Abstract [eng] |
Let X be a Dirichlet character modulo q, and s=o+it be a complex variable. A Dirichlet L-function L(s,X) is defined, for o>1, by Dirichlet serie and is analitic continued to the whole comples plane. It is knowen that the function L(s,X) is universal in the sense that the shifts L(s+it, X) approximate any analytic function. Also, Dirichlet L-function are jointly collection of given analytic functions. The master work is devoted to the proof of a modern joint universality theorem for Dirichlet L-function. This theorem is knowen,howerver , its proof is not given in literature.We remove this gap, and prove the following theorem. |