| Title | The Universality of Degrees of L-Functions of Elliptic Curves | 
					
							| Translation of Title | Elipsinių kreivių L-funkcijų laipsnių universalumas. | 
					
							| Another Title | Elipsinių kreivių l-funkcijų laipsnių universalumas. | 
					
	                    | Authors | Latakas, Martynas ; Garbaliauskienė, Virginija ; Garbaliauskas, Antanas | 
	            
						| Full Text |   | 
				
	                    | Is Part of | Jaunųjų mokslininkų darbai = Journal of Young Scientists. 2009, nr. 3(24), p. 178-182.. ISSN 1648-8776 | 
	            
	                    | Keywords [eng] | Elliptic curve ; L-function ; Universality ; Limit theorem | 
	            
						| Abstract [eng] | Let E be an elliptic non-singular curve over the field of rational numbers Q defined by the Weierstrass equation y2 = x3 + ax+ b, a, b ∈ Z. Let us denote by Δ = –16(4a3 + 27b2) the discriminant of the curve E. For each prime p let us mark the number of solutions of congruence y2 = x3 + ax+ b(mod p) v(p) and let λ(p) = p – v(p). The L-function LE(s) of elliptic curves, where s = σ + it is a complex variable, is defined by Euler product where p is prime number, v(p) is the number of solutions of the congruence y2 = x3 + ax+ b(mod p), λ(p) = p – v(p) and s = σ + it is a complex variable. In the paper, a survey on universality theorems (in Voronin’s sense) for L-functions and the degrees of L-functions of elliptic curves over the field of rational numbers is given. The proof of the universality of L-functions of elliptic curves is based on limit theorems in the sense of weak convergence of probability measures in functional spaces. | 
				
	                    | Type | Journal article | 
	            
	                    | Language | English | 
	            
						| Publication date | 2009 |