Title |
Modeling the Dirichlet distribution using multiplicative functions |
Authors |
Bareikis, Gintautas ; Mačiulis, Algirdas |
DOI |
10.15388/namc.2020.25.16518 |
Full Text |
|
Is Part of |
Nonlinear analysis: modelling and control.. Vilnius : Vilniaus universiteto leidykla. 2020, vol. 25, no. 2, p. 282-300.. ISSN 1392-5113. eISSN 2335-8963 |
Keywords [eng] |
natural divisor ; multiplicative function ; Dirichlet distribution |
Abstract [eng] |
For q,m,n,d ∈ N and some multiplicative function f > 0, we denote by T3(n) the sum of f(d) over the ordered triples (q,m,d) with qmd = n. We prove that Cesaro mean of distribution functions defined by means of T3 uniformly converges to the one-parameter Dirichlet distribution function. The parameter of the limit distribution depends on the values of f on primes. The remainder term is estimated as well. |
Published |
Vilnius : Vilniaus universiteto leidykla |
Type |
Journal article |
Language |
English |
Publication date |
2020 |
CC license |
|