,n′+1) x(g,n′+2) · · · x(g,n′+r) · · · x(g,n′+ñ)

...
. . .

...
x(N,n′+1) x(N,n′+2) · · · x(N,n′+r) · · · x(N,n′+ñ)




g ∈ {1, 2 . . . , N}, i ∈ {1, 2 . . . , n′}, r ∈ {1, 2 . . . , ñ}

(6)

where χ is input of the model, Y is output of the model, N is number of
vessel navigational vectors sequences, n′ - length of single sequence for
input, ñ - length of navigational vector sequence for output. , χ and Y
are matrices of vessels’ navigational vector sequences formed by sliding
window process while assigning a vector x(v,pv) from current window
position to a sequence matrices (χ, Y ).

Obtained matrices further are split into subsets that are used for
model training, validation and testing. Data split is organized by random
rows selection.

This method was applied on each vesse’s sequential (time series) vec-
tors structured by S function (2). The splitting window sizes were set to
n = 50′ and ñ = 50. The quantity of prepared sequences by vessel type
(feature "Vessel type") can be found in the Table 12 under unbalanced
sequences columns.

2.8 Classification of Vessel Types

The lack of the data such as vessel type prevents the creation of a suffi-
ciently accurate model for detection of unusual vessel traffic. It is there-
fore necessary to develop a method for imputation of the missing data.
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Table 12: Split sequences of vessels before and after class balancing

Sequences, Sequences,
unbalanced classes balanced class (SMOTE)

Vessel type Vessels Total Total Train Validation Test
Cargo 1763 110554 110554 66332 22111 22111
Tanker 585 33005 110554 66332 22111 22111
Fishing 75 23022 110554 66332 22111 22111
Passenger 73 70153 110554 66332 22111 22111
Tug 641 3773 110554 66332 22111 22111
Military 54 6934 110554 66332 22111 22111
Sailing 52 9783 110554 66332 22111 22111
Dredging 38 6701 110554 66332 22111 22111
Pleasure 32 2873 110554 66332 22111 22111
SAR 29 5415 110554 66332 22111 22111
Pilot 21 9287 110554 66332 22111 22111
Towing 13 764 110554 66332 22111 22111
Reserved 13 639 110554 66332 22111 22111
Law_enforcement 12 6530 110554 66332 22111 22111
Towing_long_wide 11 538 110554 66332 22111 22111
HSC 8 47 110554 66332 22111 22111
Port_tender 5 398 110554 66332 22111 22111
Diving 5 152 110554 66332 22111 22111
Anti-pollution 2 1600 110554 66332 22111 22111
Spare_1 1 23 110554 66332 22111 22111
WIG 1 59 110554 66332 22111 22111

TOTAL 2857 302250 2321634 1392972 464331 464331

In this subsection a technique for imputation of missing vessel type data
is described. The imputation helps to improve detection of abnormal
maritime traffic. The results of this research were presented in paper
[35] by Venskus and Treigys.

Figure 3a shows histogram of vessel types. All missing vessel types
are marked as "undefined" and assigned to a single group. We see that
the number of missing vessel type values is 4234160 and that constitutes
4.28% (see Table 10) of all data in this region during the specific time pe-
riod. Figure 6 shows marine traffic visualisation in geographical WGS84
plane as a two dimensional projection. Different colors represent traffic
of different vessel types. It can be observed that vessel types have dis-
tinctive patterns. Based on that, the model of imputation of the missing
"Vessel type" values is created.

In order to recognize a vessel type from available navigational vessel
vectors, a model, which was trained on available data, needs to be devel-
oped and later this model should be used to classify types of unknown
vessels. Figure 6 presents different patterns of marine traffic of specific
vessel types (visualized vessel type traffic can be found in Appendix B).
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Figure 6: Traffic of different vessels types in geographical coordinate
plane

For the classification task, the data must be prepared as described in
earlier subsections. The prepared data is split in two groups: the data
with known and unknown vessel types. The data with known vessel type
data will be used for model training, validation and testing. Vessel type
in data set is assigned to each vessel’s navigational vectors sequence as
a class to be learned. The model will be trained to recognise vessel type
as a class based on vessel’s navigational vectors sequence, i. e. vessel
trajectory.

In order to teach a model to classify vessel types, a deep neural
network is constructed (see Figure 7). The input of neural network is
a sequence of single vessel’s navigational vectors, that have been con-
structed as described in previous subsections. The neural network input
layer is of multi-step and multivariate type, which is represented as two
dimensional matrix. The first dimension contains vessel’s navigational
vectors at sequential time steps. The second dimension contains multi-
variate features for time steps such as longitude, latitude, Speed Over
ground (SOG), Course Over ground (COG), wind direction, wind speed,
wave height, etc. The detailed list of used features is described in Table
11(47 p.) in subsection 2.6. The dimensions of matrix is n′×f , where n′
is length of a sequence (time steps) and f is a number of features. The
deep neural network architecture has two main modules, namely, a multi-
stacked multivariate LSTM network and multi-layer perception models.
The input layer is interconnected sequentially with first layer of LSTM
module. Each LSTM layer has Qlstm number of LSTM cells in each out
of f number of feature sublayers. The number Qlstm of LSTM cells is
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Figure 7: Scheme of vessel type classifier

determined during tuning of the neural network in order to gain maximal
accuracy. The description of LSTM cell can be found in subsection 4.1
under paragraph Long short term memory neural network. The LSTM
layers are stacked on top of each other and are interconnected sequen-
tially. The bottom layer cell output y(t) is provided as a top cell input
x(t). The last LSTM layer cell output is connected to multi-layer per-
ceptron module through it’s input layer. The input layer has f number
of neurons. The Multi Layer Perceptron (MLP) has two hidden layers
with Qmlp neurons each. These layers are interconnected through drop
out layer for network overfitting regularization [59]. Hidden layer uses
Rectifier Linear Unit (ReLU) as activation function. The MLP output
is softmax layer [60], where each neuron represents class probability.

The workflow of vessel type classification can be summarised as:

1. The raw data is prepared as described in subsection 2 Data Prepa-
ration.

2. A vessel type is assigned as a class feature to each vessel’s naviga-
tional vectors sequence. The missing vessel type values are marked
as "undefined" and are separated from data. Then the data set
with vessel types is evaluated for class imbalance. As is seen in ves-
sel type histogram (Figure 3a), the vessel type classes are strongly
imbalanced. For imbalance handling a Synthetic Minority Over-
sampling Technique (SMOTE) technique is used [61].
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3. Before network training, the data sets are randomly shuffled and
separated into three subsets. 50% of data set are used for neural
network (Figure 7) training. 30% of data are used for validation
and model fine tuning during a neural network training and the
third set with 20% of data is used for model testing and general
error estimation.

4. Initial Q(min)
lstm number of LSTM cells in a layer is chosen, and the

network is trained. As a loss function, the Sparse Categorical Cross
Entropy [62] with the stochastic optimizer Adam [63] were used.

5. Model weights and prediction values are stored for further process.
The accuracy of the trained network is evaluated using validation
data set. If Qlstm hasn’t reached maximum value Q(max)

lstm , then the
workflow is repeated from step 4.

6. Finally, the most accurate model is chosen to predict a vessel type
that matches certain vessel’s navigational vectors sequences.

Figure 8: Loss trend of vessel type classifier training

The model parameters are set as follows: the LSTM cells per layer is
set to Qlstm = 250; Neurons per MLP hidden layer is set to Qmpl = 40;
the dropout layer’s rate is set to 0.2. The networks loss function categor-
ical cross entropy is used. The Adam optimiser [63] was used with the
following parameters: learning_rate = 0.001, beta_1 = 0.9, beta_2 =
0.999, epsilon = 10−07. The Figure 8 depicts training and validation
losses over epochs. A rapid loss drop is observed until 45th epoch and
then a slow dropping is seen until 250 epoch, and after that it becomes
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Table 13: Evaluation measures of vessel type recognition model

Vessel Type Precision Sensitivity F1-score
Cargo 0.96727 0.97182 0.96954
Tanker 0.97004 0.98268 0.97632
Fishing 0.95735 0.96739 0.96234
Passenger 0.96518 0.96034 0.96275
Tug 0.85723 0.87490 0.86597
Military 0.96387 0.97838 0.97107
Sailing 0.95072 0.94405 0.94738
Dredging 0.96486 0.97852 0.97164
Pleasure 0.96388 0.96201 0.96295
SAR 0.99268 0.99299 0.99283
Pilot 0.91491 0.90887 0.91188
Towing 0.86471 0.88716 0.87579
Reserved 0.99896 0.99928 0.99912
Law_enforcement 0.97808 0.94057 0.95896
Towing_long_wide 0.95590 0.87545 0.91391
HSC 0.98834 0.99299 0.99066
Port_tender 0.94639 0.95798 0.95215
Diving 0.97736 0.99977 0.98844
Anti-pollution 0.99900 0.99860 0.99880
Spare_1 0.99991 0.99910 0.99950
WIG 0.99995 0.99973 0.99984

Average 0.96079 0.96060 0.96056

Accuracy 0.96060

stable. Tables 35 and 36 in Appendix C show confusion matrix of a
trained vessel type classifier.

Table 13 shows evaluation measures of vessel type recognition model.
The evaluation was performed using test data set, which was kept sepa-
rate during the whole training process. The five classification measures
were calculated: precision, sensitivity, f1-score for each class, average,
and accuracy for all classes. It is observed, that classification of vessel
types Tug, Towing, and Towing_long_wide shows lower precision values
than other classes, i. e. 0.85723, 0.86471, and 0.95590 per vessel class
accordingly. Moreover, by careful analysis of fusion matrix (Appendix C)
one can state that these three class representatives share false positives
and negatives mostly between themselves, which means that distinction
of the vessel from supplied category is ambiguous. The class Tug was
falsely negatively classified as Towing 1089 times, similar behaviour ob-
served with Towing_long and Tug (1199 false negative cases) vessels.
Other groups of false negative classes include Military vs. Law enforce-
ment and Sailing vs. Pleasure vessel types. Short analysis shows that
these classes have the most similar traffic behavior in maritime domain.
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The precision average, sensitivity, f1-score (see Table 13) of vessel
type classifier are high enough to impute missing vessel types.

Table 14: Prepared final data sets of marine vessel traffic

Vessel type Vessels Sequences Total
count Train Validation Test Total vectors

Cargo 1944 75625 25208 25209 126042 12604200
Tanker 645 22577 7526 7526 37629 3762900
Fishing 83 15748 5249 5250 26247 2624700
Passenger 80 47988 15996 15996 79980 7998000
Tug 71 9421 3140 3141 15702 1570200
Military 59 4743 1581 1581 7905 790500
Sailing 57 6692 2231 2231 11154 1115400
Dredging 42 4584 1528 1528 7640 764000
Pleasure 35 1965 655 655 3275 327500
SAR 32 3704 1235 1235 6174 617400
Pilot 23 6352 2118 2118 10588 1058800
Towing 14 522 174 175 871 87100
Reserved 14 436 146 146 728 72800
Law_enforcement 13 4467 1489 1489 7445 744500
Towing_long_wide 12 367 123 123 613 61300
HSC 9 32 11 11 54 5400
Port_tender 6 272 91 91 454 45400
Diving 5 103 35 35 173 17300
Anti-pollution 2 1094 365 365 1824 182400
Spare_1 1 15 5 6 26 2600
WIG 1 40 13 14 67 6700
TOTAL 3148 206749 68917 68925 344591 34459100

Table 10 depicts 4234160 missing vessel type vectors, which consti-
tute 4.3% of all vectors of the "Fehmarnbelt" data set. Table 14 sum-
marizes the final list of data sets grouped by vessel type. Finally, each
vessel type data set is divided to train, validate, and test subsets with
rations 80:20:20, respectively. The test set is kept untouched in anomaly
detection model creation and is used only for final model evaluation.
The same data sets are used for investigation in all methods, algorithm
investigation and evaluation.

2.9 Conclusions of the Section

In this section, AIS and meteorological data were related to Klaipeda and
"Fehmarnbelt" sea regions. Unprocessed data from the "Fehmarnbelt"
data set consisted of 98245370 records, Klaipeda sea area had 642541,
and meteorological data aggregated 20608 records.

The multistacked multivariate LSTM classifier was developed to cope
with the issue of missing vessel type. The proposed model performs
very well. After inspection of per class precision (in most cases higher
than 0.96), recall, f1-score metrics show good generalization properties
allowing to gain classes for lacking 4.28 percent (4234160 navigational
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vectors) of the data in the "Fehmarnbelt" data set.
Data preparation was performed for upcoming anomaly detection

analysis. Preprocessing includes data structuring, cleaning, down-sampling,
imputation of missing values, feature engineering, and splitting to se-
quences of vessel navigational vectors. According to the different na-
ture of the AIS data, an appropriate data imputation scheme has been
introduced. Overall, the applied data prepossessing resulted in total
"Fehmarnbelt" data set of 34459100 records, Klaipeda’s sea area data
set with 232093 records.

Finally, the research assumes that anomaly detection will be in-
spected in the middle range of vessel trajectory, which is an average
of 20% of activity in the region of interest. On average, vessels pass the
investigated "Fehmarnbelt" region in 8-12 hours. Thus, the minimum
time to detect trajectory anomalies is between 1.6 and 2.4 hours. To
this end, calibrated n′ = 50 allows to achieve vessel trajectory inspec-
tion sensitivity of 2 minutes.
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3 Semi-supervised Point Based Vessel Traffic
Anomaly Detection

This section presents the description of point based semisupervised ma-
rine vessel traffic anomaly detection based on SOM and virtual pheromone
integration [26], and SOM with Gaussian Mixture Model (GMM) [56].
The section describes design details of these methods, selection of pa-
rameters and retraining strategies. These researches were presented in
papers by Venskus et al. [26, 27].

3.1 Maritime Anomaly Detection Using an Integration of
a Self-Organizing Map and a Virtual Pheromone

3.1.1 Clustering with SOM

The self-organizing map (SOM) is a neural network-based method that
is trained in an unsupervised way using a competitive learning [64, 55].
A distinctive characteristic of this type of neural networks is that they
can be used for both visualization and clustering of multidimensional
data. The most important property of SOM can be utilised for many
tasks, such as reduction of the amount of data, speeding up learning
nonlinear interpolation and extrapolation, generalisation, and efficient
compression of information [65]. SOM is one of the most analyzed neural
networks, that is learned in an unsupervised manner. In our case, SOM
represents a set of neurons, connected to one another via a rectangular
topology. The rectangular SOM is a two-dimensional array of neurons
W = wij , i = 1, . . . , k, j = 1, . . . , s. Here k is the number of rows, and s
is the number of columns. Each element of the input observation vector
is connected to every individual neuron in the rectangular structure. Any
neuron is entirely defined by its location on the grid by its specific index
at the row i and the column j, and by its weight (so-called code book)
vector. After SOM training, the data are presented to SOM and the
winning neuron for each data vector is found. The winning neuron is
the one to which the Euclidean distance of the input data vector is the
shortest. This way the data vectors are distributed on SOM, and some
data clusters can be observed.

The results of a SOM map depend on the selected learning parame-
ters. Learning rates and neighbourhood functions hij are the necessary
parameters that influence the results. The neighbourhood function de-
termines how strongly the neurons are connected to each other and in-
fluences the training result of SOM. Therefore, it is important to choose
the proper neighbourhood function. There are different kinds of neigh-
bourhood functions: bubble, Gaussian, Cut Gaussian [66, 67], heuristic
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Table 15: Neighbourhood functions

Gaussian hij(t) = exp

(
−

d2
ij

2(ηij(t))2

)
Bubble hij(t) = F (ηij(t)− dij)

Cut Gaussian hij(t) = exp

(
−

d2
ij

2(ηij(t))2

)
F (ηij(t)− dij)

Triangular hij(t) =

 1− |dij |
ηij(t)

, if |dij | ≤ ηij(t)

0, otherwise

Mexican hat hij(t) =

(
1−

d2
ij

(ηij(t))2

)
exp

(
−

d2
ij

2(ηij(t))2

)

[68], Mexican hat [69], triangular [69], rectangular [69] and others. In
this research, I have compared five neighbourhood functions and their
influences on the classification results obtained by the modified SOM
method. These functions are presented in Table 15, where dij is a dis-
tance between the current observation vector and the winning neuron,
ηij is the neighbourhood radius, F is a step function: F (x) = 0, if x < 0
and F (x) = 1, if x ≥ 0.

As mentioned before, the learning rate also influences the results of
SOM. Usually, linear, inverse-of-time, and power series learning rates are
used for the SOM training [70, 71]. In this research, the learning rate
is constant and equal to 0.5, both the initial neighbourhood radius and
the radius decay parameters are set to −0.1.

3.1.2 Classification by Using a Virtual Pheromone Concept

The application areas of SOM are data clustering and graphical result
presentation. In this subsection, the Thesis proposes to exploit the
biologically-inspired notion of a virtual pheromone to use the collected
knowledge about clusters and classify marine traffic abnormality. The
idea is based on the observations of ant colonies. To mark the way
to the food source, the ants use a chemical substance called pheromone.
Other ants follow the pheromone trail to reach the discovered food source.
Pheromone evaporates in time, and the trail on the road slowly disap-
pears. The ants must continually travel by the same route to strengthen
the evaporating pheromone trail.
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In the proposed approach, a modified SOM method’s training pro-
cess is the same as the original one except that the virtual pheromone
intensity value is introduced in the last epoch. When the SOM network
training is completed, all possible training and validation data vectors
are shown to SOM. Further, considering the number of vectors assigned
to the same cluster, it can be calculated how this cluster represents a
majority. It is necessary to count the number of vectors in the cluster
in order to assign the vectors from the training data set to winning neu-
rons. The number of represented data vectors by SOM neuron is written
next to the weight of the winner neuron (codebook). This value is called
virtual pheromone mark Q.

In the beginning, each SOM neuron has its pheromone intensity
value, which is equal to the cluster size (number of vectors in that cluster)
of this neuron. The value of a pheromone mark Q is calculated as fol-
lows: when the winning neuron is selected for the individual data vector,
the pheromone intensity value is increased by one, i. e., the pheromone
mark is associated with the appropriate neuron. Thus, the more data set
vectors are assigned to the same winning neuron, the higher its virtual
pheromone intensity is.

In order to adjust the pheromone evaporation procedure, after each
SOM network re-training, the virtual pheromone intensity value τij is
updated according to the equation:

τij(t2) = (1− ρ) · τij(t1) +Qij , (7)

where τij is a virtual pheromone intensity; t1 is the previous state of
the virtual pheromone intensity; t2 is the recent state of the virtual
pheromone intensity. The parameter ρ represents a virtual pheromone
intensity evaporation speed (0 < ρ < 1). In the formula, similarly to
the ant colony system, the pheromone trail will evaporate unless it is
renewed within a particular time. The intensity reduction is slower than
its renewal process [72], [73].

The pheromone intensity threshold used for abnormal movement de-
tection is calculated using the validation data set. The precision and
sensitivity of the algorithm can be adjusted by changing the threshold
value. To adjust the threshold, the classification error cost function has
been optimized according to:

J(Θ) = −βPPV log(PPVΘ)− βTPR log(TPRΘ), (8)

PPVΘ =
TPΘ

TPΘ + FPΘ
, (9)

TPRΘ =
TPΘ

TPΘ + FNΘ
. (10)
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Here J(Θ) is a classification error rate and Θ is a threshold value; PPVΘ

is classification precision; TPRΘ is classification sensitivity; βPPV and
βTPR are the influences of classification parameters on the classification
error cost function; TPΘ is the count of true positive (assigned to an
abnormal state) observations; FPΘ is a false positive (assigned to a false
abnormal state); TNΘ is a true negative (assigned to a normal state);
FNΘ is a false negative (assigned to a false normal state). The gradient
descent method has been used to find a local minimum of the function
expressed by equation (8).

When the new vessel position is received, the navigational vector
representing this state is assigned to the appropriate SOM cluster by
choosing the winning (closest) neuron of this cluster. Thus, a winning
neuron and its representing cluster should be found for each newly re-
ceived vessel navigational vector. This vessel vector is classified based on
the pheromone value assigned to SOM neuron representing the assigned
cluster. The vessel vector is classified as normal if the pheromone value
is greater than the threshold value Θ, or abnormal if less.

3.1.3 Method Description

As mentioned earlier, the combination of a self-organizing map and a
virtual pheromone is proposed to classify events for abnormal movement
detection in maritime traffic. It is important to identify whether the
observation data show the abnormal vessel behaviour and to react ac-
cordingly. Therefore, creating and testing the algorithm, the trained
SOM neural network is transferred to a system where it classifies real
time data, based on the existing network settings without additional re-
training. However, as the amount of new data increases, in order to
ensure a high classification accuracy, there is a necessity to re-train the
network periodically. The re-training process of the neural network is
run by adding new observation data to the training set.

A general scheme of the proposed algorithm (SOM_Pheromone) is
presented in Fig. 9. Its implementation steps are described as follows:

• Data processing. The data filtering is applied in order to reject
repeated and erroneous data, then the data set is divided into
three subsets: training, validation, and testing.
• Normalisation of the training data set. Each observation attribute

is scaled with Min-Max to interval from 0 to 1.
• SOM network training. Each winning neuron has its pheromone in-

tensity value which is equal to the number of data vectors assigned
to the winning neuron. The virtual pheromone value is calculated
in the last epoch. During the SOM re-training process, the function
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Figure 9: Integration of a self-organizing map and a virtual pheromone

of the virtual pheromone intensity evaporation is applied.
• Tuning of the pheromone threshold using validation data. The sen-

sitivity and precision of the algorithm are adjusted by changing
the threshold value. After the SOM network training, the thresh-
old value of the pheromone intensity for abnormality detection
is chosen with respect to the minimum and maximum values of
pheromones. To adjust the optimal threshold, the classification
error rate function has been used (see eq. 8).
• Testing of the algorithm using test data. The test data set is nor-

malised to interval 0 and 1. Further, the test data observations are
classified as normal or abnormal by taking into account the SOM
network parameters and pheromone values obtained in the training
step.
• Classification of new marine traffic observations. The classification

of new data in real time is based on the resulting network settings
without additional SOM training.
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3.2 Maritime Anomaly Detection Using Self-Organizing
Maps and Gaussian Mixture Models

Comparisons of the proposed algorithm with other similar methods are
performed. In this subsection the additional SOM-based algorithm for
abnormal movement detection in marine traffic is presented [14], [74].
This anomaly detection method (SOM_GMM) is a combination of SOM

Figure 10: Integration of a SOM and a Gaussian Mixture Model

and Gaussian Mixture Models (GMM). Figure 10 depicts the implemen-
tation steps of the algorithm. Those steps are described as follows:

• Division of the available data sets. The available vessel traffic data
from the area of interest are divided into three sets: 50% - a training
data set for SOM learning, 30% - a validation/adjustment data set
for a pheromone intensity threshold calculation, and 20% - a test
data set for evaluation of classification results.
• Pre-processing of the training data set. During the pre-processing,

all the duplicate data vectors are filtered out.
• Normalisation of the training data set. Each attribute has been

normalised into the range of 0 and 1.
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• SOM calculation. The learning process of SOM is influenced by
several parameters: shape of the grid is square, the learning rate
was set to 0.5, the weight range was set to 0.5. The Gaussian
neighbourhood function was used. Both the initial neighboring
radius and the radius decay parameters were set to -0.1.
• Covariance matrix calculation. For each map neuron, the covari-

ance matrix of all input vectors that correspond to a winning neu-
ron is calculated.
• Calculation of prior probabilities. For each SOM cluster the n-

dimensional Gaussian probability density function has been cal-
culated. The mean of each density function corresponds to the
weights of the SOM neuron vector, and the variance is given by
dispersion of training data.
• GMM calculation. GMM is calculated by summing all Gaussian

distributions of each SOM cluster.
• Adjustment of the P(H=normal) likelihood value on validation

data set.

In paper [14], a division of the anomaly detection process into on-line
and off-line sub-processes has been proposed. The on-line data process-
ing refers to the analysis of incoming data in real-time, the off-line pro-
cessing relates to the establishment of normal models from the training
data and rules used during the on-line detection process. The method,
presented in papers [14], [56], is based on two assumptions: unusual
events have to be sufficiently different from the normal events in order
to be detectable; the training set should be free from unusual events.
The same assumptions and conditions were met while carrying out the
experiments described in Section 5.

3.3 SOM retraining strategies

This subsection presents SOM retraining strategies for marine traffic
anomaly detection. It is a part of doctoral research presented by Venskus
et al. in paper [27].

Motivation in SOM retraining strategies. With the growth of
maritime traffic, especially near seaports, the complete retraining of the
SOM algorithm becomes costly in terms of training time. The need for
algorithm retraining is quite straightforward: the more vessel movement
data are observed and fed into the algorithm, the better the precision of
the algorithm should be. All neural networks are strongly dependent on
the input sequence in the training data. It was observed that, if only the
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input sequence of the data changes, even though the system architec-
ture stays the same, classification accuracy results may be significantly
impaired [75]. Other authors proposed neural networks retraining strate-
gies to build compact neural network models with less memory usage and
faster inference speed [76]. Recently, the SOM neural network is being
used to build data sets used in deep neural network model retraining
[77, 78] or is used as a part of deep neural network model [79]. Dif-
ferent areas of applications of the SOM algorithm depicts the necessity
to investigate algorithm effectiveness more thoroughly with respect to
algorithm sensitivity, precision and data processing time by introducing
different retraining strategies. SOM retraining ensures the inclusion of
the most recent movement data that reflects actual conditions and con-
text. To maintain high algorithm precision and sensitivity, approaches
to data streaming, batching and model retrain strategies have to be ex-
plored[80].

Introduction of retraining strategies. In this dissertation, two neu-
ral network retraining strategies are presented. The research and com-
parison of the results with the standard procedure of neural network
model experimental investigation (so-called Strategy I) is presented by
Venskus et al. in paper [27].

• Strategy I presents data batching and algorithm training when-
ever the new batch becomes available as if no model history data
were available. It is a common approach for neural network train-
ing/validation/testing. It is used as a reference in order to compare
retraining Strategies II and III introduced by Venskus et al. in pa-
per [27].
• Strategy II presents algorithm performance while using pre-trained

model parameters on previously trained data with the new incom-
ing data batches.
• Strategy III presents different data batch shuffling techniques and

the use of previously pre-trained model parameters.

All three strategies were investigated for the learning rate parame-
ter influence on the model performance and training time as well. Data
passed from a vessel can be viewed as a stream that contains facts re-
garding vessel movement trajectories. Those may depend on seasonal
data, the shipping routes, schedules, and so on. Thus, the abnormality
detection model has to be developed by analyzing vessel movement tra-
jectories (as well as historical data) in an incremental manner based on
the up-to-date data.
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Preparing batches. First, 20% of the vessel type data set is randomly
selected for the general model error evaluation. Then, the resulting 80%
of the data set items are used for the data batching strategy. These 80%

Figure 11: Data split scheme [27]

of data items were split into 20% for strategy testing, and 80% for T1, T2,
and T3 data batch splitting (see Figure 11) to perform the SOM network
training and validation. Batches were used in the experiments to imitate
the continuous data arrival with the view to investigate different SOM
network retraining strategies and learning rate parameter selection. The
scheme of data split is shown in Figure 11. All data items were sorted
in ascending order with respect to data sending timestamp. The SOM
network of size 60 × 60 was taken according to the SOM size method
investigation published in [26].

Strategy I. In Strategy I for the SOM network training and validation,
T1, T2 and T3 data batches are used. The learning rate parameter is set
to 0.5. Then, after the network has been trained and validated with the
T1 data batch, the new data were fed to the network as follows: the T1
and T2 batch data were merged together and the algorithm was trained
from the initial random state using all items from T1 and T2. The
same scheme was applied to the T3 data batch. To get the best network
performance, the learning rate parameter can be adjusted. This way,
the training experiment of Strategy I is repeated while every learning
parameter value is tested to achieve the best algorithm performance.
After the model is trained, it is tested with the test data set, which
allows to evaluate the general model error. The best obtained model
characteristics are chosen using the test data set.
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Strategy II. The initial algorithm of strategy I is trained 10 times
with the T1 batch data. During each training, the weights of the SOM
network were generated randomly, and the best performing network was
selected while keeping a fixed learning rate parameter at the value of 0.5.
Then, the best obtained network parameters were used as initial weights
for the network to be trained with T2 batch data.

Strategy III. The scheme of the model training validation and testing
was similar to that described in Strategy II, except for the following two
aspects. Firstly, from T2 and T3 batches, four data batches (Tm2–Tm5)
were produced, and each batch contained one quarter of both T2 and
T3 data. Secondly, as previously described, after every model training
and validation, the parameters of the best obtained model were used for
every next Tm2–Tm5 batch training, except for the model training data
aggregation. For every retraining a test data for model error estimation
of data was used as described in previous Strategies I and II. Half the
items from Tm2–Tm5 data batches consisted from items from T2 and T3,
(Tm2–Tm5) while another part of the data was selected proportionally,
with respect to those data points attached to the previous best model
SOM winning neurons. This approach guaranteed that the knowledge
of frequently passed sea regions was incorporated into the next model
training because it is not frequent for the vessels to change their sea
routes. The experimental study of the strategies on "Klaipeda" and
"Fehmarnbelt" is described in Experiments section 5 on page 77.

3.4 Conclusions of Section

In this section, the modified SOM algorithm for marine vessel move-
ment data classification into normal and abnormal classes is presented
with possible retraining strategies. The SOM method modification is
achieved by incorporating virtual phe-romone intensity calculation at the
last epoch of model training. Further, during the model validation stage,
the pheromone intensity threshold is introduced by applying a gradient
descent method. The possibility to apply different neighbouring func-
tions was depicted as well. With the view to decrease the computational
time, different strategies for the retraining of the SOM network were de-
veloped and presented for further performance investigation. The data
batching strategies with history data embedding allow the algorithm to
cope with the huge amount of new data on vessel movements in a rea-
sonable time.
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4 Unsupervised Detection of Marine Vessel Ab-
normal Trajectory

This section presents the proposed algorithms and methods to achieve
marine vessel unsupervised abnormal trajectory detection. The section
is based on the literature review performed in section 1. The methods
and algorithms related to the content of the subsequent section were
published in papers [35, 81, 57, 82].

4.1 Marine Vessel Trajectory Prediction

For vessel trajectory unsupervised prediction the the deep neural network
is applied. The deep neural network input is the previous specific vessel’s
navigational trajectory data, then the prediction of the vessel’s subse-
quent position is calculated by the algorithm. If the prediction obtained
by the algorithm falls within the defined limit, the vessel’s expected lo-
cation is considered as normal, otherwise it is considered abnormal.

Long short term memory neural network. Fully connected dense
artificial neural networks do not ensure history retrospective. This is
a significant drawback when forecasting algorithms try to predict time-
series data in such domains as economics, language processing or trans-
port routes. Recurrent Neural Networks (RNN) were proposed to over-
come this challenge. However, RNN have vanishing and exploding gra-
dients problems, and to overcome this in practice when longer sequences
of input data are used, the dissertation proposes to use Long Short Term
Memory (LSTM) network [83]. The network performs significantly bet-
ter in other applications such as speech recognition [84], handwriting
recognition [85], reinforcement learning [86] and many other fields.

LSTM structure implements modified back-propagation approach of
gradient descent method that solves vanishing gradient problem and the
network can learn complex non-linear patterns. LSTM network archi-
tecture represents interconnected cells and is shown in Figure 12. LSTM
cells transmit cell state c(t) (see Figure 12), that is passed to a network
with minimal linear operations. Such passed information is often called
LSTM cell memory. h(t) is hidden state of cell and it is the same as
cell output y(t). This cell receives hidden state, c(t − 1) cell state, and
x(t) cell input from previous cell h(t− 1). Then the cell computes what
information should be kept for further calculations and what has to be
forgotten [83]. The architecture of LSTM auto-encoder can be obtained
by interconnecting such cells.
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Figure 12: Structure of LSTM cell [83]

LSTM auto-encoder. An auto-encoder is a type of artificial neural
network used to learn efficient data encoding in an unsupervised man-
ner [87]. The goal of an auto-encoder is to extract a representational
latent vector (encoding) for a set of data. A typical auto-encoder con-
sists of three parts, namely, encoder, latent vector, and decoder. During
training, encoder and decoder learn to reduce input and to reconstruct
output through compressed latent vector in such way that the network
input would be as close as possible to the network output. The main
difference of the LSTM auto-encoder is that the main blocks of the net-
work architectures are LSTM cells. Encoder compresses input data χ
(see eq. (6)) to latent space and decoder predicts sequence of next vessel
positions Y (see eq. (6)). In this dissertation a multivariate multi-step
LSTM auto-encoder is used (see Figure 13). The decision on selection
of Deep neural network architecture was made based on research by Ju-
rkus presented in thesis [88], where best accuracy of vessel trajectory
was archived with a multivariate multi-step LSTM auto-encoder.

The main parts of a proposed LSTM auto-encoder are input layer,
encoder layers, a vector of encoded latent representation, decoder layers,
and an output/reconstructed sequence layer. The input layer receives
structured navigational vectors sequences χ defined by (6) and returns
the predicted/reconstructed output sequences Ŷ defined by (6). Encoder
and decoder parts consist of LSTM cells that are interconnected sequen-
tially inside a particular block and are parallel between on-top-stacked
layers.
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Figure 13: Architecture of LSTM auto-encoder

A reconstruction (prediction) error of auto-encoder is obtained by:

e
(l)
(g,r,j) = Y(g,r,j) − Ŷ

(l)
(g,r,j);

l ∈ {upper, crisp, lower}; g ∈ {1, 2, . . . , N};
r ∈ {1, 2, . . . , ñ}; j ∈ {1, 2, . . . , f};

(11)

where e(l)
(g,r,j) is the reconstruction error of a single navigational vector’s

feature, Y(g,r,j) - true value of a single navigational vector feature, Ŷ (l)
(g,r,j)

- output estimated value by auto-encoder of a single navigational vector
feature, l is model type: crisp, lower, upper (described in section bellow
4.2), g - position of sequence of predicted navigational vector, r - posi-
tion in sequence of predicted navigational vector, ñ - output sequence
length, j - jth navigational vector’s feature, f - number of features, Y
and Ŷ are navigational vectors structured by expression (6). The loss
function defined in equation 12 is used as is in crisp type of a model.
The upper and lower type of models modify the equation 12 to obtain
bound properties of the crisp model (see subsection 4.2).

L(l)
s =

1

Nñf

N∑
g=1

ñ∑
r=1

f∑
j=1

(e
(l)
(g,r,j))

2, l = {upper, crisp, lower}, (12)

where Lls is the shared part of loss function for l (upper, crisp, or lower)
type of models, N - number of training sequences in the training data set,
s is the index that notes shared part of loss function expression between
crisp, lower and upper type models.
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4.2 LSTM Prediction Region Learning

Longitude and latitude coordinates are used to determine the abnormal
vessel traffic. Real vessel navigational vectors are compared with pre-
dicted ones by the model in two-dimensional space. The assumption is,
if the vessel’s true position vector lays outside of the prediction region
(multivariate case of prediction interval), it is interpreted as abnormal
vessel movement and all vessel traffic vectors that appear inside the pre-
diction region are interpreted as normal vessel movement.

Three differently configured LSTM auto-encoders are used to learn
the models of multivariate prediction region boundaries. The Crisp
(l = {crisp}) model type predicts the geographical coordinates of vessel
trajectory. The lower (l = {lower}) model type predicts a lower bound of
prediction region for Crisp type model. The upper (l = {upper}) model
type predicts an upper bound of the prediction region for the crisp type
model. Lower and upper bounds models predict the prediction region
for the crisp type model.

In typical configuration, LSTM auto-encoder predicts only most ac-
curate values (crisp). In order to determine prediction regions, a method
was proposed by N.Cruz et al. [52] is used with modification to sup-
port multivariate and multi-step type LSTM networks. The prediction
region is composed of upper and lower bounds in which the predic-
tion/reconstruction output is found with a certain probability α [89].
The region is learned by training two LSTM auto-encoders with com-
bined classical MSE loss function (12) with the second metric of region
loss function as presented in [90]. The specific loss function for upper
and lower bounds is defined as follows:

L
(upper)
` =

1

Nñf

N∑
g=1

ñ∑
r=1

f∑
j=1

(ReLU(e
(upper)
(g,r,j) ))2, (13)

L
(lower)
` =

1

Nñf

N∑
g=1

ñ∑
r=1

f∑
j=1

(ReLU(−e(upper)
(g,r,j) ))2, (14)

where L(upper)
` and L(lower)

` are specific loss functions for upper and lower
bounds respectively, ` - is index that notes specific part of loss function
expression, ReLU is the rectified linear unit function defined by:

ReLU(x) =

{
0, for x < 0
x, for x ≥ 0.

(15)

As presented in paper [90], data points Y(g,r,j) larger than L
(upper)
` apply

a cost equivalent to the squared difference between the real data point
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and its upper bound prediction/reconstruction in accordance eq. (13).
Likewise, data points Y(g,r,j) lower than L

(lower)
` are penalized as defined

in equation (14). Data points Y(g,r,j) that are in prediction region (below
upper and above lover bounds) have no cost with a help of ReLU function
(15).

In combination of the upper and lower loss functions, a higher loss
value is applied to Y(g,r,j) points that are outside of the prediction region.
These regions are learnt by using the same target input data during
training process. The overall loss function is defined as the weighted
sum of the MSE (12) and the region loss functions (14)(13) for upper
and lower bounds respectively [90][52]:

L
(upper)
total = L(upper)

s + λL
(upper)
` , (16)

L
(lower)
total = L(lower)

s + λL
(lower)
` , (17)

where L(upper)
total is overall upper loss function, L(lower)

total is overall lower loss
function, λ is a tuneable parameter that represents the relative impor-
tance of the proposed classical/common and region loss functions [52].
The crisp model’s output is learned by using only a MSE loss function
(12):

L
(crisp)
total = L(crisp)

s , (18)

where L(crisp)
total is loss function for crisp model.

With these loss functions, the minimization of the prediction region
area is achieved. If functions are not applied, the prediction region loss
functions (Li) increase the region area, introducing a trade off between
the number of points that fall into the region and its area which can
be regulated by modifying the parameter λ in eqs. (16) and (17). The
algorithm for selection of λ is depicted in Figure 14

With the view to evaluate the quality of the prediction region, two
indicators were used. The first is the prediction region coverage prob-
ability (PICP) that quantifies the number of measured values that fall
within the region defined by the model [52] and is modified to support
multi-variate features and multi-step predictions:

PICP =
1

Nñf

N∑
g=1

ñ∑
r=1

f∑
j=1

(δ(g,r,j)) (19)

δ(g,r,j) =

{
1 if Y(g,r,j) ∈

[
Ŷ

(lower)
(g,r,j) , Ŷ

(upper)
(g,r,j)

]
0 if otherwise.

(20)
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The second metric is Prediction Interval Normalized Average Width
(PINAW) that is used to measure the area of the region [52]. PINAW
was also modified for multi-step and multivariate features:

PINAW =
1

NñfR

N∑
g=1

ñ∑
r=1

f∑
j=1

(Ŷ
(upper)

(g,r,j) − Ŷ
(lower)

(g,r,j) ) (21)

where R is the maximal difference between the feature max(Ŷ
(upper)

(g,r,j) −

Ŷ
(lower)

(g,r,j) ) in the data set [52], [90].

Figure 14: Iterative training process of joint supervision [90]

Figure 14 shows the algorithm for iterative training of the network. In
this approach, the λ parameter is increased iteratively to force a wider
region area in each iteration as the coverage probability increases. In
each iteration the PICP is estimated by eq. (19) [90]. When the desired
coverage probability α has been achieved, the algorithm stops the λ
parameter incrementation. Few more iterations are calculated using fixed
λ parameter in order to compensate the random initialization of the
initial algorithm weights [90].

4.3 Wild Bootstrapping Prediction Region

One of the main advantages of the bootstrapping techniques is that it
does not require to make any assumptions on the distribution of the data
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set being investigated. Traditionally bootstrap method re-samples the
initial data to produce more data samples that could be used in repeti-
tive experiment. However, the wild bootstrap technique is bit different.
Instead of generating bootstrap samples that consist of re-sampling the
original data or residuals, the wild bootstraps combine the data with
random variables drawn from a known distribution to form a bootstrap
sample. The usage in this dissertation can be summarised as:

1. Preparation of data as described in section 2.

2. Calculation of data set’s variance for every feature type.

3. Generation of multi-variate normal random variables while keeping
the same dimension and the mean equal to zero, and the variance
the same as that of the input data.

4. Element-wise summation of the initial data set with the newly
generated set, i. e. noise is added to the data with mean and
variance calculated from initial data set.

5. Scaling of resulting data for better LSTM training results into in-
terval [0, 1] while keeping each feature scaling factors for predicted
data reconstruction purpose.

6. Training of LSTM auto-encoder network.

7. Calculation of LSTM network predictions r-step ahead, r ∈ {1, 2, . . . , ñ}
(ñ = 50).

8. Restoration of prediction scaling, i. e. up-scale predicted values
according to the saved feature’s scaling parameters described two
steps above.

9. Repetition of steps 3-8 k-times (100 times in the dissertation ex-
periment).

After the application of the scheme as proposed above, the matrix with
predicted values is obtained. Then as point predicted value, the mean
vector of k replicates is chosen for each feature and each prediction step.
Thus 100(1 − α)% prediction region for the mean (average predicted
value) of a p-dimensional normal distribution is the ellipsoid determined
for unknown µ such that (see [91]):

kr

k + r
(x̄r − µ)T Ŝ−1(x̄r − µ) ≤ (k − 1)p

k − p
Fp,k−p(1− α), (22)

where
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• x̄r = 1
k

∑k
u=1 xu,r,j - the mean vector for each of the feature j ∈

{1 . . . f} at each prediction step r,

• Ŝ - sample covariance matrix,

• Fp,k−p(1−α) is an 1−α-level critical value of a Fisher distribution
with p and k − p degrees of freedom.

4.4 Aggregation of Anomaly Detection Models

The previous subsections discussed the prediction regions learning, the
LSTM prediction learning, and the LSTM wild bootstrapping methods.
Initially, they were applied for single vessel type in a single level of pre-
diction region. In previous researches [74], [73], [35] it was shown that
vessel types have different and distinguishable traffic patterns are visible
even in traffic visualisation of vessel types in the geographical plane (see
Figure 6 50 p.). By inspecting visualization results, I have decided to
create sets of model groups for each vessel type, where each set is respon-
sible for a particular vessel’s type abnormality detection. Moreover, each
vessel type model set contains groups of models for individual prediction
levels. Thus, aggregation of multiple prediction region models to detect
a marine vessel traffic abnormality is described in this subsection.

Training of multiple models. Figure 15 shows the architecture of
vessel trajectory prediction models for abnormal movement prediction.
It depicts a process of training of the models and classification of unseen
vessel navigational vectors as abnormal or normal.
The training part of aggregating model consist of these steps (see Figure
15):

1. The raw marine traffic data is collected from a Automatic Identifi-
cation System (AIS) and meteorological data from a meteorological
data provider.

2. The collected data is prepared as described in subsection 2. The
prepared vessel navigational vector’s sequences are separated to
different sets by vessel type and stored as multiple data sets. Se-
quences that have no vessel type ("undefined") are stored sepa-
rately for further preprocessing.

3. Data set with known vessel type has formed training set for ves-
sel type recognition. The data set is formed in such a way that
navigational vector sequences form input data, which is separated
by vessel type. This separation by vessel type defines vessel type
classes.
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Figure 15: Aggregation architecture of vessel trajectory prediction mod-
els for abnormal movement detection

4. Data set labels are balanced with Synthetic Minority Oversampling
Technique (SMOTE) before performing a training process.

5. The Vessel type recognition model is trained as described in sub-
section 2.8. The trained model is saved for "undefined" vessel type
classification.

6. The missing vessel type vectors are classified with earlier trained
model. The new sets of data are constructed based on predicted
vessel type.

7. The predicted data sets are joined with the rest of data sets. Mul-
tiple data sets are formed and grouped by vessel type.

8. All data set groups are marked as not processed.

9. A random data set of single vessel type is taken from the list of
not processed data set groups.

10. Data set is split to training, validation and test subsets.
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11. A crisp model is trained as described in subsection 4.2.

12. Multiple sets of Lower and Upper model pairs is trained with dif-
ferent λ, where λ ∈ {λstart, λstart + ∆λ, ..., λstop}, and ∆λ is a step
of incremental λ increase, λstart and λstart are start and end of λ
incremental increase respectively. The training process is described
in subsection 4.2. The trained model and it’s weights are stored.

13. PICP and PINAW are calculated for each model pair and stored
for further use.

14. The vessel type data set, that was used for training, is marked as
processed.

15. If vessel type data set has not yet been processed, repeat from step
9.

16. All models are grouped by vessel type and then inside of a group
each pair of upper and lower model is given a particular PICP
value. Models are stored and further used for classification of vessel
traffic abnormality.

Each vessel type group has one crisp type model and number of
upper/lower models pairs sets sub-grouped by PICP . All models with
particular vessel types and PICP information are stored. These multiple
data sets are used for vessel movement classification for abnormality
classification at predefined level of prediction region.

Classification of vessel trajectory abnormality. The process of
classification is as follows:

17. The vessel navigational vectors are collected from Automatic Iden-
tification System (AIS) system. The minimum ñ + n′ number at
∆Tinterval time interval of sequential vessel navigation vectors is
required.

18. The collected data are prepared as described in subsection 2.

19. If vessel type is unknown or "undefined", the Vessel type recogni-
tion model is used for vessel type prediction.

20. The prepared sequence of vessel navigational vectors is provided
for a set of models for a particular vessel type. Then all upper and
lower bound models are used to check that true values of vessel
sequences are inside of the prediction region of particular model
pair. If model predicts that true value is in prediction region, it
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returns PICP value for this model. The set of upper/lower model
pairs returns a set of PICP values.

21. The Min Pool layer [92] returns minimal value of PICP provided
by models.

22. The decision layer based on set of required PICP threshold. Checks
are performed whether vessel traffic is in required prediction region
level. If it is not in required prediction level, the vessel traffic is
classified as abnormal, otherwise it is considered normal.

4.5 Conclusions of Section

This section describes the LSTM prediction region learning and LSTM
wild bootstrapping methods for anomalous vessel trajectory prediction.
The dissertation assumes that if the vessel’s actual trajectory coordinates
are in a prediction region, its trajectory is normal. Otherwise, when it
is outside the prediction region, it is classified as abnormal.

The proposed LSTM prediction learning method relies on three LSTM
prediction region models, namely, crisp, lower and upper. A suggestion
is provided for modification of loss function of the separate LSTM lower
and upper bounds models to learn vessel’s trajectory prediction regions.

In order to compare the results, the wild bootstrapping method and
its integration to LSTM auto-encoder were used in the dissertation. The
LSTM wild bootstrapping learns prediction regions based on the sta-
tistical technique. The technique mixes data with multivariate normally
distributed random variables and performs this procedure multiple times
during the training. After the numerous LSTM auto-encoders training,
the method calculates prediction region ellipses for the required abnor-
mal vessel detection.
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5 Experiments and Results

This section presents a series of experiments intended to compare the
performances of the proposed marine anomaly detection methods. The
section describes the results of the application of unsupervised and semi-
supervised anomaly detection algorithms, introduces anomalous trajec-
tory grouping, and describes the strengths and weaknesses of the pro-
posed methods.

Figure 16 shows the software development architecture for investiga-
tion of abnormal marine traffic methods. The first layer of the architec-

Figure 16: Software development architecture for abnormal marine traffic
methods investigation

ture contains computational infrastructure. The main high-performance
computing (HPC) is performed on two dedicated Nvidia RTX2080i GPUs
and Intel i7 core ×64 CPU. The first SSD 0.5 TB disk was dedicated for
Linux Debian 10.0 OS. The second SSD 4 TB disk was used for storage
of data sets and model data.

The second layer of the architecture was dedicated for software de-
velopment environment. All development was done on Python v3.7 pro-
gramming language/interpreter. Methods are implemented with the help
of multiple libraries, tensorflow 2.1, keras, miniSOM, SciPy, tslearn, etc.
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The third layer has a program that was developed to implement de-
scribed methods in the thesis and code script for experiments. The
layer has the following modules: data preparation, SOM training, vir-
tual pheromone, GMM training, LSTM training, LSTM prediction re-
gion learning, wild bootstrapping, result comparison, and visualization
modules. All intermediate training steps were stored as checkpoints and
resumed in case of system failure or restart.

5.1 Performance of LSTM Prediction Region Learning
for Detection of Anomalous Trajectories

In this subsection the results of LSTM prediction region learning method
presented in 4.1, 4.2 on pages 66, 69 is evaluated. The subsection de-
scribes experimental investigation and the results obtained for each ves-
sel type (further named by feature name: "Vessel type") type for crisp,
upper, lower trained deep neural network models. The data was ran-
domly split into training non-overlapping, validation, and test subsets
(see Table 14).

Artificial neural network setup. LSTM prediction region training
me-thod uses LSTM multi-stacked auto-encoder described in subsection
4.1 paragraph "LSTM auto-encoder". The input shape of network setup
has an input sequence length n′ = 50, number of features f = 15 and
batch size of 512. The first LSTM layer has 128 LSTM cell units for
each feature. The second LSTM layer has 64 units. The encoded latent
representation vector has 16 units. Third LSTM layer has 16 units and
the last layer has 128 units. Output layer returns two dimensional multi-
step vector of size ñ = 50 × f ′ = 2. For the network output only
spatial features latitude and longitude are used. For all LSTM cells the
Hyperbolic Tangent Function (TANH) activation function were applied.
To ensure cross validation and regularization, each epoch was validated
against validation data set. 300 epochs are set for network training. As
an optimiser the Adam algorithm [63] is used with calibrated parameters:
learning rate αadam = 0.001, exponential decay rate for the first moment
β1 = 0.9, exponential decay rate for the second-moment β2 = 0.999, and
ε = 10−8. The selection of the LSTM architecture was based on master
thesis [88].

Three different types of LSTM auto-encoders are configured with
different loss functions: crisp network was configured to use loss function
(18); lower and upper bounds LSTM networks were configured to use loss
functions (17) and (16) (see page 70).

78



Training LSTM prediction region models. All the models were
trained by the algorithm described in subsections 4.1 and 4.4. For each
vessel type a 10 separate crisp models were trained with different initial
random weighs (in total 220 crisp models). Then the sets of the lower
and the upper models are trained in advance. In order to train these sets
the sequence of λ is created. Multiple sets with different λ value of lower
upper models pairs is trained for vessel type. For each λ and vessel type,
10 models sets were created with random initial neuron weights. There
is total of 5280 lower/upper models pairs, including 24 different values
of λ, 22 vessel types, and 10 iterations with random initial weights for
each combination.
Figures 17 show typical decay of training and validation losses function
over epochs. It is worth to note that, typically, training of an upper

(a) Upper bound (b) Lower bound (c) Crisp

Figure 17: Training/validation Losses over Epochs on logarithmic scale

and an lower models starts with slow progress and only after 60th epoch
loss starts to drop significantly. During training of crisp type model, the
validation loss drops after 20th. The constant drop of training/validation
losses (Figure 17) shows that the training of models for LSTM prediction
region learning can be performed less that 300 epochs. However, more
thorough research is needed.

Evaluation of trajectory prediction with crisp model. As men-
tioned above, 10 crisp type models were trained for each Vessel type.
Table 16 shows crisp model errors mean and standard deviation. This
table contains only the main error types. Other error types and visuali-
sations of multiple type errors can be found in appendix E on page 127.
Errors are calculated on test data sets. It is observed that the errors of
test data sets are not significantly larger. That shows that the model
generalization is satisfactory for further use in marine traffic anomaly
detection.
The crisp model errors form two groups, with more minor errors and more
significant errors. Models of vessel type Anti-pollution, Cargo, Passen-
ger, Tug, and others have smaller error values. Those vessel type models
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Table 16: Crisp model errors on 10 randomly trained LSTM networks

Sequences MAE, km RMSE, km MAPE, % MASE
Vessel type Train Test mean std mean std mean std mean std
Anti-pollution* 1094 365 0.63 0.65 5.62 6.95 0.06 0.07 0.30 0.31
Cargo 75625 25209 2.43 0.11 4.67 1.05 0.19 0.01 0.07 0.00
Diving* 103 35 20.20 4.11 30.35 17.57 2.01 0.48 0.71 0.14
Dredging 4584 1528 2.81 0.39 4.62 2.05 0.22 0.03 0.08 0.01
Fishing 15748 5250 2.88 0.12 4.26 1.06 0.24 0.01 0.08 0.00
HSC* 32 11 10.36 3.78 16.07 14.38 0.92 0.39 0.25 0.09
Law_enforcement 4467 1489 3.71 0.14 6.13 1.73 0.31 0.01 0.10 0.00
Military 4743 1581 4.90 0.17 8.17 1.95 0.42 0.01 0.16 0.01
Passenger 47988 15996 1.73 0.10 3.68 1.04 0.13 0.01 0.05 0.00
Pilot 6352 2118 4.00 1.61 7.76 6.56 0.32 0.12 0.09 0.04
Pleasure 1965 655 2.70 1.50 6.88 6.35 0.22 0.12 0.12 0.07
Port_tender* 272 91 10.91 5.14 20.60 14.45 0.98 0.45 0.32 0.15
Reserved* 436 146 7.93 2.82 3.59 10.04 0.65 0.27 0.26 0.09
SAR 3704 1235 1.58 0.75 3.83 2.20 0.14 0.08 0.14 0.07
Sailing 6692 2231 1.27 0.32 2.36 1.12 0.11 0.04 0.07 0.02
Spare_1* 15 6 1.88 1.13 2.93 3.65 0.13 0.06 0.23 0.14
Tanker 22577 7526 2.78 0.17 5.00 1.32 0.22 0.02 0.08 0.00
Towing* 522 175 17.40 8.90 24.65 25.38 1.52 0.95 0.46 0.24
Towing_long_wide* 367 123 8.00 3.51 10.23 12.68 0.65 0.34 0.20 0.09
Tug 9421 3141 2.01 0.35 3.67 1.65 0.16 0.03 0.05 0.01
WIG* 40 14 19.83 8.69 28.44 22.49 1.95 0.90 0.51 0.23

Total average 6.19 2.12 9.69 7.41 0.55 0.21 0.21 0.08
Average* 11.14 4.40 16.53 14.36 1.03 0.45 0.38 0.17
Average 2.73 0.48 5.09 2.34 0.22 0.04 0.09 0.02
Smaller data sets are marked with star ("*").

were trained with a more significant number of navigational vector se-
quences (N) compared against the group of models with more significant
errors such as Diving, HSC, Towing, WIG, and others (see Table 16 and
Figure 18). Figure 18 depicts that the same group with more signifi-
cant errors also has more considerable error variance when the model is
trained with different random initial weights. Similar dependency is vis-
ible in other types of errors observed in other error types visualizations
(Appendix E).

Prediction region: upper and lower models. As mentioned above,
multiple upper and lower model pairs are trained with different λ, where
λstart = 5,∆λ = 5, λstop = 120. Additionally 1, 2, 3, 4 of λ values to
investigate PICP and PINAW grow on smaller λ values. For all sets
of λ’s separate neural networks were trained for each vessel type. Each
upper/lower model pair was trained 10 times to investigate the impact
of random initial random network weights. For each vessel type, two
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Figure 18: MAE errors distributions for different vessel types

(a) PICP trend by λ (b) PINAW trend by λ

Figure 19: PICP and PINAW trends of "Cargo" vessel type

distribution box charts were drawn, one for PICP trend over λ and second
PINAW over λ (Appendix F, page 129). Two vessel type charts are shown
as examples in Figures 19, 20. Mostly PICP grows in logarithmic manner
to value 1, then λ stays linear. The variance of PICP for particular λ
varies between vessel types and iterations with different initial neuron
weights. This behaviour suggests that for model anomaly with particular
PICP value, we must search corresponding λ and initial neuron weights.
PINAW behaves in a similar way: it grows logarithmically with growing
λ, that shows that prediction region covers larger area. This fact was
taken in account in LSTM prediction learning algorithm described in
subsection 4.2 on page 69.

Regarding all vessel types PICPs growths over λ (Appendix F, 129
p.), it was observed that majority of vessel types exceed 0.8 PICPs
as λ values vary from 25 to 30. Vessel types such as Diving, HSC,
Port_Tender, Spare_1, and Wig reach the same PICP value with much
higher λ values, and Port_Tender does not reach 0.8. In addition, it was
observed that the same vessel types have significantly fewer training se-
quences. The Figures 19, 20 depict Cargo and Diving vessels PICP and
PINAW relations to λ with 10 iterations with random initial weights.
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(a) PICP trend by λ (b) PINAW trend by λ

Figure 20: PICP and PINAW trends of "Diving" vessel type

Cargo and Diving PICP growths represent samples of two types of PICP
trends. Cargo (Figure 19a) represents a group of PICPs that grow more
stable with smaller variance. Also, this group usually has a larger num-
ber of training sequences. The Diving (Figure 20a) represents a group
where PICPs grow less stable with larger variance and outliers. The
number of the training sequence in this group is significantly smaller.

Appendix F also shows growth of PINAW over λ. As λ increases,
the PINAWs grows logarithmically. The PINAW trend figures show that
with higher training samples, the PINAW grows more stable (Figure
19b) compared to significantly smaller training sequences such as Diving
(Figure 20b).

Discussed PICP and PINAW trends clearly show dependency on λ
parameter and can be used for prediction region training in LSTM auto-
encoder neural network.

PICP and PINAW adjustment. The previous paragraph shows
that the PICP and PINAW can be used to obtain the desired anomaly
level (1 − α). Subsection 4.2 on page 69 and Figure 14 on page 71 p.
describes the algorithm for corresponding PICP searching. PICP search
results for anomaly level (1 − α), α = 0.05 is summarized in the Table
17. Percentage values instead of ratios was chosen for better readability.
For each vessel type the closest PICPs at particular λ for (1 − α) were
found. The searches were performed on the validation data set and then
tested on the test data set. The tested PICPs have similar values as
those obtained in validation data set that show good generalization of
the models. However, it is observed that vessel types such as Diving,
HSC, Port_tender, Spare_1, WIG with smaller training sequences did
not reach the desired PICP value.

Anomaly detection. Trained models were tested on the test data set.
Figure 21 shows randomly selected cases of normal vessel trajectory. The
figure depicts the vessel trajectory in the longitude and latitude plane,
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Table 17: PICP values search results for 100(1 − α) = 95.0% anomaly
level

PICP, % PINAW, ratio ×103

Sequences on data sets on data sets

Vessel type Train Test λ validation test validation test

Anti-pollution 1094 365 30 95.1 94.1 1.17 1.06

Cargo 75625 25209 120 95.0 96.0 0.07 0.07

Diving 103 35 70 94.0 83.5 9.78 9.92

Dredging 4584 1528 105 95.0 95.1 0.02 0.01

Fishing 15748 5250 115 94.9 94.4 1.09 1.07

HSC 32 11 50 83.7 84.6 112.79 110.80

Law_enforcement 4467 1489 80 95.3 95.5 3.32 3.63

Military 4743 1581 100 94.8 95.3 1.75 1.88

Passenger 47988 15996 105 95.2 95.9 2.09 2.06

Pilot 6352 2118 120 95.0 95.9 0.41 0.44

Pleasure 1965 655 110 95.1 94.3 1.15 1.21

Port_tender 272 91 120 48.5 48.7 465.15 507.79

Reserved 436 146 105 94.5 94.7 4.96 4.65

SAR 3704 1235 10 95.0 95.9 0.24 0.25

Sailing 6692 2231 75 94.9 95.2 0.94 1.01

Spare_1 15 6 75 91.3 90.3 37.50 34.39

Tanker 22577 7526 80 95.1 94.6 1.23 1.20

Towing 522 175 90 93.6 94.4 13.57 14.41

Towing_long_wide 367 123 120 93.5 92.5 14.80 15.56

Tug 9421 3141 50 95.0 95.5 0.14 0.13

WIG 40 14 85 87.7 87.4 72.64 72.34

Light blue color shows actual marine traffic (10000 trajectories) in the
area, Green dots represent vessel navigational vectors used for model
training input χ . Green crosses mark true values Y of vessel movement.
Black triangles show true values of vessel positions Y(g,25,j), Y(g,50,j) at
time frames of 25 and 50 respectively. Red star represent crisp model
prediction Ŷ

(crisp)
(g,25,j), Ŷ

(crisp)
(g,50,j) at time steps 25 and 50. Green star shows

prediction Ŷ
(upper)

(g,25,j) , Ŷ
(upper)

(g,50,j) of upper bound model at time steps 25,

52 and Blue star marks prediction Ŷ
(lower)

(g,25,j) , Ŷ
(lower)

(g,50,j)) obtained by lower
bound model at time steps 25, 50. Red dashed lines depict boundaries
of the prediction region for a particular movement trajectory.

Figure 21 shows a few cases of vessel normal movement trajectories,
which were passed into model and visualised in two dimensional lati-
tude/longitude planes. The model was only introduced to a sequence of
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(a) First case (b) Closeup of first case

(c) Second case (d) Third case

Figure 21: Random cases of normal vessel traffic

first 50 vessel navigational vectors, that are marked as green dots (seen
in Figures 21a, 21d, 21d). Green crosses mark sub-sequential vessel po-
sitions Y , which were unknown to the model. Model predicts upper
Ŷ (upper) and lower bounds Ŷ (upper)

(g,25,j) , shown in green, blue stars and red
doted rectangles. True value lays inside the rectangle and the vessel tra-
jectory should be considered as normal according to LSTM prediction
model. This situation illustrates the case when the LSTM prediction
region method indicates traffic as normal. It is observed that the model
in narrow marine traffic area learns the smaller prediction regions and
vice versa. This is seen in Figure 21d, where the first prediction re-
gion is smaller because it is on junction of vessel routes. And, if vessel
routes split up, the prediction region becomes wider by covering almost
all possible routes of the specific vessel type.

Figures 22 depict abnormal vessel traffic cases (LSTM prediction re-
gion method has classified those as abnormal), but the Figure 22a shows
anomalous cases: the cargo vessel unexpectedly turned around by chang-
ing direction 180 degrees due the captains decision to return to port for
engine repairs. The first 50 navigational vectors of the vessel were used
as model input, and the model predicted regions where the true position
of the vessel is expected. Because vessel made sharp change in direction,
the true values were outside of the predicted regions by both methods.
The same Figure 22a shows that true 25th and 50th vessel positions (black
triangles) are outside the prediction regions by LSTM region prediction
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(a) Sharp direction change (b) Traffic outside of traffic lanes

(c) Direction change (d) Unexpected stop

Figure 22: Different types of abnormal vessel traffic

method (red rectangles). Thus, such vessel movement can be classified
as abnormal, because it doesn’t fall in (1 − α) = 0.95, P ICP = 0.95
prediction region. Figure 22b depicts a drifting cargo vessel, due to bro-
ken engine. Its actual navigational vectors are outside of the prediction
region as well. The Figures 22c and 22d show few other anomalous move-
ment cases: the (Figure c) shows an unexpected turn to a minor port
and (Figure d) shows an unplanned stop due to the engine failure.

5.2 Performance of LSTMWild Bootstrapping Technique
for Detection of Anomalous Trajectories

This subsection describes the results of LSTMwild bootstrapping method
application. The method is presented in subsections 4.3 on page 71. The
method is used to train LSTM auto-encoders (subsection 4.1 on page 66
for each vessel type by using training data sets and afterwards are tested
using test data sets (see Table 14). The neural network hyper parameters
were set the same as described in LSTM prediction region part listed in
subsection 5.1 in paragraph Configuration of artificial neural network on
page 78.

Wild bootstrapping for trajectory prediction. For each vessel
type a separate set of models are trained for trajectory prediction. The
training data is taken from prepared and cleaned data sets (see Table 14).
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The wild bootstrapping is applied to each vessel type separately. Then
the k = 100 LSTM auto-encoders are created and trained in a following
way: multi-variate normal random variables are generated while keeping
the same dimensions and the means equal to zero, and the variances the
same as that of the input data χ (n′ = 50, f = 15, N); the number of
sequences N for each vessel type can be found in Table 14; the generated
normal variables are summed element wise with χ; new summed input
and expected output was Y scaled to [0.1] interval; the LSTM auto-
encoder was trained with 300 epochs; LSTM network predictions were
calculated r-step ahead, where r ∈ 1, 2, ...,m, m = ñ = 50 with training
and test separately; the scaling is restored; these steps were repeated
for all k LSTM auto-encoders. The method in detail is described in
subsection 4.3 on page 71.

Trajectory prediction accuracy. The method requires to train 2200
LSTM neural networks. 22 vessel types × k, where k = 100. The wild
bootstrapped prediction x̄r is calculated as described in equation (22).
Table 18 contains prediction MAE, RMSE, MAPE, and MASE errors
of (Y − x̄r) for each vessel type. The prediction errors are calculated
using train and test data sets. Errors of test data sets are not significant
compared to the errors of the training data set, which shows that model
generalization is acceptable for further use in marine traffic anomaly
detection. Results show that the trajectory prediction models form two
groups with more minor errors and more significant errors. Models of
vessel type Anti-pollution, Cargo, Passenger, Tug, and others have minor
errors. The same group has larger training data sets compared to a group
of models with more significant errors such as Diving, HSC, Towing,
WIG, and others (see Table 18). The LSTM prediction region model
errors have similar behavior, where the same vessel type with the small
count of training sequences has more significant prediction errors.

Evaluation of PICP for LSTM wild bootstrapping. After LSTM
wild bootstrapping models were trained and prediction errors evaluated,
the PICPs are calculated for the prediction level 100(1 − α) = 95.00%.
Table 19 contains results of PICPs for each vessel type of the training
and test data sets. The table shows that vessel types such as Cargo,
Dredging, Fishing, Law_enforcement, Military, Passenger, Pilot, Plea-
sure, Pilot, Pleasure, SAR, Sailing, Tanker, and Tug have PICP value
nearly the same as prediction region (1-α). This behavior relates to
the fact that these vessel types possess larger training sequences com-
pared to other vessels. Vessel types such as Anti-pollution, Diving, HSC,
Port_tender, Reserved, Towing, Towing_long_wide, and WIG have sig-
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Table 18: LSTM Wild Bootstrapping prediction (Y − x̄r) errors

Sequences MAE, km RMSE, km MAPE, % MASE

Vessel type Train Test train test train test train test train test

Anti-pollution* 1094 365 1.08 1.08 5.89 5.89 0.23 0.23 1.04 1.04

Cargo 75625 25209 1.74 1.74 3.13 3.13 0.27 0.27 0.09 0.09

Diving* 103 35 11.55 11.62 16.85 16.82 2.35 2.34 0.81 0.81

Dredging 4584 1528 1.78 1.78 3.03 3.03 0.29 0.29 0.10 0.10

Fishing 15748 5250 1.93 1.94 2.76 2.75 0.33 0.33 0.10 0.10

HSC* 32 11 16.33 16.35 21.90 21.96 3.25 3.24 0.78 0.79

Law_enforcement 4467 1489 2.35 2.36 3.68 3.69 0.40 0.40 0.13 0.13

Military 4743 1581 2.95 2.95 4.85 4.88 0.52 0.52 0.19 0.19

Passenger 47988 15996 1.31 1.31 2.38 2.38 0.19 0.19 0.08 0.08

Pilot 6352 2118 1.85 1.85 3.60 3.61 0.31 0.31 0.08 0.09

Pleasure 1965 655 5.59 5.62 9.33 9.35 1.09 1.09 0.49 0.49

Port_tender* 272 91 14.83 14.90 19.47 19.54 2.43 2.44 0.88 0.88

Reserved* 436 146 11.09 11.13 17.00 17.09 2.18 2.18 0.71 0.72

SAR 3704 1235 0.91 0.91 3.20 3.20 0.16 0.16 0.16 0.16

Sailing 6692 2231 0.85 0.85 1.59 1.59 0.15 0.15 0.09 0.09

Spare_1* 15 6 2.44 2.45 3.40 3.41 0.26 0.26 0.61 0.61

Tanker 22577 7526 1.88 1.88 3.28 3.28 0.30 0.30 0.11 0.11

Towing* 522 175 14.74 14.78 20.00 20.10 2.83 2.83 0.78 0.79

Towing_long_wide* 367 123 14.03 14.04 19.96 20.05 2.80 2.80 0.71 0.71

Tug 9421 3141 1.67 1.67 2.75 2.75 0.29 0.29 0.08 0.08

WIG* 40 14 13.32 13.34 18.52 18.49 2.67 2.68 0.69 0.69

Total average 5.92 5.93 8.88 8.90 1.11 1.11 0.41 0.42

Average* 10.67 10.71 15.38 15.41 2.03 2.03 0.79 0.79

Average 2.07 2.07 3.63 3.64 0.36 0.36 0.14 0.14

Smaller data sets are marked with star ("*").

nificantly smaller PICP value than the desired prediction region (1-α).
The same dependency of the PICP dynamics was observed in the LSTM
prediction region learning experiment (the results are shown in table 17).

Anomaly detection. All trained models were tested using the test
data set. Figure 23a shows randomly selected cases of normal vessel
trajectories. The figure depicts the vessel trajectories in longitude and
latitude plane. Light blue color shows actual marine traffic (10000 tra-
jectories) in the area. Green dots represent vessel navigational vectors
used for model training input X. Green crosses mark true values Y of
vessel movement. Black triangles show true values of vessel positions
Y25, Y50 at time steps 25 and 50 respectively. Red stars represent LSTM
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Table 19: PICPs values search results for 100(1−α) = 95.00% prediction
region

Sequences PICP,%

Vessel type Train Test train test

Anti-pollution 1094 365 49.11 49.14

Cargo 75625 25209 94.78 97.51

Diving 103 35 0.01 0.00

Dredging 4584 1528 89.30 89.21

Fishing 15748 5250 94.34 89.66

HSC 32 11 3.49 0.91

Law_enforcement 4467 1489 81.30 81.62

Military 4743 1581 82.72 82.36

Passenger 47988 15996 96.59 96.39

Pilot 6352 2118 82.69 82.89

Pleasure 1965 655 87.21 86.81

Port_tender 272 91 0.01 0.00

Reserved 436 146 0.07 0.02

SAR 3704 1235 95.90 96.15

Sailing 6692 2231 97.93 98.14

Spare_1 15 6 27.50 7.42

Tanker 22577 7526 96.42 96.84

Towing 522 175 1.55 0.01

Towing_long_wide 367 123 0.61 0.01

Tug 9421 3141 94.55 94.54

WIG 40 14 1.11 0.00

Wild bootstrapping model prediction x̄25, x̄50 at time steps 25 and 50. A
blue dashed ellipse depicts boundaries of the prediction region for par-
ticular movement forecast. The elliptical region is calculated by the
equation (22). The traffic that is in this region is defined as normal and
the traffic outside of the region is assumed to be anomalous.

Figure 23 shows a few cases of vessel normal movement trajectories.
The model was introduced to a sequence of first 50 vessel navigational
vectors χ, that are marked as green dots (see Figures 23a, 23c, 23d).
Green crosses mark sub-sequential vessel positions Y , which were un-
known for the model. The model calculates prediction region ellipses
with centers at x̄25 and x̄50, shown as blue dotted ellipse. True values
are inside the blue ellipse, and the vessel trajectory should be considered
as normal according to LSTM wild bootstrapping model.

Figure 24 a, b, c, and d depict abnormal vessel traffic cases. Fig-
ure 24a shows the anomalous case where a cargo vessel unexpectedly
turned around by changing direction 180 degrees due captain’s decision
to return port to repair an engine malfunction. The first 50 navigational
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(a) First case (b) Closeup of first case

(c) Second case (d) Third case

Figure 23: Random cases of normal vessel traffic

vectors of the vessel are fed to the input of the model. The model had
predicted – the same case as it was described by LSTM prediction region
learning – regions where the true position of the vessel is expected. Be-
cause the vessel made a sharp change in direction, the true values were
outside of the predicted regions created by both methods. The same Fig-
ure 24a shows that true 25th and 50th vessel positions (black triangles)
are outside of the prediction regions created by LSTM wild bootstrap-
ping method (blue ellipse). The method classifies such vessel traffic as
anomalous, because it doesn’t fall in (1 − α) = 0.95, P ICP = 0.9751
prediction region. Figure 24b depicts a drifting Cargo vessel because of
a broken engine: the actual navigational vectors of the vessel are out-
side of the prediction region. Figures 24c and 24d show other abnormal
cases as well: the figures depict an unexpected turn to a minor port and
unplanned stop due to engine failure.

5.3 Performance of Point-based Method for Detection of
Anomalous Trajectories

In this subsection, the experiments and results of SOM_pheromone and
SOM_GMM algorithms are presented. The mentioned algorithms were
described in section 3 Point based detection of vessel traffic anomalies
on page 56.

Both point based methods were analysed using two different data
sets: Klaipeda seaport area AIS data set [26, 27] (see Table 20) and
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(a) Sharp direction change (b) Traffic outside of traffic lanes

(c) Direction change (d) Unexpected stop

Figure 24: Different types of abnormal vessel traffic

sea area "Fehmarnbelt" [53] described in section 2 Data preparation on
page 31 (see Table 14, p. 54). The main differences between these data

Table 20: Klaipeda seaport data set

Navigational vectors
Data subset Total Abnormal Normal
Cargo vessels 138242 3362 134890
Passenger vessels 43879 2914 40965
Tugs and Pilot vessels 50372 2306 48066

sets are the intensity and complexity of the sea traffic and subsequently
the amount of navigational vectors to be analysed by the algorithms.
After data cleaning, there are 138242 Klaipeda Cargo type vessels vs.
12604200 (126042 sequences) of Fehmarnbelt Cargo vessels. Similar situ-
ation is with other vessel types as well. Another important aspect is that
Klaipeda’s data set is annotated by the experts. This annotation was
used to fine tune the SOM_pheromone βPPV , βTPR and SOM_GMM
P (H = normal) parameters in order to maximize accuracy of anomaly
detection. On the other hand the "Fehmarnbelt" data set is huge. After
data preparation, it has a total of 34459100 navigational vectors, which
belong to all vessel types. It becomes obvious that data annotation
by human expert is virtually impossible. Because of this and in order
to study semi-supervised point-wise (SOM) methods using Fehmarnbelt
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data, we pick the anomalous trajectories after applying LSTM prediction
learning and LSTM wild bootstrapping methods at fixed anomaly level
(1 − α) = 0.95, and use those as reference for point-wise based models
performance investigation.

Selection of a Neighbourhood Function. The modified SOM (de-
scription can be found in subsection 3.1, 56p.) network was trained,
using different neighbourhood functions in order to establish which has
the best impact on the classification results. The initial experiments
have been performed using the Klaipeda Cargo Vessels data set with the
following learning parameters for the SOM network training: a shape of
the grid is square and grid dimension is 20x20. The experimental re-

Table 21: Influence of the neighbourhood function on the classification
accuracy when the SOM grid dimension is 20x20 (Klaipeda data set)

Neighbour-
hood function TP FP TN FN Precision Sensitivity

Expert 1681 0 27167 0 1 1
SOM_GMM Gaussian 1489 81 27086 192 0.948 0.886

SOM_Pheromone

Gaussian 1477 68 27099 204 0.956 0.879
Triangular 1241 122 27045 440 0.911 0.738
Bubble 1454 68 27099 227 0.955 0.865
Cut Gaussian 1479 65 27102 202 0.958 0.880
Mexican hat 1509 51 27116 172 0.967 0.898

sults, presented in Table 21, show that the best classification accuracy is
achieved using the Mexican hat neighbourhood function (marked in bold
in Table 21). The results were compared with the classification accuracy

Table 22: Influence of the neighbourhood function on the classification
accuracy when the SOM grid dimension is 25x25 (Klaipeda data set)

Neighbour-
hood function TP FP TN FN Precision Sensitivity

Expert 1681 0 27167 0 1 1
SOM_GMM Gaussian 1495 80 27087 186 0.949 0.889

SOM_Pheromone

Gaussian 1491 59 27108 190 0.962 0.887
Triangular 1288 117 25948 1495 0.917 0.463
Bubble 1455 63 27104 226 0.955 0.865
Cut Gaussian 1498 55 27112 183 0.958 0.866
Mexican hat 1512 50 27117 169 0.968 0.899

obtained by other methods: a combination of SOM and Gaussian mix-
ture models, introduced in [56], and classification carried out by experts.
To ensure robustness of the results, additional experiments were carried
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out with different grid dimensions. An example of the influence of the
neighbourhood function on the classification accuracy with SOM grid
dimension 25x25 is presented in Table 22. In all further experiments,
the Mexican hat neighboring function will be used as a reference.

Dependence of the classification accuracy on the SOM grid di-
mension. The comparison of the classification results obtained by the
proposed algorithm SOM_Pheromone and the SOM_GMM algorithm
is presented in Table 23. The experiments have been performed using

Table 23: Influence of the SOM grid dimension on the classification
accuracy of SOM_Pheromone and SOM_GMM algorithms

Grid dimension SOM_Pheromone SOM_GMM
Precision Sensitivity Precision Sensitivity

10x10 0.919 0.773 0.867 0.780
15x15 0.933 0.814 0.921 0.834
20x20 0.967 0.898 0.948 0.886
25x25 0.968 0.899 0.949 0.889
30x30 0.961 0.897 0.948 0.888
35x35 0.948 0.893 0.932 0.877
40x40 0.918 0.886 0.919 0.875

the Cargo vessels data set. All experiments have been performed under
the same conditions with the same parameters by increasing the SOM
network grid dimension from 10x10 to 40x40 in steps of 5. By com-
paring the obtained results (shown in Table 23), it can be concluded
that using the SOM_Pheromone algorithm for the Cargo vessels data
set from Klaipeda region, the classification accuracy is better than that
of SOM_GMM (the best results are marked in bold for each grid di-
mension). Another conclusion from the obtained results is that the op-
timal size of the SOM grid for the SOM_Pheromone and SOM_GMM
is 25x25.

Table 24: Classification results of the Passenger vessels data set (normal
states: 8193, abnormal states: 1457)

Method TP FP TN FN Precision Sensitivity
SOM_GMM 1314 17 8176 143 0.987 0.902
SOM_Pheromone 1328 18 8175 123 0.987 0.911

The experiment was repeated with the Passenger vessels data set
(Klaipeda data set) and the Tugs and Pilot vessels data set. The clas-
sification results are presented in Tables 24 and 25. The learning pa-
rameters for the SOM network training are the same as in the previous
experiment, the grid size of SOM is 25x25. The experimental results,
which are presented in Table 24, show that, using the SOM_Pheromone
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algorithm, the best classification accuracy (marked in bold in Tables 24
and 25) is achieved.

Table 25: Classification results of the Tugs and Pilot vessels data set
(normal states: 12298, abnormal states: 1153)

Method TP FP TN FN Precision Sensitivity
SOM_GMM 971 9 12289 182 0.991 0.842
SOM_Pheromone 978 9 12289 175 0.991 0.848

Retraining strategies
Due to the amount of time required by semi-supervised training step,

the performance of a method on different retraining strategies, as de-
scribed in subsection 3.3 on 62 - 65 pages, were investigated. Initially the
data was split to three batches (T1, T2, T3; see Figure 11, p. 64) ordered
by data gathering timestamp. Overall, three strategies were developed:
Strategy I - the SOM network is retrained every time from beginning as
data arrives; Strategy II - the SOM network is retrained only with newly
arrived data. Strategy III - the SOM network is retrained with mixture
of newly arrived and historical data.

Strategy I. For the SOM network training and validation, we used
T1, T2 and T3 data batches. The learning rate parameter was set to
0.5. Then, after the network was trained and validated with the T1 data
batch, the new data were fed to the network as follows: the T1 and T2
batch data were merged and the algorithm was trained from the initial
random state using all items from T1 and T2. The same scheme was
applied to the T3 data batch.

In order to achieve the best network performance, the learning rate
parameter can be adjusted. Initial research led us to divide the learning
rate parameter search into these intervals and step sizes: in the interval
[0.005; 0.04], step was set to 0.005; in the interval [0.04; 0.1], step size
was increased to 0.01; and, in the interval [0.1; 0.5], step size was set to
0.1 (see Table 26). In this way, the training experiment of Strategy I was
repeated while every learning parameter value was tested to achieve the
best algorithm performance. After the model was trained, it was tested
with the test data set, which allowed to evaluate the general model error.
The best-obtained model characteristics with model test data set are
presented in Table 26 (the row in bold).

The statistics of the best Strategy I model using test data for gen-
eral model error estimation and test data for model error estimation is
presented in Table 27. The time needed for the algorithm retraining was
40,769 s.

Strategy II. The initial algorithm was trained 10 times with the T1
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Table 26: Selection of learning rate

Learning Rate TP FP TN FN Precision Sensitivity
0.005 924 519 26648 757 0.6403 0.5497
0.010 943 505 26662 738 0.6512 0.5610
0.015 957 498 26669 724 0.6577 0.5693
0.020 963 487 26680 718 0.6641 0.5729
0.025 968 478 26689 713 0.6694 0.5758
0.030 976 471 26696 705 0.6745 0.5806
0.035 986 468 26699 695 0.6781 0.5866
0.040 998 461 26706 683 0.6840 0.5937
0.050 1025 445 26722 656 0.6973 0.6098
0.060 1066 413 26754 615 0.7208 0.6341
0.070 1109 394 26773 572 0.7379 0.6597
0.100 1197 303 26864 484 0.7980 0.7121
0.200 1431 135 27032 250 0.9138 0.8513
0.300 1486 81 27086 195 0.9483 0.8840
0.400 1500 55 27112 181 0.9646 0.8923
0.500 1510 52 27115 171 0.9667 0.8983
0.600 1507 54 27113 174 0.9654 0.8965
0.700 1502 59 27108 179 0.9622 0.8935

Table 27: Training Strategy I performance at learning rate 0.5

Stage TP FP TN FN Precision Sensitivity
Testing (model error) 1510 52 27115 171 0.9667 0.8983
Testing (general error) 1868 69 33890 233 0.9644 0.8891

batch data. During each training, the weights of the SOM network were
generated randomly, and the best performing network was selected while
keeping a fixed learning rate parameter at the value of 0.5. The perfor-
mance of the investigated network on repetitive Strategy II (using only
T1 data set) model evaluation and testing is presented in Table 28. The
row in bold indicates the best network obtained. Quite small deviations
in precision and sensitivity rates show the stability of the network. Then,
parameters of the best-obtained network were used as initial weights for
the network to be trained with T2 batch data. Finally, imitating the
new data portion arrival, the best model obtained with T2 batch data
was retrained with the T3 batch data. The results of the additional
experiment show that the best performance network was obtained with
learning rate of 0.025. The statistics (model test error and general model
error evaluation) of the best model data are presented in Table 29. The
time needed for model training was 18, 229 s. Strategy III. The scheme of
the model training validation and testing was similar to that described
in Strategy II, except for the following two aspects. First, four data
batches (Tm2–Tm5) were produced from from T2 and T3 batches. Each
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Table 28: Strategy II performance on model test data

No. TP FP TN FN Precision Sensitivity

1 1364 241 26926 317 0.8498 0.8114

2 1329 280 26887 352 0.8260 0.7906

3 1359 252 26915 322 0.8436 0.8084

4 1364 274 26893 317 0.8327 0.8114

5 1356 253 26914 325 0.8428 0.8067

6 1335 253 26914 346 0.8407 0.7942

7 1314 251 26916 367 0.8396 0.7817

8 1332 258 26909 349 0.8377 0.7924

9 1367 237 26930 314 0.8522 0.8132
10 1338 240 26927 343 0.8497 0.7960

max 0.8522 0.8132
min 0.8260 0.7817

average 0.8413 0.8011
stdev 0.0079 0.0115

Table 29: Retraining Strategy II performance at learning rate 0.025

Stage TP FP TN FN Precision Sensitivity

Testing (model error) 1500 98 27069 181 0.9387 0.8923

Testing (general error) 1836 122 33837 265 0.9377 0.8739

new batch contains one quarter of both T2 and T3 data (see Table 30).
Second, as previously described, after every model training and valida-

Table 30: Partitioning of data set (Strategy III)

Data Batches % of Train and Validation Data New Data Items All Data Items
T1 60% 69235 69235
Tm2 10% 11539 23078
Tm3 10% 11539 23078
Tm4 10% 11539 23078
Tm5 10% 11539 23078

tion, the parameters of the best-obtained model were used for every next
Tm2–Tm5 batch training, except for the model training data aggrega-
tion. In every retraining cycle, the model error was estimated the same
way as described in Strategies I and II. Half of the items from Tm2–Tm5
data batches consisted of items from T2 and T3, as shown in Table 30
(Tm2–Tm5), while another part of the data was selected proportionally,
with respect to those data points attached to the previous best model
SOM winning neurons. This approach guaranteed that the knowledge
of frequently passed sea regions was incorporated into the next model
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training because ships do not change their sea routes often. Experiments
show that the best model was obtained with the learning rate of 0.03.

The statistics for the Strategy III best model were obtained using test
data for general model error estimation, and the results are presented in
Table 31.

Table 31: Retraining Strategy III performance at learning rate of 0.003

Stage TP FP TN FN Precision Sensitivity
Testing (model error) 1527 73 27094 154 0.9544 0.9084
Testing (general error) 1866 91 33868 235 0.9535 0.8881

The time needed for the algorithm retraining was 27, 854 s. The
summary of relative time required for the training Strategies I–III is
presented in Table 32. The same data batching Strategies I–III that

Table 32: Retraining Strategies I–III performance on Cargo data set

Strategy Precision Sensitivity Relative Time
Strategy I 0.9644 0.8891 1
Strategy II 0.9377 0.8739 0.4471
Strategy III 0.9535 0.8881 0.6832

were described above were tested on the Passenger data set as well. The
results are presented in Table 33. Results in Tables 32 and 33 show

Table 33: Retraining Strategies I–III performance on Passenger data set

Strategy Precision Sensitivity Relative Time
Strategy I 0.9795 0.8897 1
Strategy II 0.9802 0.8870 0.4478
Strategy III 0.9817 0.8888 0.6817

that, by applying different SOM model retraining strategies and keeping
the same data batch sizes, it is possible to substantially decrease the
training time for detection of maritime traffic abnormal movements while
retraining the model precision and sensitivity at very high values. The
obtained results show that the SOM network could be retrained in half
the time while keeping precision and sensitivity at almost the same high
values.

SOM-Pheromone and SOM-GMMmethods and "Fehmarnbelt"
data set. The experimental setup is applied to the "Fehmarnbelt" data
set in order to study performance of SOM methods on significantly larger
and intense marine traffic areas. The data was prepared for training and
testing. The data summary is shown in Table 14 on page 54. Further
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in this subsection the quantities of data will be shown as vectors, where
single sequence contains n′ + ñ = 100 navigational vectors.

As mentioned earlier, Klaipeda’s data set is Expert annotated, but
"Fehmarnbelt" is not. For both SOM based methods it is essential
to have the labeled data for fine-tuning. Based on those labels, the
SOM_Pheromone’s βPPV , βTPR and SOM_GMM’s P (H = normal)
parameters are fine-tuned to maximize sensitivity and precision of anomaly
detection. The "Fehmarnbelt" data set is enormous and unlabeled. To
label such a tremendous amount of data is unfeasible because that re-
quires many work hours of costly expert work and makes semi-supervised
algorithms too expensive. To compare performance of SOM based meth-
ods with LSTM based methods, we need anomaly labels for vessel trajec-
tories/navigational vectors. In order to collect such anomaly labels, the
LSTM prediction learning and LSTM wild bootstrapping models were
trained for anomaly level of (1 − α) = 0.95. These obtained anomalous
vectors were used as a reference for SOM-based methods for fine-tuning
model parameters. Moreover, the grid size, neighborhood function, and
learning rate are selected the same way as depicted in the experiment
with Klaipeda’s data set. Both SOM based methods were trained on all
distinct vessel types separately while estimating model parameters. The
calibration, fine-tuning, and validation are performed independently on
a part of data set, that was produced by LSTM prediction learning and
LSTM wild bootstrapping independently and labeled as anomaly..

In order to retain visual intuitiveness, the SOM_pheromone and
SOM_GMM networks are displayed only on the geographical plain by
using only Latitude and Longitude features from SOM neuron weights
(code-books). Such visualization hides other vector/codebook features,
and because of that, it cannot be used to evaluate the model. This vi-
sualization is meant to give VTS operator a general understanding of
normal traffic distribution in the geographical area. For this intuitive
visualization Figures 25 and 26 are presented.

Figure 25 shows SOM_pheromone longitude and latitude parts of
neuron weights/codebook for grid size 60 × 60, that was trained using
traffic of fishing type vessels at "Fehmarnbelt" region. The figure shows
longitude and latitude of navigational vectors ("colored dot") and SOM
neurons ("×") on two dimensional geographical plain. It can be observed
that in areas of higher traffic intensity, where navigational vectors are
more dense, the SOM neurons create clusters that cover a smaller ge-
ographical area. It gives smaller granularity for further model creation
for anomaly detection. Experiments have shown (see Table 23) that
the size of SOM grid influences precision of both SOM_pheromone and
SOM_GMM models. For "Fehmarnbelt" data set analysis, each vessel
type was investigated with respect to obtain the best SOM grid size and
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Figure 25: SOM neurons grid 60×60 visualization of Fishing type vessels
traffic

neighbourhood function (see Table 34) with respect to fixed PICP by
LSTM methods described above. The visualisations of SOM grids for
other vessel types can be found in Appendix G.

Figure 26 shows negative likelihood (−log(P (H = normal))) of Fish-
ing type vessel traffic formed by trained SOM_GMM model. Negative
likelihood is chosen to visualise contour plot of likelihood spread across
geographical region more clearly. The blue color shows navigational
vector projection on geographical plain of vessel traffic. The contour
lines depict negative likelihood of SOM_GMM model. The darker color
means higher −log(P (H = normal)) likelihood, and brighter colour
means lower likelihood. It can be observed that darker color falls on
the denser part of vessel traffic and by adjusting likelihood threshold
P (H = normal) we could fine tune sensitivity of anomaly detection.

Table 34 shows final results of SOM based method experiments,
which were performed using "Fehmarnbelt" data set grouped by specific
vessel type. The above experiment data follows the same workflow as
that performed on Klaipeda’s data set: precision, sensitivity and PICP
dependency were investigated using selection of neighbourhood functions
and grid sizes. In summary, the suggested (see Subsection 3.3, p. 62)
retraining strategies also showed same patterns as those observed by
analysing Klaipeda’s data set. Strategy III took only 0.671 fraction of
computational time required by Strategy I with precision drop by average
of 0.007 and 0.009 drop in sensitivity. Learning rate parameter bound for
Strategy III is between 0.03 and 0.04. Thus the results of "Fehmarnbelt"
data set show that the retraining strategies can be applied to minimize
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Figure 26: SOM_GMM’s negative log likelihood prediction of fishing
type vessels traffic

training time while keeping the sensitivity and precision at feasible levels
for SOM_pheromone and SOM_GMM point-wise algorithm modifica-
tions.

Additionally, it was observed that larger data sets such as Cargo,
Passenger, and Tanker require significantly larger grid sizes (70 × 70)
in comparison with the smaller data sets such as Diving, HSC, Towing,
etc. vessels (35×35) (see Table 34) SOM. Also, the Cut Gaussian neigh-
bourhood function performs better on larger data sets, yet Mexican hat
neighbourhood function works better on the smaller ones. Moreover,
SOM_GMM requires smaller grid sizes than the SOM_Pheromone (see
the SOM_pheromone and SOM_GMM Grid column in Table 34). Also,
we can see that SOM_GMM is less sensitive for grid size variance and
is more precise on larger data sets. However, SOM_pheromone method
performs better on smaller data sets (eg. Anti-pollution, Diving). Fur-
thermore, the SOM_Pheromone and SOM_GMM fine tuned models
were validated using LSTM wild bootstrapping model output. The re-
sults were similar when the models were tested using reference labels
from both LSTM methods, except for very small data sets for which sta-
tistical LSTM wild bootstrap method failed to learn prediction region
(results are shown as "-").

Also, it can be observed that both SOM based methods have low
sensitivity values. For small data sets (e.g. Spare_1, HSC, Diving) the
sensitivity is better, but in general it is low. This fact shows that such
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Table 34: SOM_pheromone and SOM_GMM experiment results using
"Fehmarnbelt" data set

Vectors LSTM prediction region LSTM wild bootstrap
,×102 SOM-pheromone SOM-GMM SOM-

pheromone
SOM-GMM

Vessel
type

train test PICP Grid NF PPV TPR Grid PPV TPR PICP PPV TPR PPV TPR

Anti-
pollution

1094 365 0.941 40x40 MH 0.901 0.774 35x35 0.886 0.740 0.491 0.803 0.747 0.897 0.721

Cargo 75625 25209 0.960 70x70 CG 0.675 0.667 60x60 0.856 0.634 0.975 0.719 0.680 0.824 0.608

Diving 103 35 0.835 35x35 MH 0.914 0.869 30x30 0.899 0.896 0 - - - -

Dredging 4584 1528 0.951 70x70 CG 0.667 0.640 55x55 0.844 0.601 0.892 0.720 0.636 0.865 0.692

Fishing 15748 5250 0.944 60x60 CG 0.626 0.656 60x60 0.849 0.631 0.897 0.713 0.652 0.849 0.691

HSC 32 11 0.846 35x35 MH 0.914 0.947 30x30 0.904 0.936 0.009 - - - -

Law-
enforce-
ment

4467 1489 0.955 70x70 CG 0.638 0.555 55x55 0.857 0.600 0.816 0.722 0.576 0.841 0.679

Military 4743 1581 0.953 70x70 CG 0.667 0.700 60x60 0.842 0.586 0.824 0.716 0.667 0.843 0.666

Passenger 47988 15996 0.959 70x70 CG 0.671 0.617 60x60 0.806 0.550 0.964 0.679 0.557 0.845 0.556

Pilot 6352 2118 0.959 70x70 CG 0.658 0.683 40x40 0.859 0.648 0.829 0.723 0.601 0.832 0.553

Pleasure 1965 655 0.943 60x60 CG 0.660 0.601 50x50 0.846 0.635 0.868 0.743 0.604 0.851 0.576

Port-
tender

272 91 0.487 35x35 MH 0.898 0.761 35x35 0.898 0.748 0 - - - -

Reserved 436 146 0.947 30x30 MH 0.908 0.880 30x30 0.903 0.893 0 - - - -

SAR 3704 1235 0.959 60x60 CG 0.612 0.605 55x55 0.848 0.619 0.962 0.736 0.681 0.851 0.691

Sailing 6692 2231 0.952 70x70 CG 0.662 0.602 60x60 0.855 0.629 0.981 0.748 0.693 0.856 0.618

Spare_1 15 6 0.903 30x30 MH 0.911 0.879 30x30 0.909 0.862 0.074 - - - -

Tanker 22577 7526 0.946 70x70 CG 0.603 0.573 55x55 0.859 0.670 0.969 0.752 0.685 0.830 0.644

Towing 522 175 0.944 30x30 MH 0.890 0.788 30x30 0.901 0.844 0 - - - -

Towing-
long-wide

367 123 0.925 30x30 MH 0.913 0.885 30x30 0.907 0.892 0 - - - -

Tug 9421 3141 0.955 60x60 CG 0.641 0.654 50x50 0.839 0.644 0.945 0.725 0.633 0.864 0.655

WIG 40 14 0.726 30x30 MH 0.916 0.937 30x30 0.911 0.940 0 - - - -

Mean: 0.759 0.727 0.871 0.724 0.731 0.647 0.850 0.642

Abbreviations in table: NF - neighbourhood function; PPV - Precision; TPR - Sensitivity;
MH - Mexican hat; CG - Cut Gaussian;

models produce a high number of false negative cases. The higher num-
ber of false negatives, the harder these methods detect traffic anomalies
that can be detected by LSTM methods. This assumption more thor-
oughly inspected in the subsection 5.4 "Comparison of Anomalous Traffic
Trajectories".

5.4 Comparison of Anomalous Traffic Trajectories

In this subsection, the investigation of the number of false negatives is
performed. As a tool, the Spatio-temporal clustering method is applied.
Cuturi and Blondel [93] propose soft-DTW k-means algorithm to clus-
ter time series data. In order to apply the idea in the research, the
multivariate version of the proposed algorithm is used. The sequences
of predicted trajectory latitude and longitude point coordinates from X
(see Equation (6) on 48 p.) were used as input data for algorithm. Fig-
ure 27 summarizes the result of clustered anomalous trajectories. The
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Figure 27: Clustered anomalous vessel traffic trajectories of Fishing ves-
sel type

figure represents sets of vessel navigational vector sequences from the
anomalous false-negative vessel trajectories. The trajectories assigned
to the particular cluster are colored in black, and the barycenter of the
cluster is colored in red. The number of clusters was chosen using an
elbow method [94].

Navigational sequences are pre-processed using scaling to zero mean
and unit variance. The assumption is that the range of a given sequence
is uninformative, and one only wants to compare trajectory shapes in
an amplitude-invariant manner. As the sequences are multivariate, the
scaling re-scales all modalities so that there will not be a single modality
responsible for a large part of the variance. This approach means that
scale barycenters of the sequence are scaled independently, and there
is no such thing as an overall data range [93, 95]. Thus the approach
clusters the data only by the trajectory shape but not location.

Figure 27 shows 30 trajectory clusters of fishing vessel type. One
may observe that the red lines depict rather different trajectory shapes.
In addition to that, clusters with numbers 2, 13, 14, and 17 share the
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Figure 28: Analysis of Fishing vessel anomalous trajectory groups of
SOM_GMM false negatives

same shape properties, except for different vessel movement directions.
This remark extends to other clusters as well. Thus, by taking into ac-
count, the marine vessel domain knowledge and shape rotations obtained
30 clusters forms in 5 distinct cluster groups that represent anomalous
trajectory shapes:

• Straight trajectory line shape cluster - 2, 13, 14, 17 (Green).
• Stopping trajectory line shape cluster - 11, 15, 22, 29, 30 (Blue).
• Soft manoeuvre trajectory shape cluster - 1, 4, 5, 6, 9, 10, 12, 16,

18, 19, 20, 24, 25, 26, 28 (Yellow).
• Sharp manoeuvre trajectory shape cluster - 3, 7, 8, 21, 27 (Red).
• Drift trajectory shape cluster 23 (White).

Figure 28 shows the distribution of false-negative trajectory shapes among
mentioned cluster groups. One can see that Sharp maneuver trajectory
shape clusters (marked red) form the majority of shapes (57.00%). Sec-
ond in size is the Stopping trajectory line shape cluster (marked blue)
with the amount of 27.9% of trajectories in the set of false negatives,
while Soft maneuver trajectory clusters constitute 15,07%. Finally, the
Straight and Drift trajectory clusters constitute 0.02% and 0.005% of
false-negative shapes respectively. A similar clustering trend is observed
in the larger sets of vessel types such as Anti-pollution, Cargo, Dredging,
Fishing, Law_enforcement, Military, Passenger, Pilot, Pleasure, SAR,
Sailing, Tanker, Tug, and in smaller vessel data sets grouped by vessel
type. The analysis of the false-negative trajectory line shapes concludes
that obtained false-negatives dominate the line shapes of Soft maneuver
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and Straight trajectories, and constitute on average 67% and 21% of the
whole sample set, respectively.

5.5 Conclusions of the Section

During the experimental investigation, it was observed that all mod-
els behave differently on two data set groups based on their size. The
first group is less than 138242 navigational vectors. This group con-
tains the following data sets: Klaipeda Cargo, Passenger, Tugs, and Pi-
lot; Fehmarnbelt Anti-pollution, Diving, HSC, Port_tender, Reserved,
Spare_1, Towing, Towing_long_wide, and WIG. The second group ex-
ceeds 138242 and contains the following data sets: Fehmarnbelt Cargo,
Dredging, Fishing, Law_enforcement, Military, Pilot, Pleasure, SAR,
Tanker, Sailing, Tanker, and Tug.

Semi-supervised SOM methods The SOM_pheromone and
SOM_GMM methods were tested using Klaipeda and "Fehmarnbelt"
sea regions vessel traffic AIS data sets. When data for the Klaipeda re-
gion are used, the proposed SOM_Pheromone modification outperforms
the SOM_GMM algorithm, but on "Fehmarnbelt", the SOM_pheromone
outperformed only on smaller Anti-pollution, Diving, HSC, Spare_1,
Towing-long-wide, WIG vessel type data sets. On other larger vessel
type data sets, the SOM_GMM shows better results of classification
precision.
The SOM_pheromone algorithm performs better than SOM_GMM on
smaller data sets. For this data set group, the recommended SOM_phero-
mone parameter is the Mexican Hat neighbourhood function, grid size
from 35 × 35 to 40 × 40. On smaller data sets, the method reaches a
precision of 0.982, with a sensitivity of 0.889 (Klaipeda passenger data
set). On the larger data set group, SOM_GMM performs better than
SOM_pheromone. The recommended parameters are: Cut Gaussian
neighbourhood function, grid size from 55 × 55 to 60 × 60. The best-
obtained precision is 0.859, and sensitivity is 0.648. For larger data sets,
in order to obtain the best result, SOM_GMM requires a smaller grid
size (60× 60) compared with SOM_pheromone (70× 70).

Both SOM methods have shown better performance on the smaller
data set group when a Mexican hat neighbourhood is used. However, for
the larger group, the Cut Gaussian function shows better performance
results.
During testing of differed sizes of SOM grid, it was observed that per-
formance depends on the size of the data set and algorithm. For the
Klaipeda data set, the best precision was shown by 25×25 grid. For best
precision in the larger "Fehmarnbelt" data set group, SOM_pheromome
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requires 60 × 60 to 70 × 70 grid size and SOM_GMM requires 45 × 45
to 60 × 60. For the smaller data set group, SOM_pheromome requires
30 × 30 to 35 × 35, and SOM_GMM requires 30 × 30 to 35 × 35. For
the larger data set group, SOM_GMM requires a smaller SOM grid in
comparison with SOM_pheromone method.

SOM retraining strategies By applying different SOM model re-
training strategies, while keeping the exact data batch sizes, it is pos-
sible to substantially decrease the time for detection of maritime traffic
abnormal movement while the model is retrained for precision and sen-
sitivity at very high values. The results obtained show that the SOM
network could be retrained in half the time while keeping precision and
sensitivity at almost the same high values.
If the model is trained from the initial random weights of the SOM net-
work, the best performance is observed; however, the training time is
the longest. Model precision reaches 0.979, and sensitivity is 0.889 at a
learning rate of 0.5.
If the model is trained on top of the pretrained model weights, the pre-
cision and sensitivity drop slightly, but the training time decreases by
half at a learning rate of 0.025.
Let us suppose that the model is trained on top of the pretrained model
weights, and the newly arrived data batch is proportionally mixed with
those winning neurons. In that case, the training time can be decreased
by one-third while keeping almost the same results as depicted previously
at a learning rate of 0.03.

The suggested retraining Strategy III took only 67.1% of computa-
tional time required by Strategy I method with the precision drop to the
range from 0.007 to 0.009. The learning rate parameter for the proposed
strategy is between 0.03 and 0.04.

Unsupervised LSTM methods LSTM multi-stacked multivariate
auto-encoder was used to predict vessel trajectories in an unsupervised
approach. For smaller data set groups, the LSTM prediction region
learning method and the LSTM bootstrap have MAE average error of
11.14 and 10.71 km, respectively, for the group. For the larger group,
the average error is 2.73 and 2.07 km, respectively. It shows that the
LSTM method is more accurate for the larger data set group than for
the smaller data set group with a difference of 8.41 and 8.64 km.

The Prediction Region Coverage Probability (PICP) value was con-
trolled in LSTM prediction learning method by adjusting λ value. It was
observed that when λ value is increased linearly, the PICP and PINAW
values increase logarithmically. Each vessel type data set has a particular
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λ value that corresponds to PICP value.
By testing the PICP value on validation and test data set, it was

observed that models of smaller data set groups show significantly lower
values when the goal is PICP = 95%. (Diving - 83.5%, HSC - 84.6%,
Port_tender - 48.7%, Spare_1 - 90.3%, WIG - 87.3%). PICP values of
larger data set groups are closer to the desired values (94.1%, 94.4%,
95.1%, etc.). It shows that LSTM prediction region learning method is
less accurate on smaller data sets than on the larger data set group. Ad-
ditionally, after performing 10 LSTM networks learning with the same
λ value, but different initial random weights, it was observed that the
learned set of PICP values on the smaller data set group have signifi-
cantly larger variances compared to the larger data set group.

The prediction region results of both LSTM methods show that for
the larger data set group, the PICP values are close to predefined 100(1−
α) = 95% with values in the range 94.1% to 97.5%. On the smaller
data set group, the LSTM prediction learning method can still learn
with narrower prediction regions from 48.7% to 84.6%. The LSTM wild
bootstrapping method was unable to learn prediction regions for the
smaller data set group with the PICP value of 0. Both LSTMmethods for
unsupervised estimation of prediction regions can be used for abnormal
marine traffic detection when training data sets in the larger group. It
is recommended to use LSTM prediction region learning method with
narrower prediction regions for the smaller data sets.

Trajectory line shapes After fine-tuning both SOM methods with
anomalous traffic labels, which were detected by LSTM methods, it was
observed that SOM methods have low classification sensitivity values
and, accordingly, large false negative values, especially in the larger data
set group. Anomalous vessel traffic trajectories were clustered into 30
clusters representing five general type trajectory shapes: straight line,
stopping line, soft maneuver, sharp maneuver, and drift maneuver. False
negatives of SOM methods constitute 57.0% of sharp maneuver trajec-
tories, 27.9% of stopping trajectory line shapes, 15.07% of soft maneu-
ver trajectory line shapes, 0.02% of straight trajectory line shapes, and
0.005% of drift trajectory line shapes. This observation shows that SOM
methods detect trajectory anomalies of this type significantly worse than
LSTM methods.
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GENERAL CONCLUSIONS

1. The accuracy of SOM_pheromone and SOM_GMM methods de-
pend on amount of data. It was observed that SOM_pheromone
method detects anomalous traffic more accurately than SOM_GMM
method does in data up to around 140,000 navigational vectors.
Experiments show that the recommended SOM_pheromone pa-
rameters are: Mexican Hat neighbourhood function and grid size
from 35×35 to 40×40. On smaller data sets, an average precision
is 0.911 and sensitivity is 0.801 versus SOM_GMM’s precision of
0.886 and sensitivity of 0.740. On larger data sets with more than
approximately 140,000 navigational vectors, the SOM_GMM out-
performs SOM_pheromone. The SOM_GMM’s average precision
is 0.859 and sensitivity is 0.648 in comparison with SOM_pheromone’s
average precision of 0.675 and sensitivity of 0.640. The recom-
mended parameters are Cut Gaussian neighbourhood function and
grid size from 55× 55 to 60× 60.

2. It is possible to substantially decrease model training time to detect
abnormal maritime traffic movement when the model precision and
sensitivity retain high values. Proposed SOM retraining strategy
is applied to achieve this goal, where neurons’ previous trained
weights are used as a starting position for retraining the network
with newly gathered data subset mixing it with historical data and
adjusting the learning rate. The obtained results show that the
SOM_pheromone and SOM_GMM networks could be retrained
in half the time while keeping precision and sensitivity at almost
the same high values. The suggested retraining strategy took only
67.1% of computational time required by the classical method with
the precision drop to the range from 0.007 to 0.009. The learning
rate parameter for the proposed strategy is between 0.03 and 0.04.

3. The prediction region results of both LSTM methods show that
for larger data sets with more than approximately 140,000 naviga-
tional vectors, the Prediction Region Coverage Probability (PICP)
value is close to the predefined 100(1− α) = 95% value, when val-
ues are in range from 94.1% to 97.5%. On smaller data sets with
less than approximately 140,000 navigational vectors, the LSTM
prediction learning method was still able to learn with narrower
prediction regions from 48.7% to 84.6%. The LSTM wild boot-
strapping method was unable to learn prediction regions for smaller
data sets, which is indicated by the PICP value of 0. Both LSTM
algorithms for unsupervised estimation of prediction regions can
be used for the detection of abnormal marine traffic when train-
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ing data sets are larger than approximately 140,000 navigational
vectors. For smaller data sets, it is recommended to use LSTM pre-
diction region learning method with narrower prediction regions.

4. In order to solve the issue of missing vessel type data, a multi-
stacked multivariate LSTM classifier was developed. The proposed
model performs well, the average precision is 0.96079, the aver-
age sensitivity is 0.96060, and f1-score is 0.96056. Classification
metrics show good generalization properties that allow to perform
imputation and gain classes for the 4.28% percent with missing
feature value (from a total of 4234160 navigational vectors) in the
"Fehmarnbelt" data set.

5. The test results of SOM methods, where LSTM output was taken
as class reference, show low values of sensitivity (from 0.555 to
0.700) due to high values of false negatives. The analysis of these
false negative results allows to conclude that sharp manoeuvre tra-
jectory and stopping trajectory line shapes dominate in obtained
false negatives set and constitute an average of 57.0% and 27.9%
in the larger data set group.
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A APPENDIX - Pair plot of numerical AIS fea-
tures

Figure 29: Pair plot of numerical features.
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B APPENDIX - Vessel type visualizations
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C APPENDIX - Data tables of missing vessel
type recognition model

Table 35: Confusion matrix of vessel type prediction model
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Cargo 21488 201 5 237 187 0 0 0 3 0 40 33
Tanker 217 21728 2 197 201 0 0 0 2 0 27 1
Fishing 3 0 21390 11 108 2 84 22 33 0 155 341
Passenger 180 144 4 21234 15 0 57 0 198 0 5 5
Tug 104 1 171 10 19345 1 447 201 34 0 394 894
Military 0 0 1 0 1 21633 2 0 0 107 0 0
Sailing 0 0 74 29 398 1 20874 0 549 0 9 10
Dredging 0 0 12 0 207 0 0 21636 0 0 66 207
Pleasure 4 0 38 108 29 0 608 1 21271 0 2 1
SAR 0 0 0 0 0 57 0 0 0 21956 0 0
Pilot 75 25 178 13 401 1 18 48 14 0 20096 299
Towing 25 4 117 3 1089 2 17 125 5 0 347 19616
Reserved 0 0 1 2 4 2 3 4 1 0 1 3
Law enfor. 0 0 0 1 0 409 0 1 0 48 0 1
Towing long. 0 1 47 3 48 3 1 61 0 0 87 579
HSC 0 0 0 259 0 0 0 0 0 0 0 0
Port_ten. 15 7 71 4 78 0 0 12 1 0 877 101
Diving 0 0 0 0 0 0 0 0 0 0 0 1
Anti-pol. 0 0 0 0 0 0 0 0 0 0 5 17
Spare_1 0 0 0 0 0 0 0 0 0 0 0 1
WIG 0 0 0 0 0 0 0 0 0 0 0 1

Table 36: Confusion matrix of vessel type prediction model (continued)

True Class (FN)
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Tanker 0 0 3 0 21 0 0 0 0
Cargo 0 0 4 0 17 0 0 0 0
Fishing 0 0 143 0 51 0 0 0 0
Passenger 1 0 1 155 1 0 0 0 0
Tug 2 0 874 0 88 0 0 0 1
Military 1 698 1 0 0 0 0 0 0
Sailing 3 0 9 0 0 0 0 0 0
Dredging 4 0 241 0 31 0 0 19 1
Pleasure 2 0 4 0 0 0 0 0 0
SAR 0 105 0 0 0 0 0 0 0
Pilot 1 0 241 0 545 0 9 0 1
Towing 1 0 1199 0 113 0 22 0 0
Reserved 22095 0 0 0 0 0 0 0 2
Law enforc. 1 20797 0 0 0 5 0 0 0
Towing long. 0 0 19357 0 62 0 0 1 0
HSC 0 0 0 21956 0 0 0 0 0
Port tender 0 0 34 0 21182 0 0 0 0
Diving 0 511 0 0 0 22106 0 0 0
Anti-pol. 0 0 0 0 0 0 22080 0 0
Spare 1 0 0 0 0 0 0 0 22091 1
WIG 0 0 0 0 0 0 0 0 22105
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D APPENDIX - Random vessel track spatio tem-
poral visualisation
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E APPENDIX - LSTM crisp model errors

Figure 37: LSTM crisp model prediction errors
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Figure 38: LSTM crisp model prediction errors (continued)
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F APPENDIX - LSTM PICP and PINAW rela-
tion to lambda parameter

Figure 39: PICP and PINAW rate of "Cargo" ship type
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Figure 40: PICP and PINAW rate of "Anti-pollution" ship type

Figure 41: PICP and PINAW rate of "Diving" ship type
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Figure 42: PICP and PINAW rate of "Dredging" ship type

Figure 43: PICP and PINAW rate of "Fishing" ship type
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Figure 44: PICP and PINAW rate of "HSC" ship type

Figure 45: PICP and PINAW rate of "Law_enforcement" ship type
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Figure 46: PICP and PINAW rate of "Military" ship type

Figure 47: PICP and PINAW rate of "Passenger" ship type
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Figure 48: PICP and PINAW rate of "Pilot" ship type

Figure 49: PICP and PINAW rate of "Pleasure" ship type
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Figure 50: PICP and PINAW rate of "Port_tender" ship type

Figure 51: PICP and PINAW rate of "Reserved" ship type
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Figure 52: PICP and PINAW rate of "Sailing" ship type

Figure 53: PICP and PINAW rate of "SAR" ship type
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Figure 54: PICP and PINAW rate of "Spare_1" ship type

Figure 55: PICP and PINAW rate of "Tanker" ship type

137



Figure 56: PICP and PINAW rate of "Towing_long_wide" ship type

Figure 57: PICP and PINAW rate of "Towing" ship type
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Figure 58: PICP and PINAW rate of "Tug" ship type

Figure 59: PICP and PINAW rate of "Wig" ship type
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G APPENDIX - SOM and virtual pheromone
figures
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