Title |
The Universality of Degrees of L-Functions of Elliptic Curves / |
Translation of Title |
Elipsinių kreivių L-funkcijų laipsnių universalumas. |
Another Title |
Elipsinių kreivių l-funkcijų laipsnių universalumas. |
Authors |
Latakas, Martynas ; Garbaliauskienė, Virginija ; Garbaliauskas, Antanas |
Full Text |
|
Is Part of |
Jaunųjų mokslininkų darbai = Journal of Young Scientists. 2009, nr. 3(24), p. 178-182.. ISSN 1648-8776 |
Keywords [eng] |
Elliptic curve ; L-function ; Universality ; Limit theorem |
Abstract [eng] |
Let E be an elliptic non-singular curve over the field of rational numbers Q defined by the Weierstrass equation y2 = x3 + ax+ b, a, b ∈ Z. Let us denote by Δ = –16(4a3 + 27b2) the discriminant of the curve E. For each prime p let us mark the number of solutions of congruence y2 = x3 + ax+ b(mod p) v(p) and let λ(p) = p – v(p). The L-function LE(s) of elliptic curves, where s = σ + it is a complex variable, is defined by Euler product where p is prime number, v(p) is the number of solutions of the congruence y2 = x3 + ax+ b(mod p), λ(p) = p – v(p) and s = σ + it is a complex variable. In the paper, a survey on universality theorems (in Voronin’s sense) for L-functions and the degrees of L-functions of elliptic curves over the field of rational numbers is given. The proof of the universality of L-functions of elliptic curves is based on limit theorems in the sense of weak convergence of probability measures in functional spaces. |
Type |
Journal article |
Language |
English |
Publication date |
2009 |