| Title |
Šaknų sąlyga antrojo laipsnio kompleksiniam polinomui ir trisluoksnių skirtumų schemų spektrinė analizė |
| Translation of Title |
The root condition for polynomial of the second degree and a spectral analysis for three-level finite-difference schemes. |
| Authors |
Štikonas, Artūras |
| DOI |
10.15388/LMD.1998.37944 |
| Full Text |
|
| Is Part of |
Lietuvos matematikos rinkinys.. Vilnius : Vilniaus universiteto leidykla. 1998, t. 2, p. 396-401.. ISSN 0132-2818. eISSN 2335-898X |
| Abstract [eng] |
This paper deals with a root condition for polynomial of the second degree. We propose the root condition criterion for such polynomial wiith complex coefficients. The criterion coincide with well-known Hurwitz criterion in the case of real coefficients. We apply this root condition criterion for some three-level finite-difference schemes for Kuramoto-Tsuzuki equations. We investigate polynomial symmetrical and DuFort-Frankel finite-difference schemes and polynomial for one odd-even scheme. We established spectral (conditionally or non-conditionally) stability for these schemes. |
| Published |
Vilnius : Vilniaus universiteto leidykla |
| Type |
Journal article |
| Language |
Lithuanian |
| Publication date |
1998 |
| CC license |
|