Title AR(1) proceso su atsitiktiniu koeficientu ir begaline dispersija agregavimas /
Translation of Title Aggregation of random coefficient ar(1) process with infinite variance.
Authors Puplinskaitė, Donata
Full Text Download
Pages 34
Abstract [eng] Aggregation of random coefficient AR(1) processes $X_{i,t} = a_i X_{i,t-1} + \vep_t, \ i=1,\cdots, N$ with i.i.d. coefficients $a_i \in (-1,1)$ and common i.i.d. innovations $\{\vep_t\}$ belonging to the domain of attraction of $\alpha-$stable law $(0< \alpha \le 2)$ is discussed. Particular attention is given to the case of slope coefficient having probability density growing regularly to infinity at points $a = 1 $ and $a=-1$. Conditions are obtained under which the limit aggregate $\bar X_t = \lim_{N \to \infty} N^{-1}\sum_{i=1}^N X_{i,t} $ exists and exhibits long memory, in certain sense. In particularly, I show that suitably normalized partial sums of the $\bar X_t$'s tend to fractional $\alpha-$stable motion, and that $\{\bar X_t\}$ satisfies the long-range dependence (sample Allen variance) property and distributional long memory. The present paper also extends some results of P. Zaffaroni from finite variance case to infinite variance case.
Type Master thesis
Language Lithuanian
Publication date 2014