Title |
Dual connectivity in graphs / |
Authors |
Mutar, Mohammed A ; Otera, Daniele Ettore ; Khawwan, Hasan A |
DOI |
10.3390/math13020229 |
Full Text |
|
Is Part of |
Mathematics.. Basel : MDPI. 2025, vol. 13, iss. 2, art. no. 229, p. [1-10].. eISSN 2227-7390 |
Keywords [eng] |
dual connected graphs ; edge coloring ; monochromatic coloring ; rainbow coloring |
Abstract [eng] |
An edge-coloring (Formula presented.) of a connected graph G is called rainbow if there exists a rainbow path connecting any pair of vertices. In contrast, (Formula presented.) is monochromatic if there is a monochromatic path between any two vertices. Some graphs can admit a coloring which is simultaneously rainbow and monochromatic; for instance, any coloring of (Formula presented.) is rainbow and monochromatic. This paper refers to such a coloring as dual coloring. We investigate dual coloring on various graphs and raise some questions about the sufficient conditions for connected graphs to be dual connected. |
Published |
Basel : MDPI |
Type |
Journal article |
Language |
English |
Publication date |
2025 |
CC license |
|