Abstract [eng] |
By this work we present an IT risk management system, which is capable to model and manage risks that arise from IT wich are related with IS downtimes and slow response times. The system is implemented by using a proposed neural network architecture as a heart of the modeling engine. It is trained with accumulated datasets from existing information systems. The user shows for the system which statistical data time series one needs to model – i.e. the one which represents the risk (like server load, IS response time, etc.). The system automatically determines correlated statistical time series, groups them and creates a separate model for each group – this model generalizes until then unknown relationship between time series by invoking neural network. The model then accepts values of the input parameters and the system models the value of the risk parameter. Experiments have shown that the proposed system can be successfully used in a mixed IT environment and can be rewarding for one who tracks IT risks coming from various IT and IS components. |