Title The Gaia -ESO survey: chemical evolution of Mg and Al in the Milky Way with machine learning /
Authors Ambrosch, Markus ; Guiglion, G ; Mikolaitis, Šarūnas ; Chiappini, C ; Tautvaišienė, Gražina ; Nepal, S ; Gilmore, G ; Randich, S ; Bensby, T ; Bayo, A ; Bergemann, M ; Morbidelli, L ; Pancino, E ; Sacco, G. G ; Smiljanic, R ; Zaggia, S ; Jofré, P ; Jiménez-Esteban, F. M
DOI 10.1051/0004-6361/202244766
Full Text Download
Is Part of Astronomy & astrophysics.. Les Ulis : EDP Sciences. 2023, vol. 672, art. no. A46, p. [1-17].. ISSN 0004-6361. eISSN 1432-0746
Keywords [eng] galaxy: abundances ; galaxy: stellar content ; methods: data analysis ; stars: abundances ; techniques: spectroscopic
Abstract [eng] Context. To take full advantage of upcoming large-scale spectroscopic surveys, it will be necessary to parameterize millions of stellar spectra in an efficient way. Machine learning methods, especially convolutional neural networks (CNNs), will be among the main tools geared at achieving this task.
Published Les Ulis : EDP Sciences
Type Journal article
Language English
Publication date 2023
CC license CC license description