Title Diskrečioji ribinė teorema Matsumoto dzeta funkcijai analizinių funkcijų erdvėje /
Translation of Title A Discrete Limit Theorem for the Matsumoto Zeta-Function in the Space of Analytic Functions.
Authors Paulauskas, Tomas
Full Text Download
Pages 18
Abstract [eng] For σ>α+β+1, define the function φ(s), s=σ+it, by a polynomial Euler product. In our work, a discrete limit theorem in the space H(D) of analytic functions for the function φ(s) is proved. Suppose that h>0 is a fixed number such that for some integers k≠0 the number exp{2πk/h} is racional, and denote by B(H(D)) the class of Borel sets of the space H(D). Then we prove that the probability measure converges weakly to the distribution of one H(D)- valued random element.
Type Master thesis
Language Lithuanian
Publication date 2009